

 A-1

Appendix A

Specimen Spitbol Program: A Monte-Carlo Feature-Finder

As the idea of Monte-Carlo textual feature-finding is one of the more interesting

contributions of this project, there follows a listing of the program TEFF, written in

the Spitbol dialect of Snobol4. This is the most advanced of the Monte-Carlo

Feature-Finders written for the present thesis.

** TEFF -- Program to find distinctive textual features :

** Copyright (c) Richard Forsyth, 1994, 1995.

*

** First version : 19-Oct-94

** Last revision : 27-Jun-95

*

** Global settings & patterns :

 &anchor = 1

** &trim & &anchor better as 0 ??

 alphanum = "1234567890" &ucase &lcase "_"

 alphapat = break(alphanum) span(alphanum) . word

 qq = '"' "'" ; null = ''

 nongram = 'Zz$$'

 tiny = 1.2e-23

 maxtries = 3600

 strings = 2048

** rather slow.

** Function declarations :

 define('vadd(v,n,tv)j')

 define('tote(s,cats,gramvec)j,n')

 define('chis(t,cats,gv)e,j')

define('loadsubs(maxtries,strings,cats,gramsize)c,card,fpos,j,k,line,n,s,t

')

 define('randstr(line,g,n)r')

 define('tallies(stab,cats,n)c,card,j,k,line,tc')

-include "sno4.inc"

-include "iran.inc"

-include "util.inc"

-include "teff.inc"

-include "ps.inc"

** Prelude :

 terminal = 'TEFF, version 1.1 -- ' date()

 terminal = 'Text-Extending Feature Finder'

 terminal = 'Please give training directory filename (.d1) :'

 A-2

 filename = input

 input(.dirline,1,filename) :f(dudmain)

 mainfile = filename

 terminal = 'Please give o/p file for text markers (.tff) :'

 teffile = input

 output(.dump,12,teffile) :f(dudteff)

 terminal = 'Please give output listing file (.out) :'

 outfile = input

 output(.output,10,outfile) :f(dudfout)

 output = 'TEFF output; date: ' date()

preloop terminal = 'Please give pre-stretched maximum string size (2..9) :'

 gramsize = input

 (integer(gramsize) gt(gramsize,1) le(gramsize,9)) :f(preloop)

 gramsize = +gramsize

 terminal = 'Ignore fragments of earlier substrings (n=No) ?'

 dropmode = replace(input,&ucase,&lcase)

 terminal = dropmode :(main)

dudmain terminal = 'Cannot read file ' filename ' !' :(end)

dudfout terminal = 'Cannot open ' outfile ' !' :(end)

dudteff terminal = 'Cannot open ' teffile ' !' :(end)

** Main Program :

main &dump = 2 ; t1 = time()

 output = 'gramsize = ' gramsize

 output = 'dropmode = ' dropmode

 readdir(60) ; terminal = nf ' training files.'

 cats = nf ; gt = 0.0

 endfile(1)

 entries = 0

** Compute base frequencies :

 stab = table(chop(strings / 2))

 totchars = array(cats) ; symbols = array(cats)

 frac = array(cats)

 entries = loadsubs(maxtries,strings,cats,gramsize)

 terminal = entries

** Do the work :

usefreqs s = 0

 stab = sort(stab)

 x = prototype(stab)

 x break(',') . ns

 ns = +ns

 terminal = ns ' different symbols: ' x

 gramtab = table(201) ; freq = table(251)

 used = null

tallying j = 0 ; s = 0

 gt = tallies(stab,cats,ns)

 terminal = gt ' bytes.'

totloop j = lt(j,cats) j + 1 :f(mainloop)

 frac[j] = totchars[j] / (gt + 0.5)

 output = terminal = 'proportion in class ' j ' = ' frac[j] :(totloop)

mainloop s = lt(s,ns) s + 1 :f(endprog)

 t = tote(s,cats,stab[s,2])

 le(t,12) :s(delement)

** skips if too rare to matter.

 x = chis(t,cats,stab[s,2])

 lt(x,cats) :s(delement)

 A-3

 kept = kept + 1

 gramtab<stab[s,1]> = x

 freq<stab[s,1]> = stab[s,2] :(mainloop)

** records frequencies of non-trivial entries.

delement stab[s,2] = null :(mainloop)

** supposed to save memory.

endprog &dump = 0

 dump = mainfile ' ' date()

** sort table & print details.

 output = ; output = 'Grams kept = ' kept

 output = ; stab =

 gramvec = rsort(gramtab,2)

 j = postsort(gramvec,kept)

 j = gt(j,2) postsort(gramvec,kept)

 terminal = 'Swaps = ' +j

 j = 0 ; &anchor = 0

 nout = 0

** only keep if not substring of string higher in list, unless dropmode=n :

outloop j = lt(j,kept) j + 1 :f(done)

 leq(dropmode,'n') :s(outloop0)

 used gramvec[j,1] :s(outloop8)

outloop0 used = used '~' gramvec[j,1]

 dump = gramvec[j,1] ; nout = nout + 1

 js = 1

outloop1 lout = rpad(j * js,4) lpad('`' gramvec[j,1],17)

 lout = lout ' ' gramvec[j,2]

 v = freq<gramvec[j,1]> ; c = 0 ; lout = lout ' '

outloop2 c = lt(c,cats) c + 1 :f(outloop7)

 lout = lout ' ' chop(v[c]) :(outloop2)

outloop7 output = lout

 lt(nout,144) :s(outloop)f(done)

outloop8 js = -1 :(outloop1)

done output =

 terminal = 'TEFF finished : ' date()

 terminal = 'Runtime = ' (time() - t1) / 1000.0 ' secs.' :(end)

** Function definitions :

** TALLIES :

** Counts substrings in stab[,] :

tallies c = 0 ; tc = 0

tallies1 c = lt(c,cats) c + 1 :f(talliex)

 input(.card,4,filelist[c] '[-l4096]')

 terminal = output = c ' ' filelist[c]

tallies2 line = card :f(tallies4)

 k = size(line) ; tc = tc + k

 totchars[c] = totchars[c] + k

 j = 0

tallies3 j = lt(j,n) j + 1 :f(tallies2)

 k = subcount(line,stab[j,1])

 stab[j,2][c] = stab[j,2][c] + k :(tallies3)

** loops thru all substrings.

tallies4 endfile(4)

 output = totchars[c] ' bytes.' :(tallies1)

 A-4

talliex tallies = tc :(return)

** LOADSUBS :

** Puts random substrings into stab<> :

loadsubs c = 0 ; j = 0 ; k = 0 ; t = 0

loadsub1 c = c + 1 ; c = gt(c,cats) 1

 input(.card,2,filelist[c] '[-l4096]')

loadsub2 line = card :f(loadsub4)

 gt(k,strings) :s(loadsubx)

 j = j + 1

 n = size(line)

 s = randstr(line,gramsize,n)

 t = t + 1 ; gt(t,maxtries) :s(loadsubx)

** save file position on unit 2 :

 fpos = set(2,0,1)

** stretch s to maximum length :

 s = textend(s,17,2)

** will return 'zonk' if useless (no matter).

 fpos = set(2,fpos,0)

** file position restored.

 differ(stab<s>) :s(loadsub3)

 stab<s> = array(cats,0) ; k = k + 1

loadsub3 s = randstr(line,gramsize,n)

 t = t + 1 ; gt(t,maxtries) :s(loadsubx)

 fpos = set(2,0,1)

 s = textend(s,17,2)

 fpos = set(2,fpos,0)

 differ(stab<s>) :s(loadsub2)

 terminal = k ' `' s '`'

 stab<s> = array(cats,0)

 k = k + 1 :(loadsub2)

**

loadsub4 endfile(2) :(loadsub1)

loadsubx endfile(2)

 terminal = j ' lines; ' k ' entries; ' t ' tries.'

 loadsubs = k :(return)

** cycles thru files till table full enough.

** RANDSTR :

** Extracts random substring from line :

randstr randstr = ge(g,n) '!!' :s(return)

 r = iran(n)

 randstr = substr(line,r,iran(g)) :s(return)

 randstr = '$' :(return)

** TOTE :

** Sums contents of freq. array.

tote j = lt(j,cats) j + 1 :f(return)

 gramvec[j] = gramvec[j] + 0.5

 tote = tote + gramvec[j] :(tote)

** side-effect on gramvec[] slugs total towards equality.

** CHIS :

** Chi-squared with cats-1 d.f.

 A-5

chis j = lt(j,cats) j + 1 :f(return)

 e = frac[j] * t

 lt(e,2.618034) :s(chis)

 chis = chis + (gv[j] - e) ^ 2.0 / e :(chis)

** omits cells with e < 2.618

END

** TEFF -- String Extension routines :

** Copyright (c) Richard Forsyth, 1995

*

** First version : 20-Mar-95

** Last revision : 27-Jun-95

*

 zonk = 'zonk'

** non-word.

** Function declarations :

 define('textend(m,maxsize,unit)a,z')

 define('preceder(core,unit)a,ch,k,line,maintext,next,p,rest')

 define('follower(core,unit)a,ch,k,line,maintext,next,p,rest')

 :(teff_end)

** TEXTEND :

** Extends text marker m at both ends if possible :

textend ge(size(m),maxsize) :s(textends)

 a = preceder(m,unit)

 ident(a,zonk) :s(textendz)

 m = a m

 z = follower(m,unit)

 m = m z

 differ(a z) :s(textend)f(textends)

** exit with possibly extended string :

textends textend = m :(return)

textendz textend = zonk :(return)

** zonk as result indicates insufficient freq.

** better keep preceder call before follower.

** PRECEDER :

** Finds constant precursor of substring core, if there is 1 :

preceder a = &anchor ; &anchor = 0

 next = null ; k = 0

** caller must save position on file unit.

 input(.maintext,unit) ; rewind(unit)

 p = len(1) . ch core rem . rest

precede1 line = maintext :f(precedes)

precede2 line p :f(precede1)

 k = lt(k,40) k + 1 :f(precedes)

 line = rest

 ident(next) :f(precede4)

** gets here first time only :

 next = ch :(precede2)

 A-6

**

precede4 ident(next,ch) :s(precede2)

** not always same predecessor :

 &anchor = a ; preceder = null :(return)

** 40 instances without exception is plenty :

precedes &anchor = a

 next = le(k,2) zonk

 preceder = next :(return)

** if less than 3 occurrences, consistency is trivial.

** FOLLOWER :

** Sees whether core is always followed by same character :

follower a = &anchor ; &anchor = 0

 next = null

 p = core len(1) . ch rem . rest

 input(.maintext,unit)

** caller must save position on file unit.

 rewind(unit) ; k = 0

** read next line :

follow1 line = maintext :f(follows)

follow2 line p :f(follow1)

 k = lt(k,39) k + 1 :f(follows)

 line = ch rest

 differ(next) :s(follow4)

** gets here first time only :

 next = ch :(follow2)

**

follow4 ident(next,ch) :s(follow2)

** successors differ, no need to go on:

 &anchor = a ; follower = null :(return)

follows &anchor = a

 follower = next :(return)

** Returns successor char if consistent, else null.

teff_end

** PS.INC : routine(s) for Chisubs & allies :

** Copyright (C) Richard Forsyth, 1995.

**

** First version : 26-Mar-95

** Last revision : 26-Jun-95

**

** Function declarations :

 define('postsort(a,n)j,jump,k,t1,t2')

 define('fabs(v)x')

 :(ps_ends)

** Function definitions :

** FABS :

** Absolute value function, ignoring sign :

 A-7

fabs ge(v,0) :s(fab1)f(fab2)

fab1 fabs = v :(return)

fab2 fabs = -v :(return)

** POSTSORT :

** Puts equal a[,2] items in decreasing order of size(a[,1]) :

postsort j = 1; jump = 'ps_1'

** forward pass :

ps_1 j = lt(j,n) j + 1 :f(ps_3)

 gt(fabs(a[j - 1,2] - a[j,2]),1e-8) :s(ps_1)

** more or less equal :

 ge(size(a[j - 1,1]),size(a[j,1])) :s(ps_1)

** swap if same value & ascending in size :

ps_2 t1 = a[j - 1,1] ; t2 = a[j - 1,2]

 a[j - 1,1] = a[j,1] ; a[j - 1,2] = a[j,2]

 a[j,1] = t1 ; a[j,2] = t2

 k = k + 1 :($jump)

** backward pass :

ps_3 jump = 'ps_4' ; k = 0

ps_4 j = gt(j,2) j - 1 :f(ps_9)

 gt(fabs(a[j - 1,2] - a[j,2]),1e-8) :s(ps_4)

 ge(size(a[j - 1,1]),size(a[j,1])) :s(ps_4)f(ps_2)

ps_9 postsort = k :(return)

ps_ends

 A-8

Appendix B

Specimen Spitbol Program: Basic Bayesian Text Classifier

As the Basic Bayesian Text Classifier emerged from the benchmarking exercises of

chapters 4-8 as overall `winner', despite its simplicity, there follows for reference a

listing of the program BBTC, written in the Spitbol dialect of Snobol4.

** BBTC -- Basic Bayesian Text Classifier :

** Copyright (c) Richard Forsyth, 1994.

*

** First version : 15-Sep-94

** Last revision : 16-Jul-95

*

** Global settings & patterns :

 &trim = 1 ; &anchor = 1

** &trim & &anchor better as 0 ??

 alphanum = "1234567890" &ucase &lcase "_"

 alphapat = break(alphanum) span(alphanum) . word

 qq = '"' "'" ; null = ''

 nongram = 'Zz$$'

 blocsize = 20 ; tiny = 1.2e-23

 probmin = 1.0 / 144 ;** provides floor on prob. estimates.

** Function declarations :

 define('baseline(c,filename)card,ch,e,j,t,x')

 define('results(c,k,cats,filename)j,lout,p2,outline,x')

 define('ent1(charray,t)e,j,r')

 define('prob(x,c)f,p')

 define('vadd(v,n,tv)j')

 define('nodeconv(s)ch,f,j,n,m,t')

 define('readdir(vecsize)dire,card,fn,extn')

 define('usebase(c,k,cats,card)j,p,x')

 define('logprobs(e,cats,n,pvec)j,sp')

 define('scaling(pvec,n)j,sp')

 define('precall(cm,cats)i,j,p,x')

-include "sno4.inc"

** Prelude :

 terminal = 'BBTC, version 1.4 -- ' date()

 terminal = 'Please give training directory filename (.v1) :'

 filename = input

 input(.dirline,1,filename) :f(dudmain)

 mainfile = filename

 terminal = 'Please give testing directory file-name (.v2) :'

 testfile = input

 input(.testline,2,testfile) :f(dudtest)

 terminal = 'Please give output filename (.out) :'

 A-9

 outfile = input

 output(.output,10,outfile) :f(dudfout)

 output = 'BBTC output; date: ' date()

 terminal = 'Append summary to log-file (Y=yes) ?'

 logdump = replace(input,&ucase,&lcase)

 logdump span(' ') =

preloop terminal = 'Please give N-gram size (1..4) :'

 gramsize = input

 (integer(gramsize) gt(gramsize,0) le(gramsize,4)) :f(preloop)

 gramsize = +gramsize :(main)

dudmain terminal = 'Cannot read file ' filename ' !' :(end)

dudtest terminal = 'Cannot open ' testfile ' !' :(end)

dudfout terminal = 'Cannot open ' outfile ' !' :(end)

** Main Program :

main &dump = 2 ; t1 = time()

 output = 'gramsize = ' gramsize

 dots = dupl('.',gramsize)

 readdir(60) ; terminal = nf ' training files.'

 training = copy(filelist)

 cats = nf

 endfile(1) ; endfile(2)

 input(.dirline,2,testfile)

 readdir(60) ; terminal = nf ' test files.'

** Compute base frequencies :

 c = 0 ; basefreq = table(201)

 totchars = array(cats) ; symbols = array(cats)

 tent = array(cats) ; minfreq = array(cats)

 confuse = array('1:' cats ',1:' cats,0)

baseloop c = lt(c,cats) c + 1 :f(usefreqs)

 input(.mainline,1,training[c] '[-l4096]')

 symbols[c] = baseline(c,training[c])

 endfile(1) :(baseloop)

** Do the work :

usefreqs c = 0 ; correct = 0

 samples = 0 ; penalty = 0.0

 brierval = 0.0

 bent = array(cats) ; pvec = array(cats)

mainloop c = lt(c,nf) c + 1 :f(endprog)

 endfile(2) ; k = 0

 input(.mainline,2,filelist[c] '[-l4096]')

 output = ; output = terminal = c ' ' filelist[c]

 ok = 0

lineloop card = mainline :f(endfile)

 k = k + 1

 usebase(c,k,cats,card)

 b = results(c,k,cats,filelist[c])

 brierval = brierval + b

 penalty = penalty + ln(pvec[c])

 vadd(tent,cats,bent)

** entropy added after attenuation.

** (eq(remdr(k,blocsize),0) showbloc(c,k,cats,bent))

 :(lineloop)

endfile output = ok ' / ' k ' = ' ok / (k + 0.0)

 samples = samples + k ; correct = correct + ok

 A-10

** (ne(remdr(k,blocsize),0) showbloc(c,k,cats,bent))

 :(mainloop)

** showbloc zeroes bent[] before returning.

endprog &dump = 0

 output =

 output = 'Percentage correct = ' 100 * correct / (samples + tiny)

 meanplog = (penalty / ln(2.0)) / (samples + tiny)

 output = 'Mean log-penalty = ' meanplog

 output = 'Mean Brier score = ' brierval / samples

 output =

** also dump confusion matrix :

 i = 0

conloop i = lt(i,cats) i + 1 :f(lend)

 lout = rpad(i,7) ; j = 0

conloop1 j = lt(j,cats) j + 1 :f(conloop7)

 lout = lout ' ' lpad(confuse[i,j],7) :(conloop1)

conloop7 output = lout :(conloop)

lend output = ; prec = precall(confuse,cats)

 output = 'Precall = ' prec * 100.0

 terminal = 'BBTC finished : ' date()

 terminal = 'Runtime = ' (time() - t1) / 1000.0 ' secs.'

 ident(substr(logdump,1,1),'y') :f(end)

** lastly, dump summary stats:

 output(.logline,19,'bbmm.log[-a]') :s(logdump)

 terminal = 'Cannot open logfile !' :(end)

logdump v1 = correct / (samples + tiny)

 logline = 'BBTC [sqrt] on ' mainfile ' ' date()

 logline = cats ' ' gramsize ' 0 0 2 ' v1 ' ' meanplog ' ' prec ' 0.0

0.0'

 terminal = logline

 :(end)

** Function definitions :

** BASELINE :

** Computes basic character frequencies :

** mainline, symbols, basefreq<> & charray[,] are global.

baseline symbols[c] = 0 ; t = 0

 terminal = 'Compiling ' gramsize '-gram frequencies.'

baselin1 card = mainline :f(baselin7)

 j = 1

baselin2 ch = substr(card,j,gramsize) :f(baselin1)

 j = j + 1 ; t = t + 1

 differ(basefreq<ch>) :s(baselin4)

** new item :

 symbols[c] = symbols[c] + 1

 basefreq<ch> = array(cats,0)

baselin4 basefreq<ch>[c] = basefreq<ch>[c] + 1 :(baselin2)

baselin7 output = ; output = 'Source file : ' filename

 output = 'No. of symbols = ' t

 output = 'No. of different symbols = ' symbols[c]

 totchars[c] = t

 baseline = symbols[c] :(return)

 A-11

** ENT1 :

** Works out first-order entropy :

ent1 e = 0.0 ; t = t + 0.0

ent2 j = j + 1

 r = charray[j,2] / t :f(entx)

 e = e - ln(r) * charray[j,2] :(ent2)

entx e = (e / t) / ln(2.0)

 ent1 = e :(return)

** PROB :

** Probability of x in category c :

prob f = (ident(basefreq<x>) 0.618034, basefreq<x>[c])

 f = lt(f,1) 0.618034

 p = f / (totchars[c] + 0.618034)

 prob = p :(return)

** VADD :

** Adds v[] to tv[] :

vadd j = lt(j,n) j + 1 :f(return)

 tv[j] = tv[j] + v[j] :(vadd)

** LOGPROBS :

** Converts log2-entropies to probabilities :

logprobs sp = 0.0

logprob1 j = lt(j,cats) j + 1 :f(logprob2)

 e[j] = (e[j] * ln(2.0)) / n

 pvec[j] = exp(-e[j])

 sp = sp + pvec[j] :(logprob1)

** e[j] = sqrt(e[j] * ln(2.0)) very conservative, taken out after logprob1.

logprob2 j = 0

** normalize :

logprob4 j = lt(j,cats) j + 1 :f(return)

 pvec[j] = pvec[j] / sp :(logprob4)

** USEPROBS uses max.entropy, thus logprobs uses -e[j].

** Also scales by n to avoid over-extremity.

** SCALING :

** Re-scales probs to avoid near-zero estimates.

scaling sp = 1.0 + n * probmin

scaling1 j = lt(j,n) j + 1 :f(return)

 pvec[j] = (pvec[j] + probmin) / sp :(scaling1)

** probmin is global : minimum reasonable probability.

** USEBASE :

** Uses base frequencies in simple-minded Bayesian way :

usebase j = 0

 ment = 9.9E99 ; mentcat = 1

usebase1 j = lt(j,cats) j + 1 :f(return)

 tent[j] = 0.0 ; guesses = 0

usebase2 x = substr(card,guesses + 1,gramsize) :f(usebase9)

 guesses = guesses + 1

 p = prob(x,j)

 tent[j] = tent[j] - ln(p) :(usebase2)

 A-12

usebase9 tent[j] = tent[j] / ln(2.0)

 ge(tent[j],ment) :s(usebase1)

 ment = tent[j] ; mentcat = j :(usebase1)

** ment is minimum entropy.

** RESULTS :

** Shows results :

results outline = lout =

 logprobs(tent,cats,sqrt(1 + guesses),pvec)

 scaling(pvec,cats) ; p2 = 0.0

results1 j = lt(j,cats) j + 1 :f(results9)

 p2 = p2 + pvec[j] ^ 2

 x = chop(pvec[j] * 10000 + 0.49) / 10000.0

 lout = lout lpad(x,9) ' '

 outline = outline lpad(tent[j],11) ' ' :(results1)

results9 output = k ' ' lout ' ' mentcat ' ' c ' ' p2

 confuse[mentcat,c] = confuse[mentcat,c] + 1

 ok = eq(mentcat,c) ok + 1

 results = 2.0 * pvec[c] - p2 :(return)

** returns Brier score.

** PRECALL :

** Computes average precision*recall :

precall rsum = array(cats,0.0)

 csum = array(cats,0.0)

precall1 i = lt(i,cats) i + 1 :f(precall4)

 j = 0

precall2 j = lt(j,cats) j + 1 :f(precall1)

 x = cm[i,j] + tiny

 rsum[i] = rsum[i] + x ; csum[j] = csum[j] + x :(precall2)

precall4 p = 0.0 ; j = 0

precall7 j = lt(j,cats) j + 1 :f(precall9)

 x = cm[j,j] + tiny

 p = p + sqrt((x * x) / (rsum[j] * csum[j])) :(precall7)

** goes along main diagonal.

precall9 precall = p / cats :(return)

** arith.mean of geo.mean of precision & recall, by categories.

** READDIR (reads directory of file names):

** nf, direline & filelist[] are global.

readdir dire = 'C:'

** default drive is hard-disc C:

 filelist = array(vecsize)

 nf = 0

readdir1 card = dirline :f(return)

 card ' Directory of ' rem . dire :s(readdir1)

 card ' Directory' break(alphanum) rem . dire :s(readdir1)

 card span(alphanum) . fn span(' ') span(alphanum) . extn :f(readdir1)

** Append next file name :

 nf = nf + 1

 filelist[nf] = dire '\' fn '.' extn :f(return)

 :(readdir1)

END

 A-13

Appendix C

Specimen C Code: GA Routines and Heap-Tree Evaluation
Routines

Over 50 C programs were written for this thesis. As a sample, two of the more

innovative pieces of C software arising from this project have been listed below: the

genetic-algorithm function-library used by IOGA, MAWS and GLADRAGS; and the

heap-tree rule-evaluation routines used by the GLADRAGS system.

Tests on a problem analyzed by Jennison & Sheehan (1993) suggest that the

evolutionary search procedure implemented in GA.inc is more efficient than most

genetic algorithms.

/*

 GA.inc :

 Semi-Generic Genetic Algorithm Library:

 Copyright (c) 1994, 1995, Richard S. Forsyth.

 First version : 04-Oct-94

 Last revision : 08-Jun-95

*/

/* fitness function must be provided elsewhere */

/* expects caller to have

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <direct.h>

#include <math.h>

#include <float.h>

#include <time.h>

#include <malloc.h>

#include <io.h>

#include <glib.h>

#include <statlib.h>

#include "glob.h"

#include "util.c"

before including this file */

/* constants */

#define TINY FLT_EPSILON

#define HUGE FLT_MAX

#define POPSIZE 49

 A-14

#define MAXTRIES 4096

#define MAXFLAT 3600

#define BOREDOM 200

#define NPROBES 4

#define POSITIVE 1

#define NEGATIVE 0

/* globals */

int maxgene=256;

 /* 1 more than highest allowable gene value */

#define Randbyte ((unsigned char) iran(maxgene))

/* data structures */

Byte *genepool[POPSIZE];

double goodness[POPSIZE];

 /* eval() & o/p functions impose structure */

int glen; /* length of genestring */

int elements;

 /* no. of patterns per genestring */

int whengen=POPSIZE;

 /* record of when best-ever gene-string was created */

/* prototypes */

unsigned iran (int topmost);

int initpop (int glen, int farg);

double ga (int glen, int elements, int maxloops, int farg);

void copygene (int from, int n, int unto);

int findpoor (double av, unsigned n);

int findgood (double av, unsigned n);

void mate (int p1, int p2, unsigned n, int x);

int mutator (int popsize, unsigned glen);

void enforce (int k, int glen);

double fitness (int g, int farg);

 /* must be defined elsewhere */

void swapsegs (int g, unsigned p, unsigned q);

void gout (FILE *fp, int g, int glen, int vars);

 /* defined in rule-eval file (e.g. TOGRULE.inc), declared here as well */

/* SUBPROGRAMS */

unsigned iran (int n) {

/*******************/

 /* pseudo-random integer between 0 & n-1 */

 return (rand() % n);

 }

 A-15

int initpop (int glen, int farg) {

/******************************/

 /* makes & scores initial genepool */

 int b, bestpos, j, k;

 double best, f;

 if (genepool[0] == NULL) /* shouldn't really be needed */

 genepool[0] = malloc(glen+1);

 /* item zero is used as archive for best-ever */

 best = -HUGE;

 for (j=1; j<POPSIZE; j++) {

 if (genepool[j] == NULL)

 genepool[j] = malloc(glen+1); /* extra byte for safety */

 if (genepool[j] == NULL) printf("Memory overflow in initpop() !!\n");

 for (k=0; k<glen; k++)

 genepool[j][k] = Randbyte;

 /* character string */

 enforce(j,glen); /* keep it legal */

 f = fitness(j,farg);

 if (f > best) { /* best is maximum */

 best = f; bestpos = j;

#ifdef Savetab

 Savetab;

#endif

 /* allows caller to keep related info if a Savetab macro is defined */

 }

 goodness[j] = f;

 printf("."); /* visual evidence of work going on */

 }

 printf("\n");

 return bestpos;

 }

double ga (int glen, int elements, int m, int farg) {

/***/

 /* Forsyth's home-made genetic algorithm */

 double av, best, f, rn;

 int bestpos,g,j,k;

 int p1, p2;

 unsigned nextfill, plateau;

 av = 0.0;

 rn = POPSIZE - 1.0; /* real number of chromosomes */

 /* create initial population */

 bestpos = initpop(glen,farg);

 best = goodness[bestpos];

 /* keep a copy of best in location zero */

 printf("bestpos = %d glen = %d in ga \n", bestpos,glen);

 copygene(bestpos,glen,0); goodness[0] = best;

 /* also compute mean score */

 for (j=1; j<POPSIZE; j++) av += goodness[j];

 av = av / rn;

 printf("Mean fitness score = %8.4f\n", av);

 A-16

 printf("Best fitness score = %8.4f\n", best);

 plateau = 0; nextfill = 100; whengen = bestpos;

 /* main loop */

 for (g=POPSIZE-1; g<m && plateau<MAXFLAT; g++) {

 /* m is maximum tries to make */

 p1 = findgood(av,POPSIZE);

 p2 = iran(POPSIZE); /* 2 parents selected */

 k = findpoor(av,POPSIZE); /* place of offspring */

 mate(p1,p2,glen,k); /* crossover */

 enforce(k,glen);

 f = fitness(k,farg);

 if (f > best) { /* keep it */

 copygene(k,glen,0); goodness[0] = f;

#ifdef Savetab

 Savetab;

#endif

 plateau = 0; best = f;

 whengen = g;

 printf("Best @ %d = %10.4f\n", g,goodness[0]);

 gout(stdout,k,glen,vars);

 /* show user best ever with gout */

 }

 else /* no improvement */

 plateau++;

 av = av + (f/rn) - goodness[k]/rn;

 goodness[k] = f;

 if (plateau > BOREDOM && iran(3) == 1) {

 /* sometimes does mutation outside crossover, when stuck */

 k = mutator(POPSIZE,glen);

 enforce(k,glen);

 /* also must revise mean fitness */

 f = fitness(k,farg);

 av = av + f/rn - (goodness[k]/rn);

 goodness[k] = f; g++; plateau++;

 if (f > best) { /* just might be best ever */

 copygene(k,glen,0); goodness[0] = f;

#ifdef Savetab

 Savetab;

#endif

 best = f; plateau = 0;

 whengen = g;

 printf("best @ %d = %10.4f\n", g,best);

 gout(stdout,k,glen,vars); /* show user */

 }

 }

 if (g >= nextfill) {

 printf("After %d trials; mean = %11.5f, best = %10.5f\n", g,av,best);

 nextfill += 100;

 }

 }

 printf("No. of trials = %d\n", g);

 return best;

 }

void copygene (int from, int n, int unto) {

/***************************************/

 A-17

 /* chromosome copy routine */

 int k; /* genepool[][] is global */

 for (k=0; k<n; k++)

 genepool[unto][k] = genepool[from][k];

 }

int findpoor (double av, unsigned n) {

/**********************************/

 /* finds a poor genestring */

 int j, r, w;

 double poor;

 poor = HUGE;

 for (j=0; j<NPROBES; j++) {

 r = iran(n-1) + 1;

 if (goodness[r] < poor) { /* bigger is better */

 poor = goodness[r];

 w = r;

 }

 }

 return w;

 }

int findgood (double av, unsigned n) {

/**********************************/

 /* locates a good genestring */

 int b, j, r;

 double good;

 good = -HUGE;

 for (j=0; j<NPROBES; j++) {

 r = iran(n-1) + 1;

 if (goodness[r] > good) { /* most is best */

 good = goodness[r];

 b = r;

 }

 }

 return b;

 }

void mate (int a, int b, unsigned n, int x) {

/***/

 /* uniform crossover routine */

 int j; /* genepool[][] is global */

 for (j=0; j<n; j++) {

 if (iran(2))

 genepool[x][j] = genepool[a][j];

 else

 genepool[x][j] = genepool[b][j];

 /* mutation possible here also (at present) */

 if (iran(100) > 96) genepool[x][j] = Randbyte;

 }

 A-18

 /* better if biased towards switch at syntactic boundaries ? */

 }

int mutator (int popsize, unsigned glen) {

/**************************************/

 /* mutation routine for genestrings */

 int k, loop, t;

 unsigned p, q, r;

 /* genepool[][] is global, also subtext[], totbytes, elements & patsize

*/

 k = iran(popsize-1) + 1;

 /* won't alter item zero */

 for (loop=0; loop<2; loop++) {

 switch (iran(7)) {

 case 0: case 1:

 p = iran(glen);

 genepool[k][p] = Randbyte;

 break;

 case 2:

 p = iran(glen);

 q = iran(glen);

 swapsegs(k,p,q);

 break;

 case 3:

 p = iran(glen-1);

 swapsegs(k,p,p+1);

 break;

 /* swapsegs used to respect segment boundaries */

 case 4: /* swap successive atoms */

 p = iran(glen-1);

 t = genepool[k][p];

 genepool[k][p] = genepool[k][p+1];

 genepool[k][p+1] = t;

 break;

 default: /* small increment/decrement */

 p = iran(glen);

 t = (int) genepool[k][p] + iran(5) - 2;

 if (t < 0) t = Randbyte;

 genepool[k][p] = (Byte) t;

 break;

 }

 }

 /* caller to tidy whole genestring after this */

 return k; /* lets caller know what genestring was mutated */

 }

void enforce (int k, int glen) {

/****************************/

 /* enforces rules on genestring */

 int j;

 for (j=0; j<glen; j++) {

 genepool[k][j] = (genepool[k][j]) % maxgene;

 }

 }

 A-19

void swapsegs (int k, unsigned p, unsigned q) {

/***/

 /* swaps chunks of a genestring k in genepool[] */

 Byte ch;

 if (k<=0 || k>POPSIZE) printf("Swapsegs k !!\n");

 if (p<0 || p>glen) printf("Swapsegs p %d\n", p);

 if (q<0 || q>glen) printf("Swapsegs q %u\n", q);

 /* checking */

 ch = genepool[k][p];

 genepool[k][p] = genepool[k][q];

 genepool[k][q] = ch;

 return;

 }

/*

 TOGRULE.inc :

 Rule Evaluation Routines for Text Oriented Genetic Algorithm:

 designed to find classification rules for strings;

 Copyright (c) 1994, 1995 Richard S. Forsyth.

 First version : 04-Oct-94

 Last revision : 25-May-95

*/

/* expects enclosing program to have :

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <direct.h>

#include <math.h>

#include <float.h>

#include <time.h>

#include <malloc.h>

#include <io.h>

#include <glib.h>

#include <statlib.h>

#include "glob.h"

#include "util.c"

 before including this file */

/* constants */

#define TINY FLT_EPSILON

#define HUGE FLT_MAX

#define NOPS 4

#define MATHOPS 5

#define MONADICS 7

/* macros */

#define Shop(C) (mathops[C % MATHOPS])

 A-20

 /* Show dyadic math operator in character form */

#define Atom(P) ((P+2)*2 >= glen)

#define Lsub(P) ((P+1)*2)

#define Rsub(P) ((P+1)*2 + 2)

 /* above macros treat gene-string as heap-tree */

/* data types Byte & Subtype expected */

/* globals */

int evalmode=0;

int fun1=0, fun2=0;

 /* fun1 & fun2 control usage of monadic operators (functions) */

char *opstring = "&|><";

char *mathops = "+-*^\\";

char *funcname[] = {

 " ", "Fabs ", "Root ", " ", "Slog ", "Tanh ", " ",

 };

/* operator symbols */

/* prototypes */

void gout (FILE *fp, int g, int glen, int vars);

void ruleout (FILE *fp, int g, int p, int glen, int vars);

int ruleval(int g, unsigned s, int vars, int glen);

int testrel (int op, double x, double y);

double math (int op, double x, double y);

double leibniz (int op, double v);

double slog (double v);

void ruledump (FILE *fp, int g, int glen, int cats);

/* SUBPROGRAMS */

void gout (FILE *fp, int g, int glen, int vars) {

/***/

 /* prints genestring in (semi-)intelligible form */

 unsigned n;

 fprintf(fp,"Glen = %d.\n", glen);

 ruleout(fp,g,0,glen,vars);

 fprintf(fp,"\n");

 }

void ruleout (FILE *fp, int g, int p, int glen, int vars) {

/***/

 /* prints a single rule from genepool */

 int lh, rh;

 lh = genepool[g][p];

 rh = genepool[g][p+1];

 if (Atom(p)) { /* atom */

 if (fun1)

 A-21

 fprintf(fp, "%s", funcname[lh % MONADICS]); /* unary op */

 if (rh < vars)

 fprintf(fp,"`%s`", subs[rh].subtext);

 else fprintf(fp, "%d", rh-vars);

 }

 else { /* subexpression */

 if (p>0 && fun2>0)

 fprintf(fp, "%s", funcname[lh % MONADICS]);

 /* root does not have monadic op */

 if (p>0) fprintf(fp,"(");

 ruleout(fp,g,Lsub(p),glen,vars);

 if (p==0) { /* main operator always GT */

 if (glen > 17 || fun1 && fun2)

 fprintf(fp, "\n ");

 fprintf(fp, " > ");

 }

 else

 fprintf(fp, " %c ", Shop(rh));

 ruleout(fp,g,Rsub(p),glen,vars);

 if (p>0) fprintf(fp,")");

 }

 }

int testrel (int op, double x, double y) {

/**************************************/

 /* does a logical/relational operation */

 switch (op % NOPS) {

 case 0:

 return (x > 0.0) && (y > 0.0); /* and */

 case 1:

 return (x > 0.0) || (y > 0.0); /* or */

 case 2:

 return (x > y); /* gt */

 case 3:

 return (x < y); /* lt */

 default:

 return (x > 0.0) && (y > 0.0); /* default is && */

 }

 }

double math (int op, double x, double y) {

/**************************************/

 /* applies dyadic arithmetic operator */

 switch (op % MATHOPS) {

 case 0:

 return (x + y);

 case 1:

 return (x - y);

 case 2:

 return (x * y);

 case 3: /* maximum operator */

 if (x > y) return x;

 else return (y);

 case 4: /* minimum */

 A-22

 return (x < y ? x : y);

 default:

 return (x + y);

 }

 return 0.0; /* should never fall here */

 }

int ruleval (int g, unsigned s, int vars, int glen) {

/***/

 /* applies pattern rule g to line s, current line */

 int h, j, lh, rh;

 double x, y;

 static double v[64]; /* wastes space to save time */

 h = glen / 2 - 2;

 for (j=h*2; j>=h; j -= 2) { /* atoms */

 lh = genepool[g][j]; rh = genepool[g][j+1];

 if (rh < vars) /* variable */

 x = (double) subs[rh].freq[(long)s];

 else /* constant */

 x = (double) (rh - vars);

 if (fun1) x = leibniz(lh,x);

 v[j] = x;

 }

 for (j=h-2; j>0; j -= 2) { /* arithmetic subexpressions */

 lh = genepool[g][j];

 rh = genepool[g][j+1];

 x = math(rh,v[Lsub(j)],v[Rsub(j)]);

 if (fun2) x = leibniz(lh,x);

 v[j] = x;

 }

 return (v[2] > v[4]); /* main op always greater than */

 }

double leibniz (int op, double v) {

/*******************************/

 /* applies a monadic operator */

 switch (op % MONADICS) {

 case 0: case 3: case 6:

 return v;

 case 1:

 return fabs(v);

 case 2: /* safe root */

 if (v >= 0.0) return sqrt(v);

 else return -sqrt(-v);

 case 4: /* safe logarithm */

 return slog(v);

 case 5:

 return tanh(v);

 default:

 return v; /* shouldn't happen */

 }

 return 0.0; /* should never happen */

 }

 A-23

double slog (double v) {

/********************/

 /* safe natural logarithm */

 double x;

 x = log(fabs(v) + 1.0); return ((v >= 0.0) ? x : -x);

 }

void ruledump (FILE *fp, int g, int glen, int cats) {

/***/

 /* dumps genestring in form easy to read by next program */

 int h,i,j,s;

 h = glen / 2 - 2;

 fprintf(fp, "%d \n%d \n",

 genepool[g][0],genepool[g][1]);

 /* first 2 items don't change */

 for (j=2; j<h; j++) {

 i = genepool[g][j];

 fprintf(fp, "%3d ", i);

 if (j % 2 == 0) { /* monadic op */

 if (fun2) fprintf(fp, " %s", funcname[i % MONADICS]);

 }

 else { /* dyadic op */

 fprintf(fp, " %c", Shop(i));

 }

 fprintf(fp, "\n");

 }

 for (j=h; j<glen-1; j++) { /* atoms */

 i = genepool[g][j]; fprintf(fp, "%3d ", i);

 if (j % 2 == 0) {

 if (fun1) fprintf(fp, " %s\n", funcname[i % MONADICS]);

 else fprintf(fp, "\n");

 }

 else {

 if (i < vars) fprintf(fp, "`%s`\n", subs[i].subtext);

 else fprintf(fp, "%d\n", i-vars);

 }

 }

 fprintf(fp, "%3d \n", genepool[g][glen-1]);

 }

 A-24

Appendix D

Details concerning Benchmark Data Sets

The 13 text-classification problems that constitute TBS1 (Text Benchmark Suite, Mark

1) form an essential backbone to the work of this project. They also constitute, in

embryonic form, a valuable resource for future studies in text analysis. Collecting and

editing TBS1 was a reasonably arduous chore, but enhancing and maintaining it

could become a full-time job. Already some of the problems of corpus management

have presented themselves. It is hoped that support to overcome such problems may

in due course be forthcoming, so that successors to TBS1 may offer a genuine

resource to the global research community. Meanwhile, this Appendix details the

contents of TBS1 as it stood on 11 August 1994. (Some extensions to the `electronic

anthology' from which TBS1 was drawn have been made since that date, but, to

preserve comparability among the tests of Chapters 4-8 in this thesis, none of this

additional material has yet been incorporated into the benchmark suite itself.)

Information about the selection of works from various authors and subdivision into

training and test files is contained in the body of Chapter 4 (section 4.2). Here this is

amplified by giving further details concerning the sources and sizes of the texts used

in the benchmark suite of 13 textual discrimination problems (TBS1).

NOTE: A policy adhered to throughout was never to split a single work

(article, essay, poem or program) between training and test sets --

except in the case of The Waves by Virginia Woolf (problem WAVE),

where the object of the exercise was to classify portions of a single

novel according to the `speaker'.

D.1 Sources & Subdivisions of Benchmark Data

Authorship / English Poetry

LIT1(4 classes): Poetry by Bob Dylan, Dylan Thomas, John Pudney and

Richard Forsyth.

 A-25

Songs by Bob Dylan (born Robert A. Zimmerman) were obtained from Lyrics

1962-1985 (Dylan, 1994). In addition, two tracks from the album

Knocked Out Loaded (Dylan, 1988) and the whole A-side of Oh Mercy

(Dylan, 1989) were transcribed by hand and included, to give fuller

coverage. An electronic version of Lyrics 1962-1985 is apparently

available from the Oxford Text Archive, but I was not aware of this

until after this selection had been compiled. Further information about

the Oxford Text Archive can be obtained by sending an electronic mail

message to

ARCHIVE@vax.oxford.ac.uk

Poems of Dylan Thomas were obtained from Collected Poems 1934-1952

(Thomas, 1952) with four more early works added from Dylan Thomas:

the Notebook Poems 1930-1934 (Maud, 1989).

Poems by John Pudney were: a handful from Selected Poems (Pudney, 1946),

plus most of Spill Out (Pudney, 1967) and most of Spandrels (Pudney,

1969).

Poems by Richard Forsyth have not been previously published in book form.

LIT2(3 classes): Poems by Helen Forsyth, James Forsyth and Richard Forsyth,

i.e. my mother, my father and myself.

Poems by Helen Forsyth were from Enamelled in Fire (Forsyth, 1994). Poems by

James Forsyth came from On Such a Day as This (Forsyth J.L., 1989) and

From Time to Time (Forsyth J.L., 1990). R.S. Forsyth's selection was as in

LIT1 but with a different division into test and training files.

LIT3(3 classes): Poems by Ezra Pound, T.S. Eliot and William B. Yeats.

Poems by Ezra Pound came from Selected Poems 1908-1969 (Pound, 1977).

Poems by T.S. Eliot were from Collected Poems 1909-1962 (Eliot, 1963). The

Waste Land, which was written by T.S. Eliot but heavily amended on the

advice of Ezra Pound (see Valerie Eliot (1971)) was excluded from this

test.

Poems by W.B. Yeats were from Collected Poems (Yeats, 1961).

 A-26

As is usual in machine learning the data was divided into training and testing sets.

This division was made by allocating files randomly to test or training sets until at

least 30% of the available corpus of each author had been assigned to the test set, any

remainder going in the training set. As this data is held (with a few exceptions) in

files each of which contains writings composed by one author in a single year, this

mode of division meant that works composed at about the same time were usually

kept together; and, even more important, that single poems were never split between

test and training files. The effect of this file-based blocking is presumably to make

these tests somewhat more stringent than random allocation of individual poems to

test and training sets would have been.

Authorship / English Prose

FEDS(3 classes): a selection of undisputed papers by the three Federalist

authors Hamilton, Jay and Madison.

An electronic text of the entire Federalist papers was obtained by anonymous

ftp from Project Gutenberg at

MRCNEXT@cso.uiuc.edu

For checking purposes the Mentor edition was used (Hamilton et al., 1961).

Here the division into test and training sets was as follows.

Author Training paper nos. Test paper nos.

Hamilton 1, 21-29, 60, 70 7, 11, 15-17, 30, 32, 33, 35, 36, 69,

80

Jay 2-5 64

Madison 40-48 10, 14, 37-39

Authorship / Snobol4 Programming Language

SNOB(4 classes): Samples of program source code written by four different

programmers in the Snobol4 programming language. These were
Richard Forsyth, James Gimpel, Ralph Griswold and Mike Shafto.

 A-27

My own programs were mostly written in 1994, for this project, with one
program from 1979 and another from 1988. The other three sets came
from diskettes purchased from Catspaw Inc. of Salida, Colorado CO
81201, USA, who sell them as useful program libraries. In fact the
Gimpel programs come originally from the book Algorithms in Snobol4
(Gimpel, 1986) and those by Griswold from String and List Processing in
Snobol4 (Griswold, 1975).

This problem is the only one to fulfill the requirement that not all texts should be in
the English language; indeed it is not even in natural language, although since the
programs were written by English-speakers, a fair proportion of natural English is
included, as comment lines.

Division into test and training sets was made by concatenating each author's files, in
the order that they appeared on the distribution disk, and then dividing roughly at
the half-way point, always at a program or function ending.

Chronology / English Poetry

AGE1(2 classes): Songs by Bob Dylan, written before and after his motorcycle

crash of July 1966. Same source as LIT1.

AGE2(2 classes): Poems by Emily Dickinson, early work being written up to

1863 and later work being written after 1863. Emily Dickinson had a
great surge of poetic composition in 1862 and a lesser peak in 1864,
after which her output tailed off gradually.

The work included was all of A Choice of Emily Dickinson's Verse selected by

Ted Hughes (Hughes, 1993) as well as a random selection of 16 other
poems from the Complete Poems (edited by T.H. Johnson, 1970).

AGE3(2 classes): Poems by James Forsyth, written up to 1945 (early work) or

from 1985 onwards (later work). Same sources as LIT2.

Even without the family connection it would be interesting to have such a

clear-cut example of a division into two productive periods, separated
by an unusually long, 40-year, span during which the author wrote
very little poetry.

AGE4(2 classes): Early and late poems of W.B. Yeats. Early work taken as

written up to 1914, the start of the First World War, and later work
being written in or after 1916, the date of the Irish Easter Rising, which
had a profound effect on Yeats's beliefs about what poetry should aim
to achieve. Same source as LIT1.

 A-28

For these four problems the classification objective was to discriminate between early
and late works by the same poet. The division into test and training sets was once
again file-based: in these cases the files of each poet were ordered chronologically and
assigned alternately (i.e. from odd then even positions in the sequence) to two sets.
The larger of the two resulting files was designated as training and the smaller as test
file.

Content / Technical Prose

MAGS (2 classes): This used articles from the two journals Literary and

Linguistic Computing and Machine Learning. The task was to classify
texts according to which journal they came from. (See subsection 3.3.3.)

Here the training set for Literary and Linguistic Computing consisted of the years 1990
and 1991, with the test set being the articles from 1992, 1993 and 1994. For Machine
Learning the training set comprised the two largest files, namely those of 1990 and
1992; the test set was from years 1987, 1988, 1989, 1991, 1993 and 1994. (The files for
years 1987-89 each contained only a single article.)

Persona / English Prose

WAVE (3 classes): This problem was taken from the novel The Waves by

Virginia Woolf (1931, 1992), the text of which was obtained on diskette
from Alison Truelove of Royal Holloway College in a form that
enabled convenient extraction of passages by individual speakers, as
well as the narrator. (The original source of this text is the Oxford Text
Archive, but without speaker-identification tags1.) This book consists of
monologues or soliloquies by six different characters, linked by
descriptive passages. The classification task was to distinguish speech
by two of the characters in the novel, called `Jinny' and `Rhoda', from
narrative text by the author herself (`Virginia'). This might be
considered a problem of distinguishing between the genres of narrative
and dialogue, but, while it is in part a genre problem, differentiating
betweem two fictional character's speech is something else. In any case
the book is so peculiar that this problem is probably better
characterized under some other label, as done here.

 1 All such tags, including and especially speaker-identifying tags, were of

course removed from the texts before inclusion in TBS1. In addition, the forms "said

Jinny" and "said Rhoda", which were invariably used in the first sentence of a passage

by each of the speakers concerned, were altered to "said x".

 A-29

Test/training sets for WAVE were made (for each of the three categories) by dividing
at the first paragraph break after 400 lines by the speaker or narrator concerned and
putting the text up to that point into the training file and the rest into the test file.

Syntax / Artificial Data

ART1(2 classes): Output from two different `poetry generation' programs, one

re-written in C by myself from an earlier version in Basic (Forsyth,
1978) and another written in Snobol4 by James Gimpel (Gimpel, 1986).
See Chapter 4 (section 4.2) for sample output from these generators.

ART2(2 classes): Output from two different versions of my random `poetry'

generator: version 1 with the grammar as in the original (Forsyth, 1978)
and version 2 with identical grammar except for the addition of relative
clauses in the form `that' + Verb-Phrase allowed at the end of Noun
Phrases with a 15% probability. (The use of `that', which was already in
the lexicon as a determiner, to introduce a relative clause rather than
`which' avoided animate/inanimate discord and also meant that the
vocabularies of the two systems were exactly the same, unlike in ART1
-- although relative frequencies among words differed.)

Here test and training sets were obtained by running the programs to produce the
required amount of text (about 6400 words) each time re-seeding the pseudo-random
number generator.

 A-30

D.2 Sizes of Benchmark Problems

Problem Categories Kilobytes
(training, test)

Lines=SSCs,
(training, test)

LIT1 Bob Dylan
Dylan Thomas
John Pudney
R.S. Forsyth

83, 27
50, 17
41, 14
33, 11

131, 43
78, 27
65, 23
52, 17

LIT2 Helen Forsyth
James Forsyth
R.S. Forsyth

28, 9
29, 15
30, 14

44, 14
46, 23
47, 22

LIT3 Ezra Pound
T.S. Eliot
W.B Yeats

28, 16
32, 27
50, 16

44, 25
50, 42
78, 25

FEDS Alexander Hamilton
John Jay
James Madison

154, 162
36, 13
151, 82

244, 253
58, 21
240, 129

SNOB R.S. Forsyth
James Gimpel
Ralph Griswold
Mike Shafto

20, 19
47, 53
33, 29
57, 59

31, 30
74, 83
51, 46
90, 92

AGE1 Bob Dylan to 1966
after 1966

37, 31
22, 20

58, 49
34, 32

AGE2 Emily Dickinson to 1863
after 1863

13, 13
7, 6

21, 20
11, 10

AGE3 James Forsyth to 1945
after 1984

15, 13
8, 6

24, 20
12, 10

AGE4 W.B. Yeats to 1914
after 1915

18, 7
32, 9

28, 11
50, 14

MAGS Literary & Linguistic Computing
Machine Learning

73, 45
81, 30

116, 70
128, 47

WAVE Ginny
Rhoda
Virginia

23, 9
29, 13
20, 5

36, 14
45, 20
31, 8

ART1 Gimpel Generator
Forsyth Generator

48, 48
33, 29

75, 75
53, 46

ART2 Forsyth Generator
Ditto + relative clauses

33, 29
39, 34

53, 46
63, 55

