Skip to main content

Reverse-Engineering EFSMs with Data Dependencies

  • Conference paper
  • First Online:
Book cover Testing Software and Systems (ICTSS 2021)

Abstract

EFSMs provide a way to model systems with internal data variables. In situations where they do not already exist, we need to infer them from system behaviour. A key challenge here is inferring the functions which relate inputs, outputs, and internal variables. Existing approaches either work with white-box traces, which expose variable values, or rely upon the user to provide heuristics to recognise and generalise particular data-usage patterns. This paper presents a preprocessing technique for the inference process which generalises the concrete values from the traces into symbolic functions which calculate output from input, even when this depends on values not present in the original traces. Our results show that our technique leads to more accurate models than are produced by the current state-of-the-art and that somewhat accurate models can still be inferred even when the output of particular transitions depends on values not present in the original traces.

Michael Foster and Neil Walkinshaw are funded by the EPSRC CITCoM project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The inference tool we use here [18] currently supports only \(+\), −, and \(\times \) for integers, and literal assignment for strings, although our GP has broader support [16, 37].

References

  1. https://github.com/lagodiuk/genetic-programming. Accessed 03 Feb 2020

  2. http://www.doc.ic.ac.uk/~jnm/book/book_applets/concurrency/invaders. Accessed 15 May 2020

  3. http://www.cs.le.ac.uk/people/nw91/Files/ICSMEData.zip. Accessed 15 April 2020

  4. https://doi.org/10.15131/shef.data.15172969

  5. Aarts, F.: Tomte : Bridging the gap between active learning and real-world systems. Ph.D. thesis, Radboud University Nijmegen (2014)

    Google Scholar 

  6. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata Learning through Counterexample Guided Abstraction Refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_4

    Chapter  Google Scholar 

  7. Androutsopoulos, K., Gold, N., Harman, M., Li, Z., Tratt, L.: A theoretical and empirical study of EFSM dependence. In: 2009 IEEE International Conference on Software Maintenance, pp. 287–296 (2009)

    Google Scholar 

  8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  9. Arcaini, P., Gargantini, A., Radavelli, M.: Achieving change requirements of feature models by an evolutionary approach. J. Syst. Softw. 150, 64–76 (2019)

    Article  Google Scholar 

  10. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) Fundamental Approaches to Software Engineering. vol. 4961 LNCS, pp. 317–331. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78743-3_24

  11. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. C-21(6), 592–597 (1972)

    Google Scholar 

  12. Buzhinsky, I., Vyatkin, V.: Automatic inference of finite-state plant models from traces and temporal properties. IEEE Trans. Indust. Inf. 13(4), 1521–1530 (2017)

    Article  Google Scholar 

  13. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state machines. In: Giannakopoulou, D., Salaun, G. (eds.) Software Engineering and Formal Methods, pp. 250–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_18

  14. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the extended finite state machine model. In: Proceedings of the 30th International Design Automation Conference, pp. 86–91. ACM Press (1993)

    Google Scholar 

  15. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 777–784. Association for Computing Machinery (2017)

    Google Scholar 

  16. Foster, M.: EFSM inference (2020). https://github.com/jmafoster1/efsm-inference

  17. Foster, M.: Reverse Engineering Systems to Identify Flaws and Understand Behaviour. Ph.D. thesis, The University Of Sheffield (2020)

    Google Scholar 

  18. Foster, M., Brucker, A.D., Taylor, R., North, S., Derrick, J.: Incorporating data into EFSM inference. In: Olveczky, P., SalaUn, G. (eds.) Software Engineering and Formal Methods. SEFM 2019. LNCS, vol. 11724, pp. 257–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_14

  19. Foster, M., Brucker, A.D., Taylor, R.G., Derrick, J.: A formal model of extended finite state machines. Archive of Formal Proofs (2020). https://isa-afp.org/entries/Extended_Finite_State_Machines.html, Formal proof development

  20. Foster, M., Taylor, R., Brucker, A.D., Derrick, J.: Formalising extended finite state machine transition merging. In: Sun, J., Sun, M. (eds.) Formal Methods and Software Engineering. ICFEM 2018. LNCS, vol. 11232, pp. 373–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5_22

  21. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  22. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA learning competition and a new evidence-driven state merging algorithm. In: Grammatical Inference, pp. 1–12. Springer, Berlin (1998). https://doi.org/10.1007/BFb0054059

  23. Langdon, W.B.: Quadratic bloat in genetic programming. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 451–458. GECCO’00, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

    Google Scholar 

  24. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey. Proc. IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  25. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In: Proceedings of the 2006 International Workshop on Dynamic Systems Analysis, p. 25. ACM Press (2006)

    Google Scholar 

  26. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models. In: Proceedings of the 13th International Conference on Software Engineering, p. 501. ACM Press (2008)

    Google Scholar 

  27. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  28. Magee, J., Kramer, J.: State Models and Java Programs, 2nd edn. Wiley Hoboken (2006)

    Google Scholar 

  29. Mannhardt, F.: Multi-perspective process mining. Ph.D. thesis, TU Eindhoven (2018)

    Google Scholar 

  30. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

  31. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008). http://www.gp-field-guide.org.uk

  32. Strobl, F., Wisspeintner, A.: Specifcation of an elevator control system. Technical report, TUM (1999). https://wwwbroy.in.tum.de/publ/papers/elevator.pdf

  33. Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using sat-solver. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 2, pp. 346–349 (2011)

    Google Scholar 

  34. Ulyantsev, V., Buzhinsky, I., Shalyto, A.: Exact finite-state machine identification from scenarios and temporal properties. Int. J. Softw. Tools Technol. Transfer 20(1), 35–55 (2016)

    Article  Google Scholar 

  35. Vaandrager, F., Midya, A.: A Myhill-Nerode theorem for register automata and symbolic trace languages. In: Holm, C., Kremer, K. (eds.) Theoretical Aspects of Computing, vol. 221, pp. 43–63. Springer, Cham (2020). https://doi.org/10.1016/j.tcs.2022.01.015

  36. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)

    Article  Google Scholar 

  37. Walkinshaw, N., Hall, M.: Inferring computational state machine models from program executions. In: 2016 IEEE International Conference on Software Maintenance and Evolution, pp. 122–132. IEEE (2016)

    Google Scholar 

  38. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Emp. Softw. Eng. 18(4), 791–824 (2013)

    Article  Google Scholar 

  39. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine models from software executions. Emp. Softw. Eng. 21(3), 811–853 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foster, M., Derrick, J., Walkinshaw, N. (2022). Reverse-Engineering EFSMs with Data Dependencies. In: Clark, D., Menendez, H., Cavalli, A.R. (eds) Testing Software and Systems. ICTSS 2021. Lecture Notes in Computer Science, vol 13045. Springer, Cham. https://doi.org/10.1007/978-3-031-04673-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04673-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04672-8

  • Online ISBN: 978-3-031-04673-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics