Skip to main content

Modelling Evolvability in Genetic Programming

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9594))

Included in the following conference series:

  • 1114 Accesses

Abstract

We develop a tree-based genetic programming system capable of modelling evolvability during evolution through machine learning algorithms, and exploiting those models to increase the efficiency and final fitness. Existing methods of determining evolvability require too much computational time to be effective in any practical sense. By being able to model evolvability instead, computational time may be reduced. This will be done first by demonstrating the effectiveness of modelling these properties a priori, before expanding the system to show its effectiveness as evolution occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances in Genetic Programming, pp. 47–74 (1994)

    Google Scholar 

  2. Altenberg, L.: Evolvability and robustness in artificial evolving systems: three perturbations. Genet. Program. Evolvable Mach. 15(3), 275–280 (2014)

    Article  Google Scholar 

  3. Banzhaf, W.: Genetic Programming and Emergence. Genet. Program. Evolvable Mach. 15(1), 63–73 (2013)

    Article  Google Scholar 

  4. Bassett, J.K., Coletti, M., De Jong, K.A.: The relationship between evolvability and bloat. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO 2009, NY, USA, pp. 1899–1900. ACM, New York (2009)

    Google Scholar 

  5. Flatt, T.: The evolutionary genetics of canalization. Q. Rev. Biol. 80(3), 287–316 (2005)

    Article  Google Scholar 

  6. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools: principles and case study. Int. J. Artif. Intell. tools 15(2), 173–194 (2006)

    Article  Google Scholar 

  7. Galván-López, E., McDermott, J.: Defining locality as a problem difficulty measure in genetic programming. Genet. Program. Evolvable Mach. 12(4), 365–401 (2011)

    Article  Google Scholar 

  8. Galván-López, E., Poli, R., Kattan, A., ONeill, M., Brabazon, A.: Neutrality in evolutionary algorithms. What do we know? Evolving Syst. 2(3), 145–163 (2011)

    Article  Google Scholar 

  9. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evolutionary Comput. 21(2), 231–259 (2013)

    Article  Google Scholar 

  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  11. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning (1998)

    Google Scholar 

  12. Heywood, M.I.: Evolutionary model building under streaming data for classification tasks: opportunities and challenges. Genet. Program. Evolvable Mach. 16(3), 283–326 (2015)

    Article  Google Scholar 

  13. Hoang, T.H., Hoai, N.X., Hien, N.T., McKay, R.I., Essam, D.: ORDERTREE: a new test problem for genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO 2006, vol. 1, pp. 807–814 (2006)

    Google Scholar 

  14. Jackson, D.: The identification and exploitation of dormancy in genetic programming. Genet. Program. Evolvable Mach. 11(1), 89–121 (2009)

    Article  Google Scholar 

  15. Jones, T.: Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, The University of New Mexico (1995)

    Google Scholar 

  16. Kattan, A., Ong, Y.S.: Bayesian inference to sustain evolvability in genetic programming. In: Handa, H., Ishibuchi, H., Ong, Y.S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems. Proceedings in Adaptation, Learning and Optimization, vol. 1, pp. 75–87. Springer, Heidelberg (2015)

    Google Scholar 

  17. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Li, K., Kwong, S., Cao, J., Li, M., Zheng, J., Shen, R.: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm. Inf. Sci. 182(1), 220–242 (2012)

    Article  MathSciNet  Google Scholar 

  19. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

    Article  Google Scholar 

  20. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

    Article  Google Scholar 

  21. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive crossover in genetic programming. In: Advances in Genetic Programming, pp. 111–134. MIT Press, Cambridge, MA, USA (1996)

    Google Scholar 

  22. Öztürkeri, C., Johnson, C.G.: Self-repair ability of evolved self-assembling systems in cellular automata. Genet. Program. Evolvable Mach. 15(3), 313–341 (2014)

    Article  Google Scholar 

  23. Pigliucci, M.: Is evolvability evolvable? Nat. Rev. Genet. 9(1), 75–82 (2008)

    Article  Google Scholar 

  24. Poli, R., Langdon, W., McPhee, N., Koza, J.: A field guide to genetic programming (2008)

    Google Scholar 

  25. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Genet. Program. Evolvable Mach. 13(2), 197–238 (2011)

    Article  Google Scholar 

  26. Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 17(4), 495–511 (2013)

    Article  MATH  Google Scholar 

  27. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. comput. 10(1), 1–34 (2002)

    Article  Google Scholar 

  28. Tarapore, D., Mouret, J.B.: Evolvability signatures of generative encodings: beyond standard performance benchmarks. Inf. Sci. 313, 43–61 (2015)

    Article  Google Scholar 

  29. Wang, Y., Wineberg, M.: Estimation of evolvability genetic algorithm and dynamic environments. Genet. Program. Evolvable Mach. 7(4), 355–382 (2006)

    Article  Google Scholar 

  30. Webb, A.M., Handl, J., Knowles, J.: How much should you select for evolvability?. In: Proceedings of the 2015 European Conference on Artificial Life, pp. 487–494. MIT Press (2015)

    Google Scholar 

  31. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  32. Wilder, B., Stanley, K.: Reconciling explanations for the evolution of evolvability. Adapt. Behav. 23(3), 171–179 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Fowler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fowler, B., Banzhaf, W. (2016). Modelling Evolvability in Genetic Programming. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30668-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30667-4

  • Online ISBN: 978-3-319-30668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics