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ABSTRACT
Developing artificial behaviours to control artificial creatures
or vehicles is a task that can be solved by means of Evolu-
tionary Algorithms. The Predator and Prey is a problem
where it is possible to evolve behaviours for both predator
and prey, using artificial co-evolution: the predator must
capture the prey and the prey must evade the predator.
Both predator and prey have also different characteristics,
the predator is faster and more agile and the prey is slower.
This paper presents an alternative, using Genetic Program-
ming with Decision Trees for evolving both Predator and
Prey behaviours. The results obtained shows the feasibility
of the approach.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: General; D.2.m [Software

Engineering]: Miscellaneous

General Terms
Algorithms

1. INTRODUCTION
Developing artificial behaviours to control an artificial crea-

ture or a vehicle - in this case a spaceship - can be difficult,
especially if the vehicle’s or creature’s characteristics differ
from one another [1]. Developing those behaviours by hand
is almost an impossible task [1] and one of the most common
alternatives is the use of the so called Steering Behaviours
[2] which reproduce results that mimic real life: seeking,
fleeing, pursuit, evasion, flocking among others. It is also
possible to hard code the behaviours but this leads to loss
of abstraction: a behaviour must be abstract and must be
prepared to all sorts of conditions. There are also evolution-
ary computation approaches to these kind of problems [3, 4,
5] but must of them result in a mathematical equation that
produces a real-life result.
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Our proposed approach uses Genetic Programming to gen-
erate a Decision Tree, which represents the behaviour that
mimics the results from the above solutions, but only us-
ing “functions” to which a normal human player has access
too. For instance, instead of trying to create a mathemati-
cal equation, the result will be a sort of decision-tree, which
after analyzing the surrounding environment of the vehicle
acts accordingly to achieve its goal.We also make use of sen-
sors that will allow an agent to “see” its environment

This paper addresses the evolution of two distinct be-
haviours:

Predator Track down its prey and capture it. Capturing,
or destroying in this case, the prey involves shooting a
projectile at the prey. The predator can’t waste am-
munition, so the one with the better accuracy is con-
sidered ideal.

Prey Must flee its aggressor in any way possible.

In order to achieve a real-life behaviour and a behaviour
that mimics the results from the previously mentioned solu-
tions we used co-evolution - evolution of two different species
(preys and predators) living on the same environment and
competing with each-other. By using co-evolution we were
expecting to evolve both predator and prey behaviours that
were able to achieve their goal, no matter their position in
the environment.

1.1 Game Bellerophon
The basis for this paper is a game we have developed.

Bellerophon is space sim 1 game, in which the player can
do almost anything: buy or trade products between space
stations, hunt down outlaws, hunt and “steal” merchants or
just wander around the universe.

1.2 Vehicles
The vehicles used in this paper are spaceships, from the

game Bellerophon. As any other vehicle it can move on its
environment using its engine as mean of locomotion. It can
move forward and stop its motion by increasing or decreas-
ing its speed. The controller can also stop the ship whenever
he wants by reducing the speed until it reaches 0. The ship
can also turn left and right, although it has to be moving for-
ward to achieve a “turning” effect, unlike a car for instance.

1Space Simulator software simulates outer space and space
flight with a wide variety of applications
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This means is that in order to recreate a “space-physics-
system” the controller of the ship must be applying thrust
to his ship. If not the ship will only rotate around its own
center point. The ship as also several characteristics: maxi-
mum speed, acceleration, turning speed, turning increment,
which differ from ship to ship. Therefore they are different
for predator and prey.

Ships also have a radar that gives the ship’s controller
information about his environment and his target/aggressor.
The radar allows the controller of the ship to know about its
surroundings, giving sensor-information among other things.
The radar can give information about the controllers target,
in a way that the controller can know if the target is in
front of him, behind him, to left or to the right, in his ship’s
weapon range and also if it is behind his target or if it is to
the left or to the right of the target (meaning the controller
can know if the target “sees” him to the left of right).

Figure 1: Example of sensor layout

We designed the radar in order to recreate a pilot’s “field
of vision”, and where he can look. It also allows tracking of
multiple targets - although not addressed in this paper - and
quick adaptability to any changes in the environment. For
instance, if one would add obstacles into the game field we
could use this same sensors/radar to steer the ship around
this obstacles. A radar also makes it easier to analyze re-
sults, since a human understands more easier logic (eg.: if-
enemy-front) rather than numbers.

1.3 Objectives
As previously mentioned, the objective is to evolve two

basic behaviours: predator and prey. These behaviours are
intended to be used on the field of evolutionary combat al-
gorithms and combat strategies, where the main focus will
be evolving a decision tree to choose one of the possible dif-
ferent strategies [6]: attack, retreat, etc. The attack and
retreat strategies will correspond to the behaviours preda-
tor and prey presented in this paper. The attack strategy
will pursue a target and attempt to destroy it being faster
and more agile that it’s “prey” and other behaviour will try
to evade its aggressor being slower.

2. PROPOSED APPROACH
Initially the test was intended to have more generations,

but since the “evolution procedure” is in real-time 100 gen-
erations was the most time-efficient approach (around 33
minutes). In order for the prey to achieve its goal it must
survive the entire run, or survive the longest time possible.

On the other hand, the predator must capture the most
number of preys possible while keeping its accuracy at the
maximum level (shooting only when it is in weapon-range of
it’s prey). The accuracy included in the Predator’s fitness
function prevents it from being always shooting in hope of
capturing a prey.

2.1 Function sets
The functions we used are intended to be easily under-

stood by humans, and represent what a “human controller”
would be able to do. For instance, we use “ifTargetLeft” if
we want to know if our target is to our left, and “IfLeftTar-
get” to know if we are to the left of our target. Progn2 is a
function that will execute both its terminals. For instance if
Shoot and Turn Left are the terminals of a Progn2 function,
both will be executed and the ship will fire and turn left

2.1.1 Predator

• Terminals:

– Velocity Up

– Velocity Down

– Turn Right

– Turn Left

– Shoot

• Functions

– ifTargetLeft

– ifTargetRight

– ifTargetFront

– ifTargetWeaponRange

– ifLeftTarget

– ifRIghtTarget

– ifBehindTarget

– Progn2 (Executes both terminals)

2.1.2 Prey

• Terminals

– Velocity Up

– Velocity Down

– Turn Right

– Turn Left

• Functions:

– ifRangeAggressor (danger zone)

– ifWeaponRangeAggressor

– ifAggressorRight

– ifAggressorLeft

– ifAggressorBehind

– ifLeftAggressor

– ifRightAgresssor

– ifAggressorFieldOfView

– Progn2 (Executes both terminals)
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2.2 Fitness Functions

2.2.1 Predator
The fitness function of the predator is done by the Equa-

tion 1, where NoPT stands for Number of Potential Targets,
NoK for Number of Kills, SF for shots fired and 1

D
for Dis-

tance.

FitnessPredator = NoPT −NoK +SF +
1

D
+Penalty (1)

The shots fired (SF ) is the number of shots fired when the
target is not on the ship’s weapon range. If the controller is
accurate this value will be 0. If the Predator doesn’t kill (low
number of kills) anyone or it doesn’t move (low distance) it
is heavy penalized.

2.2.2 Prey
The fitness function of the prey is done by the Equation

2, where ToRSA stands for Time of Run that the Ship Was
Alive D stands for Distance. RTD stands for Round Time
Duration, this is normally a constant

FitnessPrey = RTD − ToRSA +
1

D
+ Penalty (2)

If the Prey does not move or does not turn at least once,
it is heavy penalized.

3. EXPERIMENTS AND RESULTS
The environment is a “system” of the game’s universe. It

is composed of 5000 by 5000 pixels and can have an unlim-
ited number of spaceships. In order to promote competition
between predators and insure only the best “reproduce”, the
configuration presented in Table 1 was used.

Table 1: Configurations used to insure that only the

best will reproduce

Number of predators 200
Number of preys 50
Predator ship Speed 200 px/s

Acceleration 10 px/s
Turning Increment 9o

Prey ship Speed 100 px/s
Acceleration 5 px/s
Turning Increment 9o

All the ships begin each run in a random position in a
2500 by 2500 pixels area. Preys are captured with only one
shot. If the Predator captures a prey it randomly selects
another from the ones that are alive.

Both behaviours will be discussed in this section.

3.1 Predator
The Predator behaviour is the one that represents the

best behaviour of the two because it is the one that mimics
real-life solutions with more precision. Various results can
be considered human-competitive because they can compete
with human produced behaviours and in some cases beat

Figure 2: Predator Average fitness results

these behaviours. To test this claim, one of the most com-
mon results was pitted against a hard coded behaviour.

The result was very explicit. Both ships employed a very
similar “capture” behaviour, the “circler” which will be de-
scribed later on this paper. Also when compared to Steering
Behaviours results23, the best results obtained with the GP
are very similar. Even the worst predators achieve the goal,
which is pursue and capture its target. Also from time to
time a totally different result appears, that some times de-
fies common knowledge of pursuit, an example of this is a
result that pursues his target while constantly rotating his
ship. If the target is on the predator’s field of view (in front
of the ship), the behaviour will apply some forward speed
to the ship moving it closer to the target, but continuing to
rotate.

3.1.1 “Circler”

Figure 3: Predator “Circler” fitness results

This is the most common result, and the one that is similar
to the hard coded behaviour. It also “mimics” the Steering
Behaviour result in some way. The behaviour will “see” if
it’s target is in front of it’s ship. If it is, it will move the
ship towards the target, turning it accordingly to the targets
relative position (to the left or to the right) . If the target

2http://www.steeringbehaviours.de
3http://www.red3d.com/cwr/steer/
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is not on the ships field of view, the behaviour will move
the ship forward and turn the ship left or right, according
to the targets relative position. The name “Circler” is from
this “action”. Whenever the predator “overtakes” its target
or the target is not in front of the ship the behaviour will
turn around trying to put the target on its field of view.

Predator “Circler” decision tree:

(progn2 (if-target-left (if-target-weapon-range

(progn2 (if-target-left (if-target-weapon-range

shoot (progn2 (if-left-target turnright turnright)

(if-target-left turnright turnright))) (progn2

(if-left-target turnright turnright) velup)) (if-target-weapon-range

(if-target-weapon-range (if-target-front (if-right-target

turnright velup) (if-target-front velup

veldown)) (if-target-weapon-range (if-target-weapon-range

(if-behind-target veldown shoot) turnright)

turnleft)) turnright)) turnleft) turnright) (progn2

(if-target-weapon-range (progn2 (if-target-left

(if-target-weapon-range (if-target-left turnleft

turnleft) turnleft) (if-target-weapon-range shoot

(if-right-target turnright velup))) (progn2 (if-target-left

(if-target-weapon-range shoot (progn2 (if-left-target

turnright turnright) (if-target-weapon-range shoot

(progn2 (if-left-target turnright turnright) (progn2

velup turnleft))))) (progn2 (if-left-target turnright

turnright) velup)) (if-target-left (progn2

(if-left-target (if-left-target turnright turnright)

turnright) velup) (if-left-target turnright turnright))))

(progn2 (progn2 (if-target-left (if-target-weapon-range

shoot turnleft) (progn2 (if-target-weapon-range

(if-behind-target velup turnright) turnright) (if-left-target

turnright (if-target-left turnleft turnleft))))

(if-target-weapon-range (if-target-weapon-range (if-right-target

turnright turnleft) (if-left-target turnright turnright))

(if-target-weapon-range (if-target-front velup

veldown) (if-target-left turnright turnright))))

(if-left-target velup turnleft))) velup))

3.2 Prey

Figure 4: Prey average fitness results

The Prey Behaviour in comparison to the complexity and
good real-life comparable results of the Predator, is less com-
plex.

Most of the results involve either, turning the ship into
one direction and causing the predator to follow, producing a
circular movement for both or moving the opposite direction
of the predator when the predator overtakes the prey. The
only way to “evade” his aggressor is to let it “pass”, or as
some results imply just enter into a circular motion.

3.2.1 “Circler”
The circler was the most common behaviour for the prey.

Like the predator circler result, this one involves turning the
ship while accelerating. This creates a “donut” like effect,
thus the name “circler”, which makes the predator follow. If
the predator doesn’t follow the prey will start moving for-

Figure 5: Prey “Circler” fitness results

ward, putting distance between it and its predator. If the
predator continues to follow, the prey will continue the cir-
cular motion. One could say that the prey is always trying
to put as much distance between itself and its predator, and
since the predator is faster and always chasing it the best
behaviour is to “circle”

Prey “Circler” decision tree:

(progn2 (progn2 (if-aggressor-behind turnleft

(if-aggressor-left (progn2 (progn2 (progn2

(if-aggressor-behind turnleft (if-aggressor-left

(progn2 (if-aggressor-behind turnleft (progn2

(if-aggressor-left velup turnleft) (if-aggressor-fov

turnright turnright))) (if-aggressor-left velup

turnleft)) turnleft)) (if-aggressor-behind velup

turnright)) (if-aggressor-fov (progn2

(if-left-aggressor turnleft (progn2 turnleft

(if-aggressor-left velup turnleft))) veldown)

velup)) (if-aggressor-left velup turnleft))

turnleft)) turnleft) velup)

3.3 Original Experiment Variation
We decided to redo the experiment with a more classical

approach, a predator that only pursued its target and a prey
that only fled its aggressor. For this new “experiment” we
developed new fitness functions for both species, but kept
the rest of the experiment intact. This allowed us to compare
the resulting behaviours of each experiment.

3.4 Fitness Functions

3.4.1 Predator
In this variation, the predator must keep the prey in its

weapon range for the maximum time possible. RTD stands
for Round Time Duration, PT iWR stands for Prey Time in
Weapon Range and D stands for distance

FitnessPredator = RTD − PT iWR +
1

D
+ Penalty (3)

If the predator doesn’t move its heavyly penalized

3.4.2 Prey
In this variation, the prey must keep away from the preda-

tors weapon range for the maximum time possible. RTD

stands for Round Time Duration, PToWR stands for Prey
Time out of Weapon Range and D stands for distance

FitnessPrey = RTD − PToWR +
1

D
+ Penalty (4)
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If the Prey does not move or does not turn at least once,
it is heavy penalized.

3.5 Predator
Again we saw that the evolution process created capa-

ble predators. The “circler” result appeared once more,
suggesting this result is perhaps the best for this problem-
environment combination.

Figure 6: Classic Predator fitness results

Classic Predator “Circler” decision tree:

(progn2 (if-target-left (if-target-left (progn2

(progn2 shoot turnleft) (if-target-front

velup turnleft)) (progn2 velup turnright)) (progn2

velup turnright)) (progn2 (if-target-left velup

(if-target-left turnright turnleft)) (progn2

(if-target-left (if-target-right (progn2 velup

turnright) velup) (if-target-left (if-left-target

turnleft (if-target-left (progn2 (if-target-front

(if-right-target velup (if-target-front veldown

(if-target-left shoot (if-right-target shoot

velup)))) turnleft) (if-target-left turnleft

velup)) (progn2 velup turnright))) (progn2

velup turnright))) turnright)))

3.6 Prey
The prey was put under enormous pressure with this vari-

ation. Each prey was normally up against 2 or more preda-
tors since there are 200 predators for 50 preys. The results
however were surprisingly good. Again, like the predator,
we saw the circler result, but not as often. A new pattern
appeared, the “Fly-By” behaviour.

Figure 7: Classic Prey fitness results

3.6.1 “Fly-By”
This behaviour mimics the one seen with Steering Be-

haviours. It lets the predator get close, and when the preda-
tor overtakes the prey it changes direction, normally select-
ing the direction opposite to the one the predator attacked.
Although it lets the predator get close, changing its direc-
tion after the “overtake” makes the predator restart its at-
tack run, gaining some time to escape.

Classic Prey “Circler” decision tree:

(progn2 (if-aggressor-right turnleft (if-aggressor-behind

(if-aggressor-fov (if-right-aggressor

turnright (progn2 (if-aggressor-weapon-range

turnright velup) (if-aggressor-fov (if-right-aggressor

turnright (progn2 (if-aggressor-weapon-range

turnright velup) (if-aggressor-right (if-aggressor-right

(if-aggressor-range-danger velup velup) veldown)

(if-aggressor-left (if-left-aggressor turnright

turnleft) (if-left-aggressor turnright (if-aggressor-left

velup veldown)))))) velup))) (progn2 (if-aggressor-right

turnleft (if-aggressor-behind (if-aggressor-fov

(if-left-aggressor turnright turnleft) velup)

(if-left-aggressor turnright turnleft))) velup))

(if-aggressor-right turnleft (if-aggressor-behind

(progn2 (if-aggressor-right turnleft (if-aggressor-behind

(if-aggressor-fov (if-right-aggressor

turnright (if-right-aggressor turnright (if-left-aggressor

(if-right-aggressor turnleft (if-right-aggressor

turnright (if-aggressor-left turnright turnleft)))

velup))) velup) (if-aggressor-behind (if-aggressor-fov

(if-left-aggressor (if-aggressor-left turnright

turnleft) velup) velup) (if-left-aggressor

turnright turnleft)))) velup) (if-right-aggressor

turnright (progn2 (if-left-aggressor turnright

turnleft) (if-aggressor-right (if-aggressor-range-danger

velup velup) (if-right-aggressor turnright

(if-aggressor-fov velup turnleft)))))))))

velup)

4. HUMAN COMPERABLE RESULTS
In order to test the human competitiveness of the results

of both experiments, we pitted the behaviours against a
hardcoded opposite, for instance a Evolved Predator against
a human coded prey, and see it if could capture it.

For this test, we used the best behaviours from both exper-
iments. We used hard coded predator and prey behaviours.
These behaviours are very much like the“Circler”behaviours
that were evolved.

4.1 Main Experiment Human Comparable
Results

To consider a behaviour a human comparable result, the
evolved predator had to beat the average damage the human
coded predator inflicted on the human coded prey over 10
rounds. The opposite was set for the prey; the evolved prey
had to receive less average damage than its human counter-
part against the human coded predator over 10 rounds.

Both evolved behaviours outperformed their human coun-
terparts. The most prominent was the predator, that in-
flicted 2,83 times the damage inflicted by the human coded
predator. As for the prey, the evolved prey outperformed its
human analogue, receiving 10% less damage.

Just by analyzing the results, one can say that our results
are human competitive, since they beat the human coded
algorithms by some margin.
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Figure 8: Predator human competitiveness

Figure 9: Prey human competitiveness

4.2 Variant Experiment Human Comparable
Results

For this new human competitiveness test, we changed the
human coded predator so that it could be compared to the
evolved procedure. The change was simple; we simply re-
moved its ability to shoot, since the ”goal” was to keep it’s
the prey in its weapon range.

Like before, the evolved results beat the human coded
algorithms. Both ”classic” evolved prey and predator were
able to best their human counterparts by a valid margin.

Again we can state that the ”classic” evolved results are
human competitive.

5. CONCLUSION
It can be concluded that it is possible to achieve human-

competitive results using genetic programming to evolve preda-
tor and prey behaviours, and also that it is possible to do
this using only actions and functions available to a player.
Although the results for the prey behaviour are not as good
as the predator results, one can say that in real life preys nor-
mally don’t escape good predators. This paper also shows
that genetic programming can help reduce the development
of behaviours for various games or similar problems. Un-
expected behaviours can be obtained, and while a human
wouldn’t normally develop a similar behaviour, it achieves
it’s goal.

Figure 10: Predator human competitiveness – Vari-

ant Experiment

Figure 11: Prey human competitiveness – Variant

Experiment

The results have shown that this approach can also be
used for something completely different, for instance: a car
racing game or a demonstration of flocking behaviours. To
“solve” these new problems we only need to change the prob-
lem environment and the fitness function, while maintaining
the terminals and functions. It is also important to note
that the behaviours that result from this paper can be, and
have been, used in another problem involving combat strate-
gies[6].

We also showed that it is possible to use genetic program-
ming to create human competitive results, that in some cases
beat the human coded algorithms.

6. FUTURE WORK
We would like, in the near future, to evolve predator

and prey behaviours with collisions. This would create be-
haviours that would still chase and flee its target/aggressor
but at the same time avoid hitting other ships. This could
be used, for instance, to evolve a police car and a robbers car
where the police car chases the robbers in a busy highway
We also want to port this study to a 3d environment, keep-
ing the spirit of this paper on the new study. For that we
would use the same ship design, and same function-sets.
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