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Abstract

Recent advances in cyber-physical systems (CPS) have allowed highly available and approach-
able technologies with interconnected systems between the physical assets and the computational
software components |[BG1la]. This has resulted in more complex systems with wider capabili-
ties. For example, they can be applied in various domains such as safe transport, efficient medical
devices, integrated systems, critical infrastructure control and more. The development of such
critical systems requires advanced new models, algorithms, methods and tools to verify and val-
idate the software components and the entire system. The verification of cyber-physical systems
has become challenging: (1) The complex and dynamical behaviour of systems requires resilient
automated monitors and test oracles that can cope with time-varying variables of CPS. (2) Given
the wide range of existing verification and testing techniques from formal to empirical methods,
there is no clear guidance as to how different techniques fare in the context of CPS. (3) Due to
serious issues when applying exhaustive verification to complex systems, a common practice is
needed to verify system components separately. This requires adding implicit assumptions about
the operational environment of system components to ensure correct verification. However, identi-
fying environment assumptions for cyber-physical systems with complex, mathematical behaviors
is not trivial. In this dissertation, we focus on addressing these challenges.

In this dissertation, we propose a set of effective approaches to verify design models of CPS.
The work presented in this dissertation is motivated by ESAIL maritime micro-satellite system,
developed by LuxSpace |Lux19|, a leading provider of space systems, applications and services
in Luxembourg. In addition to ESAIL, we use a benchmark of eleven public-domain Simulink
models provided by Lockheed Martin [loc20|, which are representative of different categories of
CPS models in the aerospace and defence sector. To address the aforementioned challenges,
we propose (1) an automated approach to translate CPS requirements specified in a logic-based
language into test oracles specified in Simulink. The generated oracles are able to deal with CPS
complex behaviours and interactions with the system environment; (2) An empirical study to
evaluate the fault-finding capabilities of model testing and model checking techniques for Simulink
models. We also provide a categorization of model types and a set of common logical patterns
for CPS requirements; (3) An automated approach to synthesize environment assumptions for
a component under analysis by combining search-based testing, machine learning and model
checking procedures. We also propose a novel technique to guide the test generation based on
the feedback received from the machine learning process; and (4) An extension of (3) to learn more
complex assumptions with arithmetic expressions over multiple signals and numerical variables.
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Chapter 1

Introduction

1.1 Context

The development of cyber-physical systems (CPS) [BG11b,SWYS11,|[Lee08]| relies on early function
modeling of the system and its environment. These models typically capture dynamical systems.
For example, they may be mathematical models capturing movements of a physical object. They
may also specify a software controller that interacts with a physical process to respectively control
the movements of the object or the progression of the process over time. A key and common feature
of these models is that they typically consist of time-varying and real-valued variables and functions.

To capture CPS dynamical systems, CPS industry typically uses development and simulation
languages among which Simulink is widely known. Simulink is used by more than 60% of engineers
for simulation of CPS [ZJKK17,BDN17|, and is the prevalent modeling language in the automo-
tive domain [MNBB16a,[ZSM12|. Simulink appeals to engineers since it is particularly suitable for
specifying mathematical models and dynamic systems, and further, it is arguably an effective way
of design time testing for engineers.

To avoid ripple effects from defects and to ensure that failures are identified as early as possible,
it is paramount for the CPS industry to ensure that system models satisfy their functional safety
requirements. As mandated by safety certification standards |[CT00|, these requirements must be
specified, and be used as the main authoritative reference to demonstrate system behavior correct-
ness. The ultimate goal of software verification techniques is to provably demonstrate the correctness
of the Simulink model against these requirements.

In this dissertation, we address the problem of verification of behavioral design models of CPS
specified in Simulink. This dissertation presents a set of approaches using search-based testing,
model checking and machine learning to automate the verification and testing of CPS. The work
presented in this dissertation has been done in collaboration with LuxSpace |[Lux19], a leading
provider of space systems, applications and services in Luxembourg, and QRA Corp |qral9], a ver-
ification tool vendor to the aerospace, automotive and defence sectors in Canada.
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Figure 1.1: Autopilot model

We present and describe the case study systems used to evaluate our approaches. Specifically,
we use the ESAIL maritime micro-satellite, a system developed by LuxSpace |[Lux19|, our industrial
partner, in collaboration with ESA and ExactEarth [exa20]. ESAIL aims at enhancing
the next generation of space-based services for the maritime sector. During the design phase of the
satellite (i.e., development phases B-C ), the control logic of the ESAIL software is specified
as a Simulink model. We also used a set of public-domain benchmark of eleven industrial
Simulink models provided by Lockheed Martin , which are representative of different large-
scale CPS models in the aerospace and defense sector. Our benchmark has an autopilot system that
comes with a full six degree of freedom simulation of an airplane, a neural network model with two
hidden layers, a PID controller, a finite state machine, etc. These systems include components with
various computational categories which are responsible for the functional and behavioural variations
in CPS models. Figure shows Autopilot, an example of our industrial Simulink models.

1.2 Challenges

Our primary goal in this thesis is to develop automated verification tools for CPS. To achieve this
goal, we address the following challenges:

e Existing approaches to testing of Simulink models have largely focused on automated gener-
ation of test suites [ND15, HMSY13,/OKN14|, while test automation requires also automated
oracles to assess whether a test has passed or failed. The dynamical behaviour,
the time-varying features and the interactions of the system with the environment remain the
main challenges for automated oracles in the context of CPS.

e Different approaches to verification and testing of Simulink models have been proposed in
the literature [Ham08, BBB™12b, MNBB18,|/AFST13]. There are two mainstream approaches
to verify CPS simulink models: Model testing, that attempts to identify failures in models
by executing them for a number of sampled test inputs; and Model checking that attempts
to exhaustively check the correctness of models against some given formal properties. The
strengths and weaknesses of both approaches depend highly on the category of the model type
and the recurring logical pattern in the model requirement. However, there are no systematic
comparisons between these approaches, and hence, it remains unclear how Model checking or
Model testing may differ or complement one another in the context of CPS.




1.3. Research Contributions

e Irrespective of the techniques applied by commercial and industry-strength tools for testing
and verification of Simulink models, exhaustive verification is generally undecidable for cyber-
physical or hybrid systems |[HKPV95|. These systems are generally far too complex to be
verified exhaustively and in their entirety |[KDJT16,NGM™T19|. As a result, in practice, ex-
haustive verification techniques (e.g., [FGD™11,|Tiw12|) can only be applied to some selected
individual components or algorithms that are amenable to exhaustive verification and are used
within a larger system. This practice may result in spurious failures due to the violation of
environment assumptions. Environment assumptions are the expectations that a system or
a component makes about its operational environment and are often specified in terms of
conditions over the inputs of that system or component. However, environment assumptions
are rarely fully documented for software systems |[SMP'18| and the manual identification is
tedious and time-consuming. This problem is exacerbated for cyber-physical systems (CPS)
that often have complex, mathematical behavior.

1.3 Research Contributions

In this dissertation, we address the challenges for the verification of design models of CPS. Specifi-
cally, we propose the following contributions:

1. Socrates: An automated approach to translate CPS requirements specified in a logic-based
language into test oracles specified in Simulink. Our approach generates oracles that: (i)
check test outputs in an online manner to stop expensive test executions as soon as a failure is
detected; (ii) handle time- and magnitude-continuous CPS behaviors; (iii) provide a quantita-
tive degree of satisfaction or failure measure instead of binary pass/fail outputs; and (iv) are
able to handle uncertainties due to CPS interactions with the environment. This contribution
has been published as a conference paper [MNGB19| and is presented in Chapter

2. We report on an empirical study to evaluate capabilities of model testing and model checking
techniques in finding faults in Simulink models: (i) We provide a categorization of CPS model
types and a set of common logical patterns in CPS functional requirements using an industrial
benchmark consisting of Simulink models from the CPS industry. We further formalize the
textual requirements in a logic-based requirements language and identify some common pat-
terns among the CPS requirements in the benchmark. (ii) We present the results of applying
our model testing and model checking techniques to the Simulink benchmark. We evaluate the
fault finding abilities of both techniques. (iii) We provide some lessons learned by outlining the
strengths and weaknesses of model testing and model checking in identifying faults in Simulink
models. As these two approaches provide complementary benefits, we believe that integrating
them in a comprehensive verification framework can result in an effective testing method. We
further propose some guidelines as to how the two approaches can be best applied together.
This contribution has been published as a conference paper [INGM™19| and is presented in
Chapter 4

3. Epicurus: An automated approach to synthesize environment assumptions for a component
under analysis (i.e., conditions on the component inputs under which the component is guar-
anteed to satisfy its requirements). EPIcuRus combines search-based testing, machine learning
and model checking. The core of EPIcuRus is a decision tree algorithm that infers environ-
ment assumptions from a set of test results including test cases and their verdicts. The test
cases are generated using search-based testing, and the assumptions inferred by decision trees
are validated through model checking. In order to improve the efficiency and effectiveness of

3
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the assumption generation process, we propose a novel test case generation technique, namely
Important Features Boundary Test (IFBT), that guides the test generation based on the feed-
back produced by machine learning. This contribution has been published as a conference
paper |[GMNT20| and is presented in Chapter

4. The technique developed in Chapter [5| in collaboration with QRACorp |qral9|, and assessed
on the models provided by Lockheed Martin, cannot learn the complex assumptions for the
AC component of ESAIL, an industrial and complex model of a CPS provided by LuxSpace.
This was a significant limitation of the previous work that required substantial improvement.
Therefore, we improve Epicurus in several ways. First, we rely on GP, rather than decision
trees to (a) learn assumptions for complex CPS models involving signal and numerical vari-
ables; and (b) learn assumptions that include arithmetic expressions defined over multiple
variables. We adapt, modify, and customize GP to learn such complex assumptions. Second,
we define a new methodology to translate assumptions on control points (learned using GP),
into assumptions over signal values. Third, we evaluate the new version of EPIcuRus to show
that it substantially improves the previous version. We also evaluate the usefulness of EPI-
cuRus on the AC component of ESAIL. Finally, we identify a trade-off between soundness
and coverage of environment assumptions and demonstrate the flexibility of our approach in
prioritizing either of these criteria. This contribution is presented in Chapter [0]

1.4 Dissertation Outline

Chapter [2| provides some fundamental background on software verification approaches including
Model testing and Model checking and assumption inference approaches.

Chapter [3| presents our approach to generate automated and online oracles for Simulink models
with continuous and uncertain behaviours.

Chapter [ describes how we empirically evaluate Model testing and Model checking for finding
requirements violations in Simulink models.

Chapter [5| introduces our automated approach to generate environment assumptions for software
components using machine learning decision trees.

Chapter [6] presents our extended approach to synthesize assumptions by combining Model testing
and Genetic programming.

Chapter [7] summarizes the thesis contributions and discusses perspectives on future works.



Chapter 2

Background

This chapter presents the background concepts that we consider throughout this dissertation. This
chapter is organized as follows: Section defines Cyber-Physical Systems (CPS) and Model-Based
Design (MBD), and further describes the challenges of system modeling for CPS. Section defines
CPS simulink models. Section [2:3]describes the existing techniques applied in the context of software
verification (e.g., model testing and its search algorithms, model checking). Section defines the
First-Order Logic of Signals (SFO) language and introduces the oracle generation technique that
we consider in this dissertation. Section [2.5] introduces few main concepts of supervised machine
learning including Decision Trees (DT) and Genetic Programming (GP).

2.1 System Modeling for CPS

Cyber-physical systems (CPS) [BG11b,[SWYS11,Lee08| are characterised by integrating computa-
tion, networking, and physical processes into one whole system of components that deeply interact
among each others to provide certain features. Figure shows a diagrammatic layout of cyber-
physical systems. CPS applications arguably have a positive impact on several domains. For ex-
ample, they can be applied to critical medical devices such as monitoring equipment. They can be
applied to advanced autonomous systems where transportation systems could benefit considerably
from the embedded intelligence that guarantees the safety and efficiency of these systems. While
cyber-physical systems have a huge impact on multiple areas of applications, they must be robust
enough and must be adapted to overcome system failures. Therefore, these critical systems require
advanced methods and tools to verify and validate the software components and the entire system.

Model-based design (MBD) |[CGPO1,[FR07,JCL11] is a powerful design technique for CPS which
establishes effective communication throughout the design process. The design techniques include
creating mathematical abstractions and modeling [Wai09,/Chal0, Mar97| of the physical systems,
usually specified in the form of systems of differential equations or Laplace transfer functions. These
functions describe the system properties and interactions within the system. They may also include
formal models of computation, software synthesis, verification, validation and testing

Given the sophisticated characteristics of cyber-physical systems, model-based design goes through
several iterations of verification and refinement rounds to gain enough confidence in the model be-
haviors and prepare it for code generation. Figure [2.2] depicts a schematic view of model-based

5
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verification, one of the main steps of model-based design. During this phase, engineers iteratively
perform several rounds of modeling and verification until the requirements are satisfied |[ZCO06|.
These requirements describe what needs the system has to meet and what it shall not do. During
model-based verification, the model of the system is created (or refined) and the requirements are
formalized based on the CPS specification. Then, the verification step checks the system model
against the requirements, and finally returns No wviolation found when the model satisfies these
requirements. Otherwise, it returns Violation found.

In the CPS domain, models are characterised by dynamical behaviors and exhibit time-varying
changes depending on their modeling paradigm. They can be time-continuous or time-discrete and
they can be magnitude-continuous or magnitude-discrete. To be able to capture the dynamical
behaviour of the physical plants and the interactions with the software systems, models of complex
CPS often build on time-continuous and magnitude-continuous paradigms. Contrary to the models
that are designed to capture only software computations, these models are often described using
time-discrete magnitude-discrete abstractions.

@)

CPS Specification

il
(]
L)

Figure 2.2: Schematic view of the system verifi-
Figure 2.1: Diagrammatic layout of CPS cation

2.2 MATLAB/Simulink

MATLAB/Simulink is an advanced platform for modeling, simulation and code-generation of dy-
namical systems |sim21|. Simulink is a toolbox of MATLAB which provides an executable data-flow
driven block diagram language. MATLAB and Simulink enable the design and development of a
wide range of advanced products in the automotive , aerospace, telecommunications and many other
areas. A high number of engineers worldwide analyze and design the systems and products of their
needs for machine learning, signal processing, image processing, computer vision, communications,
control design, robotics, and much more using Simulink. Figure [2.3] shows Autopilot model as an
example of Simulink model.

Simulink provides a library of blocks, input/output ports and connections. Blocks typically
represent operations and constants of a system. Ports are means to specify any signal data that
traverse the block. Connections establish data-flows between ports. The system’s behaviour can be
described in terms of input sequences, actions, conditions and flows of data from input to output by
building a Simulink model using the library set. Simulink models are structured into a hierarchy of
subsystems, each one accepting a certain number of input signals and producing a certain number
of output signals. For example, the model of Autopilot shown in Figure has 587 blocks, 623
connections and 514 ports. Blocks, connections, and ports are organized in five subsystems modeling
respectively: the behavior of the aircraft, the behavior of its environment (e.g., the atmosphere),
Autopilot, the cockpit controls, how the outputs of Autopilot and the cockpit controls affect the
inputs of the aircraft, and two subsystems modeling the sensors of the aircraft. The subsystem in
Figure[2:3b has two input and one output signals. Each subsystem can also include other subsystems.

6



2.2. MATLAB/Simulink

FitParams | FitParams

| ACBus
Calculate Parameters Aircraft Dynamics

(b) Plant subsystem: DeHavil.(¢) Controller subsystem: Roll
land Beaver Airframe controller

(a) Autopilot model

Figure 2.3: Example of Simulink model: (a)Autopilot model, (b) Plant subsystem: DeHavilland
Beaver Airframe, (c) Controller subsystem: Roll controller
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\
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Figure 2.4: An example of Input/Output signals of the Autopilot Simulink model shown in Fig-

ure @

For example, the control subsystem (colored in green) of Autopilot model shown in Figure
contains several subsystems, including Roll controller subsystem shown in Figure [2.3d Simulink
blocks inside these subsystems perform a sequence of computations on the subsystem’s input values
and returns the computation values as output. These computations eventually contribute to the
values of the output(s) of the model.

To simulate a Simulink model M, the simulation engine receives signal inputs defined over a time
domain and computes signal outputs at successive time steps over the same time domain used for
the inputs. A time domain is a non-singular bounded interval T = [0,b] of R. A signal is a function
f: T — R. A simulation, denoted by H(w, M) =¥, receives a set @ = {uy, ua ... uy} of input signals
and produces a set ¥ = {y1,¥2...yn} of output signals such that each o, € § corresponds to one
model output.

For example, Fig. 2.4a] shows a test input for Autopilot example, where signals are defined over
the time domain [0,103], and Fig. shows the corresponding test output. Specifically, Fig.
shows input signals for Autopilot. Each of these inputs is related to a command received from the
pilot through the instruments in the cockpit (i.e., APEng, HDGMode, ALT Mode represent the
status of Autopilot engaging mode enabler; H DGRef represents the desired value of the heading

7



2. BACKGROUND

angle; Throttle represents the power applied to the engine; PitchW heel represents the degree of
adjustments applied to the aircraft pitch; and TurnKmnob represents the desired value of the roll
angle). Fig. shows the output signals of Autopilot, namely Psi and Phi that respectively
represent the heading and the roll angles [Adm09|. The Simulink simulation engine takes around
30s to simulate the behavior of the system over the time domain [0, 103]E|

Simulink uses numerical algorithms [Sim19] referred to as solvers to compute simulations. There
are two main types of solvers: fized-step and wvariable-step. Fixed-step solvers generate signals
over discretized time domains with equal-size time-steps, whereas variable-step solvers (e.g., Euler,
Runge-Kutta [AtkO8|) generate signals over continuous time domains with a time-step size that can
vary from a step to another, depending on the model dynamics and the error tolerance.

2.3 Model-Based Verification of CPS

A wide range of promising approaches to model-based verification of Simulink models has been
proposed from exhaustive verification to empirical experiments with finite set of model executions.
Existing techniques can be broadly categorized into two groups: model testing techniques and model
checking techniques. In the following, we introduce each verification method and we describe their
basic pros and cons.

Model Testing

Model testing [BNSB16, MNBB16b, MNBB16c,MNB™13,|MNB ™ 15a,[ZC08]| is a widely known tech-
nique used mainly for testing purposes [BNSB16,MNBB18,/AFS™13|. This technique relies on model
simulation and aims to generate test scenarios and test oracles that violate a given requirement.
Model-based testing starts by modeling the system and its environment. Then, the test inputs are
generated and executed on the system under test. Finally, a verdict is assigned to the test inputs.

Evolutionary search algorithms [WRDMO96, Win09,|Win10,/Tal09, Yanll| have been applied on
Simulink models to generate test inputs that violate the requirement. Specifically, search algorithms
sample the input space, selecting the fittest test inputs, i.e., test inputs that (likely) violate or are
as close to violate the requirement under analysis. Then, the fittest test inputs is evolved using
genetic operators to generate new test inputs and reiterate through the search loop [Lukl13|. The
test inputs are expected to eventually move towards the fittest regions in the input space (i.e., the
regions containing fault-revealing test inputs).

To evaluate how good a test input is, fitness functions are defined a fitness values are computed
on the test input. The robustness is one of the widely know metrics [FP09], used to compute fitness
values using the model outputs obtained by executing the model under test for sampled test inputs.
When the robustness value is positive, the value shows how far a test input is from violating a
requirement and when it is negative, its value shows how severe the failure revealed by a test is.
For complex discrete-continuous Simulink models, detecting faults in the model is not trivial and
requires techniques with high fault-revealing ability [PHPS03].

Model testing applies search operators, that can be either exploitative or explorative. Fxploita-
tive search operators evolve elements by making small modifications using a tweak operator while
explorative search operators make large changes allowing jumps in the search space. An example of
exploitative single-state search algorithm is Hill-Climbing (HC) |[MH93,[BHSL17|. As described in
the algorithm [1| of HC, we iteratively generate new solutions NS by tweaking the current solution
CS. For example, if the candidate solution C'S is encoded by a single real value x, the Tweak
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2.3. Model-Based Verification of CPS

operator shifts C'S in the input space by adding value x’ to . The value of 2’ is typically selected
from a normal distribution with mean p = 0 and variance o2. The new solutions are selected only
if their fitness values are better than the current ones. An example of a pure explorative algorithm
is Random Search (RS) [BB12,Rog72,MH93|. In RS, there is no tweak operation. A new solution
is generated randomly at each iteration without any regard to the current solution.

Algorithm 1 Hill Climbing Algorithm.

1: I : Input Space

2: ('S <+ initial candidate solution in [
3: repeat

4: NS < Tweak(Copy(CS))
5. if f(NS) < f(CS) then
6: CS « NS

7: until C'S is the ideal solution or we have run out of time
& return CS

There are algorithms in between pure exploitative and pure explorative, i.e., Simulated Annealing
(SA) |[VLA87,BT"93,|Rut89,[Dav87|. Similarly to HC, SA replaces the current solution C'S with a
new solution NS if the current one has a worse fitness value. However, unlike HC, in some cases,
SA may replace the current solution with a new solution even if the current solution has a better
fitness value (see algorithm. This situation occurs only if another condition based on temperature
t value holds. Temperature ¢ is initialised at the beginning of search, and decreases over time. This
means that SA replaces the current solution with a new solution more often at the beginning, having
more explorative behaviour, and turns to have more exploitative behaviour over time.

Algorithm 2 Simulated Annealing Algorithm.

1: I : Input Space

2: t +temperature, initially a high number
3: CS <« initial candidate solution in [
4: repeat

5. NS « Tweak(Copy(CS))
6

7

8

9

J(NS)—f(CS)
t

if f(NS) < f(CS) or if a random number chosen from 0 to 1 < e then
CS « NS
Decrease t
: if f(NS) < f(CS) then
10: CS + NS
11: until CS is the ideal solution or we have run out of time

12: return CS

Since model testing works by sampling test inputs from the input search space of the model
under test, it requires the value ranges of the model input variables to be provided. The value
ranges of model input variables are generally extracted from the model description documents.

Intensive research has proved that model-based testing ensures coverage of basic behaviours of
the system under test using a variety of cost-effective test generation strategies and model coverage
criteria. The main advantage of applying model-based testing is that the overall test design time is
reduced and that a variety of test suites can be generated from the model using different generation
methods. Furthermore, Model testing does not suffer from applicability and scalability issues en-
countered by exhaustive verification methods thanks to its black-box nature. However, it can only
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Figure 2.5: Schematic view of Model Checking

show the presence of failures and not their absence. The effectiveness of model testing techniques
relies heavily on their underlying heuristics and search guidance strategies. Since there is no theo-
retically proven way to assess and compare different search heuristics, model testing techniques can
only be evaluated empirically.

Model Checking

Formal verification methods aim to establish system correctness mathematically during the design
process. These methods generally tend to reduce the verification time dramatically, which makes
them one of the highly recommended verification techniques for industrial cyber-physical systems.
Model checking (MC) |[CJGK™18,/AKLP10,BBB™12a,MBC10] is a formal verification method that
attempts to exhaustively verify the correctness of models against some given formal properties. It
has a long history of application in software and hardware verification and it has been previously
used to detect faults in Simulink models [BBB*12a,BBC*06|. Figure 2.5 shows an overview of the
model checking technique.

Model checking has three main phases. It starts with modeling phase where the Simulink model is
translated into the language of some model checking tool (e.g.,Satisfiability Modulo Theories (SMT)
solvers |[BBB™12a,[HDE 08, Mil09, SSCT04,|AIER15|). This task can be a simple compilation or
may require a few rounds of abstractions in case of limited memory.

The second phase of model checking is specification, where the property is specified in a logi-
cal formalism accepted by the model checker. For software systems, a commonly useful logic for
specifying properties is temporal logic [RU12|. Temporal logics are widely known for capturing the
behaviour of the system that evolves over time. In fact, they are able to implicitly express the or-
dering of events in time for systems including CPS where the model inputs and outputs are signals
(i.e., functions over time). Moreover, the language used to formalize CPS requirements has to be
defined over signal variables.

Let [a,b] s.t. b > a > 0 be an interval of real numbers. We denote signals by s and define
them as s : [a,b] — R where R is the signal range that can be boolean, enum or an interval of real
numbers. We denote signals with a boolean or enum range by s® and those with real intervals or
numbers by s®. A very common way to formally specify model requirements is Signal Temporal
Logic (STL) [MNO4], an extension of the well-known Linear Temporal Logic (LTL) [Pnu77] with
real-time temporal operators and real-valued constraints. The syntax of STL is given below.

pu=L[T[s®|prelop 0| @1V ea|piAps|e1Ugyes
pr=mn|s® | py math-op ps | f(u) | (n)
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2.3. Model-Based Verification of CPS

where s is a boolean-valued signal, s® is a real-valued signal, rel-op is a relational operator

(i.e., >, >, <, <, =, #), math-op is a numeric operator (i.e., +, —, X, /), n is a positive real number
(R(J{ ) and Ula) is a real-time temporal operator. In the above grammar, f indicates a mathematical
function applied to p such as logarithm or trigonometry functions.

The semantic of STL is described in the literature |[MNO4]|. Briefly, ¢ formulas, except for
(1 rel-op 0), are temporal logic formulas where U is the temporal until operator. In STL, the
temporal until operator is augmented with an interval [a,b] of real numbers indicating that the
until operator is applied to the signal segment between time instants a and b. Finally, the temporal
eventually operator I' can be written based on the until operator as follows: Fj, 50 = TUj4 3, and
the globally operator G can be written as G,y = = Fj, . Note that when we write a temporal
operator without specifying a time interval, we assume that the operator applies to the time interval
of its underlying signals. For example, suppose we have signals defined over time interval [0, T], we
then write Gy as a shorthand for Gy 7.

The third phase of model checking is wverification. During this phase, the model checking tool
analyzes the validity of the property on the system model and returns the verdict as a result of
the analysis. If the property is violated, a counterexample input trace that violates the property
is generated. The returned trace helps the designer track the faults that may be in the system
modeling or in the property specification. However, this phase may fail to terminate successfully
due to the memory problems which is usually caused by the model complexity. In this case, additional
abstractions are required during the modeling phase as a common practice.

Despite the large volume of academic research on software testing and verification, there are
relatively few commercial and industry-strength tools for the verification of Simulink models. Among
the commercial model checking tools for Simulink models (i.e., QVtrace and SLDV), QVtrace |qral9|
is a recent commercial tool that builds on the ideas from SMT-based model checking. Specifically, the
formal property together with the model are translated into logical constraints that can be fed into
SMT solvers. These solvers, then, attempt to verify that given formal properties hold on the models,
or otherwise, they generate counter-examples demonstrating the presence of faults in the models.
SLDV, similarly to QVtrace, is a SMT-based model checker. QVtrace is a standalone product
developed by QRA [qral9|, a Canada-based company specialized in the development of enterprise
tools for early-stage validation and verification of critical systems. QVtrace is more recent compared
to SLDV and it has a wider range of features and benefits from a well-designed and usable interface.
In contrast to SLDV that can only be used with Prover [Pro|, QVtrace can be combined with various
well-known SMT solvers and theorem provers such as Z3 [DMB08a| and Mathematica |mat|. These
model checking tools have been successfully used in practice to verify complex Simulink models.

The main challenge of model checking when applied to Simulink models is that these models
often capture continuous dynamic and hybrid systems [Alul5|. It is well-known that model checking
such systems is in general undecidable [HKPV98, ACH™95,|Alull|. The translation of continuous
systems into discrete logic often has to be handled on a case-by-case basis and involves loss of
precision which may or may not be acceptable depending on the application domain. Further,
industrial Simulink models often contain features and constructs that cannot be easily translated
into low-level logic-based languages. Such features include third-party code (often encapsulated in
Matlab S-Functions) and non-algebraic arithmetics (e.g., trigonometric, exponential, and logarithmic
functions). Nevertheless, model checking, when applicable, can both detect faults and demonstrate
lack thereof.
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2.4 Test Oracles

A test oracle BHM ™ 14,NDB13b| is a procedure that determines the correct or incorrect behaviors
of the System Under Test. This technique is broadly applied to test the soundness of the program
output for some given test cases. It can be in the form of a software system or a specification
document. Figure[2.6]shows the schematic view of test oracles in the process of testing. Conceptually,
test cases are provided to the test oracle and the program under test. Then, the output of the two
components are compared to determine whether the program behaves correctly for the test cases.
When the testing result shows a discrepancy between the program and the result, this indicates a
defect in the result.

Manual test oracles typically use the program specifications to decide what a correct behaviour
of the program should be. Such testing practices, however, may be erroneous. Ideally, automated
oracles generated from the specifications of programs or modules guarantee that the output of the
oracle conforms with the specification.

In the context of model-based testing, a test oracle is a predicate that determines whether a
given test input passes or fails a given requirement of the behaviour of the system under test. We
formally define a test oracle. We specifically discuss test oracles for partial Simulink models M,
where simulating the model M,, for a given test input I produces a set of k£ alternative signals for
each output of M.

Definition 1 Let M, be a Simulink model under test, and let I be a test input for M, defined
over the time domain T. Let ¢ be a logical formula formalizing a requirement of My. Suppose
{91, Y- Y} = Hp(u, M) are the simulation results generated for the time domain T. We denote
the oracle value of ¢ for test input I over model M), by oracle(M,, I, ) and compute it as follows:

oracle(My, I, ) = OE{?W%W . }IISO]]O
1:92--Jk

Specifically, oracle(Mp, I, ) indicates the fitness value of the test input I over model M, and eval-
uated against requirement .

The oracle output is a value in [—1, 1]. As defined above, for a partial model, the oracle computes
the minimum value of ¢ over every test output set O = {o1,...,0,} of simulation outputs. Hence,
for a partial model, the fitness value for a test [ is determined by the model output yielding the
lowest fitness (i.e., the model output revealing the most severe failure or the model output yielding
the lowest passable fitness).

Signals First-Order Logic

First-Order Logic of Signals (SFO) [BFHN18b|, also known as predicate logic, is a language that
defines formal systems using quantified variables over non-logical objects. Unlike propositional logic,
it allows the use of sentences that contain variables. First-Order Logic language is used in various
domains like mathematics and computer science. The syntax and the semantics of SFO are defined
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by typically combining first order logic with linear real arithmetic and uninterpreted unary function
symbols, which represent real valued signals over time.

Let X = {z1,x2,...x,} be a set of variables, such as X =T U R and T'N R = (), that is the set
X is partitioned in two sets T and R containing the ¢ime and value variables, respectively. A time
domain T is a non-singular interval of R. Let T be a time domain, a signal is a function f : T — R.
Let F ={f1, f2...} be a set of signals.

Definition 2 ( [BFHN18Y]) A term 0 of an SFO formula is either a formula T or a formula p
defined according to the grammar below:

T = tln|mn—m|m+m (2.1)
= r | f(T) [n]p1—p2lp1+p2
where n € Z, r € R, t € T, where R and T are the sets of time and value variables previously

defined.
An SFO formula ¢ is defined according to the grammar below:

6 - O~ |~ | 61V 6o | Vri 6| VEET: ¢ (2.3)
where n € Z, 01 and 03 are terms, ~€ {<, <} and I are intervals with bound in Z U {£oo}

We use the notation Vt' € t @ [a, b]: ¢ to indicate the following formula
V' € [—oo,+o0]: (a+t <t At <b+1t)— ¢[t] ; where ¢[t] is a SFO formula whose atoms do not
predicate on t.

Given an interpretation of variables and signals, the FOL semantics defines how a FOL formula
is interpreted. Let f be a signal, its interpretation w (called trace) is denoted as [f].. Let = be a
variable, its interpretation v (called valuation) is denoted as [x],.

Definition 3 ( [BFHN18b]) Let w be a trace and v be a valuation, the semantics of a term of an
FOL formula, denoted as [0]y.v, is inductively defined as follows:

[n]wy =n foralln € Z (2.4)
[[01 - 92]]10,11 = Hel]]w,v - [[02]]w,v (25)
[[01 + 92]]11},11 = [[Glﬂw,v + [[02]]10,1)

The semantics of an FOL formula, denoted as (w,v) = ¢, is inductively defined as

w ): 91 < 02 Zﬁ Hel]]w,v < [[92]]111,7) (27)
wEVr: ¢ iff (w,v[r < a)) = ¢ for alla € R (2.8)
wEVtel: ¢ iff (w[t + al,v) = ¢ forallac I (2.9)

and where boolean connectives are interpreted as usual.

Definition [3| indicates, as v[r <— a], the interpretation v obtained by assigning the value a to the
value variable r; w[t < a] indicates the interpretation ¢ obtained by assigning the value a to the
time variable .

It has been shown that the satisfiability of an SFO formula ¢ is undecidable, while the simpler
membership and monitoring problems relative to piecewise-linear traces are decidable. Indeed,
monitoring problems can be solved using an algorithm that has polynomial complexity in the size
of the input trace and the specification. Specifically, it can be computed in (m + n)20(k+l), where
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Figure 2.7: Supervised machine learning model: The algorithm learns a model from labeled training
data. The model is used to make predictions on the output g, of the inputs x,,.

m is the length of ¢, k is the number of quantifiers in ¢, [ is the number of function symbols in
v, n is the length of the trace. The algorithm transforms the SFO formula and the trace into a
quantified free formula of linear arithmetic by eliminating all the quantifiers, which can be done in
time (m + n)zkH. Deciding the validity of the resulting formula can be done in linear time. This
complexity is prohibitive for practical applications that have to analyze long traces.

However, it has been shown that the complexity is linear in the size of the trace for a fragment

of SFO called bounded-response, in which the intervals I = [a,b] are such that a # oo and b # oo.
5O (k+1)
Specifically the monitoring algorithm with complexity n - 20+ )? has been proposed, where j

is the variabilty of w relative to ¢, and m, k, [ and n are defined as previously. The variability of
w relative to formula ¢ is the maximum number of linear segments in w during any time period as
long as the horizon of .

2.5 Supervised Machine Learning

Predicting the outcome of a given system by learning from the historical data can be done with
machine learning. Machine learning is a part of the artificial intelligence where computer algorithms
are improved automatically through experience and by the use of data. Supervised machine learn-
ing [KZP07| is a machine learning task where we know the outcome of the system under analysis
and we can label it. Figure 2.7 shows the supervised machine learning process. Supervised learning
automatically learns a function that maps inputs or features to an output based on training input-
output pairs. If the output is categorical, the learning task is called classification. If it is numerical,
then regression. The ultimate goal of supervised machine learning is to make predictions on the
system behaviour.

Supervised machine learning algorithms work by learning structures like trees or by predicting
the parameters of a function. The learning process is generally guided by a fitness function that
minimizes the difference between the estimated and the predicted output values of a given training
data to produce a model which will be used eventually for prediction purposes. Applying machine
learning has many advantages. First, the learning model can perform tasks much faster than a human
with more reliable results [KK00|. Moreover, GP can be applied in various programming languages.
However, one of the major issues of machine learning is its high dependency on training data. Some
factors should be then considered when selecting the learning algorithm such as the heterogeneity
of the data, the redundancy and the presence of interactions and non-linearities. Some algorithms
are easier to apply than others depending on these factors.
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Figure 2.8: An example of decision tree for distinguishing papayas

Decision Trees

Decision trees (DT) |Qui86, RMO05|Qui87| algorithms are widely known and applied supervised
machine learning algorithms. They provide practical solutions for classification problems (when the
data is labeled with a categorical or a qualitative output) and for regression problems (when the
data is labeled with continuous or quantitative output).

A decision tree is a hierarchical tree structure that follows the principle of divide-and-conquer
strategy to split the source set situated at the root node into the leaves that contain the output
mapped to the data. The representation of a decision tree is quite common in the literature [Mur98,
SLI1|. The internal nodes are labeled with the input features. The arcs coming from each internal
node are labeled with a condition on the input feature. These arcs lead to the split of the node
into subordinate nodes. Each leaf of the tree is labeled with a class in which the data set has been
classified or a probability distribution over the class. Splitting the data set into the optimal subsets
typically follows a given splitting rule. Different metrics are used to evaluate and select the best
candidate subset. These metrics typically measure homogeneity within the subset where the goal is
to generate a node with data subset that all satisfy the condition on the input feature. We provide
examples of metrics which provide a measure of the quality of the split:

e Information gain (i.e., C4.5). builds a decision tree using the concept of information entropy.
At each node, the attribute that most effectively splits the set of data is selected to make the
decision. The splitting criterion is the difference in the entropy where the higher, the better.

e Gini impurity (i.e., CART). applies optimal discriminant analysis and classification tree anal-
ysis to find the combination of best splits. These splits are then used to build a statistical
model that optimally represents the data.

An example decision tree for checking if a given papaya is tasty or not is shown in Figure 2.8
This decision tree is built using a training set where the attributes are the color of the papaya
(ranging from dark green, through orange and red to dark brown) and the softness of the papaya
(ranging from rock hard to mushy). In this example, the training set is a sample of papayas that
are examined for color and softness. The papayas in the training set are labeled by whether they
were tasty or not. To classify the data in the training set, the decision tree algorithm checks the
color of the papaya. If the color is in the range pale to pale yellow, the algorithm moves to check
the softness. The papaya is predicted as tasty if it gives slightly to palm pressure. Otherwise, the
algorithm predicts that the papaya is not-tasty.

The main advantage of the decision trees is the interpretability aspect. Decision trees are known
for having a simple representation that is easy to understand. Furthermore, they are fast for fitting
and prediction, and low on memory usage, but they can have low predictive accuracy. The standard
way when applying decision trees is to grow simpler trees to prevent overfitting.
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Figure 2.9: Genetic Programming Flowchart

Genetic Programming

Genetic programming (GP) |[KK92, PLMKO08, BNKF98, GPM20, MAS05| is fundamentally different
from other approaches to artificial intelligence, like machine learning, in terms of its representation
and its mechanism gleaned from nature. The motivation behind the use of genetic programming
is deduced from classical structured programming like object-oriented programming and object
libraries, which often leaves the programming task firmly in the hands of the programmer and
prevents the freedom of the computer user to manipulate and maintain the code. Enabling computers
to learn to program themselves allows to free the computer industry from the explicit code. In fact,
when the user is mainly interested in the structure of the program, he just needs to tell the GP
exactly how to do and GP would do so. Indeed, GP has been successfully used to evolve software
controllers that are more effective than those written by engineers [KK00|. Any system that relies on
a population of programs or algorithms that evolve during the search process where new invariants
are generated, can be called a genetic programming system. GP has introduced a level of freedom of
representation into the machine learning world that did not previously exist. In our work, we focus
on GP systems that use (expression) trees to represent programs. Even though the GP structures in
the literature may be represented in other ways, research has already confirmed the interpretability
of both linear and graph-based genetic programming systems, which is perhaps the most important
distinguishing feature of genetic programming. We present our GP technique in Chapter [6]
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The idea of Genetic programming is derived from evolutionary biology. The algorithm genetically
breeds populations of computer programs to solve problems. In this dissertation, specifically in
Chapter [6] we follow the flowchart shown in Figure 2.9 Genetic programming uses four steps to
solve problems:

1. Generate an initial population of random trees of the functions and terminals of the problem
(computer programs).

2. Execute each program in the population and assign it a fitness value according to how well it
solves the problem.

3. Create a new population of computer programs by applying Reproduction, Crossover and
Mutation.

4. The best computer program that appeared in any generation is designated as the result of
genetic programming.

The genetic programming system needs to be adapted to the problem we aim to solve. There-
fore, it is important to answer the following questions that raise contentious issues for the learning
algorithm design.

e How are solutions represented in the algorithm? genetic programming allows to represent the
solution as any possible computer program. It is theoretically possible for a properly designed
GP system to evolve solutions that any other machine learning system could produce. GP in-
deed supports solutions with boolean, arithmetic and logical operators. These representations
are easy to evolve in GP. It also supports the use of conditional branching structures such as
IF/THEN statements, strong typing and grammars, which makes it possible for GP to evolve
constrained programs.

e Which search operators does the learning algorithm use to move in the solution space? Search
operators are the key to a good GP system. Genetic operators not only define and evolve
the solutions but they also limit the search space area. Therefore, the choice of the applied
operators in GP and configuring rates with appropriate values is crucial. A good GP system
would use the suitable operators which select fitted solutions and avoids bad ones. The primary
genetic operators applied in GP are the “crossover” and “mutation” operators. Mutation tweaks
an existing solution to produce a new one which allows more exploration of the search space.
Crossover exchanges parts of two existing solutions to produce two new solutions which allows
more exploitation of the discovered solutions. Configuring the rates of these operators in
the GP algorithm helps control the exploitation and exploration capabilities of the search
depending on the user’s goals.

e How are solutions evaluated? The fitness function serves as a metric to assess which candidate
solutions are fitted solutions. The fitter solutions are later exploited by the operators in order
to produce more promising solutions for further selection. The fitness function typically limits
further the solutions that are generated by genetic operators. Retaining candidate solutions
from a population of all possible solutions is recognised as a machine learning method used in
evolutionary algorithms.
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Chapter 3

Generating Test Oracles for Simulink
Models with Continuous and
Uncertain Behaviours

Test automation requires automated oracles to assess test outputs. For cyber physical systems
(CPS), oracles, in addition to be automated, should ensure some key objectives: (i) they should
check test outputs in an online manner to stop expensive test executions as soon as a failure is
detected; (ii) they should handle time- and magnitude-continuous CPS behaviors; (iii) they should
provide a quantitative degree of satisfaction or failure measure instead of binary pass/fail outputs;
and (iv) they should be able to handle uncertainties due to CPS interactions with the environment.

We propose Simulink Oracles for CPS RequiremenTs with uncErtainty (SOCRaTEs), an ap-
proach for generating online oracles in the form of Simulink blocks based on CPS functional require-
ments (Section . SOCRaTEs translates CPS requirements specified in a logic-based language
into test oracles specified in Simulink — a widely-used development and simulation language for CPS.
Our approach achieves the objectives noted above through the identification of a fragment of Signal
First Order logic (SFOL) to specify requirements, the definition of a quantitative semantics for this
fragment and a sound translation of the fragment into Simulink.

This chapter highlights the following research contributions:

1. We propose Restricted Signals First-Order Logic (RFOL), a signal-based logic language to
specify CPS requirements (Section . RFOL is a restriction of Signal First Order logic
(SFOL) [BFHN18a] that can capture properties of time- and magnitude-continuous signals
while enabling the generation of efficient, online test oracles. We define a quantitative semantics
for RFOL to compute a measure of fitness for test results as oracle outputs.

2. We develop a procedure to translate RFOL requirements into automated oracles modeled in
the Simulink language (Section. We prove the soundness of our translation with respect to
the quantitative semantics of RFOL. Further, we demonstrate that: (1) the generated oracles
are able to identify failures as soon as they are revealed (i.e., our oracles are online); and (2)
our oracles can handle models containing parameters with uncertain values and signal inputs
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BEHAVIOURS

(a) R4 holds (b) R4 fails (low severity) (c) R4 fails (high severity)
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time time time
Figure 3.1: Three simulation outputs of our ESAIL case study model indicating the error signal
|dreal(t) — dtarget(t)||. The signal in (a) passes R4 in Table but those in (b) and (c) violate

R4 with low and high severity, respectively.

%2

with noises by exploiting existing Simulink features. We have implemented our automated
oracle generation procedure in a tool which is available online [Socl9].

3. We evaluate our approach using 11 industry Simulink models from two companies in the CPS
domain.

Our results show that our proposed logic-based requirements language (RFOL) is sufficiently
expressive to specify all the 98 CPS requirements in our industrial case studies. Further, our auto-
mated translation can generate online test oracles in Simulink efficiently, and the effort of developing
RFOL requirements is acceptable, showing potentials for the practical adoption of our approach.
Finally, for large and computationally intensive industry models, our online oracles can bring about
dramatic time savings by stopping test executions long before their completion when they find a
failure, without imposing a large time overhead when they run together with the model.

Structure. Section [3.1| presents the motivating example and the challenges addressed in this
work. Section [3.2] outlines SOCRaTEs and its underlying assumptions, presents the Restricted
Signals First-Order Logic and its semantics and describes our automated oracle generation procedure.
Section [3-3] evaluates SOCRaTEs and Section [3.5] concludes the chapter.

3.1 Motivation and Challenges

We motivate the work of this chapter using our case study system, the ESAIL maritime micro-
satellite. The main functional requirements of ESAIL are presented in the middle column of Ta-
ble 3] and the variables used in the requirements are described in Table [3.2]

Before software coding or generating code from Simulink models (a common practice when
Simulink /Matlab models are used), engineers need to ensure that their models satisfy the require-
ments of interest (e.g., those in Table . Despite the presence of automated verification tools
for Simulink, the verification of industrial CPS Simulink models largely relies on simulation and
testing. This is because existing verification tools |[RS11,SDVI19|REA19| are not amenable to the
verification of large Simulink models like ESAIL that contain continuous physical computations
and third-party library code [MNBB18,/AFS™13|. Further, CPS Simulink models often capture dy-
namic and hybrid systems [Alul5|. It is well-known that model checking such systems is generally
undecidable [HKPV98,|ACH™95,Alull].

To effectively test CPS models, engineers need to have automated test oracles that can check the
correctness of simulation outputs with respect to the requirements. To be effective in the context of
CPS testing, oracles should further ensure the following objectives:
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Table 3.1: Requirements for the satellite control system (ESAIL) developed by LuxSpace.

ID Requirement ‘ Restricted Signal First-Order logic formula*

R1 The angular velocity of the satellite shall always be lower | V¢ € [0,86400): ||@Wsa(t)]| < 1.5
than 1.5m/s.

R2 The estimated attitude of the satellite shall be always equal | Vt € [0,86400): ||Gestimate(t)|] =1
to 1.

R3 The maximum reaction torque must be equal to 0.015Nm. | Vt € [0,86400): |[trg(t)| < 0.015

R4 The satellite attitude shall reach close to its target value | Vt € [2000,86400): ||greai(t) — Grarget(t)]| < 2
within 2000 sec (with a deviation not more than 2 degrees)
and remain close to its target value.

R5 The satellite target attitude shall not change abruptly: for | V¢ € [0,86400): ||Giarget(t) — Grarget(t + 2)|| < 2 %
every t, the difference between the current target attitude | sin(%)
and the one at two seconds later shall not be more than «°.

R6 The satellite shall reach close to its desired attitude (with | V¢ € [0,86400): (sm(t) = 0 A (Vt; € (t,t +
a deviation not more than %2) 2000 sec after it enters its | 1]: sm(t;) =1) —
normal mode (i.e., sm(t) = 1) and it has stayed in that | ||Grear(t + 2000) — Gestimate(t + 2000)|| < 0.02)
mode for at least 1 sec.

* The notation @ indicates that a is a vector; ||d@|| indicates the norm of the vector.

Table 3.2: Signals variables of the ESAIL model.

Var. Description Var. Description
sm Satellite mode status. trq Satellite torque.
Wt Satellite angular velocity. Greal Current satellite attitude.

Qestimate  DBstimated satellite attitude.  Giarger Target satellite attitude.

o O1. Test oracles should check outputs in an online mode. An online oracle (a.k.a as a monitor
in the literature [BFHN18b|) checks output signals as they are generated by the model under
test. Provided with an online oracle, engineers can stop model simulations as soon as failures
are identified. Note that CPS Simulink models are often computationally expensive because
they have to capture physical systems and processes using high-fidelity mathematical models
with continuous behaviors. Further, CPS models have to be executed for a large number
of test cases. Also, due to the reactive and dynamic nature of CPS models, individual test
executions (i.e., simulations) have to run for long durations to exercise interactions between
the system and the environment over time. For example, to simulate the satellite behavior for
24h (i.e., 86400s), the ESAIL model has to be executed for 84 minutes (71.5 hours) on 12-core
Intel Core i7 3.20GHz 32GB of RAM. Further, the 24h-length simulation of ESAIL has to be
(re)run for tens or hundreds of test cases. Therefore, online test oracles are instrumental to
reduce the total test execution time and to increase the number of executed test cases within
a given test budget time.

e 02. Test oracles should be able to evaluate time and magnitude-continuous signals. CPS
model inputs and outputs are signals, i.e., functions over time. Signals are classified based
on their time-domain into time-discrete and time-continuous, and based on their value-range
into magnitude-discrete and magnitude-continuous. The type of input and output signals
depends on the modeling formalisms. For example, differential equations [New74] often used
in physical modeling yield continuous signals, while finite state automata [Hen09| used to
specify discrete-event systems generate discrete signals. Figure shows three magnitude-
and time-continuous signal outputs of ESAIL indicating the error in the satellite attitude,
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Figure 3.2: Overview of SOCRaTes, our automated oracle generation approach.

\_i-Input Noises

i.e., the difference between the real and the target satellite attitudes (||Grear(t) — Garget(t)|])-
An effective CPS testing framework should be able to handle the input and output signals
of different CPS formalisms including the most generic and expressive signal type, i.e., time-
continuous and magnitude-continuous. Such testing frameworks are then able to handle any
discrete signal as well.

e 03. Test oracles for CPS should provide a quantitative measure of the degree of satisfaction
or violation of a requirement. Test oracles typically classify test results as failing and passing.
The boolean partition into “pass" and “fail", however, falls short of the practical needs. For
CPS, test oracles should assess test results in a more nuanced way to identify among all the
passing test cases, those that are more acceptable, and among all the failing test cases, those
that reveal more severe failures.

Therefore, an effective test oracle for CPS should assess test results using a quantitative fitness
measure. For example, the satellite attitude error signal in Figure (a) satisfies the require-
ment R4 in Table But, signals in Figures[3.1j(b) and (c) violate R4 since the error signal
does not remain below the %2 threshold after 2000s. However, the failure in Figure [3.1)c) is
more severe than that in Figure (b) since the former deviates from the threshold with a
larger margin. A quantitative oracle can differentiate between these failures.

o O4. Test oracles should be able to handle uncertainties in CPS function models. We consider
two main recurring and common sources of uncertainties in CPS |[ER14,[dWOJ707]: (1) Un-
certainty due to unknown hardware choices which results in model parameters whose values
are only known approximately at early design stages. For example, in ESAIL, there are un-
certainties in the type of the magnetometer and in the accuracy of the sun sensors mounted
on the satellite (see Table [3.3)). (2) Uncertainty due to the noise in the inputs received from
the environment, particularly in the sensor readings. This is typically captured by white noise
signals applied to the model inputs (e.g., Table shows the signal-to-noise (S2N) ratios for
the magnetometer and sun sensor inputs of ESAIL). Oracles for CPS models should be able
to assess outputs of models that contain parameters with uncertain values and signal inputs
with noises.

3.2 Approach Overview

Figure shows an overview of SOCRaTeS (Simulink Oracles for CPS RequiremenTs with uncEr-
tainty), our approach to generate automated test oracles for CPS models. SOCRaTeS takes three
inputs: () a CPS model with parameters or inputs involving uncertainties, (BJ) a set of functional
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Figure 3.3: Signals ||@Wsq || for the ws,: output of ESAIL. The solid-line signal is generated by ESAIL
with no uncertainty, and the dashed-line signal is generated when the S2N ratios in Table [3.3] are
applied to the ESAIL inputs.

requirements for the CPS model and () a set of test inputs that are developed by engineers to test
the CPS model with respect to its requirements.
SOCRaTeS makes the following assumptions about its inputs:

e Al. The CPS model is described in Simulink (§)). Simulink is a prevalent modeling language
in the automotive domain [MNBB16aj, ZSM12|. Simulink appeals to engineers since it is par-
ticularly suitable for specifying dynamic systems and it allows engineers to test their models
as early as possible. We recall from Chapter [2 Section the modeling language provided
by Simulink and how the system design is constructed and simulated. Specifically, to simulate
a Simulink model M, the simulation engine receives signal inputs defined over a time domain
and computes signal outputs at successive time steps over the same time domain used for the
inputs. For example, Figure shows a signal (black solid line) for the wsq; output of ESAIL
computed over the time domain [0,3 x 10%].

o A2. Functional requirements are described in a signal logic-based language (BJ). We present
our requirements language in this section and compare it with existing signal logic lan-
guages [BFHN18a,|[MNO04|. We evaluate expressiveness of our language in Section

o A3. A set of test inputs evercising requirements are provided (B)). We assume engineers have
a set of test inputs for their CPS model. The test inputs may be generated manually, randomly
or based on any test generation framework proposed in the literature [MNBB16a,ZSM12|. Our
approach is agnostic to the selected test generation method.

SOCRaTeS automatically converts functional requirements into oracles specified in Simulink
(@Y). The oracles evaluate test outputs of the CPS model in an automated and online manner and
generate fitness values that provide engineers with a degree of satisfaction or failure for each test
input (). Engineers can stop running a test in the middle when SOCRaTeS concludes that the
test fitness is going to remain below a given threshold for the rest of its execution.

Simulink Models

We recall from Chapter [2] Section [2:2] the modeling language provided by Simulink and the descrip-
tion of CPS Simulink models (E}). We note that our oracles rely on Simulink solvers to properly
handle signals based on their time domains, whether discrete or continuous. As a result, our work,
in contrast to existing techniques, is able to seamlessly handle the verification of logical properties
over not just discrete but also continuous CPS models.
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Figure 3.4: A set of signals ||@Ws.|| for the output wge of ESAIL with uncertain parameters (i.e.,
when the sun sensor and magnetometer parameters are specified as in Table [3.3).

Table 3.3: Uncertainty in Autopilot: The values of the magnetometer type and the sun sensor
accuracy parameters are given as ranges (middle column). The noise values for the magnetometer
and sun sensor inputs are given in the right column.

Component ‘ Parameter Values ‘ Noises (S2N)

Magnetometer | [60000,140000] nT | 100 e~*2 T/VHz
Sun sensor | 2.9-1077£10% | 2.688-¢° A

Simulink has built-in support to specify and simulate some forms of uncertainty. We refer to
Simulink models that contain uncertain elements as partial models (denoted M),), while we use
the term definitive to indicate models with no uncertainty. Simulink can specifically capture the
following two kinds of uncertainty that are common for CPS (04 ):

(i) Uncertainty due to the noise in inputs. In Simulink, uncertainty due to the noise is imple-
mented by augmenting model inputs with continuous-time random signals known as White Noise
(WN) |GK10|]. The degree of WN for each input is controlled by a signal-to-noise ratio (S2N) value
which is the ratio of a desired signal over the background WN [Sigl9|. Table shows the S2N
ratios for two inputs of Autopilot. Fig.|[3.3[shows the signal ||@s.(t)|| (gray dashed line) after adding
some noise to the original wg,; signal (black solid line).

(i) Uncertainty related to parameters with unknown values. In Simulink, parameters whose
values are uncertain are typically defined using variables of type uncertain real (ureal), which is
a built-in type in Simulink that specifies a range of values for a variable. Table shows two
parameters of Autopilot whose exact values are unknown, and hence, value ranges are assigned to
them.

Let M), be a partial Simulink model with n outputs, and let £ be the number of different value
assignments to uncertain parameters of M,. A simulation of a partial Simulink model M,,, denoted by
Hy(a, M,) ={7,,75 .-V}, receives a set u = {uy, uz...uy} of input signals defined over the same
time domain, and produces a set of simulation outputs {y,¥5...¥,} such that each y, is generated
by one value assignment to uncertain parameters of M,. Specifically, for each O; € {y,,75...7.},
we have O; = {y1,92...yn} such that oy, ... 0, are signals for outputs of M, i.e., each O; contains a
signal for each output of M,,. The function H), generates the simulation outputs consecutively and is
provided in the Robust Control Toolbox of Simulink [Rob19| which is the uncertainty modeling and
simulation tool of Simulink models with dynamic behavior. The value of k indicating the number
of value assignments to uncertain parameters can either be specified by the user or selected based
on the recommended settings of H,. For example, Figure @ plots five simulation outputs for the
output wges of Autopilot. The uncertainty in this figure is due to the sun sensor accuracy parameter
that takes values form the range 2.9 - 1072 £ 10% as indicated in Table .
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Restricted Signals First-Order Logic

We present Restricted Signals First-Order Logic (RFOL), the logic we propose to specify CPS func-
tional requirements (BJ). Our choice of a language for CPS requirements is mainly driven by the
objectives OI and O2. These two objectives, however, are in conflict. According to O2., the lan-
guage should capture complex properties involving magnitude- and time-continuous signals. Such
language is expected to have a high runtime computational complexity |[BEHN18b|. This, however,
makes the language unsuitable for the description of online oracles that should typically have low
runtime computational complexity, thus contradicting O1. For example, Signals First Order (SFO)
logic |BFHN18b] is an extension of first order logic with continuous signal variables. SFO, however,
is not amenable to online checking in its entirety due to its high expressive power that leads to
high computational complexity of monitoring SFO properties |[BFHN18b|. Thus, the procedure for
monitoring SFO properties is tailored to offline checking. In order to achieve objectives O1 and 02,
we define Restricted Signals First-Order Logic (RFOL), a fragment of SFO. RFOL can be effectively
mapped to Simulink to generate online oracles that run together with the model under test by the
same solvers applied to the model, which can handle any signal type (i.e., discrete or continuous),
hence addressing objectives O and O2. Note that even though RFOL is less expressive than SFO,
as we will discuss in Section all CPS requirements in our case studies can be captured by RFOL.

RFOL Syntaz. Let T' = {t1,to,...tq} be a set of time variables. Let F = {f1, fo,..., fi} be a
set of signals defined over the same time domain T, i.e., f; : T — R for every 1 <1 <.

Let us consider the grammar G defined as follows:

Ti= t+nlt—-nl|t|n
p= f(7)]8lp) | h(p1,p2)
pu= p~r [PV o2 | pr AP | VEE (T, o) G| Tt E(T1,T2): @

where n € Ra' ,teT, feF, reR, and g and h are, respectively, arbitrary unary and binary
arithmetic operators, ~ is a relational operator in {<, <,>,> =, %}, and (11, 72) is a time interval
of T (i.e., (11, 72) C T) with lower bound 7; and upper bound 72. The symbols ( and ) are equal to |
or (, respectively to | or ), depending on whether 71, respectively 72, are included or excluded from
the interval. We refer to 7, p and ¢ as time term, signal term and formula term, respectively. A
predicate is a formula term in the form p ~ r.

Definition 4 A Restricted Signals First-Order Logic (RFOL) formula ¢ is a formula term defined
according to the grammar G that also satisfies the following conditions: (1) ¢ is closed, i.e., it does
not have any free variable; and (2) every sub-formula of ¢ has at most one free time variable.

In RFOL, boolean operations (A, V) combine predicates of the form p ~ r, which compare signal
terms with real Valuesﬂ The formulae further quantify over time variables of signal terms p in
p ~ r and bound them in time intervals (7, 72). Table shows the formalization of the ESAIL
requirements in RFOL. For example, the predicate ||wWsqt|| < 1.5 of formula R1 states that the
angular velocity of the satellite should be less than 1.5m/s, and Vt € [0,86 400) forces the predicate
to hold for a duration of 86400s ~ 24h, the estimated time required for the satellite to finish an
orbit.

RFOL expressiveness. Here, we discuss what types of SFO properties are eliminated from RFOL
due to the conditions in Definition ] Condition 1 in Definition [4] requires closed formulae. RFOL
properties must not include free variables (i.e., they should be formulae and not queries) so that

!Note that in our logic, negation — is applied at the level of predicates.
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they generate definitive results when checking test outputs. Condition 2 in Definition [4]is needed to
ensure that the formulae can be translated into online oracles specified in Simulink. This condition
eliminates formulae containing predicates p ~ r where p includes an arithmetic operator applied to
signal segments over different time intervals (i.e., signal segments with different time scopes). For
example, the formula Vt € [1,5] : V' € [7,9] : f(t) + f(¥') < 4 is not in RFOL since f(t) + f(¢') < 4
has two free time variables ¢ and ¢’ (i.e., it violates condition 2 in Definition @) The predicate
f@®) + f(t') < 4 in this formula computes the sum of two segments of signal f related to time
intervals [1,5] and [7,9]. Such formulae are excluded from RFOL since during online checking, the
operands f(t) and f(t') cannot be simultaneously accessed to compute f(t) + f(¢'). We note that
formulae with arithmetic operators applied to signal segments over the same time interval (e.g., R4
and R5 in Table , or formulae involving different predicates over different time intervals, but
connected with logical operators (e.g., R6) are included in RFOL.

Comparison with STL. In addition to SFO, Signal Temporal Logic (STL) [MNO04] is another logic
proposed in the literature that can capture CPS continuous behaviors. We compare RFOL with
STL, and in particular, with bounded STL since test oracles can only check signals generated up to
a given bound. Hence, for our purpose, bounded STL temporal operators have to be applied (e.g.,
U [a,b])' RFOL subsumes bounded STL since boolean operators of STL can be trivially expressed
in RFOL, and any temporal STL formula in the form of @3 U[, ) 2 can also be specified in RFOL
using time terms and time intervals. The detailed translation is available online [Soc19].

RFOL Semantics. We propose a (quantitative) semantics for RFOL to help engineers distinguish
between different degrees of satisfaction and failure ( O3). As shown in Table and also based
on RFOL syntax, CPS requirements essentially check predicates p ~ r over time. To define a
quantitative semantics for RFOL, we need to first define the semantics of these predicates in a
quantitative way. In our work, we define a (domain-specific) diff function to assign a fitness value
to p ~ r. We require diff to have these characteristics: (1) The range of diff is [-1,1]. (2) A value
in [0, 1] indicates that p ~ r holds, and a value in [—1,0) indicates that p ~ r is violated.

Definition 5 Let diff be a domain-specific semantics function for predicates p ~ r. Let F =
{fi,--., fi} be a set of signals with the same time domain T. The semantics of an RFOL formula ¢
for the signal set F' is denoted by [¢]F and is defined as follows:

B f(n) iffeF andneT
7 ()] B {undeﬁned otherwise
[9(p)]F = g([r]r)
[h(p1, p2)]F = K[plr, [p2]r)
lp~rlr = diff([p]r ~ )
61 A p2]F = min([¢1]r, [¢2]F)
[p1V d2]F = max([¢1]r, [¢2]F)
[Vt € (n1,n2): ¢lr = ngggw)([[qb[t —tIr)
[3t € (n,n2): ¢l = Vt,g}gfn2>([[¢[t «~tlr)

The choice of the max and min operators for defining the semantics of 3 and V is standard [LT88]:
the minimum has the same behavior as A and evaluates whether a predicate holds over the entire
time interval. Dually, the max operator captures V. The semantics of signal terms f(n) depends
on whether the signal is included in F' and whether n is in the time domain T, otherwise f(n) is
undefined. We say ¢ € RFOL is well-defined with respect to a signal set F' iff no signal term in ¢ is
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undefined. To avoid undefined RFOL formulae, signal time domains T should be selected such that
signal indices are included in T, and further, the formula should not have negative signal indices.
For example, for properties in Table we need a time domain T = [0,86400] for R1 to R4, a
time domain T = [0,86402] for R5, and a time domain T = [0,88400] for R6. Finally, we can infer
the boolean semantics of RFOL from its quantitative semantics: For every formula term ¢, we have
F = ¢ iff [¢]F > 0. In other words, ¢ holds over the signal set F' iff [¢]r > 0.

Let = [p]r — r. In our work, we define diff as follows:

B |l f 0

diff([p]lr =7) = i |i|1 diff(lplr # 1) = {I_ul:l ellseu ’
B f 0

diff([plr > ) = Iullj- 7 diffllelr > 1) = {'_M:l 61185 .
_ s if 0

diff([plp <) = m ﬁl diff(lp]r <7) = {'_'6“ ellsf .

In the above, € is an infinitesimal positive value that ensures diff < 0 when p = 0 and either <,
> or # is used.

Our diff function satisfies the two conditions described earlier and is closed under logical A and
V. For example, (p < r) A (p > r) is equal to (p = r). Our diff function, further, provides a
quantitative fitness measure distinguishing between different levels of satisfaction and refutation.
Specifically, a higher value of diff indicates that p ~ r is fitter (i.e., it better satisfies or less severely
violates the requirement under analysis). For example, the diff value of the predicate ||@Wsq| < 1.5
for the signals shown in Figure [3.4] is above zero implying that the signals satisfy the predicate. In
contrast, the diff values for signals ||Great — Giarget|| in Figures (b) and (c) are —0.5 and —0.95,
respectively. This shows that the violation in Figure (c) is more severe than that in Figure (b)

The above diff function is only one alternative where we assume the fitness is proportional to the
difference between p and r. We can define the diff function differently as long as the two properties
described earlier are respected and the proposed semantics for diff respects logical conjunction and
disjunction operators.

Oracles Generation

We present the oracle generation component of SOCRaTes (E) in Figure . This component
automatically translates RFOL formulae into online test oracles specified in Simulink that can
handle time- and magnitude-continuous signals and conform to our notion of oracle (Definition
introduced in Chapter, Section Note that an RFOL formula may not be directly translatable
into an online test oracle if it contains sub-formulae referring to future time instants or to signal
values that are not yet generated at the current simulation time. For example, consider the predicate
| Greal(t + 2000) — Gestimate (t + 2000)|| < 0.02 in the R6 property of Table The fitness value of
this predicate at ¢ (i.e., the oracle output in Definition [I)) can only be evaluated after generating
signals ¢req; and Gestimate up to the time instant ¢+ 2000. This requires extending the time domain T
by 2000 seconds. Instead of forcing a longer simulation time, we propose a procedure that rewrites
the RFOL formulae into a form that allows a direct translation into online test oracles. Having
applied the time and interval shifting procedure to RFOL formulae, we describe our translation
to convert RFOL formulae into Simulink oracles. We further present a proof of soundness and
completeness of our translation in this section. All the proofs of the Theorems are provided in our
online Appendix [Socl9|. Below, we present the time- and interval-shifting steps:
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Time-shifting. Any signal term that refers to a signal value generated in the future should be
rewritten as a signal term that does not refer to the future. For example, the formula Geq(t +
2000) < 5 that refers to the value of §..q in the future cannot be checked online. Therefore, our
time-shifting procedure replaces any signal term f(t 4+ n) with a signal term f(t — n) as follows:
Let 9 be an RFOL formula. We traverse v from its leaves to its root and replace every sub-
formula Vt € (n1,n2): ¢(t) (resp. It € (n1,n2): ¢(t)) of ¥ with Vt € (ny +di,n2 +dy): ¢(t — dy)
(resp. 3t € (ny +di,no +dy): ¢(t —ds)), where d; is the maximum value of constant n in time terms
t +n appearing as signal indices in ¢(t). For example, the requirement R5 in Table is rewritten
as:

Vt € [2,86402): ||Gtarget(t — 2) = Grarget (t)]| < 2 % sin(§)

Interval-Shifting. To ensure that ¢ can be translated into an online test oracle, for any Vi €
(T1,T2) : ¢ in 9, the interval (71, 72) should end after all the intervals (71, 75) such that V¢’ € ({,73) :
¢’ is a sub-formula of ¢ (i.e., 7o > 75), and further, it should begin after all the intervals (77, 75)
such that 3" € (r{,75) : ¢ is a sub-formula of ¢ (i.e., 71 > 74). Similarly, for any 3t € (11, 72) : ¢ in
1, the dual of the above two conditions must hold. These conditions will ensure that the evaluation
of the sub-formulae in the scope of ¢ can be fully contained and completed within the evaluation of
their outer formula. For example, Vt € [0,3]: (f(t) =0AVt €[0,5]: f(t') =1) cannot be checked
in an online way since the time interval of the inner sub-formula (i.e., [0, 5]) does not end before the
time interval of the outer formula (i.e., [0, 3]). Therefore, our interval-shifting procedure shifts each
time interval (71, 72) to ensure that it terminates after all its related inner time intervals.

Let ¢ be an RFOL formula. We traverse ¢ from its leaves to its root and we perform the following
operations: (i) replace every sub-formula Vt € (71, 72): ¢(t) of ¢ with Vt € (71 +dy, 2+dy) : ¢(t—dy),
where d,, is the maximum value of constant n in the upper bounds 72 of time intervals (7, 72)
associated with V operators and the lower bounds 71 of time intervals (71, 73) associated with 3
operators in ¢(t); (ii) execute a dual procedure to update the time intervals of existential sub-
formulae. For example, the interval-shifting procedure rewrites the formula previously introduced
as Vt € [2,5]: (f(t—2)=0AVt €[0,5]: f(¢') =1).

To ensure interval-shifting is applied to signal variables with constant indices, we replace every
f(n) in ¢ where n is a constant with Vt* € [n,n] : f(¢t*) where t* is a new time variable that has not
been used in . We refer to the RFOL formula obtained by sequentially applying time-shifting and
interval-shifting to an RFOL formula ¢ as shifted-formula and denote it by ¢4.

Theorem 1 Let ¢ be an RFOL formula and let ¢4 be its shifted-formula. For any signal set F,
we have: [p]r = [e4]F

The time complexity of generating a shifted-formula ¢4 is |p| where || is the size of the formula
©, i.e., the sum of the number of its temporal and arithmetic operators. Both the time and the
interval shiftings scan the syntax tree of ¢ from its leaves to the root twice: one for computing the
shifting values d; and d,, for every subformula of ¢; and the other to apply the shifting, i.e., replacing
the variable t with t — d; or t — d,,.

We translated RFOL formulae written in their shifted-forms into Simulink. Table [3.4] presents
the rules for translating each syntactic construct of RFOL defined in Definition [ into Simulink
blocks. Note that h and g in Table respectively, refer to binary arithmetic operators (e.g., +) or
unary functions (e.g., sin) and map to their corresponding Simulink operations. Below, we discuss
the rules for ¢, f(t —n), Vt € (11, m2): ¢, and p ~ r since the other rules in Table directly follow
from the RFOL semantics. Note that signal variables in shifted formulae are all written as f(t —n)
s.t. n > 0. Hence, we give a translation rule for signal variables in the form of f(¢ —n) only.

e Rulel: To compute the value of ¢, we use an integrator Simulink block to compute the formula
[ dt which yields ¢.
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3.2. Approach Overview

Table 3.4: Translating the SFFO formulae into Simulink Oracles.

e |

e Rule4: To encode f(t—n), we first obtain the delay n applied to the signal f. To obtain the value
of n from t —n, we compute t — (t —n). We then use the transport delay block of Simulink to obtain
the value of f at n time instants before ¢.
e Rule8: The formula V¢ € (11, 72): ¢ is mapped into a Simulink model that initially generates the
value 1 until the start of the time interval (71, 72). When ¢ € (11, 72) holds, the multiplexer of Rule8
selects the value of ¢ instead of 1. Note that we use symbol < for (= “(”, symbol < for (= “[?,
symbol > for ) = “)”, and symbol > for ) = “]”. The feedback loop in the model combined with
a delay block (i.e., z~!) computes the minimum of ¢ over the time interval (71, 7). Once the time
interval (71, 72) expires, the multiplexer chooses constant 1 again. This, however, has no side-effect
on the value v already computed for the formula V¢ € (11, 72): ¢ because v < 1 and the minimum of
v and 1 remains v until the end of the simulation. Note that the rule for translating 3t € (11, 72): ¢
into Simulink is simply obtained by replacing in Rule8 MIN with MAX and constant 1 with constant
-1.
e Rule9: Recall that the semantics of p ~ r depends on a domain specific fitness function. In our
work, we implement the diff block in Rule9 based on the functions described earlier for function diff.
Let ¢ be an RFOL formula and ¢4 be its corresponding shifted formula. We denote by M, the
Simulink model obtained by translating ¢4 using the rules in Table The model M, is a definitive
Simulink model and has one and only one output because every model fragment in Table [3:4] has
one single output. This output will be indicated in the following with the symbol e. Below, we
argue that M, conforms to our notion of test oracle given in Definition [I} and is an online oracle
that can handle continuous signals. In order to use M, to check outputs of model M, with respect
to a property ¢, it suffices to connect the outputs of M, to the inputs of M,. We denote the model
obtained by connecting the output ports of M, to the input ports of M, by M, + M,. Clearly,
M, + M, has only one output signal e (i.e., the output of M,).

| Rule | Rulel | Rule2 | Rule3 | Rule4 | Rules |
| Formula | t | n | ttn | f(t—n) | h(p1,p2)/8(p) |
Simulink L g /’;_;i
| Rule | Rule6 Rule7 | | Rule9 |
z

|
‘ Formula ‘ D1V ¢a ‘ P1 N\ P2

Theorem 2 Let M), be a (partial) Simulink model, and let I be a test input for M, deﬁned over the
time domain T = [0,t,]. Let 4,0 be a requirement of My, in RFOL. Suppose {9, 7, . . yk} = H,(u, M,)
and {{e1},{ea}, ..., {ex}} = Hy(I, My + M) are simulation results generated for the time domain
T. Then, the value of ¢ over every szgnal set O; € {1, Yy ... Y} s equal to the value of the signal
e; generated by M, + M, at time t,. That is, [¢]o, = e;i(ty). Further, we have:
oracle(My, I, ¢) = {min e(ty)
e

c{e1,.ex}

That is, the minimum value of the outputs of My, + M, at t, is equal to the oracle value as defined
by Definition [1]
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BEHAVIOURS

Theorem 4.2 states that our translation of RFOL formulae into Simulink is sound and complete
with respect to our notion of oracle in Definition[I] Note that in the case of a definite Simulink model
M, the output of M + M, is a single signal e. In summary, according to Theorem 4.2, M, + M,
(or M + M,) is able to correctly compute the fitness value of ¢ for test input I.

Theorem 3 Let M), be a (partial) Simulink model, and let I be a test input for M, over the time
domain T = [0,t,]. Let ¢ be a requirement of M, in RFOL. Suppose {{e1},{e2},...,{ex}} =
H,(I, M, + M,) are simulation results generated for T. Let d be the mazimum constant appearing
in the upper bounds of the time intervals of o4 for existential quantifiers (i.e., time intervals in the
form of 3t € [11, 7] : ¢ in py). Each e; € {{e1},{ea},...,{ex}} is decreasing over the time interval
(d,t].

Note that d in Theorem 4.3 indicates the time instant when all the existentially quantified time
intervals of ¢ are terminated, and hence all the sub-formulae within the existential quantifiers of ¢
are evaluated. According to Theorem 4.3, the oracle output for ¢ becomes monotonically decreasing
after d. Therefore, after d, we can stop model simulations as soon as the output of M, + M,
falls below some desired threshold level. More specifically, if the output of M, + M, falls below a
threshold at time ¢ > d it will remain below that threshold for any ¢’ > ¢. Hence, M, + M, is able
to check test outputs in an online manner and stop simulations within the time interval (d,t,] as
soon as some undesired results are detected. Note that d = 0 if ¢ does not have any existential
quantifier.

Our oracles can check Simulink models with time and magnitude-continuous signal outputs
since all the blocks used in Table can be executed by both fixed-step and variable-step solvers
of Simulink, where the time step is decided by the same solver applied to the model under test.
Finally, the running time of our oracle is linear in the size of the underlying time domain T.

3.3 Evaluation

In this section, we empirically evaluate SOCRaTEs using eleven realistic and industrial Simulink
models from the CPS domain. Specifically, we aim to answer the following questions. RQ1: Is
our requirements language (RFOL) able to capture CPS requirements in industrial settings? RQ2:
Is the use of RFOL and our proposed translation into Simulink models likely to be practical and
beneficial? RQ3: Is a significant amount of execution time saved when using online test oracles, as
compared to offline checking?

Implementation. We implemented SOCRaTEs as an Eclipse plugin using Xtext [Xtel9| and
Sirius [sirl9]. and have made it available online [Soc19].

Study Subjects. We evaluate our approach using eleven case studies listed in Table We
received the case studies from two industry partners: LuxSpace, a satellite system developer, and
QRA Corp, a verification tool vendor to the aerospace, automotive and defense sectors. FEach case
study includes a Simulink model and a set of functional requirements in natural language that must
be satisfied by the model. Two of our case studies, i.e., ESAIL from LuxSpace and Autopilot, a
public-domain benchmark of Simulink models provided by Lockheed Martin [loc20|, are large-scale
industrial models and respectively represent full behaviors of a satellite and an autopilot system and
their environment. The other nine models capture smaller systems or sub-systems of some CPS. Our
case study models implement diverse CPS functions and capture complex behaviors such as non-
linear and differential equations, continuous behaviors and uncertainty. ESAIL and Autopilot are
continuous models. ESAIL further has inputs with noise and some parameters with uncertain values.

30



3.3. Evaluation

Table 3.5: Important characteristics of our case study systems (from left to right): (1) name,
(2) description, (3) number of blocks of the Simulink model of each case study (#Blocks),(4) number
of requirements in each case study (#Reqgs) and (5) total number of blocks necessary to encode the
requirements (#BlReqs)

Model Name ‘ Model Description ‘ #Blocks ‘ #Reqgs ‘ #BIlReqs

Autopilot A full six degree of freedom simulation of a single-engined high-wing propeller- 1549 12 978
driven airplane with autopilot.

ESAIL | Discussed in Section [3.1] | 2192 | 8 | 202

Neural Network ‘ A two-input single-output predictor neural network model with two hidden layers. ‘ 704 ‘ 6 ‘ 131

Tustin ‘ A numeric model that computes integral over time. ‘ 57 ‘ 5 ‘ 463

Regulator | A typical PID controller. | 308 | 10 | 300

Nonlinear Guid- | A non-linear guidance algorithm for an Unmanned Aerial Vehicles (UAV) to follow 373 1 186

ance a moving target.

System Wide A numerical algorithm that computes warning to an operator when the airspeed 164 3 169

Integrity Moni- | is approaching a boundary where an evasive fly up maneuver cannot be achieved.

tor

Effector A control allocation method to calculate the optimal effector configuration for a 95 3 391

Blender vehicle.

Two Tanks A two tanks system where a controller regulates the incoming and outgoing flows 498 31 1791
of the tanks.

Finite State | A finite state machine executing in real-time that turn on the autopilot mode in 303 13 748

Machine case of some environment hazard.

Euler A mathematical model to compute 3-dimensional rotation matrices for an Inertial 834 8 834
frame in a Euclidean space.

Table also reports the number of blocks (#Blocks) of the Simulink models and the number of
requirements (#Reqs) in our case studies. In total, our case studies include 98 requirements.

RQ1 (RFOL expressiveness). To answer this question, we manually formulated the 98 functional
requirements in our case studies into the RFOL language. All of the 98 functional requirements
of our eleven study subjects were expressible in RFOL without any need to alter or restrict the
requirements descriptions. Further, all the syntactic constructs of RFOL described in this chaptrer
were needed to express the requirements in our study.

The answer to RQ1 is that RFOL is sufficiently expressive to capture all the 98 CPS requirements
of our industrial case studies.

RQ2 (Usefulness of the translation). Recall that engineers need to write requirements in RFOL
before they can translate them into Simulink. To answer this question, we report the size of RFOL
formulas used as input to our approach, the time it takes to generate online Simulink oracles and
the size of the generated Simulink oracles. We measure the size of RFOL requirements as the
sum of the number of quantifiers, the arithmetic and logical operators, and the size of Simulink
oracles as their number of blocks and connections. Figure [3.5(a) shows the size of RFOL formulas
(J¢]) for our case study requirements, and Figure [3.5(b) shows the number of blocks (#Blocks)
and connections (#Connections) of the oracle Simulink models that are automatically generated by
our approach. In addition, Figure [3.5(c) shows the time taken by our approach to generate oracle
models from RFOL formulas. The total number of blocks necessary to encode all the requirements
for each case study is reported in Table 3.5 As shown in Figure 3.5 it took on average 1.6ms to
automatically generate oracle models with an average number of 64.2 blocks and 72.6 connections
for our 98 case study requirements. Further, the average size of RFOL formulas is 19.2, showing
that the pre-requisite effort to write the input RFOL formulas for our approach is not high. The
difference in size between RFOL formulas and their corresponding Simulink models is mostly due to
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Figure 3.5: Plots reporting (a) the size of the RFOL formulas, (b) the number of blocks and con-
nections of the oracle models and (c) the time took SOCRaTEs to generate the oracles.
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Figure 3.6: Test execution time on models without oracles (M), models with oracles (IM + M,,)
with threshold = 0 and models with oracles (M + M) with threshold = —1 for (a) Autopilot,
(b) ESAIL without uncertainty and (c¢) ESAIL with uncertainty.

the former being particularly suitable for expressing declarative properties, such as logical properties
with several nested quantifiers. Given this property, and in addition the fact that verification and
test engineers are not always very familiar with Simulink — a tool dedicated to control engineers,
we expect significant benefits from translating RFOL into Simulink.

The answer to RQ2 is that, for our industrial case studies, the translation into Simulink models is

practical as the time required to generate the oracles is acceptable. It takes on average 1.6ms for
SOCRaTeS to generate oracle models, and the average size of the input RFOL formulas is 19.2,
showing that the pre-requisite effort of our approach is manageable.

RQ3 (Impact on the execution time). Online oracles can save time by stopping test executions
before their completion when they find a failure. However, by combining a model M and a test
oracle (i.e., generating M + M), the model size increases, and so does its execution time. Hence, in
RQ3, we compare the time saved by online oracles versus the time overhead of running the oracles
together with the models. For this question, we focus on our two large industrial models, ESAIL and
Autopilot, since they have long and time-consuming simulations while the other models in Table
are relatively small with simulation times less than one minute. For such models, both the time
savings and the time overheads of our online oracles are practically insignificant.

During their internal testing, our partners identified some faults in ESAIL and Autopilot violating
some of the model requirements. We received, from our partners, 10 failing test inputs for Autopilot
defined over the time domain T = [0,4000], and 4 failing test inputs for ESAIL defined over the
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time domain T = [0,86400]. Recall that ESAIL contains some parameters with uncertain values.
We also received the value range for one uncertain parameter of ESAIL, i.e., ACM _type, from our
partner. We then performed the following three experiments. EXPI: We ran all the test inputs
on the models alone without including oracle models. EXPII: We combined ESAIL and Autopilot
with all the test oracle models related to their respective requirements and ran all the test inputs
on the models with oracles. We did not consider any uncertainty in ESAIL and set ACM _type to a
fixed value. EXPIII: We ran all the tests on ESAIL combined with its oracle models related to its
requirements and defined ACM _type as an uncertain parameter with a value range. We repeated
EXPII and EXPIII for two threshold values: threshold = 0 where test executions are stopped
when tests fail according to their boolean semantics, and threshold = —1 where test executions are
never stopped.

Figures [3.6(a) and (b), respectively, show the results of EXPI and EXPII for Autopilot and
ESAIL. Note that box plots have different scales. Specifically, the figures show the time required to
run the test inputs on Autopilot and ESAIL (1) without any oracle model (M), (2) with oracle models
(M + M,,) for threshold = 0, and (3) with oracle models (M + M,) for threshold = —1. Specifically,
in the second case, test oracles stop test executions when test cases fail, and in the third case, test
oracles are executed together with the model, but do not stop test executions. Our results show
that on average it takes 101.1s and 4993.2s to run tests on Autopilot and ESAIL, respectively (i.e.,
Case M). These averages, respectively, reduce to 4.3s and 180.4s when oracles stop test executions,
and they, respectively, increase to 181.6s and 5311.1s when oracles do not stop test executions. That
is, for Autopilot, the average time saving of our oracles is 95.6% (~1.5m) while their average time
overhead is 78% (~1.2m). In contrast, for ESAIL, our oracles lead to an average time saving of 96%
(~80m) and an average time overhead of 6% (~5m). We note that Autopilot is less computationally
intensive. In this case, the time savings and overheads are almost equivalent because the size and
complexity of the generated oracles are comparable to those of the model. ESAIL, on the other
hand, is more computationally intensive, and as the results show, for ESAIL our oracles introduce
very little time overhead but are able to save a great deal of time when they identify failures. Finally,
we note that the time saving depends also on the presence of faults in models and whether and when
test cases trigger failures. Nevertheless, according to discussions with our partners, and as evidenced
by our case studies, early CPS Simulink models typically contain faults, and hence, our approach
can help in saving test execution times for such models.

Figure (c) shows the results of EXPIII for running ESAIL with uncertainty. Since in the case
of uncertainty, a set of outputs are generated, the total test execution time increases. Specifically,
it takes, on average, 9974.9s to run ESAIL with uncertainty without oracles, 166.2s to run it when
oracles stop test executions, and 10450.0s to run it when oracles do not stop test executions. As the
results show, for ESAIL with uncertainty, the time saving is even higher (i.e., 98%, ~163m) than the
case of ESAIL without uncertainty, because oracles stop simulations as soon as one output among
the set of generated outputs fails.

The answer to RQ3 is that, for large and computationally intensive industrial models, our oracles

introduce very little time overhead (6%) but are able to save a great deal of time when they
identify failures (96%). When models contain uncertainty the time saving becomes even larger
and the time overhead decreases, making our online oracles more beneficial.

Data Availability. Our data and tool are available online [Soc19] and are also submitted alongside
the paper of the work presented in this Chapter [MNGB19|. Among the considered models, all the
models with the exception of the SatEx model are made available. The SatEx model is not shared
as it is part of a non-disclosure agreement.
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3.4 Related Works

In this section, we provide the related work in the context of oracle generation. Several research
approaches have been proposed to address the oracle problem in Software testing [DHF 14, JBGN16,
FP09,/DM10,MNO04,BDN17,NDB13aBFHN18a,SNBB18,MN13BDNCT17,AMN12,DR96,SBB™18,
PW18,HMF15,DY 94, MMM95,CHS05,L.GA96SL02,SBLRO7,MMS96LSCI3/RAO9I2|LHO1,WSB ™09,
MBG™20b).

According to a recent survey |BDDT 18|, all the research threads described earlier provide a
set of inputs exercising requirements. However, only few of these approaches |DHF14,lJBGN16),
FP09,DM10,MN04,BDN17,NDB13a,BFHN18a,SNBB18,MN13,BDNCT17,AMN12,DR96,/SBB™ 18,
AAT™21| build on CPS models described in Simulink and use signal logic-based language to express
their functional requirements.

Dokhanchi et al. [DHF14] propose an online monitoring procedure for Metric Temporal Logic
(MTL) [Koy90a] properties implemented in the S-TaLiRo tool [ALFS11b|. The work builds on CPS
models described in Simulink and uses a set of functional requirements described in a signal logic-
based language. The authors use a prediction technique to handle temporal operators that refer to
future time instants compared to the shifting procedures proposed in our work. As a result, their
monitoring procedure has a higher running time complexity than our oracles (i.e., polynomial in the
size of time history versus linear in the time domain T size). Furthermore, they do not translate
their monitors into Simulink, and hence, cannot benefit from the execution time speed-up of efficient
Simulink blocks and the Simulink variable step solvers to handle continuous behaviors. Thus, as
shown by Dokhachi et al. [DHF14], the time overhead of their approach is considerably high as the
time history grows. Jakvsic et al. [JBGN16| recently developed an online monitoring procedure for
STL by translating STL into automata monitors with a complexity that is exponential in the size
of the formula. In contrast to our work, such monitors are not able to handle continuous signals
sampled at a variable rate directly. This such signals are approximated as fixed-step signals, hence
decreasing the analysis precision of continuous behaviors. To the best of our knowledge and according
to a recent survey [BDD™ 18|, the only work that, like us, translates a logic into Simulink to enable
online monitoring is the work of Balsini et al. [BDNCT17|. The translation, however, is given for a
restricted version of STL, which for example does not allow the nesting of more than two temporal
operators. As discussed in Section [3.2, RFOL subsumes STL. Hence, our translation subsumes that
of Balsini et al. [BDNCT17]. Breach [Donl0,DM10] is a monitoring framework for continuous and
hybrid systems that translates STL into online monitors specified in C++ or MATLAB S-functions.
However, due to the overhead of integrating C++ or S-functions in Simulink, running monitors
in the Breach framework greatly slows down model simulations, by 4.5 times [WKLS18|, making
the monitors impractical for computationally expensive CPS models such as our Autopilot case
study. Finally, Maler et al. [MN13| propose a monitoring procedure that receives signal segments
sequentially, checks each segment and stops simulations if a failure is detected. This work, however,
is only partially online since each segment is eventually checked in an offline mode.

3.5 Conclusions

In this chapter, we presented SOCRaTes, an automated approach to generate online test oracles in
Simulink able to handle CPS Simulink models with continuous behaviors and involving uncertainties.
Our oracles generate a quantitative degree of satisfaction or failure for each test input. Our results
were obtained by applying SOCRaTes to 11 industry case studies and show that (i) our requirements
language is able to express all the 98 requirements of our case studies; (ii) the effort required by
SOCRaTes to generate online oracles in Simulink is acceptable, paving the way for a practical
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adoption of the approach, and (iii) for large models, our approach dramatically reduces the test
execution time compared to when test outputs are checked in an offline manner. In the next chapter,
we use our industrial benchmark to empirically compare two mainstream verification techniques,
namely, model testing and model checking.
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Chapter 4

Evaluating Model Testing and Model
Checking for Finding Requirements
Violations in Simulink Models

In this chapter, we report on an empirical study to evaluate capabilities of model testing and model
checking techniques in finding faults in Simulink models. In our empirical study, we use a benchmark
consisting of Simulink models from the CPS industry to compare those methods. The benchmark
includes eleven public-domain Simulink models provided by Lockheed Martin |loc20]. The Simulink
models are representative of different types of CPS behavioral models in the aerospace and defense
sector. Each model is accompanied by a set of functional requirements described in natural language
that must be satisfied by the model. Each model further includes some faults that violate some of
the model requirements. Model checking tool vendors generally use such representative benchmarks
to assess the capabilities of different verification and testing tools in the market. these companies are
requested to identify as many requirements violations as possible when provided with the benchmark.

In this chapter, the model testing technique builds on prior approaches in this area [MNBB18S|.
Our proposed technique, shown in Figure (a), is implemented as a typical search-based testing
framework [McMO04]. In this framework, meta-heuristic search algorithms [Luk13| are used to explore
the test input space and to select the best test inputs, i.e., the test inputs that reveal or are close
to revealing requirements violations. The search is typically guided by a fitness function that acts
as a distance function and estimates how far test inputs are from violating a certain requirement.
In this chapter, we use a search algorithm based on Hill Climbing heuristic |Luk13] that, in prior
work [MNBT15b|, has shown to be effective in testing Simulink models. We define search fitness
functions using existing translations of logical formulas into quantitative functions estimating degrees
of satisfaction of the formulas |[AFS™13].

This chapter highlights the following main contributions:

1. We provide a categorization of CPS model types and a set of common logical patterns in
CPS functional requirements. Using our industrial benchmark Simulink models, we identify
a categorization of the CPS models based on their functions. We further formalize the tex-
tual requirements in a logic-based requirements language and identify some common patterns
among the CPS requirements in the benchmark.
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Figure 4.1: Simulink Model Verification: (a) Model testing and (b) Model checking.

2. We present the results of applying our model testing and model checking techniques to the
Simulink benchmark. We evaluate the fault finding abilities of both techniques. This is a first
attempt in the context of CPS, to systematically compare model checking and model testing
— the two main alternatives for verifying Simulink models — on an industrial benchmark.

3. We provide some lessons learned where we outline the strengths and weaknesses of model
testing and model checking in identifying faults in Simulink models. Since both approaches
provide complementary benefits, we believe that integrating them in a comprehensive ver-
ification framework can result in an effective testing framework. We further propose some
guidelines as to how both approaches can be best applied.

Organization. Section[d.]presents our Simulink model benchmark, our CPS model categorization
and our CPS requirements patterns. Section 4.2 summarizes the model checking technique that we
apply in our study using QVtrace model checker. Section [4.3] describes the model testing approach.
Section presents the empirical results. Section discusses some lessons learned. Section [4.6
concludes the chapter.

4.1 Simulink Benchmark

In this section, we present the CPS Simulink models and the CPS requirements in our Simulink
benchmark. Table shows a summary of the models in the benchmark. First, we present two
example models from the benchmark in more details. Then, we categorize the benchmark models
based on their functions. Finally, we describe the logic language to formalize our CPS requirements
and present a number of recurring logic-based patterns in the requirements formalizations.

Example Models

We highlight two example Simulink models from the benchmark: Two-Tanks [ GFH16| and Autopilot.
These two models represent two complete systems instead of components of a system. The two-tanks
system contains two separate tanks holding liquid and connected via a pipe. The flow of incoming
liquid into the first tank is controlled using a pump. The flow of liquid from the first tank to the
second is controlled using a valve, and the flow of outgoing liquid from the second tank is controlled
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Table 4.1: Important characteristics of our benchmark Simulink models (from left to right):
(1) model name, (2) model description, (3) model type, and (4) number of atomic blocks in the
model.
Model Name Model Description Model Type # Atomic
Blocks
Autopilot Discussed in Section Feedback-loop, continuous | 1549
controller, plant model, non-
linear, non-algebraic, matrix
operations
Neural Network A two-input single-output predictor neural network model with two hidden | Open-loop, machine learning | 704
layers arranged in a feed-forward neural network architecture.
Tustin A numeric model that computes integral over time. Open-loop, non-linear (satu- | 57
ration and switches)
Regulators A PID controller without the plant model. Open-loop, continuous con- | 308
troller, non-linear (saturation,
switches)
Nonlinear Guidance | A non-linear guidance algorithm that guides an Unmanned Aerial Vehicles | Open-loop, non-linear (poly- | 373
(UAV) to follow a moving target respecting a specific safety distance. nomial, switches)
System Wide In- | A numerical algorithm that computes warning to an operator when the | Open-loop, non-linear (sqrt, | 164
tegrity Monitor | airspeed is approaching a boundary where an evasive fly up manoeuvre | switches)
(SWIM) cannot be achieved.
Effector Blender A control allocation method, which enables the calculation of the optimal | Open-loop, non-linear (poly- | 95
effector configuration for a vehicle. nomial), matrix operations,
non-algebraic (exponential
functions)
Two Tanks Discussed in Section Feedback-loop, sate machine, | 498
non-linear (switches)
Finite State Ma- | A finite state machine executing in real-time. Its main function is to put | Open-loop, sate machine, | 303
chine (FSM) the control of aircraft in the autopilot mode if a hazardous situation is | non-linear (switches)
identified in the pilot cabin (e.g., the pilot not being in charge of guiding
the airplane)
Euler An open-loop mathematical model that generates three-dimensional rota- | Open-loop, non-algebraic | 834
tion matrices along the z-y- and x-axes of an Inertial frame in a Euclidean | (trigonometry), non-linear
space. (polynomial), matrix opera-
tions
Triplex A monitoring system that receives three different sensor readings from three | Open-loop, state machine, | 481
redundant sensors used in a safety critical system. It determines, based on | non-linear (switches)
the values and differences of three values received at each time step, which
sensor readings are trusted and what values should be sent to the safety
critical system.

using two different valves: one that lets liquid out in normal situations, and the other that is opened
only in emergency conditions to avoid liquid overflow. The model of the two-tanks system includes
one controller model for each tank that monitors the liquid height using three different sensors
located at different heights in each tank. Depending on the liquid heights, each controller chooses
to open or close valves to control the incoming/outgoing liquid flows. The two-tanks model further
includes a complete model of the environment (i.e., the tanks and their sensors and actuators).

The autopilot system is a full six degree of freedom simulation of a single-engined high-wing
propeller-driven airplane with autopilot. A six degree of freedom simulation enables movement and
rotation of a rigid body in three-dimensional space. The autopilot simulator model is able to control
the plane body to change position as forward/backward (surge), up/down (heave) and left/right
(sway) in three perpendicular axes, combined with changes in orientation through rotation in three
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(a) Open-Loop (b) Feedback-Loop

BCommands m 8Commands m
Feedback

Figure 4.2: Generic structure of (a) open-loop and (b) feedback-loop CPS models

perpendicular axes, often termed yaw (normal axis), pitch (transverse axis) and roll (longitudinal
axis). The autopilot model further captures a physical model of the airplane (i.e., a plant model) as
well as environment aspects impacting airplane movements such as wind speed.

Both two-tanks and autopilot models use closed-loop controllers. However, the two-tanks con-
trollers are modelled as discrete state machines, while the autopilot model consists of six continuous
PID controllers . Some requirements of both models are described in Table

Table 4.2: Example requirements for the TwoTanks and Autopilot models.

Model ID Requirement ‘ Signal Temporal Logic formula (STL) *
Two R1 If the liquid height of the first tank is greater than or equal to | Gyo r)(tank1height > tank1topSensor =
Tanks the position of the top sensor of the first tank, then the top | tanklsensorHValue = 1)

sensor should return an active (TRUE) state to the system.
Two R2 When the tank 2 MID sensor is TRUE, the tank 2 HIGH | G[o r)((tank2sensorM Value = 1) A
Tanks sensor is FALSE, and the emergency valve was previously | (tank2sensorHValue = 0) A (eValveStatePrev =

OPEN, then the emergency valve and the production valve | 1) = (eValveState = 1) A (p ValveState = 1))
(outflow valves) shall be commanded to be OPEN.

Autopilot R1 The controller output will reach and stabilize at the de- | FioGoy|out — desired| < 0.01
sired output value within %1 precision and within T seconds
(steady-state requirement).

Autopilot R2  Once the difference between the output and the desired value | Gjoy(Jout — desired| < 0.01 = Gpoplout —
reaches less than %1, this difference shall not exceed 10% | desired| < 0.1)
overshoot.

* The variable T' indicates the simulation time.

CPS Simulink Models Categorization

In the CPS domain, engineers use Simulink language to capture dynamic systems |Alulb|. We recall
from Chapter [2| Section 2.2 the modeling language provided by Simulink and we explain how the
systems design is constructed and simulated. Dynamic systems are usually used to model controller
components as well as external components and the environment aspects that are to be controlled.
The latter components are typically referred to as plants. Dynamic systems’ behaviors vary over
time, and hence, their inputs and outputs are represented as signals (i.e., functions over time). We
describe some common categories of dynamical system components that we have identified based on
our industrial benchmark as well as Simulink models from other industrial sources . We
divide models into two large categories of open-loop and feedback-loop models:

(1) Open-loop models do not use measurements of the states or outputs of plants to make
decisions . For example, an electronic cloth dryer controller that relies on time to change its
states is an open loop model. The user sets a timer for the controller, and the dryer will automatically
stop at the end of the specified time, even if the clothes are still wet. The design of such controllers
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heavily relies on the assumption that the behavior of the plant is entirely predictable or determined.
Figure (a) represents the generic structure of open-loop models.

(2) Feedback-loop models use measurements of the outputs or the states of plants to make deci-
sions |Alulb5|. This is the most common case in practical applications where engineers need to design
system controllers that act on some controlled inputs depending on the current state of the plants.
For example, an electronic cloth dryer controller that is able to stop when the clothes are sufficiently
dried without requiring the user to set a timer, works by continuously monitoring the status of the
clothes to choose when to stop the dryer. Such controllers are more flexible and are better able to
handle unpredictable environment situations and disturbances. Figure (b) represents the generic
structure of closed-loop models.

CPS models, whether being open-loop or feedback-loop, may consist of several components
conforming to one or more of the following computation types:

State machines. State machines are used for modeling discrete and high-level controllers. They
can be used to monitor system behaviour or to control the system either in an open loop or closed
loop model. Three models in our benchmark use state machines: (1) Triplex is implemented using a
state machine to monitor three different sensor readings from three redundant sensors and identifies
errors in the sensor readings; (2) FSM uses an open-loop state machine controller to automatically
put the control of aircraft in the autopilot mode if a hazardeous situation is identified in the pilot
cabin; (3) Two Tanks is implemented as a composition of two state machine controllers for each
tank arranged in a feedback-loop architecture together with physical models of the two tanks. Each
state machine controls pumps and valves of one tank. Since the pumps and valves can only have
two states (i.e., on and off), they can be controlled using state machines with a few states. In
general, state machines are useful to model systems that have a clearly identifiable set of states and
transitions that, when fired, change the state of the system.

Continuous behaviors. Continuous mathematical models are used to describe both software con-
trollers and physical plants. Continuous controllers, also known as proportional-integral-derivative
PID-controllers [Nis04], are suitable when we need to control objects or processes whose states con-
tinuously vary over time. PID controllers are often used to control speed and movements of objects
operating in varying environments with unpredictable disturbances. For example, the autopilot con-
troller in Table [f.1] contains six PID controllers. Plant models, which are required for simulation of
feedback-loop controllers, are typically described using continuous mathematical models. Continu-
ous operations used in these two categories of models may have to be replaced with their discrete
counterparts before the models can be translated into logic-based languages so that they can be
analyzed by SMT-solvers. Though continuous controllers also need to be discretized for code gener-
ation purposes, this is not the case of plant models, and therefore, discretization of plant models is
clearly an additional overhead.

Non-linear and non-algebraic behaviors. CPS Simulink models are typically highly numeric.
They often exhibit non-linear behavior or may contain non-algebraic functions, making their anal-
ysis complicated. In particular, the following operations make Simulink models non-linear: sat-
uration blocks, switches, polynomial and square-root functions, and the following operations are
non-algebraic and are not typically supported by SMT-solvers: trigonometry functions, exponential
functions and the logarithm. Finally, matrix operations are very commonly used in CPS Simulink
models and are well-supported by Matlab. SMT-solvers, however, often do not directly support
matrix operations, and hence, these operations have to be encoded and expanded as non-matrix
formulas. Therefore, the size of the translations of Simulink models containing such operations into
SMT-based languages become considerably larger than the size of the original models.

Machine learning models (ML). Machine learning models are often used at the perception layer
of dynamical systems (e.g., for image processing) or are used to make predictions about certain
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Table 4.3: Translation of Signal Temporal Logic [MNO04] into quantitative fitness functions to be
used in the model testing approach in Figure (a)

‘ Translation to robustness metric |FP09[MNGB19i\

R(S,t)(T) =€ R(sﬁt)(l) = —¢
B € if s®
Rgp(s°) = e if P Rsp(p = 0) = —|u(S)]
S, if pu(S, 0
Ris(n#0) = {'_“( oh R 7 Risip(n 2 0) = u(si)
1(Sy) if (S 0
Risun > 0) = {‘ (S 1S Resili < 0) = —a(S)
—p(Se) it p(Sy) #£0
R <0)=
(s, (1 <0) . else
Risp(p1V p2) = max(Rigy (¢1), Risy (p2))
Ris(p1 A p2) = mln(R(qw(@l) Rs.(p2))
R(St)(G[a b)) = min{ R S,t/ DI
(s,6)(Flap) = de{R St') }f’e[f+a t+b]
R(Sf)(tplU[a ;,]gog) = max{mm{R(S,/ (p2), mln{R<S,u)(cpl)},ue[, "]}}t/ [t-ta,48]

behaviors. Verification of models inferred by machine learning techniques (e.g., Neural Networks) is
an open area for research, as exhaustive verification techniques have only been applied to relatively
simple and small neural network models [KBD717]. As shown in Table we had one simple
example machine learning component in our benchmark.

Table [£.3] describes the types of the models in the benchmark by specifying whether they are
open-loop or feedback-loop and also by indicating what component or feature types are used in each
model. We note that most models are specified as open-loop since they are in fact sub-systems of
a larger system that may have a feedback-loop architecture. We note that the computation types
described above are not meant to be exhaustive. Nevertheless, our categorisation provides more
detailed information about the functional and behavioral variations in CPS models. Further, in the
next subsection, we present the results of applying model checking and model testing approaches to
our benchmark models, and the categorisation can further help determine how model checking and
model testing approaches can deal with different computation types.

CPS Requirements and Patterns

As shown in Figures [4.1}(a) and (b), both model checking and model testing require mathematical
representations of requirements. Specifically, model checking expects requirements to be described
in temporal or propositional logic, and model testing expects them to be captured as quantitative
fitness functions. Requirements are properties the system must satisfy and usually constrain inputs
and outputs behaviors.

We recall from Chapter [2] Section the specification of CPS model requirements.

Before applying model testing or model checking, we first convert the textual requirements in
the benchmark into their equivalent STL formulas. Model checking approaches typically receive a
temporal logic property and a model as input. For model testing, however, we need to transform the
logical properties into quantitative fitness functions (see Figure . To do so, we use a translation
of STL into a robustness metric [FP09| which is summarized in Table The translation function
R is defined over a set S = {s1,...,s,} of signals at time ¢t. We assume that the signals in S are
defined over the same time domain, i.e., for every s; € S, we have s; : [a,b] — R; where [a, b] is the
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Table 4.4: Temporal patterns in STL translations of our benchmark requirements.

Name-ID STL formula- | Explanation
tion

Invariance - T1 Gy The system should always exhibit the behaviour ¢.

Steady State - T2 FoaqGe The system within the time duration [0, d] exhibits the behavior ¢ and continues
exhibiting this behavior until the end.

Smoothness - T3 Gy = Gyp) Whenever the system exhibits 1, it has to exhibit ¢ until the end.

Responsiveness - T4 Floae The system shall exhibit ¢ within the time duration of [0, d].

Fairness - T5 GFoap At every time ¢, it should be possible for the system to exhibit the behaviour ¢
within the next time duration [¢,¢ + d].

common domain between signals in S. The choice of the max and min operators for defining the
semantics of 3 and V is standard |[LT88|: the minimum has the same behavior as A and evaluates
whether a predicate holds over the entire time interval. Dually, the max operator captures V.

For every STL property ¢ and every set S = {s1,...,sp} of signals at time ¢, we have Rg) () >
0 if and only if ¢ holds over the set S at time ¢ [FP09,MNGBI19|. That is, we can infer boolean
satisfaction of STL formulas based on their fitness values computed by R. In Table 3] € is an
infinitesimal positive value that is used to ensure the above relation between boolean satisfiability
and fitness values of real-valued constraints (i.e., y rel-op 0) and literals (i.e., T, L, and s®) in the
STL grammar.

We translate the requirements in the benchmark Simulink models into STL. Some examples of
STL formulas corresponding to the requirements in our benchmark are shown in Table
For example, the formula Fio 771G 17 (|out — desired| < 0.01) indicates that there is a time ¢ € [0, T
such that for any time ¢ such that ¢ > ¢, the constraint |out(t') — desired(t')] < 0.01 holds. As an
example, the R translation of this formula is given below:

max{min{0.01 — |out(t') — desired(t’)\}t,e[erT}}tE[O’T]

To provide more detailed information about the requirements in our benchmark, we present the
recurring temporal patterns in the STL formulation of our benchmark requirements. Table [£.4] shows
the temporal patterns we identified in our study. The invariance pattern, which simply states that
a property should hold all the time, is the most recurring temporal pattern in our Simulink model
benchmark. The other patterns in Table [£.4] capture common controller requirements, i.e., stability
or steady-state, responsiveness, smoothness, and fairness. Note that in Table [1.4] the time interval
for G operators are expected to be the same as the time domain of the signals to which the operators
are applied. In Table we show the list of the temporal patterns appeared in formalisations of
the requirements of each model in our Simulink benchmark. As this table illustrates, the invariance
pattern (T1) is used for some requirements of every model. The other temporal patterns (i.e., T2,
T3, T4, and T5) only appear in requirements formalisations of models that include some continuous
controllers (i.e. Autopilot and Regulator).

4.2 Our Model Checking Technique

SMT-based model checking has a long history of application in testing and verification of CPS
models. Briefly, to check if a model M meets its requirement r, the requirement is first translated
into a logical property ¢. An SMT-solver is then used to prove satisfiability of M A —p. If M A -
turns out to be SAT, then M does not satisfy ¢. If M A —p is UNSAT, it implies that M satisfies
¢. In general, SMT-based model checkers are focused on checking safety properties (i.e., properties
expressed using the G temporal operator). The liveness properties (i.e., properties that use the F
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Table 4.5: Temporal patterns used in the requirements formalisations of each Simulink benchmark
model.

Model # Req Patterns Model # Req Patterns
Autopilot 11 T1, T2, T3, T4 Two Tanks 32 T1
Neural Network 3 T1 Tustin 5 T1

FSM 13 T1 Nonlinear Guidance | 2 T1
Regulator 10 T1, TS Euler 8 T1
SWIM 2 T1 Effector Blender 3 T1
Triplex 4 T1

temporal operator) can be expanded assuming that they are specified over a finite time interval. For
example, Flo g¢ can be rewritten as \/;c( 4 ¢(t) assuming that [0,d] is discrete time interval.

In our study, we use QVtrace as a representative SMT-based model checking tool for Simulink. In
addition to the standard SMT-based model checking described above, QVtrace uses the k-induction
technique [DHKR11] to enhance the set of formulas it can verify. QVtrace uses a logical predicate
language referred to as QCT to capture requirements. QCT supports all the numerical and boolean
operators described in STL grammar, but similar to most existing SMT-based model checkers, among
the temporal operators, it only supports the temporal operator G, i.e., globally. Hence, among the
temporal patterns in Table [£.4] QCT can specify T1 and T3 directly. Properties involving T2, T4
and T5 can be expressed in QCT after we expand them as discussed earlier. Specifically, as we will
discuss in Section [I.4] the requirements that used temporal patterns T2, T4 belong to Autopilot
that could not be verified using QVtrace due to its complex features, and the requirement of the
Regulator model that used the T5 pattern was expressed in QCT as a large disjunctive formula
(i.e.; GVigp,q (1)) We note that, in general, while being a subset of STL, QCT is sufficiently
expressive for most problems we have seen in practice. In addition, QCT is carefully designed to be
easy to read and understand by a typical engineer who may not have background in temporal logic.
Finally, there is an efficient and straightforward translation from QCT into the input languages of
SMT-solvers and theorem provers.

When the SMT-based formulation of M A = becomes so large that it cannot be handled by the
underlying SMT-solvers, QVtrace relies on bounded model checking (BMC) [CBRZ01| mainly to
identify inputs that falsify the model under test. BMC checks the behavior of the underlying model
for a fixed number of steps k to see if a counter-example with length less than k& can be found for
the property of interest. As a result, BMC can only falsify properties up to a given depth k£ and is
not able to prove the correctness of the model with respect to a property.

4.3 Our Model Testing Technique

We recall from Chapter [2] Section the model testing technique that we apply in our study. In
this chapter, we describe further our approach. it takes as input: (1) the model under test, (2) a
fitness function guiding the search towards requirements violations, and (3) the value ranges of the
model input variables. We discuss the fitness functions and the input search space below. We then
present a well-known evolutionary search algorithm used in our work.

We use the robustness metric [FP09| as fitness functions in our work and use the translation in
Table to generate them from STL requirements formalizations. The robustness function R(y)
is a value in [—o00, +00] such that R(y) > 0 indicates that ¢ holds over model outputs (and hence
the test satisfies ), and R(¢) < 0 shows that ¢ is violated (and hence the test reveals a violation).
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The robustness metric matches our notion of fitness as its value, when positive, shows how far a test
input is from violating a requirement and when it is negative, its value shows how severe the failure
revealed by a test is.

We use a simple evolutionary search algorithm, known as hill climbing (HC), to generate test in-
puts (Algorithm. This algorithm has been previously applied to testing Simulink models [MNB™15b].
The algorithm receives the search input space characterization I and uses the fitness function f. It
starts with randomly selected test input in the search space (C'S selected in line 2). It then itera-
tively modifies the test input (line 4), compares its fitness value with the fitness value of the best
found test input (line 5), and replaces the best test input when a better candidate is found (line 6).
The search continues until an optimal test input (i.e., yielding a negative fitness value) is found or
we run out of the search time budget. The test inputs in our work are vectors of boolean, enum or
real variables. Hence, we implement the Tweak operator used in the HC algorithm by applying a
Gaussian Convolution operator [Lukl13| to the real variables and a Bit-Flip operator [Luk13| to the
boolean and enum variables. The Bit-Flip operator randomly toggles a boolean or an enum value
to take another value from its range. A Gaussian Convolution operator selects a value d from a
zero-centered Gaussian distribution (@ = 0, o) and shift the variable to be mutated by the value
of d. The value of ¢2 is in the order of 0.005 when we want to have an exploitative search operator
(i.e., the one focused on locally searching a small area of the search space) and is selected to be
higher (e.g., more than 0.1) when we are interested in more explorative search.

Algorithm 3 Hill Climbing Algorithm.

1: I : Input Space

2: ('S < initial candidate solution in [
3: repeat

4: NS < Tweak(Copy(CS))
5. if f(NS) < f(CS) then
6: CS «+ NS

7: until C'S is the ideal solution or we have run out of time
8 return CS

4.4 Empirical Evaluation

In this section, we report the results of applying QVtrace tool (see Section and our model
testing technique (see Section to our Simulink benchmark models described in Section
Specifically, we seek to answer the following research question: How does model testing compare with
(SMT-based) model checking in finding requirements violations in Simulink models?

In the following, we explain the experimental setup we used for the evaluation. Then, we answer
our research question based on the results.

Experiment Setup

As a prerequisite to apply both model testing and model checking to the benchmark Simulink models,
we translated the textual requirements into STL. We performed this translation in collaboration
with our industry partner. We had in total 92 requirements in our Simulink benchmark that we
translated into STL. After that we used the translation in Table to convert STL formulas into
fitness functions to be used in our model testing approach. As discussed in Section we further
translated STL properties into QCT, the property language of QVtrace.
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After converting textual requirements into fitness functions and formal properties, we applied
model testing and model checking to the models to identify requirements failures. In the model
testing technique, we used the HC algorithm discussed in Section As discussed there, we used
a Gaussian Convolution operator for the Tweak operation. In order for the HC search not to get
stuck in local optima, we opt for a relatively large value of o2 for the Gaussian distribution from
which the tweak values are chosen. Note that, in general, it is difficult to select a fixed value for o2
to tweak input variables of different models since these variables have different value ranges. Hence,
for each real-valued input variable v, we set 02 to be 0.1 times the range width of v. We arrived
at the value 0.1 through experimentation. If the tweaked values are out of variable ranges, we cap
them at the max or min of the ranges when they are closer to the max or min, respectively. We
set the main loop of HC (see Algorithm [3)) to iterate for 150 times. We chose this number because,
in our preliminary experiments, the HC search has always reached a plateau after 150 iterations in
our experiments. Finally, in order to account for randomness in HC, for each model and for each
requirement, we executed HC for 30 times.

To apply QVtrace, we first investigate whether it is applicable to the given model. If so, then
QVtrace attempts, in parallel, to exhaustively verify the property of interest or to identify input
values falsifying the property. The former is typically performed using k-induction and the latter is
done using bounded model checking (BMC). QVtrace generates four kinds of outputs: (1) Green,
when the property is exhaustively verified, (2) Red, when input values violating the property are
found, (3) Blue, when the property is verified upto a bound k, and (4) Orange, when QVtrace fails
to produce any conclusive results due to scalability or other issues. In this chapter, we present the
results obtained based on the Z3 SMT solver [DMB08a] since it had better performance than other
solvers.

Results

Table [4.6] reports the results of applying model testing and model checking to our Simulink model
benchmark. Specifically, for model testing (MT), we report the number of requirements violations
that we were able to find for each model. Recall that we executed HC 30 times for each requirement.
Therefore, in Table [£.6] we report for each model and each violated requirement the number of fault
revealing runs of MT. For example, out of 11 requirements in Autopilot, MT is able to identify five
requirements violations. Three of these violations were revealed by 30 runs, one of them by four runs
and the last by three runs. Since MT is black-box and analyzes simulation outputs, it is applicable
to any Simulink model that can be executed. That is, it is applicable to all the benchmark models
and requirements.

For model checking (MC), for each model, we report whether or not the model or all the re-
quirements of a model could be analyzed by QVtrace (i.e., if the models and requirements could be
translated into an internal model to be passed into SMT solvers). For the models and requirements
that could be analyzed by QVtrace, we report in Table (1) the number of requirements that
can be checked exhaustively and proven to be correct, (2) the number of identified requirements vi-
olations, and (3) the number of requirements that were checked by bounded model checking (BMC)
up to a specific bound k for which no violation was found.

For example, as shown in Table QVtrace was not able to translate the Autopilot model.
This is indicated in the table by showing that 0 out of the 11 requirements of Autopilot could
be translated internally by QVtrace. However, QVtrace is able to handle Two Tanks and its 32
requirements. Among these, QVtrace proves 19 requirements to be correct, finds three requirements
violations and is able to check ten requirements using BMC up to the following bounds, respectively:
ki...ks ~ 90, kg = 110, and k19 = 260. Specifically, for these ten requirements of Two Tanks, BMC
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Table 4.6: Comparing the abilities of model testing and model checking in finding requirements
violations for Simulink models.

Model Testing (MT) Model Checking (MC)
Model # # Viola- | # Runs Revealing Vi- | # Trans- | # Proven | # Viola- | #Proven Reqgs using BMC up
Regs. | tions olations lated Reqgs Reqgs tions to the Bound &
Autopilot 11 5 3(30/30),1(4/30), 0/11 - - -
1(3/30)
Two Tanks 32 11 10(30/30), 1(29,/30) 32/32 19 3(A0)* | 10 (k1,... ks ~ 90, kg = 110, k1o =
260)
Neural  Net- | 2 0 - 2/2 0 0 2 (k=0)
work
Tustin 5 3 1(30/30),1(29/30), 5/5 2 2 1(k=0)
1(19/30)
FSM 13 6 1(4/30),1(6/30) 13/13 7 6 0
1(12/30),1(9/30),
2(1/30)
Nonlinear 2 2 2(24/30) 2/2 0 2 0
Guidance
Regulator 10 10 10(30/30) 10/10 0 9 1 (k=110)
Euler 8 0 - 8/8 8 0 0
SWIM 2 0 - 2/2 2 0 0
Effector 3 2 1(30/30), 1(1/30) 3/3 0 0 3 (k=0)
Blender
Triplex 4 1 2(30/30) 4/4 3 1 0
| Total: [92 T[40 [- | 81 [41 [ 23 [17

* QVtrace is able to find three violations when it is applied to the original Two Tanks model. If we
modify the Two Tanks model to move the tanks’ sensors closer together and to make the tanks smaller,
QVtrace is able to find the eleven violations found by MT. This is because violations are revealed much
earlier in the simulation outputs of the modified Two Tanks model than in the outputs of the original model.

is able to check the correctness of each requirement r; up to the depth k; (where 1 < i < 10), but
the underlying SMT-solver fails to produce results for any depth k > k; due to scalability issues.
We note that, for Two Tanks, QVtrace is able to find all the 11 violations found by MT if the Two
Tanks model is modified such that the tanks are smaller and the tanks’ sensors are closer together.
This is because violations are revealed much earlier in the simulation outputs of the modified Two
Tanks model than in the outputs of the original model. Finally, for some of the requirements of
some models (i.e., Neural Network, Tustin and Effective Blender), BMC was not able to prove the
requirements of interest for any bound k. In Table we use k = 0 in the BMC column to indicate
the cases where the SMT-solver failed to produce any results for £k = 1 when the BMC mode of
QVtrace is used.

Table compares the time performance of running MT and MC. On average, across all the
models, each run of MT took 5.8min. The maximum average execution time of an MT run (i.e., 150
iterations of the HC algorithm) was 18.5min (for Autopilot), and the minimum average execution
time of MT was 3min (for Nonlinear Guidance). We note that the time required for running MT
depends on the number of search iterations (which in our work is set to 150) as well as the time
required to run a model simulation. The latter depends on the complexity of the model and the
length of the simulation time duration. Every Simulink model in the benchmark already has a
default simulation time duration that we used in our experiments.

Proving each of the 41 requirements in the benchmark, which could be exhaustively checked by
MC, took only 0.63sec on average. The Two Tanks requirements required the longest average time
to be proven (1.89sec), and the Euler requirements required the lowest average time to be proven
(0.06sec). On average, it took MC 2.19sec to find 29 requirement violations in the benchmark. For
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the 17 requirements where BMC had to be tried, we have listed the time it took for the BMC mode of
QVtrace to report an “inconclusive” output when we try a bound k larger than the maximum bound
values that BMC could handle and are shown in Table[£.6] We note that as shown in Table[4.7] there
are variations in the time required by QVtrace to report “inconclusive”. In particular, in some cases,
it takes several minutes or even hours to report the “inconclusive” message and in some cases, the
message is reported after a few seconds. This has to do with the internal choices made in QVtrace,
but in either case, the “inconclusive” message indicates that the underlying SMT-solver (i.e., Z3) is
not able to report results either because the input to the SMT-solver is too large or because the
solver cannot handle some features in its input.

Table 4.7: Comparing the time performance of model testing and model checking.

Model avg. avg. avg. BMC Time when QVtrace reports “inconclusive” for bound values &
Time Time to | Time to | larger than the ones reporter in Table @
per MT | prove violate
run reqs reqs
(MC) | (MC)
Autopilot 18.5min - - -
Two Tanks 5.1min 1.89s 1.09s For the ten requirements of Two Tanks that have to be checked by BMC, QV-
trace reports “inconclusive” after approximately 5min.
Neural  Net- | 5.9min - - QVtrace reports “inconclusive” for the two requirements of Neural Network after
work waiting for 1958.9s (32.6min) and 847.1s (14.1min), repectively.
Tustin 4.6min 0.19s 0.76s QVtrace reports “inconclusive” for one requirement of Tustin after waiting for
11215 (18.7min) .
FSM 3.6min 0.59s 0.18s -
Nonlinear 3min - 0.12s -
Guidance
Regulator 3.6min - 10.1s QVtrace reports “inconclusive” for one requirement of Regulartor after waiting
for 1303.3s (21.7min).
Euler 4.5min 0.06s - -
SWIM 5.2min 0.18s - -
Effector 4.4min - - QVtrace reports “inconclusive” for two requirements of Effector Blender after
Blender waiting for 9475.4s (2.6h) and 4371.9s (1.2h), respectively. For the third re-
quirement of Effector Blender, QVtrace reports “inconclusive” after only 37.8s.
Triplex 5.6min 0.88s 0.88s -
‘ Average 5.8min 0.63s 2.19s -

We note that all the requirements violations were communicated to Company A who developed
the benchmark and were confirmed as valid violation cases. The results show that all the violations
discovered by MC were also discovered by MT, but there were violations that MT could discover
that could not be identified by MC. Specifically, there were 17 violations that MT could find but
not MC. Among these, five belonged to the Autopilot model that could not be handled by MC.
The other 12 were among the 17 requirements that had to be checked by BMC, but BMC could
not check the requirements beyond some bound k while the failures could be revealed by MT at
a time step beyond k. Finally, we note that MC was able to exhaustively prove 41 requirements,
whereas MT, being a testing framework, is focused on fault-finding only. In Section we discuss
the complementary nature of MT and MC and will draw a few lessons learned based on our results.

In summary, out of the 92 requirements in our benchmark, MT was able to identify 40 require-
ment violations and MC only found 23 of them, without detecting additional violations. Among
the 40 violations found by MT, 32 were found by more than half of the runs. This shows, as we
have seen before, that one should run MT as many times as possible. Among the 92 requirements,
MC was able to prove correctness for 41 of them. Finally, MC and MT together were able to either
prove or find violations for 81 of the 92 requirements.
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4.5 Lessons Learned

We draw five lessons learned based on our experiment results and our experience of applying MT
and MC [Nej20] to the Simulink benchmark. Our aim is to identify strengths and weaknesses of the
two techniques when they are used to verify Simulink models, and provide recommendations as to
how MC and MT can be combined together to increase effectiveness of Simulink verification.

Lessonl: MC may fail to analyse some CPS Simulink models. As confirmed by QRA, the most
serious obstacle in adoption of model checking tools by the CPS industry is that such tools may not
be readily applicable to some industrial Simulink models. In particular, the inapplicability issue is
likely to happen for models capturing continuous and dynamical systems (e.g., Autopilot). Before
one can apply a model checking tool, such models have to be decomposed into smaller pieces, their
complex features have to be simplified and the black-box components may have to be replaced by
concrete implementations. We note that Autopilot could be analyzed by QVtrace after removing
the wind subsystem and discretising some computations (e.g., by replacing [ with sum or df/dt
with A f/At). However, such simplifications and modifications may not be always feasible because:
(1) The simplifications may modify the model behavior and may compromise analysis of some system
requirements. This undermines the precision of analysis performed by MC, and further, some system
requirements that are related to the simplified or removed subsystems can no longer be checked by
MC. (2) Such changes are expensive and require additional effort that may not be justified in some
development environments.

Lesson2: Bounded model checking may fail to reveal violations that can be, otherwise, easily
identified by MT. In our study, bounded model checking (BMC) has been successfully used for
analysis of 17 requirements to which model checking could not be applied exhaustively. MT, however,
was able to reveal violations for 12 of these 17 requirements. All these violations were obviously
revealed at time steps greater than the selected bounds & in BMC. For example, for Two Tanks, MT
was able to violate eight requirements that were proven to be correct by BMC up to a bound less
than 270. But these violations could be revealed at around 500 and 1000 time steps of Two Tanks
outputs.

Lesson3: MC executes considerably faster than MT when it can prove or violate requirements.
However, MC may quickly fail to scale when models grow in size and complexity. MC executes
considerably faster than MT when it can conclusively prove or violate a requirement and does
not warrant the use of BMC. While it took MC less than a couple of seconds, on average, to
prove properties or to find violations for the benchmark, the quickest run of MT took about 3min.
While for small models, MC is quicker than MT, this trend unlikely holds for larger and more
complex models. In particular, MC has the worst performance for Autopilot, Neural Network and
Effector Blender that have complex features such as continuous dynamics, non-algebraic functions
and machine learning components. Some of the limitations, however, are due to the underlying
SMT-solvers.

Lessond: MT approaches, though effective at finding violations, need to be made more efficient
on large models. In this chapter, we used a relatively simple model testing approach implemented
based on a Hill-Climbing algorithm guided by existing fitness functions proposed in the literature.
MT approaches can be improved in several ways to increase their effectiveness and practical usability.
In particular, MT is computationally expensive as it requires to run the underlying model a large
number of times. Since different runs of MT are totally independent, an easy way to rectify this issue
is to paralellize the MT runs, in particular, given that multicore computers are now a commodity. In
addition, there are several strands of research that investigate different search heuristics or attempt to
combine search algorithms with surrogate models to reduce their computational time (e.g., [ANBS16),
MNBB14]).
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Lessonb: More empirical research is required to better understand what search heuristics should
be used for what types of models. Engineers are provided with little information and guidelines as to
how they should select search heuristics to obtain most effective results when they use MT. Each run
of MT samples and executes a large number of test inputs. The generated data, however, apart from
guiding the search, is not used to draw any information about the degree of complexity of the search
problem at hand or to provide any feedback to engineers as to whether they should keep running
MT further or whether they should modify the underlying heuristics of their search algorithms. We
believe further research is needed in this direction to make MT more usable and more effective in
practice.

Combining MC and MT. Our experience shows that MT and MC are complementary. MC
can effectively prove the correctness of requirements when it is able to handle the size and the
complexity of the underlying models and properties, while MT is effective in finding requirements
violations. Indeed, for our benchmark, MC and MT together are able to prove 41 requirements and
find 40 violations, leaving only 11 requirements (i.e.,%12) inconclusive. Given that MC is quite fast
in proving and violating requirements, we can start by applying MC first and then proceed with
MT when models or requirements cannot be handled by MC or its underlying SMT-solvers.

4.6 Conclusions

In this chapter, we applied our industrial Simulink model benchmark to evaluate and compare
capabilities of model checking and model testing techniques for finding requirements violations in
Simulink models. Our results show that our model checking technique is effective and efficient in
proving correctness of requirements on Simulink models that represent CPS components. However,
as Simulink models become larger and more complex, in particular, when they involve complex non-
algebraic or machine-learning components or exhibit continuous dynamic behaviour, it becomes more
likely that model checking or bounded model checking fail to handle them or identify faults in them.
On the other hand, while our model testing technique can scale to large and complex CPS models and
identify some of their faults, it is still computationally expensive and does not provide any guidelines
on what search heuristics should be used for what types of models. In the end, we believe combing
the two techniques is the best way ahead. We also believe more studies comparing the performance
of these techniques in different contexts can help researchers better identify limitations and strengths
of these two main-stream automated verification techniques. While model checking techniques are
proved effective for finding failures in CPS, applying such techniques to complex industrial systems
may become challenging. Exhaustive checking, in particular, is generally undecidable when applied
to the entire cyber-physical systems or hybrid systems. As a consequence, in practice, exhaustive
verification is applied to subcomponent of the system. in compositional verification, it is necessary to
identify the environment information in which the subcomponent is expected to operate. In the next
chapter, we propose an automated approach that combines search-based testing, machine learning
and model checking to infer assumptions under which the component under analysis satisfies a given
requirement.
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Chapter 5

Mining Assumptions for Software
Components using Machine Learning

In this chapter, we propose EPIcuRus (assumPtlon geneRation approach for CPS), an automated
approach for synthesizing environment assumptions. EPIcuRus is tailored for Simulink models,
which are commonly used in early stages of development for cyber-physical systems.

EPIcuRus receives as input a software component M and a requirement ¢ such that M violates
¢ for some (but not all) of its inputs. It automatically infers a set of conditions (i.e., an environ-
ment assumption) on the inputs of M such that M satisfies ¢ when its inputs are restricted by
those conditions. EPIcuRus combines machine learning and search-based testing to generate an
environment assumption. Search-based testing is used to automatically generate a set of test cases
for M exercising requirement ¢ such that some test cases are passing and some are failing. The
generated test cases and their results are then fed into a machine learning decision tree algorithm
to automatically infer an assumption A on the inputs of M such that M is likely to satisfy ¢ when
its inputs are restricted by A. Model checking is used to validate an environment assumption A
by checking if M guarantees ¢ when it is fed with inputs satisfying A. If not validated, EPIcuRus
continues iteratively until it finds assumptions that can be validated by model checking or runs out
of its search time budget.

To increase the efficiency and effectiveness of EPIcuRus we design a novel test generation tech-
nique, namely Important Features Boundary Test (IFBT). IFBT guides the test generation by
focusing on the input features with the highest impact on the requirement satisfaction and the areas
of the search space where test cases change from passing to failing. At each iteration, EPIcuRus
uses the decision tree from the previous iteration to obtain this information.

The contributions of this work are summarized in the following:

1. We present the EPIcuRus assumption generation approach and provide a concrete and detailed
implementation of EPIcuRus.

2. We formulate the assumption generation problem for Simulink models.
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3. We describe how we infer constraints from decision trees and how the constraints can be trans-
lated into logic-based assumptions over signal variables such that they can be analyzed by an
industrial model checker, namely QVtrace.

4. We introduce IFBT, a novel test case generation technique, that aims at increasing the effi-
ciency and effectiveness of EPIcuRus.

5. We evaluated EPIcuRus using four industrial models with 18 requirements. Our evaluation
aims to answer two questions: (i) If IFBT, our proposed test generation policy, can outperform
existing test generation policies proposed in the literature (uniform random (UR) and adaptive
random testing (ART)) in learning assumptions more effectively and efficiently (RQ1), and
(ii) if EPIcuRus, when used with its optimal test generation policy, is effective and efficient
for practical usages (RQ2).

Our results show that (1) for all the 18 requirements, EPIcuRus is able to compute an assumption
ensuring the satisfaction of that requirement, and further, EPIcuRus generates ~ 78% of these
assumptions in less than one hour, and (2) IFBT outperforms UR and ART by generating ~ 13%
more valid assumptions while requiring ~ 65% less time.

Structure. Section describes the challenges, provides motivating examples and outlines the
pre-requisites of the proposed approach. Section [5.2] presents the approach of EPIcuRus. Section[5.3
formalizes the assumption generation problem. Section [5.4] describes the approach implementation.
Section [5.5] evaluates EPIcuRus. Section discusses the threats to validity of the proposed
approach and Section [5.7] concludes the chapter.

5.1 Motivation and Challenges

We motivate our approach using Autopilot, We introduced Autopilot in Chapter [3| Section [3.3]
and we described it in Chapter [ Section Our case study system receives its inputs from two
other components: a route planner component that computes the aircraft route, and a flight director
component (a.k.a. auto-throttle) which provides Autopilot, among other inputs, with the throttle
force required to adjust the aircraft speed. For the De Havilland Beaver aircrafts, the throttle input
of Autopilot, which is required to help the aircraft reach its desired altitude, is typically provided
by the pilot as such aircrafts may not contain a flight director component. The Autopilot model is
specified in the Simulink language |Chal7|. The Simulink model of Autopilot is expected to satisfy
a number of requirements, one of which is given below:

¢1 := When the autopilot is enabled, the aircraft altitude should reach the desired altitude within 500
seconds in calm air.

The above requirement ensures that Autopilot controls the aircraft such that it reaches the input
desired altitude within a given time limit (i.e., 500 sec in this requirement). To determine whether,
or not, Autopilot satisfies the requirement ¢;, we convert the requirement into a formal property
and use QVtrace, a commercial SMT-based model checker for Simulink models. QVtrace, however,
fails to demonstrate that the Autopilot Simulink model satisfies the requirement ¢. Neither can
QVtrace show that Autopilot satisfies —¢, indicating that for some inputs, Autopilot violates ¢,
and for some, it satisfies ¢. Note that if the model satisfies either ¢ or —¢, there is no need for
generating an input assumption.

One of the reasons for which Autopilot does not satisfy ¢; is that Autopilot is expected to
operate under the following environmental assumption [Adm09|:
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a1 ::= To provide the aircraft with enough boost so that it can reach the desired altitude, the pilot
should manually adjust the power given to the engines of the aircraft to ensure that the aircraft
does not enter a stall condition.

In other words, Autopilot can ensure requirement ¢ only if its throttle boost input satisfies the
o1 assumption. For example, if the pilot does not provide Autopilot with sufficient throttle force
when the aircraft is in climbing mode, the aircraft will not reach its desired altitude and Autopilot
will fail to satisfy ¢1. Without including assumption «j, in the above example, we may falsely
conclude that Autopilot is faulty as it does not satisfy ¢1. However, after restricting the inputs of
Autopilot with an appropriate assumption, we can show that Autopilot satisfies ¢;. Hence, there
is no fault in the internal algorithm of Autopilot.

In this chapter, we provide EPIcuRus, an automated approach to infer environment assumptions
for system components such that they, after being constrained by the assumptions, can satisfy their
requirements. EPIcuRus is applicable under the following pre-requisites (or contextual factors):

Prerequisite-1. The component M to be analyzed is specified in the Simulink language.
Simulink |Cha09,/Sim20]| is a well-known and widely-used language for specifying the behavior of
cyber-physical systems such as those used in the automotive and aerospace domains.

Prerequisite-2. The requirement ¢ the component has to satisfy is specified in a logical lan-
guage.
This is to ensure that the requirements under analysis can be evaluated by model checkers or con-
verted into fitness functions required by search-based testing. Both model checking and search-based
testing are part of EPIcuRus. In this chapter, we assume that requirements are expressed in an
extension of Metric Temporal Logic (MTL) [Koy90b|, named Signal Temporal Logic (STL) [MNO04],
where propositions of MTL are used to constrain the value assumed by the signals over time. This
is an expressive language that captures complex properties, such as invariance, stability, responsive-
ness, smoothness, and fairness.

Prerequisite-3. The satisfaction of the requirements of interest over the component under anal-
ysis can be verified using a model checker.
In this chapter, we consider QVtrace to exhaustively check whether a model M satisfies the require-
ment ¢ under the assumption A, i.e., (A)M{¢). QVtrace takes as input a Simulink model and a
requirement specified in QCT which is a logical language based on a fragment of first-order logic.
In addition, QVtrace allows users to specify assumptions using QCT, and to verify whether a given
requirement is satisfied for all the possible inputs that satisfy those assumptions. QVtrace uses a
set of SMT-based model checkers (specifically Z3 BMC [DMBO08b]|) to verify Simulink models.

Prerequisite-4. The model satisfies neither the requirement nor its negation since, otherwise,
an input assumption is not needed.

5.2 Approach Overview

Fig.[5.1|shows an overview of EPIcuRus which is described by Algorithm[d EPIcuRus iteratively per-
forms the following three main steps: () Test generation where a set TS of test cases that exercise
M with respect to requirement ¢ is generated. The test suite T'S is generated such that it includes
both passing test cases (i.e., satisfying ¢) and failing test cases (i.e., violating ¢); (£J) Assumption
generation where, using the test suite TS, an assumption A is generated such that M restricted by
A is likely to satisfy ¢; (BJ) Model checking where M restricted by A is model checked against ¢.
We use the notation (A)M(¢) (borrowed from the compositional reasoning literature |[CGP03|) to
indicate that M restricted by A satisfies ¢. If our model checker can assert (A)M (¢), an assumption
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EPIcuRus
Test
Generation
TS (GenSuite) False
A
LFAssumption ? A ‘(a Model A
Generation > Checking True
(GenAssum) J (ModelCheck)
Figure 5.1: An overview on the EPIcuRus framework.
Algorithm 4 The EPIcuRus Approach.
Inputs. M: The Simulink Model
¢: Test Requirement of Interest
opt: Options
MAX IT: Max Number of iterations
Outputs. A: The assumption
1: function A=EPIcuRuUS(M, ¢, opt, MAX IT)
2:  Counter=0; TS= [J; > Variables Initialization
3: do
4:  TS=GENSUITE(M, ¢, TS, opt) > Test Suite Generation
5. A=GENAssuMm(TS); > Assumption Generation
6:  Counter+-+; > Increases the counter
7. while not MODELCHECK (A, M, ¢) and Counter<MAX IT
8 return A;
9: end function

is found. Otherwise, we iterate the EPIcuRus loop. The approach stops when an assumption is
found or a set time budget elapses.

Each model of our benchmark is a Simulink model that has a number of inputs and a number of
outputs. We describe, in Chapter [2] Section the modelling language provided by Simulink and
we explain how the system design is constructed and simulated.

Test generation (). The goal of the test generation step is to generate a test suite 7.9
of test cases for M such that some test inputs lead to the violation of ¢ and some lead to the
satisfaction of ¢. Without a diverse test suite TS containing a significant proportion of passing
and failing test cases, the learning algorithm used in the assumption generation step is not able to
accurately infer an assumption. We use search-based testing techniques [HSX ™19,/ AB11,|{CLMO04]
for test generation and we rely on simulations to run the test cases. Search-based testing allows us
to guide the generation of test cases in very large search spaces. It further provides the flexibility
to tune and guide the generation of test inputs based on the needs of our learning algorithm. For
example, we can use an explorative search strategy if we want to sample test inputs uniformly or
we can use an exploitative strategy if our goal is to generate more test inputs in certain areas of the
search space. For each generated test input, the underlying Simulink model is executed to compute
the output. The verdict of the property of interest (¢) is then evaluated based on the simulation.
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Note that, while inputs that satisfy and violate the property of interest can also be extracted using
model checkers, due to the large amount of data needed by ML to derive accurate assumptions,
we rely on simulation-based testing. Further, it is usually faster to simulate models rather than to
model check them. Hence, simulation-based testing leads to the generation of larger amounts of
data within a given time budget compared to using model checkers for data generation.

Assumption generation (BJ). Given a requirement ¢ and a test suite 7'S generated by the
test generation step, the goal of the assumption generation step is to infer an assumption A such
that M restricted based on A is likely to satisfy ¢. The test inputs generated by the test generation
step are labelled by the verdict value (pass or fail). We use Decision Tree (DT) learners to derive
an assumption based on test inputs labelled by binary verdict values. DT are supervised learning
techniques that are trained based on labeled data and can address regression or classification prob-
lems. In this chapter, we rely on classification trees to represent assumptions since our test cases
are labelled by binary pass/fail values.

Fig. shows an example of a classification DT used to learn an assumption based on labelled
test cases for Autopilot. The internal nodes of the tree (a.k.a. split nodes) are associated with
conditions in the form a ~ v where a is an attribute, v is a value and ~€ {<,>,=}. Each leaf
node is labelled with pass or fail depending on the label of the majority of instances that fall in that
leaf node. The DT algorithm recursively identifies attributes (elements in the training set) to be
associated with each internal node, defines conditions for these attributes and branches the training
instances according to the values of the selected attribute. Each branching point corresponds to a
binary decision criterion expressed as a predicate. Ideally, the algorithm terminates when all the leaf
nodes are pure, that is when they contain instances that all have the same classification. Specifically,
the path which traverses the nodes 1, 3, 7, 8 corresponds to the following conditions on the throttle
and the pitch wheel (0.44 < Throttle A Throttle < 0.57 A Pitchwheel > 5), indicating that when
the inputs Throttle and Pitchwheel of autopilot are constrained according to these conditions, the
requirement ¢ likely holds. Recall that the assumption «; explained earlier requires the Throttle
value to be higher than a certain threshold to ensure requirement ¢;. This matches the condition
0.44 < Throttle produced by the decision tree. The conditions Pitchwheel > 5 and Throttle < 0.57
may or may not be needed to ensure requirement ¢;. In our approach, the path conditions that are
typically produced by decision trees may involve additional constraints that may render assumptions
too strong (restrictive) and hence has a lower coverageEl As aresult in this chapter, we are interested
to produce the weakest assumptions (the ones with the largest coverage) that can guarantee our
requirements.

Model checking (EJ). This step checks whether the assumption A generated by the assumption
generation step is accurate. Note that the DT learning technique used in the assumption generation
step, being a non-exhaustive learning algorithm, cannot ensure that A guarantees the satisfaction
of ¢ for M. Hence, in this step, we use a model checker for Simulink models to check whether M
restricted by A satisfies ¢, i.e., whether (A) M (¢) holds.

We use QVtrace to exhaustively check the assumption A generated in the assumption generation
step. QVtrace takes as input a Simulink model and a requirement specified in QCT which is a
logic language based on a fragment of first-order logic [NGM™19|. In addition, QVtrace allows
users to specify assumptions using QCT, and to verify whether a given requirement is satisfied for
all the possible inputs that satisfy those assumptions. QVtrace uses SMT-based model checking
(specifically Z3 BMC |[DMBO08b|) to verify Simulink models. The QVtrace output can be one of
the following: (1) No wviolation exists indicating that the assumption is valid (i.e., (A)M(¢) holds);
(2) No violation exists for 0 < k < kpq.. The model satisfies the given requirement and assumption

! called less informative in our work |[GMNT20]
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Node 1
Total data: 1000

PitchWheel<5! PitchWheel>=5

Node 2 Node 3
Total data: 494 Total data: 532

ALTmode=0/ALTmode=1 Throttle<0.44|Throttle>=0.44
*—

e
Node 4 Node 5 Node 6 Node 7
Total data: 379 Total data: 115 Total data: 200 Total data: 332

Label: pass Label: fail Label: fail

Condition _,Throttle<0.57!Throttle>=0.57

Test cases Node 8 Node 9
H otal data: 120 | | Total data: 212
Verdict Label: pass Label: fail

Figure 5.2: Example of classification tree constraining some of the inputs of the Autopilot running
example.

in the time interval [0, kpqz]. However, there is no guarantee that a violation does not occur after
Emaz; (3) Violations found indicating that the assumption A does not hold on the model M; and
(4) Inconclusive indicating that QVtrace is not able to check the validity of A due to scalability and
incompatibility issues.

5.3 Assumption Generation Problem

In this section, we formulate the assumption generation problem for Simulink models. Let M be a
Simulink model. An assumption A for M constrains the inputs of M. Each assumption A is the
disjunction Cy V Cy V ...V C), of one or more constraint C = {C1, Cs,...,C,}. Each constraint in C
is a first-order formula in the following form:

Vt € [11,71) s PL(t) AVE € [12,m3] : Pa(t) Ao AVE € [T, ] @ Pa(t)

where each P;(t) is a predicate over the model input variables, and each [r;,7/] C T is a time
domain. Recall from Sectionthat T = [0, b] is the time domain used to simulate M. An example
constraint for the Autopilot model discussed in Section is the constraint C defined as follows:

Vt € [0,T] : (ALT Mode(t) = 0) A (0.4 < Throttle(t) < 0.5)

The constraint C contains two predicates that respectively constrain the values of the input
signals ALT Mode and Throttle of the Autopilot model over the time domain [0, 7.

Let w be a test input for a Simulink model M, and let C be a constraint over the inputs of M. We
write T |= C to indicate that the input U satisfies the constraint C. For example, the input @ for the
AC model, which is described in Fig. [2.4a], satisfies the constraint C;. Note that for Simulink models,
test inputs are described as functions over a time domain T, and similarly, we define constraints C
as a conjunction of predicates over the same time domain or its subdomains.

Let A=C;VCyV...VC, be an assumption for model M, and let @ be a test input for M. The input
T satisfies the assumption A if @ = A. For example, consider the assumption A = Cy V Cy where

Cy ==Vt €[0,T): (ALTMode(t) = 0)

=0) A (HDGRes(t) < 90)
Cy 2=Vt €0, T): (ALTMode(t) = 0)

A
A (HDG pes(t) < 20)
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The input @ in Fig. satisfies the assumption A since it satisfies the constraint Cj.

Let A be an assumption, and let U be the set of all possible test inputs of M. We say U C U is a
valid input set of M restricted by the assumption A if for every input @ € U, we have @ = A. Let ¢ be a
requirement for M that we intend to verify. For every test input @ and its corresponding test output
¥, we denote as [, 7, ¢] the degree of violation or satisfaction of ¢ when M is executed for test input
a. Specifically, following existing research on search-based testing of Simulink models [MNGB19,
MNBP20,/ALFS11b|, we define the degree of violation or satisfaction as a function that returns a
value between [—1, 1] such that a negative value indicates that the test inputs U reveals a violation
of ¢ and a positive or zero value implies that the test input T is passing (i.e., does not show any
violation of ¢). The function [u, ¥, ¢] allows us to distinguish between different degrees of satisfaction
and failure. When [q, 7, ¢] is positive, the higher the value, the more requirement ¢ is satisfied, the
lower the value the more requirement ¢ is close to be violated. Dually, when [T, 7, ¢] is negative, a
value close to 0 shows a less severe violation than a value close to —1.

Definition 6 Let 4 be an assumption, let ¢ be a requirement for M. Let UC U be a valid input set
of M restricted by assumption 4. We say the degree of satisfaction of the requirement ¢ over model
M restricted by the assumption 4 is v, i.e., (A)Mp) = v, if

v=mun [4,7,9]
where Y is the test output generated by the test input uw € U.

Definition 7 We say an assumption 4 is v—souncﬂ for a model ¥ and its requirement ¢, if (4) M(p) >
v.

As discussed earlier, we define the function such that a value v larger than or equal to 0 indicates
that the requirement under analysis is satisfied. Hence, when an assumption A is sound, the model
M restricted by A satisfies ¢.

For a given model M, a requirement ¢ and a given value v, we may have several assumptions
that are v-sound. We are typically interested in identifying the v-sound assumption that leads to
the largest valid input set U, and hence is less constraining. Let A; and As be two different v-sound
assumptions for a model M and its requirement ¢, and let U; and Uy be the valid input sets of M
restricted by the assumptions A; and As. We say A; has a larger coverage than A, if it is weaker
than As, i.e., A1 = As. In practical applications, there is an intrinsic tension between coverage and
soundness. The larger the coverage of the assumptions, the less effective are exhaustive verification
tools in proving their soundness. For example, QVtrace returns an inconclusive verdict for the
requirement ¢, when the assumption A; (see Section is considered, i.e., the tool is neither able
to prove that ¢ nor to provide a counterexample showing that it does not hold. On the other hand,
QVtrace can prove that the assumption As is sound. Therefore, in industrial applications, users
should find a practical tradeoff between coverage and soundness. We will evaluate this tradeoff for
our microsatellite case study in Section [5.5

In this chapter, provided with a model M, a requirement ¢ and a desired value v, our goal is
to generate the weakest (that has the largest coverage) v-sound assumption. We note that our
approach, while guaranteeing the generation of v-sound assumptions, does not guarantee that the
generated assumptions have the largest coverage. Instead, we propose heuristics to maximize the
chances of generating the assumptions that have the largest coverage and evaluate our heuristics
empirically in Section [5.5]

2Called v-safe in our work [GMN™20).
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5.4 Implementation

In the following, we describe the implementation of each step of Algorithm (4| (i.e., the main loop of
EPIcuRus). Since our implementation relies on QVtrace, which can not handle quantitative fitness
values, we are considering sound assumptions. Section [5.4] describes alternative test case generation
procedures for line 4 of Algorithm 4| (). Section presents our assumption generation procedure
for line 5 of Algorithm [4 (BJ). Section describes the model checking procedure for line 7 of
Algorithm [4| (BJ). Section presents our test case generation procedure (IFBT) for line 4 of

Algorithm {4 (E).

Test Generation

Algorithm [5| shows our approach to generate a test suite (), i.e., a set of test inputs together
with the associated fitness values. Note that EPIcuRus iteratively builds a test suite, and at each
iteration, it extends the test suite generated in the previous iteration. To do so, Line [2| copies the
old test suite into the new test suite. Then, within a for-loop, the algorithm generates one test input
(Line E[) in each iteration and simulates the model on the test input to compute its fitness value
(Line ). The new test suite is finally returned (Line . Below, we describe our test generation
strategies as well as our fitness functions.

Definition of the Fitness Function. We use existing techniques [MNGB19,/ALFS11a] on
translating requirements into quantitative fitness functions to develop FN corresponding to each
requirement ¢. Fitness functions generated by these techniques serve as distance functions, estimat-
ing how far a test is from violating ¢, and hence, they can be used to guide the generation of test
cases. In addition, we can infer from such fitness functions whether, or not, a given requirement ¢
is satisfied or violated by a given test case. Specifically, if FN(@,y,¢) > 0, the output y generated
by the test input @ = {uj,us...uy} satisfies ¢, and otherwise, ¥ and u violate ¢.

Specifying Test Cases. Algorithm [fiteratively generates a new test input ; for the model M.
Since M is a Simulink model, the algorithm should address the following test generation challenges:

e [t should generate inputs that are signals (functions over time) instead of single values since
Simulink model inputs are signals.

e Input signals should be meaningful for the model under analysis and should be such that they
can be realistically generated in practice. For example, a signal representing an airplane throttle
command is typically represented as a sequence of step functions and not as a high-frequency
sinusoidal signal.

To generate signals, we use the approach of Matlab |[TFPT 19, AWMT19] that encodes signals
using some parameters. Specifically, each signal u, in @ is captured by (int,, Ry,n,), where int,
is the interpolation function, R, C R is the input domain, and n, is the number of control points.
Provided with the values for these three parameters, we generate a signal over time domain T as
follows: (i) we generate n,, control points equally distributed over the time domain T, i.e., positioned
at a fixed time distance I; (ii) we assign randomly generated values ¢, 1, ¢y2, - ., Cyun, Within the
domain R, to each control point; and (iii) we use the interpolation function int, to generate a
signal that connects the control points. The interpolation functions provided by Matlab includes
among others, linear, piecewise constant and piecewise cubic interpolations, but the user can also
define custom interpolation functions. To generate realistic inputs, the engineer should select an
appropriate value for the number of control points (n,) and choose an interpolation function that
describes with a reasonable accuracy the overall shape of the input signals for the model under
analysis. Based on these inputs, the test generation procedure has to select which values ¢y 1, ¢y 2,
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Algorithm 5 Test Suite Generation.

Inputs. M: The Simulink Model
¢: The property of interest
TSOId: Old Test Suite
opt: Options

Outputs. TSNew: New Test Suite

: function TSNEW=GENSUITE(M, ¢, TSOId, opt)
TSNew=TS0Ild; > Test Suite Initialization
for i=0; i<opt.TestSuiteSize; i++
7;=GENTEST(M, TSOId, opt); > Test Case Generation
v;i=FN(T;, M(W;)); > Execute of the Test Case
TSNew=TSNewU{ (T, vi) }; > Add the Test to the Test Suite
end for
return TSNew

end function

..., Cun, to assign to the control points for each input w,. For example, the signals in Fig. @have
three control points respectively representing the values of the signals at time instants 0, 500, and
1000. The signals APgny, HDGMode, AltMode and Throttle, HDGg.f, TurnKnob, Pitchwheel
are respectively generated using boolean and piecewise constant interpolations.

Generating Test Cases. The test suite generation technique uses a test case generation
policy p to select values for control points related to each test input. Some test case generation
policies, such as Adaptive Random Testing (ART) |AB11,|CKMT10,|/CLM04| and Uniform Random
Testing (UR) |AIB12,|AB11] can be used to generate a diverse set of test inputs that are evenly
distributed across the search space. UR samples each control point value following a random uniform
distribution, and ART randomly samples values from the search space by maximizing the distance
between newly selected values and the previously generated ones, hence increasing the distance
between the sampled values.

Execution of the Test Cases. Our procedure uses the Simulink simulator (see Section
to generate output signals § = M (1) associated with the generated test input u. Using the fitness
function FN, we obtain the verdict (pass/fail) value for each test input @ and output ¥ of the model
under analysis. For example, the Simulink simulator generates the output in Fig. from the
input in Fig. 2-4al The fitness value for this input and output computed based on the requirement
¢1, described in Section [5.1} is &~ 0.72.

Assumption Generation

We use machine learning to automatically compute assumptions (BJ). Specifically, the function
GENASSUM (see Algorithm [ infers an assumption by learning patterns from the test suite data
(TS). This is done by (i) learning a classification tree that predicts requirement satisfaction; (ii)
extracting from the tree a set of predicates defined over the control points of the input signals of
the model under analysis; and (iii) transforming the predicates into constraints over input signals,
as defined in Section such that they can be fed as an assumption into QVtrace. The steps (i),
(ii), and (iii), which are fully integrated in the Matlab framework, are described as follows.
Learning Classification Trees. We use classification trees to mine an assumption from sets
of test inputs labelled with pass/fail verdict. Classification trees are a widely adopted technique
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to identify interpretable patterns from data [Moll9a]. Recall from Section that test inputs are
captured in terms of value assignments to signal control points. Hence, classification trees learn
conditions on the values of signal control points. More specifically, we use the function fitctree of
Matlab |fit20] to build the trees. This function implements the standard CART algorithm [BFOS84].
EPIcuRus enables the users to select parameter values to configure the CART algorithm implemented
by the fitctree function [fit20]. The user can select the values of these parameters by considering
the characteristics of the model under analysis and some trial and error experiments.

Fig. 5.2 reports an example of decision tree computed by the assumption generation procedure
for the autopilot example, when each model input is encoded using a single control point. Setting
the parameters of the DT learning is about avoiding both underfitting and overfitting, standard ML
problems. In this chapter, we use default parameters provided by the Matlab library [fit20] since
they yield reasonable results.

We follow a standard procedure to extract conditions on control points from a classification
tree WFHP16|. Each pure leaf labeled “pass” (i.e., each leaf containing 100% test inputs satisfying
¢) yields a conjunctive predicate which is obtained by conjoining all the conditions on the path from
the tree root to the leaf (see below):

Cul Y VLA o N Cyg~UE N NC ~ U

where ¢, , denotes the yth control point associated with input z, and each condition ¢;, ~ v such
that ~e {<,>,=} and v € R is a constraint over the control point ¢, ,. For example, in the above
conjunction, the control points ¢, ; and ¢, 4 are related to input u and the control point c, ; is related
to input z.

From conjunctions of predicates to a QVtrace assumption. The conjunctive predicates
constrain control points. Before, we can use them with our model checker QVtrace, they have to
be converted into constraints over signal variables as defined in Section To do so, we use the
rules provided in Table to convert each predicate over control points, into constraints over signal
variables. Specifically, the rules in Table are as follows:

e When the conjunction includes c,j ~ v A Cy jy1 ~ v/, the predicate Cuj ~ v 15 replaced by a
constraint over input signal u using the cases 1, 2, 3, and 4 rules in Table [5.1] depending on the
type of the relation ~. Note that in this case, the conjunction includes predicates over two adjacent
control points related to the same input signal (i.e., ¢, ; and ¢, ;41 are two consecutive control points
related to the input signal ). For brevity, in Table we present only the cases for < and > and
when the input u is a real signal. The cases in which w is a boolean signal and ~; and ~9 are “="
are similar to the one reported in Table and are presented in our online appendix [Epi20).

Intuitively, the conversion rules in Table [5.] assume that the consecutive control points are
connected by a linear interpolation function. While other functions can also be considered, and
custom functions can be defined by users, we believe that linear interpolation functions provide a
good compromise between simplicity and realism. In our evaluation (see Section , we assess
the impact of our assumption on the effectiveness of our approach. Note that we only assume that
consecutive control points are connected by a linear function to be able to generate an assumption
over input signals. Otherwise, input signals can be encoded using various (non-linear) interpolation
functions and our test generation step is able to generate input signals using any given interpolation
function.

o When the conjunction includes ¢, j ~ v, but no control point adjacent to c,; appears in the
conjunction, then the predicate c,; ~ v is replaced by a constraint over input signal u using the
cases 5 and 6 rules in Table [5.1] depending on the type of the relation ~. In this case, we assume
that the resulting constraint holds from the time instant ¢; associated with the control point ¢, ; to
the time instant ¢; + % where [ is the time step between two consecutive control points.
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Table 5.1: Generating the predicates of the constraint.

‘ Condition QCT Clause ‘ Condition QCT Clause
‘ Case 1 ‘ Case 2
y Vt € [ti,tr + 5] u(t) > y Vt € [tr,t1 + L] u(t) >
Two | Cuj =01 ‘""’ﬁ}fy‘“’ y(t) A Cu,j 2 V1 g y() —e A
control | Cug+1>v2 | i VEe [tr+ g te] u(t) > | cugrr <va2 [TFT Vi€ [ty + g, t2): u(t) <
points arEe ko y(t) astn o y(t) +e

Case 3 ‘ Case 4

VtE [tr,t1 + L] u(t) <

I7.
Vt € [tr,t 4+ 5] u(t) < y(t) + €
Cuy,j < V1 y(t) A Cy,j < V1 A
I
w,J 5 . u,j >
Cuj+1 < V2 th)G [+ 3, te]s u(t) < cugrr 2 02 VEE [t + 5, t]: u(t) 2
y(t) —e
One ‘ Case 5 ‘ Case 6
control u u
. I K I7.
point | oy cwy o Vet s pr Ve lhia ) 2
AN U1 | IR U1

t1=1-j and to=1-(j+1) and y(t) = % (t—t1)+u and I =ty — t1: time distance.

Following the above rules, we convert any conjunction of predicates over control points into a
constraint C' defined over input signals. Note that provided with a classification tree, we obtain a
conjunction of predicates for every pure leaf labelled with a pass verdict. The set of all conjunctions
is then converted into an assumption A = C1VCy V...V C, where each C; is obtained by translating
one conjunction of predicates using the rules in Table

Model Checking

This step (BJ) aims at verifying whether a given assumption is v-sound. To do so, we rely on
QVtrace which exhaustively verifies a given model constrained with some assumption against a
formal requirement expressed in the QCT language. As discussed in Section QVtrace generates
four kinds of outputs. When it returns “No violation exists”, or “No violation exists for 0 < k
< Kkynazy, we conclude that the given assumption A is v-sound, i.e., the model under analysis when
constrained by A satisfies the given formal requirement. Otherwise, we conclude that the assumption
is not v-sound and has to be refined or modified.

IFBT — Important Features Boundary Test

Learning v-sound assumptions in our context requires a sufficiently large test suite, which is nec-
essarily generated by simulating the model under analysis a high number of times. To reduce the
number of test cases that have to be generated for assumption learning, we propose a new test case
generation strategy, namely Important Features Boundary Test (IFBT). The idea is to generate test
cases in areas of the input domain that have the largest coverage for the ML procedure used to learn
v-sound assumptions. We make the following conjectures:
ConJ 1: The values assigned to some control points have a higher impact on the fitness value than
the values assigned to others. Identifying such control points and focusing the search on them
enables more effective learning of v-sound assumptions.
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Algorithm 6 IFBT - Important Features Boundary Test.

Inputs. M: The Simulink Model
¢: The property of interest
TSOId: Old Test Suite
opt: Options

Outputs. TSNew: New Test Suite

1: function TSNEW=GENSUITE(M, ¢, TSOId, opt)
2:  TSNew=TSOld
3: RT=GENREGRESSIONTREE(TSOId); > Learn a Regression Tree
4: TC=GETTESTS(RT,v); > Get Tests on Leaves
5. (Feat,Rng)=GETIMPF (RT,opt.num); > Get features
6: for i=0; i<opt.TestSuiteSize; i+-+
7. ; = GENTEST(TC.next,Feat,Rng,opt); > Test Case Generation
8:  v;=FN(w;, M(W)); > Execute of the Test Case
9:  TSNew=TSNewU{(u,,v;)}; > Add the Test to the Test Suite
10: endfor

11: return TSNew
12: end function

CoNJ 2: Generating test cases in boundary areas of the input domain where the fitness value changes
from being lower than v to being greater than v enables more effective learning of v-sound
assumptions.

Based on the above intuitive conjectures, IFBT generates a test suite by following the steps of
Algorithm [6] detailed below.

STEP 1 (Line [3): We build a regression tree from the previously generated test suite TSOIld
that describes the relationship between the values assigned to the control points (i.e., the features of
the regression tree) and the fitness value. We choose to use regression trees since we want to learn
the impact of control point values on the continuous fitness value and this is therefore a regression
problem. The leaves of the tree contain test cases that are characterized by similar fitness values for
control points.

STEP 2 (Line: This step follows from conjecture CONJ 2 and attempts to generate boundary
test cases. To do so, among all leaves in the tree, we pick the two leaves with average fitness values
that are the closest to the selected v threshold-that is 0 in our case— as described above, one being
below the threshold and the other one above. We extract the test cases TC associated with these
nodes. These test cases are the ones closest to boundary where the fitness value changes from being
greater than v to being lower than v and are therefore used to generate the new test cases in the
following steps of the algorithm.

STEP 3 (Line[5)): We save in the variable Feat the subset of the opt.num most important features
of the regression tree. This step follows from conjecture CONJ 1 as feature importance captures how
much the value assigned to the feature (control point) influences the fitness value. Furthermore, for
every control point ¢, ; that belongs to the set of features Feat, it computes a range (saved in Rng)
associated with the control point based on the conditions that constrain the control point ¢, ; in
the regression tree RT. For every condition ¢, ; ~ v; that constrains control point ¢, ; in RT, the
interval [v1 — opt.perc - vy, v1 + opt.perc - v1] is added to the range Rng associated with the control
point ¢, j. For example, if a constraint ¢, ; < 2 associated with control point ¢, 1 is present in the
regression tree RT, and opt.perc = 10%, the interval [1.8,2.2] is added to the range Rng associated
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Table 5.2: Identifier, name, description, number of blocks of the Simulink model (#Blocks), number
of inputs (#Inputs) and number of requirements (#Reqs) of our study subjects.

ID ‘ Name ‘ Description ‘ #Blocks ‘ #Inputs ‘ #Reqs
TU ‘ Tustin ‘ A numeric model that computes integral over time. ‘ 57 ‘ 5 ‘ 2
REG ‘ Regulator ‘ A typical PID controller. ‘ 308 ‘ 12 ‘ 6
TT ‘ Two Tanks A two tanks system where a controller regulates the incoming and out- ‘ 498 ‘ 2 ‘ 7
going flows of the tanks.
A finite state machine that turns on the autopilot mode in case of some 303 ‘ 4 ‘ 3

FSM | Finite State
Machine

environment hazard.

with ¢, 1. This ranges will be used to generate test cases in the area of the input domain where the
fitness changes from being lower than v to being greater than v, following from conjecture CONJ 2.

STEP 4 (Lines : We create a set of opt.T'estSuiteSize new test cases from the test cases
in TC as follows. We iteratively select (in sequence) a test case TC.next in TC. A new test case
is obtained from TC.next by changing the values of the control points in Feat according to their
ranges in Rng using either UR or ART sampling. We use the acronyms [FBT-UR and IFBT-ART
to respectively indicate the sampling strategy each alternative relies on.

5.5 Evaluation

In this section, we empirically evaluate EPIcuRus by answering the following research questions:

o Effectiveness and Efficiency — RQ1: Which test case generation policy among UR, ART,
IFBT-UR and IFBT-ART helps learn assumptions most effectively and efficiently? With this ques-
tion, we investigate our four test generation policies (i.e., UR and ART discussed in Section and
IFBT-UR and IFBT-ART discussed in Section and determine which policy can help compute
the most v-sound assumptions that have the largest coverage while requiring the least amount of
time.

e Usefulness — RQ2: Can EPIcuRus generate assumptions for real world Simulink models within
a practical time limit? In this question, we investigate if EPIcuRus, when used with the best test
generation policy identified in RQ1, can generate v-sound assumptions for our real world study
subject models within a practical time limit.

Implementation and Data Availability. We implemented EPIcuRus as a Matlab standalone
application and used QVtrace for checking the accuracy of the assumptions. The implementation,
models and results are available at [GMNB20].

Study Subjects. We consider eleven models and 92 requirements provided by Lockheed Mar-
tin [loc20] [MNB17b[NGMT19,MNGB19|. The models have been described in details in Chapter [4]
Section .11

Among the 92 requirements, only 18 requirements on four models could be handled by QVtrace
(Prerequisite-3) and neither the requirements nor their negation could be proven by QVtrace
(Prerequisite-4). Out of the 92 requirements, 27 could not be handled by QVtrace (violating
(Prerequisite-3) ) and 47 violated (Prerequisite-4). For 16 requirements, their Simulink models
were not supported by QVtrace. For 11 requirements, QVtrace returned an inconclusive verdict
due to scalability issues. Also, QVtrace could prove 46 requirements and refute one requirement for
every input. We can conclude that for 27 requirements (30%), EPIcuRus cannot be applied due to
the technical issues with MC. However, EPIcuRus is applicable to 65 (47+18) requirements (70%),
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though in 47 (51%) of the cases MC is sufficient. We note that EPIcuRus is complementary to MC
but, since it relies on MC as one of its components, it also inherits its limitations, i.e., only model
components handled by MC can be targeted by EPIcuRus.

Thus, we retain only four models and 18 requirements. Table [5.2] describes the four models, the
number of blocks and the inputs of each model and the number of requirements for each model.
EPIcuRus is only needed when Prerequisite-3 and Prerequisite-4 hold since otherwise there is
no need to generate assumptions. Prerequisite-3, however, is related to the scalability issues of
applying QVtrace (or MC in general) to large/complex Simulink models.

Experiment Design. To answer RQ1 and RQ2, we perform the experiments below.

We execute EPIcuRus using the UR, ART, IFBT-UR, and IFBT-ART test case generation
policies. For each requirement and study subject, we execute different experiments considering
input signals with one (IP), two (IP’), and three (IP”) control points. We set the number of new
test cases considered at every iteration to 30 (opt.TestSuiteSize, see Algorithms |5 and @ We
considered a maximum number of iterations MAX IT=30 (see Algorithm as this is a common
practice to compare test case generation algorithms [EADT19|. For IFBT-UR and IFBT-ART, we
set the value opt.num of the most important features to consider for test case generation as follows.
For iterations 1 to 10, opt.num is set to one, meaning that only the most important feature is
considered. For iterations 10 to 20, opt.num is set to two and iterations 20 to 30, opt.num is equal
to the number of features of the decision tree. We do not know a priori the number of features that
will be constrained by the final assumption. The above strategy to set opt.num starts by focusing
on the most important features, and gradually enlarges the set of considered features if no valid
assumptions are found. We set the value opt.perc, used by IFBT-UR and IFBT-ART to compute
the next range to be considered, to m This value ensures that the size of the next interval
to be considered is decreasing with the number of iterations (Counter). The intuition is that the
more iterations are performed, the closer IFBT is to computing the v-sound assumption, and thus
a more restricted interval can be considered. We repeated every experiment 50 times to account
for the randomness of test case generation. We recorded whether EPIcuRus was able to compute a
v-sound assumption, the computed v-sound assumption itself, and its execution time.

To compare efficiency, we consider the average execution time (AVG_TIME) of each test case gen-
eration policy across different experiments. To compare effectiveness, we consider (i) the percentage
of experiment runs, among the 50 executed, (V_SAFE) in which each test case generation policy is
able to compute a v-sound assumption; and (ii) how large the coverage of the assumptions learned
by different test case generation policies are in relative terms. To measure the latter, we considered
each assumption learned by a test case generation policy. We computed the number of times this
assumption has a larger coverage than another assumption learned with a different test case gener-
ation policy for the same model, requirement, experiment, and number of control points. We define
the coverage index (INF_INDEX) of a test case generation policy as the sum, across the different
assumptions learned with that policy, of the number of times the assumption has a larger coverage
than another assumption learned with a different test case generation policy. To check whether
an assumption A; has a larger coverage than Ay, we check if Ay = Ay is valid (i.e, if 41 = Aj
is a tautology). This is done by checking whether =(A; = Aj) is satisfiable. If =(A; = Aj) is
unsatisfiable, then A; = A is a tautology. The satisfiability of =(A; = Ajg) is verified by an MITL
satisfiability solver recently provided as a part of the TACK model checker [BRP16,MBRP20]. We
set a timeout of two minutes for our satisfiability solver. If an unsat result is returned within this
time limit A; = As holds, otherwise, either —=(A; = Ajs) is satisfiable, or a longer execution time is
needed by the satisfiability checker.

As a complementary analysis, we repeat the experiment above, but instead of fixing the number
of iterations across different EPIcuRus runs, we set a one hour time bound for each run of EPIcuRus
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on each requirement. We consider this to be a reasonable time for learning assumptions in practical
settings. Note that we still execute IFBT-UR for a maximum of 30 iterations. However, if the
maximum number of iterations was reached without finding a valid assumption, and the execution
time was still less than one hour, EPIcuRus was re-executed. The motivation is to re-start Epicurus
every 30 iterations so that it does not focus its search on a portion of the search space that has no
chance of gathering useful information to learn v-sound assumptions due to a poor choice of initial
inputs. Running all the experiments required approximately 33 daysEl

RQ1 — Effectiveness and Efficiency

The scatter plot in Fig. [5.3] depicts the results for RQ1 obtained when comparing test generation
strategies in terms of effectiveness and execution time, when running EPIcuRus a maximum of 30
iterations. The x-axis indicates the average execution time (AVG_TIME), our efficiency metric. The
lower this time, the more efficient a test case generation policy. The y-axis indicates the percentage
of cases (V_SAFE), across 50 runs for each requirement, for which each test case generation policy
could compute a v-sound assumption. The higher the value, the higher the effectiveness of a test
case generation policy. Each point of the scatter plot is labeled with the coverage index (INF_INDEX)
associated to that policy. The higher this index, the larger the coverage of v-sound assumptions
computed with a test case generation policy.

As shown in Fig. IFBT-UR is the best test case generation policy. IFBT-UR has indeed
both the lowest average execution time AVG_TIME and the highest V_SAFE percentage. IFBT-UR
generates ~ 6 — 8% more valid assumptions than UR and ART and requires ~ 65% less time. It
is only slightly better than IFBT-ART, thus showing that the main driving factor here is IFBT.
Furthermore, IFBT-UR’s coverage index INF_INDEX is higher than those of the other policies.

Regarding the impact of using IFBT, Fig. [5.3] also shows that the difference between UR and
IFBT-UR is small in terms of V_SAFE percentage, though large in terms of the execution time.
However, when fixing the execution time to a maximum of one hour, instead of iterations, IFBT-
UR and UR identify av-sound assumption respectively in 78% and 65% of the requirements. That
is, when provided with an equal execution time budget, IFBT-UR outperforms UR by learning a
v-sound assumption for ~ 13% more requirements.

The answer to RQ1 is that, among the four test case generation policies we compared, IFBT-UR
learns the most v-sound assumptions in less time. Further, the assumptions learned by IFBT-UR
have a larger coverage than those learned by other test generation policies.

RQ2 — Usefulness

To answer RQ2, we use IFBT-UR, the best test case generation policy identified by RQ1l. On
average, one EPIcuRus run can compute a v-sound assumption, within one hour, for = 78% of the
requirements. Further, EPIcuRus learns assumptions that are not vacuous, and all the generated
assumptions had a non-empty valid input set, i.e., none of the requirements was vacuously satisfied
by the computed assumption. Across all 50 runs, which take for IFBT-UR around four hours per
requirement, EPIcuRus is able to compute a v-sound assumption for all the 18 requirements of
our four Simulink models. The average number of constraints in an assumption is 2.4, with 5.4
predicates on average. From that, we can conclude that the computed assumptions are relatively
simple, thus suggesting they are easy to understand and that EPIcuRus does not generate much
accidental complexity.

3 We executed our experiments on the HPC facilities of the University of Luxembourg [VBCG14|. The paralleliza-
tion reduced the experiments time to approximately five days.
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Figure 5.3: Comparison of the Test Case Generation Policies.

The answer to RQ2 is that, EPIcuRus can learn non-vacuous and short assumptions for all the
requirements of our subject models within reasonable time.

5.6 Discussion and Threats To Validity

Our empirical evaluation confirms that our conjectures (CONJ 1 and CONJ 2) hold and that the
effectiveness of EPIcuRus is adequate for practical usages. In the following we discuss the practical
implications of EPIcuRus.

e EPIcuRus learns classification trees and converts them into classification rules. Directly learn-
ing classification rules [Mol19b| could be a better solution, as it may yield more concise assumptions.
However, as classification rules are not supported by Matlab, we would have to rely on external tools,
e.g., weka [WFHP16|, to generate them, and further, our solution based on classification trees already
works reasonably well.

e Decision trees and decision rules can only learn predicates defined over single features (i.e.,
single control points). That is, all the learned predicates are in the following form ¢ ~ v. Hence,
they are not suited to infer predicates capturing relationships among two or more features (i.e.,
control points). While this was not a limitation in our work, our approach can be extended to infer
more complex assumptions using other machine learning techniques (e.g., more expressive rules or
clustering [WFHP16|). Alternatively, we can use genetic programming [BNKF9§| to learn more
expressive assumptions.

e EPIcuRus generates assumptions using the rules in Table [5.1] that assume that consecutive
control points are connected using a linear interpolation function. Our evaluation shows that this
assumption provides a good compromise between simplicity and realism. The rules in Table [5.1] can
be expanded to consider more complex interpolation functions in particular when we have specific
domain knowledge about the shapes of different input signals.

e Our solution combines different techniques. Let n be the number of instances and m be the
number of input features, the time complexity of the decision tree induction is O(m - n - log(n)) +
O(n - (log(n))?). The time complexity of running QVtrace is exponential in the size of the SMT
instance to be solved. The time complexity of UR and ART test case generation is linear in the
number of tests to be generated. For IFBT the time complexity of the decision tree induction comes
in addition to the time complexity of UR and ART. As shown in our evaluation, our solution was
sufficiently efficient to effectively analyze our study subjects.
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Our results are subject to the following threats to validity.

Ezxternal validity. The selection of the models used in the evaluation, and the features contained
in those models, are a threat to external validity as it influences the extent to which our results can
be generalized. However, (i) the models we considered have been previously used in the literature on
testing of CPS models [NGM™19,MNGB19|, (ii) they represent realistic and representative models
of CPS systems from different domains, and (iii) our results can be further generalized by additional
experiments with diverse types of systems and by assessing EPIcuRus over those systems.

Internal validity. Using the same models to select the optimal test generation policy (RQ1) and
to evaluate EPIcuRus (RQ2) is a potential threat to the internal validity. However, since the test
generation policy is not optimized for any particular model, it is a good general compromise among
many different models.

5.7 Conclusion

In this chapter, we proposed EPIcuRus, an approach to automatically infer environment assumptions
for software components such that they are guaranteed to satisfy their requirements under those
assumptions. Our approach combines search-based software testing with machine learning decision
trees to learn assumptions. In contrast to existing works where assumptions are often synthesized
based on logical inference frameworks, EPIcuRus relies on empirical data generated based on testing
to infer assumptions, and is hence applicable to complex signal-based modeling notations (e.g.,
Simulink) commonly used in cyber-physical systems.

In addition, we proposed IFBT, a novel test generation technique that relies on feedback from
machine learning decision trees to guide the generation of test cases by focusing on the most im-
portant features and the areas with the largest coverage in the search space. Our evaluation shows
that EPIcuRus is able to infer assumptions for all the requirements in our case studies and in 78%
of the cases the assumptions are learned within just one hour. Further, IFBT outperforms simpler
test generation techniques aimed at creating test input diversity, as it increases the number and the
quality of the generated assumptions while requiring less time for test generation.

In the next chapter, we extend our work to learn assumptions for complex CPS models involving
signal and numeric variables, i.e., assumptions which include arithmetic expressions defined over
multiple variables.
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Chapter 6

Combining Genetic Programming and
Model Checking to (Generate
Environment Assumptions

In this chapter, we improve the approach of EPIcuRus described in Chapter [ Section [5.2] While
EPIcuRus was effective in computing sound assumptions involving signal and numeric variables for
industrial Simulink models, the structure of the assumptions generated by EPIcuRus was rather
simple. Specifically, EPIcuRus could only learn conjunctions of conditions where each condition
compares exactly one signal or numeric variable with a constant using a relational operator. This
is because EPIcuRus uses decision tree classifiers that can only infer such simple conditions. In
our experience, however, assumptions produced by EPIcuRus, while being sound, do not have the
largest coverage that can be learned for many CPS Simulink models. We extend our previous work
of EPIcuRus to learn an assumption that is not only sound (i.e., makes the component satisfy its
requirements), but also has large coverage (i.e., is ideally the weakest assumption or among the
weaker assumptions that make the component satisfy the requirement under analysis). We do so
using genetic programming (GP) |[KK92, PLMKO08, BNKF98, GPM20, MAS05| where assumptions
consist of conditions that relate multiple signals by both arithmetic and relational operators.. EPI-
cuRus then applies model checking to the assumptions learned by GP to conclusively verify their
soundness
This chapter highlights the following research contributions:

1. We formulate our assumption generation technique using GP. We provide a grammar for the
assumptions that we aim to learn. For example, the actual assumption of our industrial
case study—the attitude control component of the ESAIL maritime micro-satellite—is in the
following form: A; ==Vt € [0,1] : a- z(t) + 8 - y(t) < ¢, where x and y are signals defined
over the time domain [0,1]. But EPIcuRus, when relying on decision trees, is not able to
learn any assumption in that form and instead learns assumptions in the following form:
Ay ==Vt € [0,1] : o - x(t) < ANB -y(t) < . Assumptions in the latter form, even though
sound, have lower coverage than the actual assumptions.

2. In the context of CPS, as assumptions have a larger coverage and become structurally complex,
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establishing their soundness becomes more difficult as well. As discussed above, soundness
can only be established via exhaustive verification (e.g., model checking). In our experience
with industrial CPS Simulink models, model checkers fail to provide conclusive results by ei-
ther proving or refuting a property when the assumption used to constrain the model inputs
becomes structurally complex (e.g., when it involves arithmetic expressions over multiple vari-
ables). Therefore, the larger the coverage, the less effective exhaustive verification tools in
proving their soundness, and vice-versa. Hence, if guaranteed soundness is a priority, engi-
neers may have to put up with assumptions with lower coverage, and conversely, they can have
assumptions with large coverage, whose soundness is not proven.

3. We evaluated EPIcuRus using two separate sets of models: First, we used the public-domain
benchmark of Simulink models provided by Lockheed Martin [loc20] that we described in
Chapter [3, Section [3.3] and in Chapter [5], Section Second, we used the ESAIL model pro-
vided by LuxSpace |Lux19|. EPIcuRus successfully computed assumptions for 18 requirements
of four benchmark models from Lockheed Martin |loc20| and one requirement of the attitude
control component from LuxSpace. Note that, among all of our case study models, only these
requirements needed to be augmented with environment assumptions to be verified by a model
checker. Our evaluation targets two questions: if genetic programming (GP) can outperform
decision trees (DT) and random search (RS) in generating sound assumptions that have large
coverage (RQ1), and if the assumptions learned by EPIcuRus are useful in practice (RQ2). For
RQ1, we considered all the 32 requirement and input profile combinations. Our results show
that GP can learn a sound assumption for 31 out of 32 combinations of requirements and input
profiles, while DT and RS can only learn assumptions for 26 and 22 combinations, respectively.
The assumptions computed by GP have also a significantly (20% and 8%) larger coverage than
those learned by DT and RS. For RQ2, we considered the attitude control component from
LuxSpace since this is a representative and complex example of an industrial CPS component,
and more importantly, in contrast to the public-domain benchmark, we could interact with
the engineers that developed this component to evaluate how the assumptions computed by
EPIcuRus compare with the assumptions they manually wrote.

In this chapter, we show that GP is able to generate assumptions that structurally conform
to the grammar [Mon95|, and in addition, maximize objectives that increase the likelihood of the
soundness and coverage of the generated assumptions. EPIcuRus still applies model checking to
the assumptions learned by GP to conclusively verify their soundness. The coverage, however, is
achieved through GP and partly depends on the structural complexity of the learned assumptions.
Any assumption that can be structurally generated by our grammar is in the search space of GP.
Therefore, EPIcuRus with GP has more flexibility compared to the old version of EPIcuRus and can
search through a wider range of structurally different assumption formulas to build more expressive
assumptions that are likely to have a larger coverage as well.

Our results further show that, when EPIcuRus was configured to proritize coverage, as opposed
to proving the soundness of assumptions, learned assumptions were syntactically and semantically
close to those written by engineers. Conversely, when learning assumptions whose soundness can
be verified was prioritized, EPIcuRus was able to generate sound assumptions in around six hours.
Though simpler than the actual assumption, they provided useful and practical insights to engineers.
We note that none of the existing techniques for learning environment assumptions is able to handle
our attitude control component case study or learn assumptions that are structurally as complex as
those required for this component.

Structure. Section [6.]]introduces the motivating examples and challenges. Section [6.2] outlines
the new approach of EPIcuRus and its pre-requisites. Section [6.3] formalizes the assumption gen-
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Figure 6.1: Example of Input/Output signals of the AC model.

eration problem and presents how EPIcuRus is implemented. Section [6.4] evaluates EPIcuRus, and
Section [6.4] discusses the threats to validity. and Section concludes the chapter.

6.1 Motivation and Challenges

As a case study system, we use the ESAIL maritime micro-satellite developed by LuxSpace [Lux19].
ESAIL is described in Chapter [3] The ESAIL Simulink model is a large, complex and compute-
intensive model [MNBP20|. It contains 115 components (Simulink Subsystems [sub20|) and a large
number (2817) of Simulink blocks of different types such as S-function blocks [sfu20]| containing
Matlab code, and some MEX functions [mex20| executing C/C-+ programs containing the behavior
of external third party software components. Due to the above characteristics, exhaustive verification
of the ESAIL Simulink model (e.g., using model checking) is infeasible. For example, QVtrace cannot
load the model of ESAIL since many components cannot be handled by the QVtrace model checker.

Even though the entire ESAIL Simulink model cannot be verified using exhaustive verification,
it is still desirable to identify critical components of ESAIL that are amenable to model checking.
For example, the Attitude Control (AC) component of the attitude determination and control system
(ADCS) of ESAIL monitors the environment in which the satellite is deployed and sends commands
to its actuators according to classical control laws used for the implementation of satellites [Wie98|.
Specifically, it receives from the attitude determination system the estimated values of the speed,
the attitude, the magnetic field and the sun measurements. It also receives commands from the
guidance such as the target speed and attitude of the satellite. Then, it returns the commanded
torque to the reaction wheel and the magnetic torquer. AC has ten inputs and four outputs that
represent the commanded torque to be fed into the actuators. Note that some of the inputs and
outputs are vectors containing several input signals, i.e., virtual vectors |[vir20]. The inputs and
outputs of AC are summarized in Table For example, Fig. [77] shows the three input signals of
We, i.e., the estimated angular velocity of the satellite, over the time domain [0, 100]s, for the AC
component. Fig.[77]shows three output signals obtained by simulating the model with these inputs,
and representing the torque command (RW) AC applied to the reaction wheels of the satellite over
the time domain [0, 100]s. AC contains 1142 blocks. It can be loaded in QVtrace after replacing the
19 S-function blocks, that cannot be processed by QVtrace, with a set of Simulink blocks supported
by QVtrace. This activity is time-consuming and error prone. Every time an S-function is replaced
by a set of Simulink blocks, to check for a discrepancy between the behaviors of the S-function
and the newly added Simulink blocks, a set of inputs is generated and, for each input, the outputs
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Table 6.1: Name of the Input, number of input signals in the virtual vector (NS), and description
of the input.

Name NS Description

qt 4 Target attitude of the satellite.

Qe 4 Estimated attitude of the satellite.

wy 3 Target speed of the satellite.

We 3 Estimated speed of the satellite.

Input B 3 Measured magnetic field.

Md 1 The mode of the satellite.

Rwh 4 Angular momentum of the reaction wheel.

Ecl 1 Indicates if the satellite is in eclipse.

SF 1 Indicates if the sun sensor is illuminated.

SM 3 Sun sensor measurements.

MT 4  magnetic dipole applied to the magnetorquers.
Output MTc 4 Current appl‘ied to the magr.letorquers.

RW 3 Torque applied to the reaction wheel.

RWa 3 The reaction wheel’s torque acceleration.

Table 6.2: Example requirements for the attitude control component.

ID Requirement

¢1  When the norm of the attitude error quaternion is less than 0.001, the torque commanded
to the reaction wheel around the x-axis (with respect to its body frame) shall be within
the range [—0.001,0.001|N - m.

¢2  The magnetic moment of each magnetorquer shall be within the range [—15,15]A - m?.

¢3  The current applied to each magnetorquer shall be within the range [—0.176,0.176]A.

¢4 The acceleration of each of the reaction wheels shall be within the range
[-0.021,0.021]m /s2.

produced by the S-function and the Simulink blocks is compared to check for dissimilarities. We
did some testing to check for discrepancies between the behaviors of the S-function and the newly
added Simulink blocks. We did not detect any error. After all the S-function blocks are removed,
the model can be loaded in QVtrace, and we can have a formal proof of correctness (or lack thereof)
for AC, which is an important component of ESAIL.

However, some requirements may fail to hold on AC when it is evaluated as an independent
component, while the same requirements would hold on AC when it is evaluated within the larger
model it is extracted from. This is because in the latter case the AC inputs are constrained by the
values that can be generated within the larger model, which is not the case when AC is running
independently. As a result, we need to verify whether the conditions under which AC works are
acceptable given the input values that can be generated by its larger model. This is addressed by
learning assumptions guaranteeing that AC satisfies its requirements.

For example, the Simulink model of the AC is expected to satisfy a number of requirements.
Examples of these requirements are described in Table The requirement ¢; ensures that AC
does not command any torque about the x-axis of the body frame to the reaction wheel, when the
satellite is already at the desired attitude. Reaction wheels are used to control the attitude, i.e., the
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orientation of the satellite, and ensure high pointing accuracy. They generate the twist applied to
the satellite around a specific axis by acting on the acceleration of the reaction wheels. To determine
whether, or not, AC satisfies requirement ¢, we convert the requirement into a formal property and
use QVtrace to verify ¢; over AC. However, it turns out that the requirement ¢; does not hold on
AC. Further, using QVtrace, we cannot show that AC satisfies —¢;, indicating that not all of its
behaviors violate the requirement of interest. Therefore, for some inputs, AC violates ¢1, and for
some, it satisfies ¢1. Note that if the model satisfies either ¢1 or —¢1, there is no need for generating
an input assumption.

One of the reasons that the AC does not satisfy ¢; is that, to ensure that the torque applied to
the reaction wheel remains within —0.001 N - m and 0.001 N - m when the norm of the attitude error
quaternion is less than 0.001, we need to constrain the inputs of AC by the following assumption A;,
which we elicited, in collaboration with the ESAIL engineers:

Py (t) Pa(t)

Ay =Vt €[0,1] : (exp(t) +1>0Aexp(t) —1<0)

where:
T1 T2 T3
exp(t) = +783.3 - we x(t) —332.6 - we_y(t) +3.5 - we_z(t)
—50.57 - we_ x(t) - we y(t) —4751.8 - we x(t) - we  2(t)
+ 3588.7 - we_y(t) - we_z(t)
+ 1000 - Rwh_ y(t) -we _2(t) — 1000 - Rwh_ z(t) - we _y(t)
—54.8 - we_y(t)’ +54.8 - w. z(t)?

T9 T10

The elicitation of the actual assumption was performed by two of the authors in collaboration
with the ESAIL engineers. This was done by analyzing the design document of the satellite. The
design document contains the decisions engineers made during the satellite design and specification.
The elicitation of the assumption was performed by analyzing the specifications and identifying
under which assumption the requirement is satisfied. This was done by computing the transfer
function of the system, that describes the input-output relations, and by analytically identifying the
most covering assumption that ensures the satisfaction of the requirement. Assumption A; constrains
the values of the following variables within the time interval of [0, 1]s: the estimated speed of the
satellite (we) and the angular momentum of the reaction wheel (Rwh) over the x-axis (we x and
Rwh x), the y-axis, (w. _y and Rwh_y) and the z-axis (we z and Rwh_ z) of the body frame. This is
done by forcing the value of exp to be between —1 and 1. Predicates P1(t) and Py(t) are composed
of the ten terms T1, T2, ..., T10 of exp and the constants 1 and —1. For example, the term T3 of
Py(t) is +3.5 - we_z(t).

Assumption A is complex, and cannot be learned by our earlier work EPIcuRus [GMN™20| since
it is a complex function that combines three input signals of w, and Rwh with arithmetic operators.

Requirement ¢, in Table [6.2] constrains the magnetic moment commanded to the magnetor-
quers to be in the range [—15,15]A - m2. Requirement ¢3 constrains the current applied to the
magnetorquers to be in the range [—0.176,0.176]A. Finally, requirement ¢4 constrains the torque
acceleration applied to each of the reaction wheels to be in the range [—0.021,0.021]Jm/s?. Those
requirements were provided by the manufacturers of the reaction wheel and magnetorquer (see for
example [Acql8|). According to the design documents, we expected these requirements to be satisfied
for all possible input signals, i.e., without the need of adding any assumption.

Objective. Without accounting for assumption A;, we may falsely conclude that the AC model
is faulty as it does not satisfy ¢1. However, after restricting the inputs of AC with an appropriate
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assumption, we can show that it satisfies ¢1. Hence, there is no fault in the internal algorithm of
AC.

In this chapter, we extend EPIcuRus to provide an automated approach to infer complex environ-
ment assumptions for system components such that they, after being constrained by the assumptions,
satisfy their requirements. Our extension is applicable under three pre-requisites of EPIcuRus that
we recall from Chapter [5] Section 5.1} Prerequisite-1. The component M to be analyzed is speci-
fied in the Simulink language, Prerequisite-2. The requirement ¢ the component has to satisfy is
specified in a logical language and Prerequisite-3. The satisfaction of the requirements of interest
over the component under analysis can be verified using a model checker.

6.2 Approach Overview

In this section, we recall from Chapter [2 Section 2.2] the modelling language provided by Simulink
and we explain how the system design is constructed and simulated. An assumption A for a Simulink
model M is represented as a disjunction (C; V C2 V...V C,) of one or more constraints in C = {Cy,
C2,...,Cn}. Each constraint in C is a first-order formula in the following form:

Vt € [11,71) s Pi(t) AVt € [12, 73] : Pa(]) A ... AVE € [T, 7] + Pul(t)

where each P;(t) is a predicate over the model input variables, and each [r;, 7] C T is a time
domain. An example constraint for the AC model is defined as follows:

Cru=Vte[0,1]: (1.0 we_x(t) + 1.0 we_y(¢t) —0.0011) <0

Cy constrains the sum of the values of two input signals we x(t) and we y(t) of the input w, of the
AC model over the time domain [0, 1]s. These signals represent, respectively, the angular speed of
the satellite over the x and y axes of the body frame.

Let A=C; VCy V...V C, be an assumption for model M, and let T be a test input for M. The
input U satisfies the assumption A if @ = A. For example, consider the assumption Ay of AC. The
input u in Fig. @ satisfies the assumption A5 since it satisfies the constraints C; and Cs.

Ao =C1 VCy
where
Cpu=Vte[0,1]: (1.0 we x(t) + 1.0 we_y(t) —0.0011) <0
Con=Vte[0,1]: (1.0 we x(t)+ 1.0 we_y(t) +1.0-we_z(t) — 0.0025) < 0

Let A be an assumption, and let U be the set of all possible test inputs of M. We say U C U is a
valid input set of M restricted by the assumption A if for every input @ € U, we have @ = A. Let ¢ be a
requirement for M that we intend to verify. For every test input @ and its corresponding test output
¥, we denote as [u,7, ¢] the Boolean verdict indicating whether ¢ is satisfied or violated when M is
executed for test input all]

Definition 8 Let 4 be an assumption, let ¢ be a requirement for M, and [u,y, @] be the function
previously discussed. Let U C U be a valid input set of M restricted by assumption 4. We say the
satisfaction of the requirement ¢ over model M restricted by the assumption 4 is v, i.e., (A)M(@p) = v,

if

IThe Boolean verdict is computed using existing approaches that extract the degree of violation or satisfaction of
a property ¢ using existing techniques from the literature [MNGB19,|MNBP20,|ALFS11b].
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v=min [49,9]

where g is the test output generated by the test input w € U. For computing the min, we assume that
true > false.

Definition 9 We say an assumption 4 is souncﬂ for a model M and its requirement ¢, if (A)M{p) =
true

For a given model M and a requirement ¢, we may have several assumptions that are sound. We are
typically interested in identifying the sound assumption that leads to the largest valid input set U,
and hence is less constraining. Let A; and As be two different sound assumptions for a model M and
its requirement ¢, and let U; and Uy be the valid input sets of M restricted by the assumptions A;
and As. In our previous work |[GMN™20|, we defined A; to be more informative than Ay if Ay = A;.
However, this definition only allows to compare assumptions when there exists a logical implication
between the two. To enable a wider comparison among assumptions in this work, we define the
notion of coverage. We say that A; has a larger coverage than Ag if [Uj| > |[Us| where |U;| and |Us]
are, respectively, the cardinalities of the valid input sets U; and U, associated with A; and As (i.e., the
number of inputs in the sets U; and Uz). Our definition is generic and the sets can contain infinitely
many inputs. What is important is to have a metric space, i.e., a set together with a metric on
the set. For example, a real interval [0, 1] is a metric space. Given a real interval [0, 1], the "size"
(or "measure" or "length") of the interval is 1 (the metric is the difference between the upper and
the lower bound of the interval). This definition can be generalized to hypervolumes of polytopes,
by extending the metric from a single dimension space to a multi dimension space. Our notion of
coverage is compliant with the notion of logical implication. Given two assumptions A; and As,
such that A; = As, the assumption As has a larger coverage than A since it has a larger input set.
Therefore, a more informative assumption (according to logical implication) has a larger coverage,
i.e., a larger valid input set. The notion of coverage, however, is not limited to logical implication,
and we can use it to compare assumptions that are not logically related, which is necessary in our
context. We define the size of valid test inputs for an assumption as the number of valid test inputs
within the test input set according to a given metric.

Note that computing the size of valid test inputs for our assumptions which are first-order
formulas is in general infeasible. As we will discuss in Section we provide an approximative
method to compare the size of valid test inputs to be able to compare a given pair of assumptions
based on our proposed coverage measure.

In practical applications, there is an intrinsic tension between coverage and soundness. The
more assumptions with large coverage GP learns, the higher the chance that MC fails to confirm
their soundness. This is because by increasing the coverage of the assumptions, they may turn
unsound. For example, suppose the actual assumption that we want to learn is < 2 (i.e., a sound
assumption with an optimal coverage). GP may learn x < 1, which is sound but has a suboptimal
coverage. In an attempt to increase coverage, GP is likely to produce an unsound assumption,
e.g., r < 2.1, because the meta-heuristic search may not get to the exact value of 2. Therefore, in
industrial applications, users should find a practical tradeoff between coverage and soundness. We
will evaluate this tradeoff for our satellite case study in Section

In this chapter, provided with a model M, a requirement ¢ and a desired value v, our goal is
to generate the sound assumption that provides the largest coverage. We note that our approach,
while guaranteeing the generation of sound assumptions, does not guarantee that the generated

2Called v-safe in our work |[GMN™20],where we define the degree of satisfaction v
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Figure 6.2: EPIcuRus framework overview.

assumptions have the largest coverage. Instead, we propose heuristics to maximize the chances of
generating assumptions with the large coverage and evaluate our heuristics empirically in Section[6.4}

Fig. [6.2] shows an overview of the extended approach of EPIcuRus, which takes as input a
Simulink model M and a requirement ¢, and computes an assumption ensuring that the model
M satisfies the requirement ¢ when the assumption holds. The components of the approach are
reported in boxes labeled with blue background numbers. The sanity check ({l) verifies whether the
requirement ¢ is satisfied (or violated) on M for all the inputs and therefore the assumption should not
be computed. If the requirement is neither satisfied nor violated for all inputs, EPIcuRus iteratively
performs the three steps of the EPIcuRus Loop (see Algorithm @ discussed in the following:

B) Test generation (GENSUITE): returns a test suite TS of test cases that exercise M with respect to
requirement ¢. The goal is to generate a test suite TS that includes both passing (i.e., satisfying ¢)
and failing (i.e., violating ¢) test cases;

Assumption generation (GENASSUM): uses the test suite TS to compute an assumption A such
that M restricted by A is likely to satisfy ¢;

Model checking (CHECK): checks whether M restricted by A satisfies ¢. We use the notation (A)M{¢)
(borrowed from the compositional reasoning literature |CGPO03|) to indicate that M restricted by A
satisfies ¢. If our model checker can assert (A)M(¢), a sound assumption is found.

There are two stopping criteria that can be selected for EPIcuRus. The first stopping criterion
stops EPIcuRus whenever the model checker can assert (A)M(¢). The second stopping criterion
constrains the timeout and allows EPIcuRus to refine the computed assumption over consecutive
iterations.

A high-level description of each of these steps is presented in the following, a detailed description
of the assumption generation procedure proposed in this work is provided in Section

Sanity Check

The sanity check (EB) verifies whether the requirement ¢ is satisfied or violated for all the inputs.
For this reason, we remove the Prerequisite-4 considered in Chapter [p, Section [5.1} The sanity
check uses a model checker to respectively verify whether (T)M(¢) or (T)M(—¢) is true. We use
the symbol T to indicate that no assumption is considered. If the requirement is satisfied for all
inputs, no assumption is needed. If the requirement is violated for all inputs, then the model is
faulty, and an assumption cannot be computed as there is no input that satisfies the requirement.
The requirement passes the sanity check if some inputs satisfy ¢ while others violate it, i.e., the
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Algorithm 7 EPIcuRus Loop.

Inputs. M: the Simulink model
¢: requirement of interest
opt: options

Outputs. A: assumption

1: function A=EPICURUSLOOP(M, ¢, opt)

2:  TS=[]; A=null; > Variables Initialization
3: do

4:  TS=GENSUITE(M, ¢, TS, opt); > Test Generation
5. A=GENASSUM(TS,opt); > Assum.Gen.
6: A= CHECK(A, M, ¢); > Model Checking
7:  while not opt.Stop_Crt

8: return A;

9: end function

requirement is neither satisfied nor violated for all inputs. In that case, the EPIcuRus loop is
executed to compute an assumption.

We use QVtrace to implement our sanity check. QVtrace exhaustively verifies whether a Simulink
model M satisfies a requirement ¢ expressed in the QCT language, for all the inputs that satisfy the
assumption A, i.e., (A)M(¢). QVtrace generates four different outputs (see Section [5.2)).

e To check whether the model M satisfies the requirement ¢ for all inputs, we check (T)M(¢).
When it returns “No violation exists”, or “No violation exists for 0 < k < ky,,4.”, we conclude
that the model under analysis satisfies the given formal requirement ¢ without the need to
consider assumptions.

e To check whether the model M violates requirement ¢ for all inputs, we check (T)M(—¢). If
QVtrace returns “No violation exists”, or “No violation exists for 0 < k < k42", we conclude
that since —¢ is satisfied, the model under analysis does not show any behavior that satisfies
the requirement ¢. Thus, the requirement ¢ is violated for any possible input, and the model
is faulty.

In the two previous cases, EPIcuRus provides the user with a value indicating that all the outputs
of the model either satisfy or violate ¢. Otherwise, the EPIcuRus loop is executed to compute an
assumption.

Test Generation

The goal of this step (BJ) is to generate a test suite TS of test cases for M such that some test
inputs lead to the violation of ¢ and some lead to the satisfaction of ¢. Note that, while inputs
that satisfy and violate the requirement of interest can also be extracted using model checkers, due
to the large amount of data needed by machine learning (ML) to derive accurate assumptions, we
rely on simulation-based testing for data generation. Further, it is usually faster to simulate models
rather than to model check them. For example, performing a single simulation of AC and evaluating
the satisfaction of ¢ on the generated output takes 0.9s, while model checking AC against ¢, takes
approximately 21.06s. Hence, given a specific time budget, simulation-based testing leads to the
generation of a larger amount of data compared to using model checking for data generation.
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We use search-based testing techniques [HSX™19,/AB11,/CLMO04] for test generation, which relies
on simulations to run the test cases. Search-based testing allows us to guide the generation of test
cases in very large search spaces. It further provides the flexibility to tune and guide the generation
of test inputs based on the needs of our learning algorithm. For example, we can use an explorative
search strategy if we want to sample test inputs uniformly or we can use an exploitative strategy if
our goal is to generate more test inputs in certain areas of the search space. For each generated test
input, the underlying Simulink model is executed to compute the output. We recall from Chapter
Section [5.4] the technique that we use to generate input signals. Specifically, we use the approach of
Matlab [TFPT19,AWM™ 19| that encodes signals using some parameters. Specifically, each signal u,,
in U is captured by an input profile (int,,, Ry, n,), where int, is the interpolation function, R, C R
is the input domain, and n,, is the number of control points. We assume that the number of control
points is equal for all the input signals. Provided with the values for these three parameters, we
generate a signal over time domain T as follows:

1. We generate n,, control points, i.e., ¢y 1, Cu2, ..., Cun,, €qually distributed over the time
domain T = [0, b], i.e., positioned at a fixed time distance I = ﬁ‘_l. Let ¢, 4 be a control
point, x is the signal to which the control point refers, and y is the position of the control
point. The control points ¢, 1, ¢y2, ..., Cun, respectively contain the values of the signal u at

time instants 0,1,2-1,...,(ny —2) -1, (ny, — 1) - I;

2. We assign randomly generated values within the domain R, to each control point ¢, 1, cy 2,

coy Cumgs

3. We use the interpolation function int, to generate a signal that connects the control points.
The interpolation functions provided by Matlab include, among others, linear, piece-wise con-
stant and piece-wise cubic interpolations, but the user can also define custom interpolation
functions.

To generate realistic inputs, the engineer should select an appropriate value for the number of control
points (n,) and choose an interpolation function that describes with reasonable accuracy the overall
shape of the input signals for the model under analysis. Based on these inputs, the test generation
procedure has to select which values ¢y 1, cu2, ..., Cun, to assign to the control points for each
input uy,.

The verdict of the requirement of interest (¢) is then evaluated by (i) using the values assigned
to the control points and the interpolation functions to generate input signals @; (ii) simulating the
behavior of the model for the generated input signals and recording the output signals ¥ = H(T, M);
(iii) evaluating the degree [u, 7, ¢] of satisfaction of ¢ on the output signals; and (iv) labelling the
test case with a verdict value (pass or fail) depending on whether [u,7, ¢] is greater (or equal) or
lower than zero.

The test generation step returns a test suite TS containing a set of test cases, each of which
containing the values assigned to the control points of each input signal and the verdict value.
Depending on the algorithm used to learn the assumption, EPIcuRus may or may not reinitialize
the test suite TS at each iteration. In the latter case, the test cases that were generated in previous
iterations remain in the new test suite TS that is also expanded with new test cases.

Assumption Generation

Given a requirement ¢ and a test suite TS, the goal of the assumption generation step is to infer an
assumption A such that M restricted based on A is likely to satisfy ¢. We use machine learning (ML)
to derive an assumption based on test inputs labelled by binary verdict values. Specifically, the
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assumption generation procedure infers an assumption by learning patterns from the test suite data
(TS). This is done by (i) running the ML algorithm that extracts an assumption defined over the
control points of the input signals of the model under analysis; and (ii) transforming the assumption
defined over the values assigned to the control points into an assumption defined over the values of
the input signals such that it can be checked by QVtrace.

Different ML techniques used in the assumption generation step lead to different versions of
EPIcuRus. In this work, we consider Decision Trees (DT), Genetic Programming (GP), and Random
Search (RS) as alternative assumption generation policies. DT is described in Chapter [GMNT™20],
Section while GP, and RS are described in Section [6.3 and are part of the contributions of this
work.

Model Checking

This step checks whether the assumption A generated by the assumption generation step is sound.
Note that the ML technique used in the assumption generation step, being a non-exhaustive learning
algorithm, cannot ensure that assumption A guarantees the satisfaction of ¢ for M. Hence, in this
step, we use a model checker for Simulink models to check whether M, restricted by A, satisfies ¢, i.e.,
whether (A)M(¢) holds. QVtrace returns four possible results; “No violation exists”, “No violation
exists for 0 < k < kpmaz”,  Violations found”, and “ Inconclusive”. Specifically, when QVtrace returns
“No wviolation exists” or “No wviolation exists for 0 < k < kjnq.’, we conclude that assumption A is
sound, and hence ensures that M satisfies requirement ¢. When QVtrace returns “ Violations found”,
we conclude that A is theoretically unsound, since M violates requirement ¢ under the assumption A.
When QVtrace returns “Inconclusive”, the assumption can neither be proven sound nor theoretically
unsound. In the remaining sections, we use the following terminology:

1. “an assumption is sound”’ denotes the cases in which the verdict “No violation exists” or “No
violation exists for 0 < k < kmnq,” is returned by the model checker, i.e., it is proven that the
assumption is sound.

2. “an assumption is theoretically unsound” denotes the cases in which the “ Violations found”
verdict is returned by the model checker, i.e., it is proven that the assumption is unsound.

3. “an assumption is inconclusive” denotes the cases in which “Inconclusive” verdicts are returned

6.3 Assumption Generation

In this section, we describe our solution for learning assumptions. For a given Simulink model M, we
generate assumptions over individual control point variables of the signal inputs of M (Section .
We then provide a procedure to lift the generated assumptions that are defined over control points to
those defined over signal variables (Section. Our algorithm to generate assumptions uses Genetic
Programming (GP) because we want to generate complex assumptions composed of arbitrary linear
and non-linear arithmetic formulas. In addition, we introduce a baseline algorithm using Random
Search (RS) for generating assumptions.

Learning Assumptions on Control Points with GP

Genetic programming (GP) is a technique for evolving programs from an initial randomly generated
population in order to find fitter programs (i.e., those optimizing a desired fitness function). In
our work, we use Strongly Typed Genetic Programming (STGP) [KK92,Mon95|, a variation of GP
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Algorithm 8 Genetic Programming (GP)

Inputs. TS: the test suite
opt: values of the parameters of GP (Table [6.3])
Outputs. A: assumption

: function A=GENASSUM(TS,opt)

t=0;

Po=INITIALIZE(TS,0pt);
Py .Fit=EVALUATE(TS,Py);

0ff=BREED(P;,opt);
0ff.Fit=EVALUATE(TS,0ff);

Pyy1=01f1f;

: t=t+1;
10: endwhile

1
2
3
4:
5:  while t<opt.Gen_Size do
6
7
8
9

11: A=BESTASSUM(Pg,...,Pi+1);

12: return A;

13: end function

> Initialize Population
> Assumptions Evaluation

> New Offspring

> Evaluation
> New Population

> Get Best Assum.

Table 6.3: Parameters of EPIcuRus (EP)

and its Genetic Programming algorithm (GP).

ParameterDescription

ParameterDescription

SBA Search-based algorithm (GP, DT, RS). ST Simulink simulation time.
EP TS_Size The number of the generated test Stop_Crt Stopping criteria: sound assumption found (MC) or
cases per iteration. timeout (Timeout).
Timeout  EPIcuRus timeout. Nbr_Runs Number of experiments to be executed.
Max_Conj Maximum number of conjunctions Max_Disj Maximum number of disjunctions in an assump-

Const_Min
Max_Depth

GP
Pop_Size
Sel_Crt

Mut_Rate

in an assumption.
Minimum constant value.
Maximum depth of the syntax tree.

Number of individuals per popula-
tion.
The selection criterion.

Probability of applying the muta-
tion operator.

tion.

Const_Max Maximum constant value.

Init_RatioPercentage of the assumptions copied from the last
population.

Gen_Size Number of generations.

T_Size The number of individuals chosen for the tourna-
ment selection.
Cross_RateProbability of applying the crossover operator.

designed to ensure that all the individuals within a population follow a set of syntactic rules specified
by a grammar. The steps of our GP procedure are summarized in Algorithm [§] First (INITIALIZE),
the algorithm creates an initial population containing a set of possible solutions (a.k.a. individuals).
A fitness measure is used to assess how well each individual solves the problem (EVALUATE). In the
evolutionary part, the algorithm iteratively generates new populations (BREED). It extracts a set of
parents individuals and generates an offspring set by applying genetic operators to the parents. The
algorithm then evaluates the individuals of the offspring (EVALUATE) and uses the offspring set as
the new population Py for the next iteration. The breeding and evaluation steps are repeated for a
given number of generations (opt.Gen_Size). Then, the algorithm finds among all the individuals
of the generated populations the individual with the highest fitness (BESTAsSUM). The algorithm
returns the individual with the highest fitness (4).
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or-exp :: = or-exp V or-exp | and-exp
and-exp :: = and-exp A and-exp | rel

rel t=exp(<|<[>]2>2]=)0

exp i =exp (+| —| x|/ ) exp | const | cp

Figure 6.3: Syntactic rules of the grammar that defines the assumptions on control points. The
symbol | separates alternatives, const is a constant value, and cp is a variable that refers to a control
point.

In the following, we describe how we use Algorithm [§] to generate assumptions over individual
control point variables of the input signals of M.

Representation of the Individuals. Each individual represents an assumption over individual
control point variables of the input signals of M. Specifically, assumptions are defined according to
the syntactic rules provided by the grammar shown in Fig. [6.3] Furthermore, we constraint each
arithmetic expression to contain only signal control points in the same position. For example, the
assumption:

(Cul,l — Cuy,l — 20 < O) vV ((Cul,Q < 0) AN (Cu272 —2.5= 0))

is defined according to the grammar in Fig. It constrains the values of the control points ¢, 1,
Cus,15 Cup,2, and ¢y, 2, and each arithmetic expression contains control points that refer to the same
position. For example, ¢, 1 + cyu,,1 contains the signal control points ¢y, 1, cyu,,1 of the input signals
u1 and ug in position 1.

Initial Population. The initial population contains a set of Pop_Size individuals. The pop-
ulation size remains the same throughout the search. The method INITIALIZE generates the initial
population. Recall from Section (see Algorithm [7)) that GENASSUM is called within EPIcuRus
iteratively.

The first time that INITIALIZE is called it generates an initial set of randomly generated indi-
viduals. We use the grow method |[PLMKO§| to randomly generate each individual in the initial
population. The grow method generates a tree with a maximum depth Max_Depth. It first creates
the root node of the tree labeled with the Boolean operator V or A or one among the relational
operators <,<,>.> and =. Then, it iteratively generates the child nodes as follows. If the node is
not a terminal, the algorithm considers the production rule of the grammar in Fig. [6.3] associated
with the node type. One among the alternatives specified on the right side of the production rule
is randomly selected and used to generate the child nodes. Then, the child nodes are considered. If
the node is a terminal, depending on whether the node type is const or cp, a random constant value
within the range [Const_Min,Const_Max]| or signal control point is chosen with equal probability
among the set of all the control points, respectively. To ensure that the generated tree does not
exceed the maximum depth (Max_Depth) the algorithm constrains the type of the nodes that can
be considered as the size of the tree increases. The algorithm also forces each arithmetic expres-
sion (exp) to only use control points in the same position. When all the nodes are considered the
individual is returned.

In the subsequent iterations, however, INITIALIZE copies a subset of individuals from the last
population generated by the previous execution of GENASSUM. The number of copied individuals is
determined by the initial ratio (Init_Ratio) in its initial population and then randomly generates
the remaining elements required to reach the size Pop_Size. This allows GP to reuse some of the
individuals generated previously instead of starting from a fully random population each time it is
executed.
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Fitness Measure. Our fitness measure is used by the EVALUATE method to assess the soundness
and coverage of the assumption individuals in the current populations (see Section. The fitness
measure relies on the test cases contained in the test suite TS. We say a test case tc in TS satisfies
an assumption A if tc is a satisfying value assignment for A. We compute the number of passing test
cases in TS that satisfy A and denote it by TP. We also compute the number of failed test cases in
TS that satisfy A and denote it by TN. We then compute the sound degree of an assumption A as
follows:

TP

sound = ———
TP + TN

The variable sound assumes a value between 0 and 1. The higher the value, the more passing
test cases in TS satisfy the assumption. When sound = 1, all the test cases in TS that satisfy
the assumption lead to a pass verdict. Since there is no failing test case in TS that satisfies the
assumption, the assumption is likely to be sound.

To measure the coverage of an assumption, we compute the ratio of test cases in TS satisfying
the assumption (TP+TN) over the total number of test cases in TS:

TP + TN

coverage —
g TS

The higher coverage, the weaker the assumption, and the more useful it is when informing
engineers about when a requirement is satisfied.

Having computed sound and coverage for an assumption A, we compute the fitness function for
A as follows:

EFN = sound + | sound] - coverage

where || is the Matlab floor operator |flo20]. This operator returns 0 for all the values of sound
within the interval [0,1) and returns 1 if sound is equal to 1. Function FN returns the sound value
when sound is within the interval [0,1). When sound is equal 1 it returns the value 1 + coverage.
Intuitively, FN starts considering the coverage value only when an assumption is sound. This fitness
function guides the search toward the detection of sound assumptions (which is our primary goal)
that provide larger coverage.

We note that our fitness provides one way to combine sound and coverage values that fitted our
needs. Developers may identify other ways to combine these two values to prioritize either sound
assumptions or assumptions with large coverage.

Parents Selection. It uses the fitness values to select parent individuals for crossover and
mutation operations (see SELECTPARENTS) that will be used to generate a new population. We im-
plemented the following standard selection criteria of GP: Roulette Wheel Selection (RWS), TouR-
nament Selection (TRS) and Rank Selection (RS) |Lonll].

Genetic Operators. The genetic operators of GP act on the syntax tree of individuals. For
example, the syntax tree of the following assumption is shown in Fig. [6.4}

(cuhl — Cup,1 — 20 < 0) \4 ((Cu1,2 < O) A (CU2,2 —25= 0))

Each node of the syntax tree represents a portion of the individual and is labeled (italic red label)
with the identifier of the corresponding syntactic rule of the grammar of Fig. [6.3
The BREED method generates an offspring by

e cither applying the crossover operator to generate two new individuals (with probability
Cross_Rate) or randomly selecting an individual from P;; and
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Figure 6.4: Syntax tree associated with an individual.

e applying the mutation operator (with probability Mut_Rate) to the individuals returned by
the previous step.

The crossover and mutation genetic operators are summarized in the following.

We use one-point crossover |PL9§| as crossover operator. Omne-point crossover (i) randomly
selects two parent individuals; (ii) randomly selects one subtree in each parent; and (iii) swaps
the selected subtrees resulting in two child individuals. To ensure that the child individuals are
compliant with our representation, we force the following constraints to hold:

e The type of the root nodes of the subtrees is the same;
e The depth of the child individuals does not exceed Max_Depth;

e The number of conjunctions and disjunctions of the child individuals does not exceed Max_Con j
and Max_Disj, respectively;

e When the type of the root nodes of the subtrees is exp, all the signal control points of the
subtrees are in the same positions.

We use point mutation |[PBLI8| as a mutation operator. Point mutation mutates a child in-
dividual by randomly selecting one subtree and replacing it with a randomly generated tree. To
create the randomly generated tree, we adopt the procedure used within the INITIALIZE method.
Additionally, to ensure that the mutated child individual is compliant with our representation, our
implementation ensures the constraints specified for the crossover operator are also satisfied here.

The full set of GP parameters is summarized in Table [6.3]

Random Search. It proceeds following the steps of Algorithm |8l However, at each iteration,
a new set of individuals is randomly generated by adopting the same procedure used within the
INITIALIZE method.

Control Points-Based to Signal-Based Assumptions

To use assumptions in QVtrace, it is necessary to translate assumptions that constrain control
point values to assumptions that constrain signal values. To do so, we proceed as follows. Recall
that control points ¢, 1, cu2, .- Cuny—1, Cun, are respectively positioned at time instants 0,7,2 -
I,...,(ny,—2)-I,(n,—1)-I and that any arithmetic expression contains only signal control points in
the same position. Each expression exp that constrains the values of control points in position j is
translated into an expression Vt € [(j —1)-1,7-1) : exp’ where exp’ is obtained by substituting each
control point ¢,, ; with the expression u,(t) modeling the input signal u, at time t. Intuitively, this
substitution specifies that the expression exp holds within the entire time interval [(j — 1) - 1,7 - I).
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For example, assuming that the control points 1, 2 and 3 are respectively positioned at time instant
0, 5 and 10, the assumption on the control points

(CUhl — Cup,1 —20 < 0) v ((CULQ < 0) A (CUQ,Z —25= 0))
is translated into an assumption over the signal variables as follows:

(V£ € [0,5) s uy () — up(t) —20 < 0) V
((Vt € 0,5) s ur(t) < 0) A (V£ € [5,10) : up(t) — 2.5 = 0))

Note that, our translation does not use the interpolation function of the input profile (see Sec-
tion. Indeed, considering more complex interpolation functions may lead to assumptions that are
less comprehensible and contain arithmetic functions that are more complex to interpret since they
also relate signal values at different time instants. However, our approach can be extended to also
consider the input profile for the translation from control-point-based assumptions to signal-based
ones.

6.4 Evaluation

In this section, we evaluate our contributions by answering the following research questions:

e RQ1 (Comparison of the search-based techniques). How does GP compare with DT and RS in
generating sound assumptions over signal variables with have a large coverage? (Section

To answer this question, we compared the different search-based techniques of EPIcuRus and em-
pirically assessed whether GP learns sound assumptions that have a larger coverage than the ones
learned by DT and RS. We are not aware of any tool other than EPIcuRus for computing signal-
based assumptions that we could use as a baseline of comparison. To answer this question we
relied on a public-domain set of representative models of CPS components [MBG™20a] from Lock-
heed Martin |loc20]—a company working in the aerospace, defense, and security domains— and the
model of our satellite case study (AC). Recall that EPIcuRus targets individual components, that
can be analyzed using a model checker, and is generally not applicable to the entire industrial CPS
models, such as the ADCS model (see Section .

e RQ2 (Usefulness). How useful are the assumptions learned by EPIcuRus?

To answer this question, we empirically assessed whether EPIcuRus can learn assumptions that spec-
ify valid inputs of a CPS component by comparing them with assumptions engineers would manually
develop based on their domain knowledge and without any automated assistance. We answer this
question by using our best search technique, according to RQ1 results, and the AC component of
ADCS since 1. this is a representative example of an industrial CPS component (see Section ,
and 2. we could interact with the engineers that developed the AC component to evaluate how the
assumptions computed by EPIcuRus compare with the assumptions they would manually write. To
answer our research question, we considered the requirement ¢; of AC (see Section since EPIcu-
Rus confirmed that the requirements ¢, ¢3, and ¢4, are satisfied for all possible input signals. Since
there is, when dealing with complex components, a tradeoff among the coverage of the assumptions
returned by EPIcuRus and the capability of QVtrace to confirm their soundness (see Section ,
engineers often have the choice to either learn assumptions with large coverage, whose soundness
cannot be confirmed by a solver like QVtrace, or alternatively learn simpler assumptions, which have
lower coverage but whose soundness can be verified exhaustively. Our goal is to investigate such
tradeoff when analyzing industrial CPS components. Therefore, to answer RQ2, we are considering
two sub-questions:
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e RQ2-1. How useful are EPIcuRUS assumptions when demonstrating their soundness is not a
priority ¢

o RQ2-2. How useful are EPIcuRUS assumptions when learning assumptions whose soundness
can be verified is prioritized?

Implementation and Data Availability. We extended the original Matlab implementation of EPI-
cuRus |[GMNT20]. We decided to implement the procedure presented in Section by reusing ex-
isting tools. Among the many tools available in the literature (e.g., Weka [FHW16|, GPLAB [SA03],
GPTIPS [Seal5|, Matlab GP toolbox |[GPM20,[MASO05]), we decided to rely on tools developed in
Matlab. This facilitates the integration of our extension within EPIcuRus, and restricted our choice
to GPLAB, GPTIPS, and the Matlab GP toolbox. Among these, we implemented our techniques on
the top of GPLAB. We chose GPLAB since it allows the introduction of new genetic operators by
adding new functions. We exploited this feature to implement the genetic operators of the procedure
presented in Section Our implementation and results are publicly available [Epi20|, alongside
the paper of the work presented in this chapter |[GMNT55|.

RQ1 — Comparison of the Search-Based Techniques

To compare GP, DT, and RS, we considered 12 models of CPS components and 94 requirements [MBG™20a).
These models include 11 models developed by Lockheed Martin [loc20] and the model of our satel-

lite case study (AC). The models and requirements from Lockheed Martin were also recently used

to compare model testing and model checking [NGM™19] and to evaluate our previous version of
EPIcuRus [GMNT20]. Table contains the description, number of blocks, inputs, and outputs of

each CPS component model. It also contains the simulation time and the number of requirements
considered for each model.

Out of the 94 requirements, 27 could not be handled by QVtrace (violating Prerequisite-3).
For 16 requirements, the Simulink models of the CPS components were not supported by QVtrace.
For 11 requirements, QVtrace returned an inconclusive verdict due to scalability issues. For 48 of
the 67 requirements that can be handled by QVtrace, EPIcuRus did not pass the sanity check:
QVtrace could prove 47 requirements and refuted one requirement. Therefore, to answer research
question RQ1, we considered the 19 requirements of four models, that can be handled by QVtrace,
pass the sanity check, and required the assumption generation procedure to be executed (column
#Reqs of Table within round brackets).

Methodology and Experimental Setup. To answer our research question, we configured
the parameters of GP in Table according to values in Table We chose default values from
the literature [PLMKOS8| for the population size (Pop_size), mutation rate (Mut_rate), crossover
rate (Cross_Rate), and the max tree depth (Max_Depth) parameters. We set tournament selection
(TRS) as selection criterion (Sel_Crt) since, when compared with other selection techniques, it
leads to populations with higher fitness values [PLMKOS8|. We set the value of the tournament
size (T_Size) according to the results of an empirical study on ML parameter tuning [AF13|. We
set the maximum number of generations (Gen_Size), the number of conjuntions (Max_Conj) and
disjunctions (Max_Disj), and the initial ratio (Init_Ratio) based on the results of a preliminary
analysis we conducted, over the considered study subjects, where we determined the average number
of generations needed to reach a plateau. We assigned to Const_Min and Const_Max, respectively,
the lowest and highest values the input signals can assume in our study subjects. We set the number
of tests in the test suite (TS_Size) to 300, which was the value used to evaluate falsification-based
testing tools in the ARCH-COMP 2019 and 2020 competitions [EAD ™19, EAB™20).
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Table 6.4: Identifier (ID), name, description, number of blocks (#Bk), inputs (#1In), outputs (#0ut),
simulation time (ST), number of requirements (#Reqs), and the number of requirements we used
to answer research question RQ1, i.e., they pass the sanity check (#Reqs within round brackets) of

each Simulink model of the components of our study subjects.

ID Name Description #Bk #In #0utST(s)#Regs

TU  Tustin A numeric model that computes integral 57 5 10 10 5(2)
over time.

EB Effector Blender A controller that computes the optimal ef- 95 1 7T 0 3(0)
fector configuration for a vehicle.

SW  Integrity Monitor —Monitors the airspeed and checks for haz- 164 7 5 10 2 (0)
ardous situations.

FSM Finite State Ma- Controls the autopilot mode in case of 303 4 1 10 13 (2)

chine some environment hazard.
REG Regulator A typical PID controller. 308 12 5 10 10 (6)
NLG Nonlinear Guid- A guidance algorithm for an Unmanned 373 5 5 10 2 (0)
ance Aerial Vehicles (UAV).

TX Triplex A redundancy management system. 481 5 4 10 4 (0)

TT Two Tanks* A controller regulating the incoming and 498 2 11 14 32(8)
outgoing flows of two tanks.

NN  Neural Network A predictor neural network model with 704 2 1 100 2 (0)
two hidden layers.

EU Euler Computes the rotation matrices for an in- 834 4 2 10 8 (0)
ertial frame in a Euclidean space.

AP Autopilot A DeHavilland Beaver Airframe with Au- 1549 7 1 1000 11 (0)
topilot system.

AC  Attitude Control  Attitude control component of the ADCS of 438 10 4 1 2 (1)

ESAIL.

* does not support multiple control points.

We configured RS by noticing that RS reuses part of the algorithm of GP. Therefore, for the
parameters of RS, which are a subset of the parameters of GP, we assigned the same values considered

for GP. Finally, we configured DT by considering the same values used by our earlier work, Gaaloul
et al. [GMNT20], to evaluate EPIcuRus.

To answer RQ1, we performed the following experiment. We considered each of the 19 require-
ments under analysis and three different input profiles with respectively one (IP), two (IP’), and
three (IP”) control points. We chose the number of control points of the input profiles based on the
default input signals provided by the models of the CPS components. For the eight requirements of
Two Tanks (TT), only the input profile IP was considered since this model only supports constant
input signals.

Therefore, in total, we considered 32 requirement-profile combinations. For each combination,
we ran EPIcuRus with GP, DT, and RS. We set a timeout of one hour, which is reasonable for this
type of applications. As typically done in similar works (e.g., [EADT19,[MNBP20|), we repeated
each run 100 times to account for the randomness of the test case generation procedure. Therefore,
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Table 6.5: Values for the parameters of Table used for RQL1.

Parameter Value Parameter Value
SBA DT/GP/RS ST see Table
EP TS_Size 300 Stop_Crt Timeout
Timeout 1h Nbr_Runs 100
Max_Conj 3or4 Max_Disj 2
Const_Min —100 Const_Max 100
gp Mex-Depth 5 Init_Ratio 50%
Pop_Size 500 Gen_Size 100
Sel_Crt TRS T_Size 7
Mut_Rate 0.1 Cross_Rate 0.9
* The values within the framed boxes pu, , and are respectively from [PLMKOS|, [AF13],
and [EADT19|. The value within the framed box is based on a preliminary analysis of the

considered study subjects. The values within the framed boxes = are selected based on our domain
knowledge on the considered study subjects.

in total, we executed 9600 runsE|: 3200 runs (32 -100) for each of GP, DT, and RS. For each run,
we recorded whether a sound assumption was returned. Furthermore, we computed the coverage
value associated with the assumption. To compute a coverage value (COV_V), we need to compute
the size of the valid input set for each assumption (see |U| in Definition . We do so empirically.
Specifically, we generated 100 different value assignments for each control point. These assignments
are uniformly distributed within the value range of the control point. Then, we create the input set
that we use to evaluate all the generated assumptions. When the assumption constrains more than
one control point, the input set contains all the possible combinations of the value assignments of
the control points. For example, to evaluate an assumption that constrains two control points, we
create an input set with 10000 assignments (100-100). Each input in the set is a combination of two
assignments, each selected from the 100 assignments of each control point. We then compute the
percentage of the number of valid inputs in the set (i.e., the inputs that satisfy the assumption).The
higher this number, the larger the coverage provided by the assumption.

Results. The results of our comparison are reported in Figure [6.5] FEach box plot reports the
coverage value (COV_V) of the assumptions computed by GP, DT, and RS, and is labelled with
the percentage of runs, across the 3200 runs, in which the technique was able to compute a sound
assumption (the value reported below the box plot). The average coverage values of the assumptions
computed by GP, DT, and RS across their different runs are, respectively and approximately, 50%,
30% and 42%. Though there are variations across the different combinations of requirements and
input profiles, GP can compute assumptions with a coverage value, that is, on average, 20% and 8%
higher than that of the assumptions computed by DT and RS, respectively.

Across all the runs, GP was able, on average, to compute a sound assumption in 47.9% of
the cases (1533 out of 3200), while DT, and RS were able to compute a sound assumption in
respectively 46.7% (1495 out of 3200) and 48.9% (1565 out of 3200) of the cases. Therefore, GP
is, on average, slightly more effective (1.2%) than DT, and slightly less effective than RS (1%) in
computing sound assumptions. For each requirement-profile combination, Table [6.6] reports the
number of runs, among the 100 runs executed for the requirement-profile combination, in which

3 We executed our experiments on the HPC facilities of the University of Luxembourg [VBCG14].
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Figure 6.5: Comparing GP, DT, and RS. The box plots show the coverage value of GP, DT, and RS
(labels on the bottom of the figure). Diamonds depict the average. The value below the box plot
is the percentage of runs, across all the runs, in which the technique was able to compute a sound
assumption.

GP, DT, and RS were able to compute a sound assumption. When GP was less effective than DT
and RS, in many runs, across all the different iterations, GP was able to learn assumptions with
large coverage that were close to actual sound assumptions, but theoretically unsound. Intuitively,
in these cases, maximizing the coverage of the assumption, by searching for assumptions with a
higher fitness, leads GP away from the generation of assumptions that are sound. For example,
for the requirement (¢1) of Two Tanks (TT), GP was returning, in one of its runs, the assumption
t1h < 0.5855 V t1h > 2.0065 for one of the inputs of Two Tanks. This assumption is theoretically
unsound. However, the assumption tih < 0.58 V t1h > 2 is sound. For the same requirement,
RS and DT were respectively returning, in one of their runs, the assumptions tih > 2.0259 and
t1h < 0.5655Vt1h > 2.0265 which are sound but have much lower coverage. Indeed, the assumption
t1h < 0.5855 V t1h > 2.0065 has a larger coverage than t1h > 2.0259, since any input that satisfies
t1h > 2.0259 also satisfies t1h > 2.0065. The assumption t1h < 0.5855 V t1h > 2.0065 also has
a larger coverage than t1h < 0.5655 V t1h > 2.0265, since any input that satisfies t1h < 0.5655,
also satisfies t1h < 0.5855, and any input that satisfies t1h > 2.0265 also satisfies t1h > 2.0065.
Therefore, GP learned assumptions that are the closest to the one that has the largest coverage.

Considering each of the 32 combinations of requirements and input profiles separately, GP com-
puted a sound assumption for 31 combinations in at least one of the 100 runs. DT and RS computed,
respectively, a sound assumption for 26 and 22 of the 32 combinations in at least one of the 100 runs.
Note that, computing a sound assumption once in 100 runs is still acceptable, since running our tool
100 times takes a few hours, when parallelization is used to execute different runs. So, in the worst
case, engineeers need to run our tool for a few hours to obtain assumptions, which is acceptable
for our usage scenario. In the one case that all the three techniques failed to generate a sound
assumption, all the generated assumptions were inconclusive. In the cases where only DT or RS
could not compute a sound assumption, the assumption learned by GP has a complex structure and,
therefore, could not be computed by DT and was difficult to be generated by RS. To statistically
compare the distributions of the coverage values generated by GP with those generated by DT and
RS, we used the Wilcoxon rank sum test [McD09] with the level of significance («) set to 0.05. In
both cases, the test rejected the null hypothesis (p-values < 0.05). Hence, assumptions learned by
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Table 6.6: Number of runs, among the 100 runs of each requirement-profile combination, in which
GP, DT and RS were able to compute a sound assumption

P IP’ P’
Req. GP DT RS GP DT RS GP DT RS

REG-¢ 79 99 99 76 83 100 22 0 29
REG-¢9 29 9% 37 21 75 53 11 0 17
REG-¢3 76 100 87 30 100 91 3 0 33
REG-¢4 - - - 2 18 0 6 1 0
REG-¢5 ; - - 43 14 0 11 0 0
REG-¢g - - - 1 13 7 9 2 0
TU-¢; 42 79 22 52 2 24 8 4 0
TU-¢o 100 94 100 21 96 0 19 0 0
FSM-¢1 - - - - - - 100 86 100
FSM- by - - - - - - 1 1 0
TT-¢ 96 8 97
TT-¢9 93 62 89
TT-¢3 86 59 81
TT-¢4 93 55 93
TT-¢5 97 54 98
TT-¢¢ 92 55 89
TT-¢; 84 49 79
TT-¢s 88 94 85
AC-6y 0O 0 0
* Symbol “-” marks entries related with input profiles for which the requirements are violated or

satisfied.

For the eight requirements of Two Tanks (TT), only the input profile IP was considered since this
model only supports constant input signals.

For AC, we considered the input profile IP suggested by our industrial partner.

GP have a significantly larger coverage than those learned by RS and DT.
The box plots in Figure [6.6] depict the behavior of GP, DT, and RS across the input profiles
IP, IP’ and, IP”. Each box plot reports the coverage value of one tool for a given input profile
and is labelled with the percentage of cases, across the runs associated with that input profile, in
which the tool was able to compute a sound assumption (value reported below the box plot). The
results confirm that GP generates assumptions with a larger coverage than DT and RS, however,
with a negligible loss of capacity to compute sound assumptions. For GP and DT, the test returned
p-values lower than 0.05 for IP and IP’. For IP”, the p-value is greater than 0.05 (i.e., 0.1) since the
sample size is too small to reject the null hypothesis. For GP and RS, the test returned p-values
lower than 0.05 for all the input profiles. The results show that, as expected, the more complex the
input profile, the more difficult the computation of a sound assumption. Therefore, to handle more
complex input profiles, developers should tune the values of the parameters in Table e.g., by
increasing the timeout, the number of test cases, and the population size.
The answer to RQ1 is that, on the considered study subjects, in contrast to DT and RS, GP can
learn a sound assumption for 31 combinations out of 32 combinations of requirements and input
profiles. The assumptions computed by GP have also a significantly larger coverage (20% and 8%)
than those learned by DT and RS.
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Figure 6.6: Comparing GP, DT, and RS. The box plots show the coverage value of GP, DT, and
RS for the input profiles IP, IP' and, IP” (labels on the bottom of the figure). Diamonds depict the
average. The value below the box plot is the percentage of runs, across all the runs of each input
profile, in which the technique was able to compute a sound assumption.

RQ2-1 — Usefulness of the assumptions with large coverage

To check whether GP can learn assumptions with large coverage similar to the one that would be
manually defined by engineers, we empirically evaluated GP by considering the AC component of
ESAIL. We analyzed the assumptions computed by GP in collaboration with the industrial CPS
engineers that developed ESAIL. In this question, since we do not limit our analysis to sound
assumptions, EPIcuRus was configured to return a sound assumption, if found, or the assumption
computed in the last iteration of EPIcuRus, none of the assumptions generated across the different
iterations could be proven to be sound.

Methodology and Experimental Setup. To learn assumptions on the 27 input signals of the
ten inputs of ESAIL (see Table, we considered the parameter settings in Table Cells marked
with a gray background color denote parameter values that differ from the one considered for RQ1.
We increased the values assigned to the test suite size (TS_Size) and the timeout (Timeout), since
AC is significantly more complex than the other models. Recall from RQ1 that the parameter values
in Table did not lead to any sound assumption. The number of conjunctions (Max_Conj) and
disjunctions (Max_Disj) are respectively set to 1 and 0 since, according to our industrial partner,
the assumptions can be represented as a conjunction of two inequalities among complex arithmetic
expressions (see Section . In practice, engineers do not know a priori the assumption with the
largest coverage of the system. However, they can select parameter values based on their domain
knowledge combined with experiments. The values assigned to Const_Min and Const_Max are,
respectively, the lowest and the highest values the input signals of AC can assume. We considered
the input profile IP with a single control point since, given the time domain (see Section and
according to the engineers of ESAIL, this input profile is sufficiently complex to represent changes in
the inputs of AC over the considered time domain. We assumed the ranges [—0.01, 0.01], [—0.01, 0.01],
[0,0.005], [0,0.005], and [0,0.005] as input domain for each of the input signals of the inputs q,, q.,
wt, we, and Rwh, respectively. We set the other inputs to constant values provided by our industrial
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Table 6.7: Values for the parameters of Table used to assess whether EPIcuRus can learn
assumptions similar to the one manually defined by engineers.

Parameter Value Parameter Value

SBA GP ST [0,1]s
EP TS_Size 3000 Stop_Crt  Timeout
Timeout 5h Nbr_Runs 100
Max_Conj 1 Max_Disj 0
Const_Min —0.1 Const_Max 0.1
cp Mex-Depth 5 Init_Ratio 50%
Pop_Size 500 Gen_Size 100
Sel_Crt TRS T_Size 7
Mut_Rate 0.1 Cross_Rate 0.9

Table 6.8: Minimum and maximum value of each term of exp.

Term Min Max Term Min Max

T1 0 3.91 T2 —1.66 0
T3 0 0.175 T4 —0.0012 0
T5 —0.1187 0 T6 0 0.0897
T7 0 0.025 T8 —-0.025 0
T9 —0.0013 O T10 0 0.0013

partner.

We considered 100 runs of EPIcuRus and saved the assumptions computed for requirement ¢
in each of these runs. Then, to assess whether EPIcuRus can learn assumptions similar to the ones
that would be manually defined by engineers, we proceeded as follows. We elicited the assumption
of AC for ¢; in collaboration with the ESAIL engineers as described in Section [6.1] This was done by
consulting the Simulink model design and the design documents of the satellite. We then compared
the assumptions returned by EPIcuRus and the one we elicited in collaboration with the ESAIL
engineers, i.e., the assumption A; for ¢;. While eliciting this assumption, we found discrepancies
between the model design and the design documents of the satellite. The problems were in the
design documents of the satellite and were fixed by ESAIL engineers. We corrected our assumption
accordingly to match the actual ESAIL design model. To assess the extent to which GP can learn
sound assumptions similar to the ones that would be manually defined by engineers, we analyzed
how many runs of EPIcuRus were able to learn each of the terms of the predicates P;(¢) and Pa(t).
Note that, while the values of Const_Min and Const_Max are set to —0.1 and 0.1, coefficients of
the terms with higher values (i.e., +783.3 in A1) can be generated by selecting small values for the
constant terms, i.e., +1 and —1 in the assumption A;. For example, our algorithm can generate the
assumption 0.783-w. x(t) < 0.001 which is equivalent to +783.3-w. x(t) < 1. We relied on classical
arithmetic properties to scale up and down the values of the coefficients. Furthermore, given the
domain of the inputs, the minimum and the maximum value for each term in exp is reported in
Table 6.8 Given the ranges in the table, the term that can assume the highest value in exp is T1,
followed by T2. For example, for term T2 the minimum value is —1.66 (i.e., —332.6 - 0.005) and the
maximum value is 0 (i.e., —332.6 - 0).
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Table 6.9: The value C of the coefficient of the term T; in exp, The number N of runs in which
EPIcuRus was able to learn T; in P; and Py. The percentage S of runs in which the sign of T; was
correct. The average D and the maximum MaxD of the difference between the coefficient of T; of A;
and the one returned by EPIcuRus.

] P, | P,
T, | ¢ [N S D MaxD|N S D MaxD

T1 783 59 71 679 4328 | 88 94 256 1550
T2 -332 | 69 91 247 1373 | 74 68 409 1331
T3 3 3 33 21 351 9 11 41 203
T4 —50 5 40 17682 87238 | 17 58 30778 242066
65 | —4751| 1 0 4751 4751 | 3 33 4949 5345
T6 3588 1 0 3588 3588 | 4 25 3520 3998
T7 1000 0o - - o] 0 - - 0
T8 | —1000 | 0 - - o] 0 - - 0
T9 —54 5 60 17536 87133 | 6 50 1585 4732
T10 54 0 - - 0| 1 0 54 54

Results. We obtained 100 assumptions from 100 runs of EPIcuRus. These assumptions could
not be proven to be sound by QVtrace due to the complexity of their mathematical expressions.
We analyzed and compared the syntax and the semantics of these assumptions with respect to the
actual assumption of AC (A1). The results are shown in Table Specifically, Table shows which
of the terms T1, T2, ..., T10 of P; and P, respectively, appear in the 100 assumptions computed by
EPIcuRus. Each row of the table reports four metrics computed for one of the ten terms of both P;
and Py. For each term T; of Py or Py, the tables’ columns show the following;:

e N-labelled columns. The number of runs in which the assumptions generated by EPIcuRus
contain the term T; but not necessarily with the same coefficient as that appearing in the
expression exp.

e S-labelled columns. The percentage of the runs in which the sign of T; is the same as its sign in
the expression exp over all the runs where the generated assumption by EPIcuRus contained
T;.

e D-labelled columns. The average of the differences between the values of the coefficients of T;
in exp and in the assumptions returned by EPIcuRus.

e MaxD-labelled columns. The maximum of the differences between the values of the coefficients
of T; in exp and in the assumptions returned by EPIcuRus.

The column labeled by C in Table [6.9] shows the values of the coefficients of the terms T; in exp.
The results in Table [6.9] show that the terms T1 and T2 of P; and P9, that can yield the highest
values among other terms (see Table , were contained in the assumptions returned by EPIcuRus
in 59 and 69, and 88 and 74, out of the 100 runs, respectively. Note that GP learns assumptions with
an arbitrary structure as it does not know the structure of the assumption a priori. For this reason,
the terms T1 and T2 of P; are contained in a different number of assumptions than the terms T1 and
T2 of Po, respectively. The other terms of A1, that yield negligible values compared with T1 and T2,
cannot be effectively learned by EPIcuRus, i.e., they are contained in the assumptions returned by
EPIcuRus in only a limited number of runs (< 17 each). This is an inherent property of the search
as it cannot learn terms that are low. Note that, in most of the runs (78 out of 100), all the terms
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learned by EPIcuRus are either part of Py or part of Ps. Only in 28 runs the assumptions produced
by EPIcuRus contained a spurious term. Furthermore, in these cases, given the input domains, the
values the spurious terms could yield are irrelevant compared to the other terms. To conclude, since
the terms T1 and T2 of P; and Py were contained in the assumptions returned by EPIcuRus in 59
and 69, and 88 and 74, out of the 100 runs, engineers are very likely to learn an assumption that
contains the terms T1 and T2 by executing EPIcuRus a few time, which would take less than a day.
For example, for the term T1 of P; the probability of finding it during the first, second, or third run
is 0.9311 (i.e., 0.59+ (1 —0.59) - 0.59 + (1 — 0.59)? - 0.59). This shows that the term T1 of Py is likely
to be computed within three runs.

When the terms T1 and T2 were contained in the assumptions computed by EPIcuRus, the sign
was correct in 71% and 91%, and 94% and 68% of the cases, for Py and Ps, respectively. The average
of the differences between the coefficients of the terms T1 and T2 of Py and Py in A7 and in the
assumptions returned by EPIcuRus are 679 and 247, and 256 and 409, respectively. The maximum
of the differences between the coefficients of the terms T1, and T2 of P; and Py in A; and in the
assumptions returned by EPIcuRus are 4328 and 1373, and 1550 and 1331, respectively. Note that
the coefficients of the terms T1, and T2 of P; and Py in Ay are 783 and —332, respectively. As we can
see, the coefficient values computed by EPIcuRus are not too different from the actual coefficient
values for T1, and T2, even though EPIcuRus could technically select any arbitrary number as a
coefficient for these terms. However, provided with such a large search space, EPIcuRus has been able
to select coefficients for these terms that are in the same order of magnitude (i.e., number’s nearest
power of ten) as their actual coefficients. Such accuracy for coefficient estimates is acceptable when
the coverage of the assumptions is prioritized and what matters is the identification by engineers of
the assumptions’ terms that yield the highest values among other terms in the actual assumption. A
higher accuracy would not have significant practical benefits since the model checker would anyway
not be able to confirm the soundness of the assumption.

To illustrate how useful EPIcuRus can be in practice, let us take three of the 100 runs for which
EPIcuRus returned the following representative assumptions:

A (t) = 410034 - we_x(t) —515.8 - we_y(t)+1 >0 A
P1 T P1 T2
958.0 - we _x(t) —452.8 - we_y(t) -1 <0
P2 T1 P2 T2
Ano(t) = +757.2 we__x(t) —413.1 - we _y(t)
P2-T1 P2-T2

—4787.4 - we x(t) - we y(t)
P2-T4
—4787.4 - w._y(t)>=1<0
P2-T9
Aa(t) = +757.6 - we  x(t) —448.4 - w. _y(t)
P1-T1 P1-T2

+448.4 we_x(t)* +1>0 A
856.8 - we x(t) —419.8 - w. y(t)

P2-T1 P2-T2

—86-Rwh_z(t)—1<0

where P1-T1, P1-T2, ... and P2-T1, P2-T2, ... label the terms T1, T2, ... of Pi(¢) and Pa(t), re-
spectively. EPIcuRus returns both assumptions that contain the terms T1 and T2 of both predicates
(e.g., Ay1(t)), and assumptions that contain the terms T1 and T2 of only one of the predicates (e.g.,
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Ayo(t)). Some assumptions contain only terms that are part of A; (e.g., Ar1(t), Aq2(t)), others con-
tain additional spurious terms (e.g., A;3(t)), i.e., terms that are not part of A; (e.g., 8.6 -Rwh_ z(¢)).
Finally, note that, when EPIcuRus learns a term present in both Py(t) and Py(t) (e.g., T1), the
coefficients of P1-T1 and P1-T2 are not necessarily equal.

Discussion. When EPIcuRus is configured to learn assumptions with large coverage that are
not necessarily proven to be sound, our results show that the resulting assumptions include the
terms that yield the highest values among other terms in the actual assumption. Even though, in
the generated assumptions, not all the terms are present, and the values of their coefficients are
only estimates, ESAIL engineers confirmed that these assumptions are still useful and beneficial for
designing CPS components, because they can help engineers identify flaws in their components.

Specifically, engineers generally know which input signals yield the highest values and expect
to see those input signal variables in the assumptions generated by EPIcuRus. The absence of
those variables in the generated assumptions may indicate flaws. For example, by analyzing A, (),
engineers understand that estimated speeds of the satellite across x and y axes have a significant
impact on the satisfaction of ¢, as expected. Furthermore, the assumption also provides high
level and approximate information regarding the values of w. x(t) and w. y(t) that satisfy the
requirement.

Engineers can execute several runs of EPIcuRus and obtain a report containing the information
shown in Table[6.9] By consulting the data reported in the table, they can understand which terms
are present in most of the assumptions computed by EPIcuRus and yield the highest values. Note
that, the term of the assumption yielding the highest value is likely to be the one that has the
highest impact on the property satisfaction. Running 100 runs of EPIcuRus requires approximately
20 days. However, the results can be obtained within approximately one day by running 20 instances
of EPIcuRus in parallel. This is a reasonable solution for computing assumptions of critical CPS
components.

The assumptions returned by EPIcuRus could not be learned by our previous version of EPIcu-
Rus that relies on DT to learn assumptions. Finally, EPIcuRus is the only existing tool that is able
to synthesize assumptions for CPS Simulink components. Therefore, there is no alternative that
engineers could consider to address their need.

The answer to RQ2-1 is that, among the terms of the assumptions identified by the LuxSpace
engineers, EPIcuRus configured with GP was able to learn the terms that yield the highest values
among other terms in the actual assumption. These assumptions could not be learned with any
other tool.

RQ2-2 — Usefulness of the Sound Assumptions

To check whether GP can learn sound assumptions similar to the one that would be manually defined
by engineers, we configured EPIcuRus to increase the chances of computing simpler assumptions
whose soundness can be verified by QVtrace.

Methodology and Experimental Setup. To check whether learning simpler assumptions
allows QVtrace to prove that they are sound, we configured EPIcuRus using the values of the
parameters in Table Compared with the values in Table we decreased the timeout from
five hours to one hour, the number of generations (Gen_Size) from 100 to 10, and set the values
assigned to Const_Min and Const_Max to —0.001 and 0.001, respectively. We considered 100 runs
of EPIcuRus and saved the assumptions computed for the requirement ¢; in each of these runs.
Then, we computed the percentage of the runs in which EPIcuRus was able to compute a sound
assumption.

94



6.4. Evaluation

Results. Across the 100 runs, EPIcuRus was able to compute sound assumptions in 16 runs. On
average, generating one sound assumption for AC took about 6 hours. All the 16 sound assumptions
generated by EPIcuRus have lower coverage (simpler) than A;, the actual assumption of AC. We
identified three distinct patterns to categorize the 16 generated assumptions. Below, we list the
patterns and, for each one, we show which terms from the original assumption A; appear in the
pattern.

A (t) = a-we y(t)—c<0OA
PL T2
b-we x(t)—d<0
————

P2-T1

Ay (t) = a-we x(t)+b-we y(t)—c <0
P2-T1 P2-T2

Ass(t) = a-we x(t)+b-we y(t)+c-we z(t) <0
P2-T1 P2-T2 P2-T3

The above assumptions, although simpler than the original assumption Ay, have sufficiently large
coverage as confirmed by ESAIL engineers. For example, the Ay (t) pattern indicates that, when
the values of the estimated speed of the satellite along its = and y axes are low, requirement ¢;
is satisfied regardless of the values assigned to the other inputs. Similarly, the Az (¢) and Ags(t)
patterns indicate that, when the sum of the speeds of the satellite along its  and y axes is low,
requirement ¢ is satisfied. In other words, despite being an oversimplification of reality, learned
assumptions provide correct insights into the conditions leading to the satisfaction of requirements.

To verify that the satisfaction of the assumption generated by EPIcuRus entails the satisfaction

of the baseline assumption, we compared the assumptions returned by EPIcuRus with the baseline
assumption Ay of AC (see Section using QVtrace. We loaded a Simulink model representing the
baseline assumption in QVtrace. The inputs of the model are the input signals of the assumptions.
The output is a Boolean value: true if the assumption is satisfied, false otherwise. Then, we itera-
tively loaded each of the assumptions generated by EPIcuRus in QVtrace. For all the assumptions
generated by EPIcuRus, QVtrace confirmed that the output of the Simulink model is true for all the
inputs that satisfy the assumption. This shows that the satisfaction of the assumption generated
by EPIcuRus entails the satisfaction of the baseline assumption. Therefore, any component that
satisfies the assumption generated by EPIcuRus also satisfies the actual (baseline) assumption of
the AC component.
The answer to RQ2-2 is that, when EPIcuRus was configured with parameters that lead to the
generation of sound assumptions, EPIcuRus was able to generate sound assumptions in 16 runs
out of 100. Therefore, through multiple runs, EPIcuRus can generate a sound assumption within
approximately six hours. Though simpler than actual assumptions, these learned assumptions
appear to provide correct and useful insights.

Discussion

In the following, we discuss (i) the impact of our results on the documentation practices of LuxSpace,
and (ii) the impact of the design choices of the components of EPIcuRus and the configuration
settings we selected on the obtained results.

Documentation Practices. LuxSpace engineers detail the behavior of ESAIL in a design docu-
ment. The design document is divided into several sections, one for every component of ESAIL. For
every component, among various information, the specification document contains (i) the description
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Table 6.10: Values for the parameters of Table used for RQ2-2.

Parameter Value Parameter Value

SBA GP ST [0,1]s
EP TS_Size 3000 Stop_Crt  Timeout
Timeout 1h Nbr_Runs 100
Max_Conj 1 Max_Disj 0
Const_Min —0.001 Const_Max 0.001
gp Mex-Depth 5 Init_Ratio 50%
Pop_Size 500 Gen_Size 10
Sel_Crt TRS T_Size 7
Mut_Rate 0.1 Cross_Rate 0.9

of its inputs and outputs; (ii) the mathematical formulae that define the behavior of the compo-
nent; (iii) the natural language explanation of these formulae; and (iv) a discussion of the design
decisions made by the engineers to define the behavior of the component. The above information
was also present in the specification documents of the benchmark models [NGMT19| of Lockheed
Martin [loc20| we considered in Section Neither LuxSpace nor Lockheed Martin engineers in-
cluded the assumptions of the software components in the specification documents. The ESAIL
Simulink model contains a set of assertion blocks |ass21| encoding simple component assumptions
that check whether the values assumed by some of the signals are included within valid ranges. For
the Lockheed Martin models, the input type (e.g., Boolean or Real) was described in the specifica-
tion document, but the valid input ranges were not specified. None of the models included complex
assumptions containing arithmetic expressions defined over multiple variables, such as assumption
A, presented in Section This confirms that manually identifying assumptions is difficult, espe-
cially when the component has many inputs and its behavior is defined by complex and non-linear
equations. As confirmed by the results reported in our evaluation, EPIcuRus helps engineers in
addressing this problem by automatically identifying complex and sound component assumptions.

Fitness Measure. Our fitness measure guides the search toward sound assumptions with large
coverage. Coverage as the core of the fitness function might lead to assumptions that, accidentally
and unnecessarily, correlate signals generated by different components. However, in our evaluation,
this was not the case when soundness was a priority (see RQ2-2). When soundness was not a
priority only in 28 runs (over 100) the assumptions produced by EPIcuRus contained a spurious
term. Furthermore, in these cases, given the input domains, the values the spurious terms could
yield are negligible compared to the other terms. Therefore, based on our results, the number
of assumptions that, accidentally and unnecessarily, correlate with signals generated by different
components is limited and only concern the case in which soundness was not a priority.

Metric to Compute the Cardinalities of the Valid Input Sets. To compute the size of the valid
input sets we decided not to prioritize any of the input dimensions (e.g., speed, distance, angle). This
was done both in our search-based algorithm (see Section[6.3]) and in our evaluation (see Section [6.4).
This is because we wanted to maximize coverage across all input dimensions equally, regardless of
their types. The effectiveness of our metrics is confirmed by the results obtained for RQ2-1 and
RQ2-2. If there is a need to focus coverage on certain input dimensions, engineers can modify these
metrics, e.g., by giving a higher weight to some of the input types.

Control Points-Based to Signal-Based Assumptions. To apply model checking on the generated
assumptions, we translated control-point-based assumptions to signal-based ones. Our translation
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is provided for a case where assumptions on control points are forced to hold continuously across
the time interval between the control point and its preceding control point since it generates simpler
assumptions that (a) are easier to be understood by engineers and (b) are more likely to lead to a
true or false verdict when analyzed by the model checker. Our evaluation showed that, our strategy
successfully learnt sound assumptions with high coverage for all of our study subjects. However,
more complex translations that encode correlations of signals in which the expression needs a time
shift on the time series can be used.

Configuration Settings. Our fitness function guides the search through the sound assumptions
that ensure a high coverage. Therefore, our fitness function learns constraints on the terms of the
assumption A; that can assume the highest value. As mentioned in Section [6.4] When soundness is
not a priority, in 28 runs (over 100) the assumptions produced by EPIcuRus contained a spurious
term. The configuration settings of EPIcuRus (see Table influence the number of spurious terms
learned by our tool. The higher the timeout (Timeout), the more likely is EPIcuRus to produce
spurious terms since it performs more iterations, and therefore can learn assumptions that have a
larger coverage (which may contain unnecessary correlation between input signals). The higher the
Max_Dept, the higher is the chance to have spurious terms in the assumption, since the tool can
learn bigger assumptions.

Threats To Validity

The set of models we selected for the evaluation and their features influence the generalizability of our
results. Related to this thread, we note that: First, the public domain benchmark of Simulink models
we used in our study have been previously used in the literature on testing of CPS models [NGM™19,
MNGB19]; second, the models in the benchmark represent realistic and representative models of
CPS components from different domains; third, our industry satellite model represents a realistic
and representative CPS model for which we could develop assumptions manually by collaborating
with the engineers who had developed those models; fourth, our results can be further generalized
by additional experiments with diverse types of CPS components and by assessing EPIcuRus over
those components.

6.5 Related Works

In this section, we provide the related works of the work presented in Chapter fland Chapter [f] This
section compares our approach EPIcuRus to the existing works by discussing the differences and
similarities regarding the verification, testing and monitoring of CPS and regarding the assumptions
inference for software components.

Verification, Testing and Monitoring of CPS. Approaches to verifying, testing, and monitor-
ing CPS were proposed in the literature e.g., [MNGB19, MBG™20c,/ALFS11b, MNBP20, FGD™ 11,
Tiwl12/BMBT20/MVBB21[BANT20,MAES19JAWM ™17 /SCN"20]). However, these approaches usu-
ally assume that the assumptions on the inputs of the CPS component under analysis are already
specified. Those approaches verify, test, and monitor the behavior of the CPS component for the
input signals that satisfy those assumptions. Our work is complementary to those and, in contrast,
it automatically identifies (implicit) assumptions on test inputs. Considering those assumptions is
an important pre-requisite to ensure that testing and verification results are not overly pessimistic
or spurious |[CGP03,BG03,GPC04, DLS12,(HMZ12,|GPBOS|.

Compositional reasoning. Assume-guarantee and design by contract approaches were proposed
in the literature to support hardware and software verification (e.g., [AAS20a, DLTT13,SVDP12,
MSCG19,MSCC18{dAH01ayHQRI8/AAHO1bBOV ™19 /A AS20b|). Assume-guarantee contracts rep-

97



6. COMBINING GENETIC PROGRAMMING AND MODEL CHECKING TO GENERATE
ENVIRONMENT ASSUMPTIONS

resent the assumptions a CPS component makes about its environment, and the properties it sat-
isfies when these assumptions hold, i.e., its guarantees. Some recent work discusses how to ap-
ply assume-guarantee to signal-based modeling formalisms, such as Simulink and analog circuits
(e.g., [SNWS09,NXO™14,NFIS14]). However, these frameworks assume that assumptions and guar-
antees are manually defined by the designers of the CPS components. Our work is complementary
as the assumptions learned by EPIcuRus can be used within these existing frameworks. Finally,
our work also differs from assume-guarantee testing, where the assumptions defined during software
design are used to test the individual components of the system |[GPBOg].

Learning Assumptions. The problem of automatically inferring assumptions of software compo-
nents, a.k.a supervisory control problem, was widely studied in the literature (e.g., [CGP03}/CLOS8,
GPB02,MRS19,BG03,GPC04,RW87,RW W89, CAG20,PKB*20]). However, the solutions proposed
in the literature are solely focused on components specified in finite-state machines and are not
applicable to signal-based formalisms (e.g., Simulink models), that are widely used to specify CPS
components.

Kampmann et al. [KHSZ20| proposed an approach to automatically determine under which cir-
cumstances a particular program behavior, such as a failure, takes place. However, this approach
uses a decision tree learner to observe and learn which input features are associated with the par-
ticular program behavior under analysis. As such, for our usage scenario, this approach is going to
inherit the same limitations of our earlier version of EPIcuRus.

Dynamic invariants generators (e.g., [EPGT07a,/CPS16|) infer conditions that hold at certain
points of a program. They generate a set of candidate invariants and return the best candidates
that hold over the observed program executions. In contrast, the goal of this work is to generate
environment assumptions for signal-based modeling formalisms, such as Simulink models. Environ-
ment assumptions can be considered as a specific type of invariant, but introduce specific challenges,
such as the ones considered in this work.

Property inference aims at automatically detecting properties that hold in a given system. It
was also recently applied to feed-forward neural network |GCPT19]. While many approaches for
property inference were proposed in the literature (e.g., [FLO1,EPGT07bGLMN14/GNMR16|), they
do not consider signal-based modeling formalisms (e.g., Simulink) which are the targets of this work.

Template-based specification mining are used to synthesize assumptions following with a certain
structure [LDS11,/AMT13|. However, solutions from the literature (e.g., [LDS11,AMT13,[KBD"20])
use LTL-GR(1) to express assumptions. These formalisms are substantially different and less ex-
pressive than the one considered in this work, and can not express the signal-based assumptions
generated by EPIcuRus.

In this work, we combined model checking and model testing to learn assumptions. This idea was
supported by a recent study [NGM™19|] that analyzed the complementarity between model testing
and model checking for fault detection purposes.

This chapter significantly extends our previous version of EPIcuRus [GMNT20|. Our extension
enables learning assumptions containing conditions defined over multiple signals related by both
arithmetic and relational operators. Assumptions containing conditions defined over multiple sig-
nals related by both arithmetic and relational operators are common for industrial CPS components.
This is confirmed by our industrial case study from the satellite domain. Differently than our pre-
vious work, we used genetic programming to synthesize complex assumptions of CPS components.
Finally, we performed an extensive and thorough evaluation of the assumptions computed by the
extended version of EPIcuRus using an industrial case study from the satellite domain. The assump-
tions computed by EPIcuRus were evaluated in collaboration with the engineers that developed the
satellite.

Learning Parameters. The problem of learning (requirement) parameters from simulations was
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extensively studied in the literature |[JDDS15,JDVDAS13,[BALN11]. Our work is significantly dif-
ferent from those, since it aims to learn assumptions on the input signals.

EPIcuRus extends counterexample-guided inductive synthesis [STBT06| by exhaustively veri-
fying the learned assumptions using an SMT-based model checker. Furthermore, differently from
counterexample-guided inductive synthesis, EPIcuRus (i) targets signal-based formalisms, that are
widely used in the CPS industry, (ii) extracts assumptions from test data, and (iii) uses test cases
to efficiently produce a large amount of data to be fed in our machine learning algorithm to derive
sound assumptions with large coverage.

6.6 Conclusion

This chapter proposes a technique to learn complex assumptions for CPS systems and components.
Our technique uses genetic programming (GP) to learn assumptions containing conditions defined
over multiple signals related by both arithmetic and relational operators. Environment assumptions
are required to ensure that the CPS under analysis meets its requirements and to avoid spurious
failures during the verification process. We evaluated our approach using 12 models of CPS compo-
nents with 94 requirements which includes 11 models from Lockheed Martin [loc20| and the model
of the attitude control component of ESAIL with four requirements provided by LuxSpace [Lux19].
Our evaluation shows that our approach can learn many more sound environment assumptions com-
pared to the alternative baseline techniques. Further, our approach is able to learn assumptions
that have a significantly larger coverage than those generated by existing techniques. Finally, for
our industrial CPS model, our approach is able to generate assumptions that are sufficiently close
to the assumptions manually developed by engineers to be of practical value. In the next chapter,
we summarize the challenges that are addressed and the contributions that are achieved in this
dissertation. We further provide different ways to possibly extend the presented works.
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Chapter 7

Conclusions & Future Work

In this chapter, we summarize the contributions of this dissertation and we discuss some perspectives
on the potential future work in this area.

7.1 Summary

We focus on the problem of the verification of behavioral design models of CPS specified in Simulink.
Cyber-physical systems are joint dynamics of computers, software, networks, and physical processes.
This complex design is the root to certain problems that emerge during the verification of these
systems. One of the main challenges is to guarantee the correct functioning of the components that
are computationally intensive and hence require time to perform tasks like measuring and controlling
the dynamics of the system. Despite the extensive domain expertise, traditional verification practices
can be erroneous and sometimes undecidable on complex systems.

In this dissertation, we propose several approaches to alleviate the above challenges. We ad-
dressed the problem of expensive test executions of the systems under analysis by applying online
checking which stops as soon as a failure is detected, while we handle time-continuous CPS behav-
iors and uncertainties due to CPS interactions with the environment. Moreover, we evaluated the
capabilities of existing verification strategies and we provided lessons learned as well as guidelines
regarding the strengths and weaknesses of the different techniques when applied to different types of
CPS models. Further, we used a combination of search-based testing, machine learning and model
checking to synthesize complex environment assumptions under which the CPS components are
guaranteed to satisfy given requirements. The work presented in this dissertation has been done in
collaboration with LuxSpace [Lux19], a leading provider of space systems, applications and services
in Luxembourg, and QRA Corp |qral9], a verification tool vendor to the aerospace, automotive and
defence sectors in Canada.

Chapter 3| introduces SOCRaTes, an automated approach to generate online test oracles in
Simulink. Our approach generates oracles that handle CPS Simulink models with continuous and
uncertain behaviors. The oracles return a quantitative degree of satisfaction for each test input,
which measures how far the test input is from satisfying or violating a given requirement. We
evaluated SOCRaTes using 11 industry case studies. Our results show that (i) our requirements
language is expressive enough to capture all the 98 requirements of our case studies; (ii) the effort
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required by SOCRaTes to generate online oracles in Simulink is acceptable; and (iii) for large models,
the online checking dramatically reduces the test execution time.

Chapter [4] performs an empirical evaluation and comparison of the capabilities of model checking
and model testing techniques for finding requirements violations in Simulink models. This chap-
ter presents an industrial Simulink model benchmark to evaluate the two main-stream verification
techniques. Our results show that our model checking technique is effective and efficient in proving
correctness of requirements on Simulink models that represent CPS components. However, this
technique may fail to handle systems with complex dynamic behaviours. Contrary to model check-
ing, the results of applying our model testing technique show that it can scale to large and complex
CPS models. However, this technique is computationally expensive and lacks insights on the op-
timal search heuristics to be applied. Most importantly, combining the two techniques is the best
way ahead to make use of the strengths and to cope with the limitations of these two main-stream
automated verification techniques.

Chapter [p| introduces EPIcuRus, an approach to automatically infer environment assumptions
for software components such that they are guaranteed to satisfy their requirements under those
assumptions. Our approach combines search-based software testing with machine learning decision
trees to learn assumptions. In addition, we proposed IFBT, a novel test generation technique that
relies on feedback from machine learning decision trees to guide the generation of test cases by
focusing on the most important features and the areas with the largest coverage in the search space.
EPIcuRus is applicable to complex signal-based modeling notations (e.g., Simulink) commonly used
in cyber-physical systems. Our evaluation shows that EPIcuRus is able to infer assumptions for all
the requirements in our case studies and in 78% of the cases the assumptions are learned within
just one hour. Further, IFBT outperforms simpler test generation techniques aimed at creating
test input diversity, as it increases the number and the quality of the generated assumptions while
requiring less time for test generation.

Chapter [0] extends the approach of EPIcuRus to learn more complex assumptions. This chapter
proposes a technique to learn complex assumptions for CPS systems and components. Our tech-
nique uses genetic programming (GP) to learn assumptions over multiple signals related by both
arithmetic and relational operators. Environment assumptions are needed to ensure that the CPS
under analysis meets its requirements and to avoid spurious failures during verification. We evalu-
ated our approach using 12 models of CPS components with 94 requirements provided by Lockheed
Martin [loc20] and the model of the attitude control component of ESAIL with four requirements
provided by LuxSpace |[Lux19|. Our evaluation shows that our approach can learn many more sound
environment assumptions compared to the alternative baseline techniques. Further, our approach is
able to learn assumptions that have a significantly larger coverage than those generated by existing
techniques. Finally, for our industrial CPS model, our approach is able to generate assumptions that
are sufficiently close to the assumptions manually developed by engineers to be of practical value.

7.2 Future Work

In the future, we would like to further assess the generalizability of our solutions (Chapter [3| to
Chapter @ We plan to evaluate the applicability and effectiveness of our approaches on a larger
benchmark which involves a higher number of realistic models and requirements that are represen-
tative of different domains of CPS. In fact, the selection of the models used in this dissertation and
the features contained in those models, influence the extent to which our results can be generalized.
While the benchmark models, introduced in Chapter [ Section [3.3] and Chapter [4], Section [£.1] rep-
resent realistic models of CPS systems from different domains, our results can be further generalized
by adding experiments with diverse types of systems and by assessing EPIcuRus over those systems.
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Our industry microsatellite model can also be included in future experiments where we consider a
larger set of requirements of the ESAIL model. Furthermore, our solutions are potentially useful in
other cyber-physical domains, e.g., self-driving systems. Therefore, we plan to consider well-known
industrial cases from different domains to prove the usefulness of our proposed approaches.

In Chapter [5], the evaluation confirms that the conjectures we defined hold and that the effec-
tiveness of EPIcuRus is adequate for practical usages. In the following we discuss the practical
implications of EPIcuRus.

1. EPIcuRus learns classification trees and converts them into classification rules. Directly learn-
ing classification rules |[Moll9b| could be a better solution, as it may yield more concise as-
sumptions. However, as classification rules are not supported by Matlab, we would have to
rely on external tools, e.g., weka [WFHP16|, to generate them, and further, our solution based
on classification trees already works reasonably well.

2. Decision trees applied in Chapter [5] Section [5.2] and decision rules can only learn predicates
defined over single features (i.e., single control points). That is, all the learned predicates are in
the following form ¢ ~ v. Hence, they are not suited to infer predicates capturing relationships
among two or more features (i.e., control points). Therefore, we extended our approach in
Chapter [6] to infer more complex assumptions using genetic programming. Alternatively, we
can use other machine learning techniques (e.g., more expressive rules or clustering |[WFHP16]).

3. EPIcuRus generates assumptions that assume that consecutive control points are connected
using a linear interpolation function. Our evaluation shows that this assumption provides
a good compromise between simplicity and realism. In order to make our approach more
generalizable, we can expand it to consider more complex interpolation functions in particular
when we have specific domain knowledge about the shapes of different input signals.

Our work can be extended in many different ways, a few of them are summarized in the following;:

1. Our approach considers assumptions represented as a disjunction of one or more constraints
defined as in Section Although our results show that, for our case studies, EPIcuRus
can learn sound assumptions with high coverage expressed in this form, learning assumptions
of different forms can further increase the applicability of EPIcuRus. This would require
extending the EPIcuRus test generation and assumption generation procedures and selecting
a model checker that supports new forms of assumptions;

2. As discussed in Section of the chapter, we did not use the interpolation function, spec-
ified within the input profile, to translate control points-based to signal-based assumptions.
Analyzing and defining more complex translations is part of our future work;

3. Alternative techniques, such as program synthesis |Kit09,|GPS™17|, or Support Vector Ma-
chines |[BLO02| can be used for implementing the assumption generation step. These techniques
can further improve the effectiveness of EPIcuRus;

4. EPIcuRus uses a fixed set of test cases to evaluate assumptions. Search-based software testing
(SBST) is an alternative technique, which requires performing additional computations, that
can be used for evaluating the generated assumptions. We plan to extend EPIcuRus to support
the usage of SBST to evaluate the generated assumptions, and to assess whether using SBST
is beneficial in practical applications given the additional computational cost;
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5. The sanity check and soundness check steps use model-checking to determine if the given
requirement is satisfied or violated by the model inputs satisfying the assumption. When the
requirement is not satisfied, we plan to use the counterexample to guide the test generation
step.

Finally, the assumptions generated by EPIcuRus have many other potential usage scenarios, such as
compositional reasoning, or supporting the detection of design flaws. Assessing how these assump-
tions support such usage scenarios is part of our future work.
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