
NEW CLASSIFICATION METHODS FOR GATHERING

PATTERNS IN THE CONTEXT OF GENETIC

PROGRAMMING

By

Alma Lilia Garcia Almanza

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

DEPARTMENT OF COMPUTING AND ELECTRONIC SYSTEMS

UNIVERSITY OF ESSEX

WIVENHOE PARK, COLCHESTER, CO2 3SQ, UK

JULY 2008

c© Copyright by Alma Lilia Garcia Almanza, 2008

Abstract

Machine learning techniques extend the past experiences into the future. However,
when the number of examples in the minority class (positive cases) is very small in
comparison with the remaining classes, it poses a serious challenge to the machine
learning [63],[119],[5],[81]. In this kind of problems, the prediction of the majority
class is favoured because it has a high chance of being correct. This characteristic is
present in many real-world problems, whose objective is to classify the minority class
in imbalanced data sets. However, a prediction that detects more positive cases may
be paid for with more false alarms. It is important to determine a balance between
the detection of positive cases and false alarms. A range of classifications would give
users the option to choose the best tradeoff between detecting positive cases and false
alarms according to their requirements. On the other hand, we consider it is important
to provide a comprehensive solution, which shows the real variables and conditions in
the prediction. Thus, the users could combine their knowledge in order to make a more
informed decision.

In this thesis, we present three novel approaches: Repository Method (RM), Evolv-
ing Decision Rules (EDR) and Scenario Method (SM). We use Genetic Programming
(GP) and supervised learning to build the methods proposed in this thesis. The main
objectives of RM and EDR are: to predict the minority class in imbalanced environ-
ments, to generate a range of solutions to suit different users’ preferences and to provide
an comprehensible solution for the user. On the other hand, SM has been designed
to improve the precision and accuracy of the prediction. However, such improvement
is paid for with a decrease in the recall. But, the users have to make the decision of
which of these parameters is more adequate to satisfy their needs.

This work is illustrated predicting future opportunities in financial stock markets.
Experiments of our methods were carried out, and these showed promising results for
achieving our goals. RM and EDR were compared to a standard Genetic Programming,
EDDIE-Arb and C5.0.

The methods presented in this thesis can also be used in other fields of knowledge,
these should not be limited to financial forecasting problems.

ii

iii

To my parents: Angeles Almanza and Francisco Garcia

and specially to Angely

Acknowledgements

I would like to thank Edward Tsang, my supervisor, for his patience, suggestions and

constant support during this research. I am also thankful for his guidance through the

early years of chaos and confusion.

I also want to thank to the Mexican council Consejo Nacional de Ciencia y Tecnologia

for supporting my PhD studies in the University of Essex and specially to all those

Mexicans, whose taxes made possible my scholarship.

I would like to acknowledge all people from Banco de Mexico who supported me: Ing.

Fernando Castaeda, Dr. Eduardo Jallath, Ing. Octavio Berges and Moises Rivero

I also want to thank to some good friends, who kindly accepted to proof read my thesis:

Mick, Marquitos, Edgar Galvan, Juan Pablo, Biliana, Serafin, Edgar Ramirez.

Finally, I wish to thank to some special friends, whose support was crucial during this

time: Alan Nixon, Olivia, Lupita Ocampo, Catita and Marco.

Colchester, England Alma Lilia Garcia Almanza

October, 2007

iv

Related works

Journals

Garcia-Almanza A.L. and Tsang E.P.K, Evolving decision rules to predict investment

opportunities, International Journal of Automation and Computing 05(1) January,

2008, pag 22-31

Garcia-Almanza A.L. and Tsang E.P.K, Detection of Stock Price movements Using

Chance Discovery and Genetic Programming, Knowledge-Based and Intelligent Infor-

mation and Engineering Systems Journal, 2006

Book contributions

Garcia-Almanza A.L., Tsang E.P.K and Galvan-Lopez E., Evolving Decision Rules to

Discover Patterns in Financial Data Sets in Computational Methods in Financial En-

gineering, 2007

Conferences

Garcia-Almanza A.L. and Tsang E.P.K, Simplifying Decision Trees Learned by Ge-

netic Algorithms, in proceeding of CCE IEEE World Congress on Computational In-

telligence, 2006

Garcia-Almanza A.L. and Tsang E.P.K, The Repository Method for Chance Discovery

in Financial Forecasting, in proceedings of KES2006 10th International Conference on

Knowledge-Based and Intelligent Information and Engineering Syst, 2006

v

vi

Garcia-Almanza A.L. and Tsang E.P.K, Forecasting stock prices using Genetic Pro-

gramming and Chance Discovery, 12th International Conference On Computing In

Economics And Finance, 2006

Edward Tsang, Sheri Markose, Hakan Er and Alma Garcia, ”EDDIE for Discovering

Arbitrage Opportunities”, in proceedings in the International Conference on Numerical

Methods for Finance, 2006

Garcia-Almanza A.L. and Tsang E.P.K, ”Repository method to suit different invest-

ment strategies” IEEE Congress in evolutionary Computation, 2007

Contents

Abstract ii

Acknowledgements iv

Related works v

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives and research goals . 3

1.2.1 Repository Method . 5

1.2.2 Evolving Decision Rules . 6

1.2.3 Scenario Method . 6

1.3 Thesis structure . 8

Part I

Background Literature 11

2 Machine learning 12

2.1 Machine learning . 13

2.1.1 Training data set . 14

2.1.2 Designing a learning program 15

2.2 Classification rule induction . 18

2.3 Imbalanced classes . 23

vii

viii

2.4 Metrics to evaluate a classifier performance 29

2.4.1 Confusion Matrix . 30

2.4.2 Metrics using Confusion Matrix 31

2.4.3 Receiver Operating Characteristic 32

2.5 Context-Free Grammar . 36

2.6 Summary of the chapter . 38

3 Evolutionary Computing and

Genetic Programming 40

3.1 Evolutionary theory . 41

3.2 Evolutionary Computing . 42

3.3 Genetic programming . 46

3.3.1 GP closure and Sufficiency properties 53

3.3.2 Building Blocks . 54

3.3.3 Bloat and introns . 55

3.3.4 Population diversity and convergence 58

3.4 Evolution of decision rules . 59

3.5 Summary of the chapter . 69

4 Financial Analysis 70

4.1 Financial Markets . 71

4.2 Efficient Market hypothesis . 72

4.2.1 Fundamental Analysis . 73

4.2.2 Technical Analysis . 73

4.2.3 Financial indicators . 74

4.2.4 Risk . 77

4.3 Summary . 78

Part II

Thesis Contributions 79

ix

5 Research overview 80

5.1 Approaches proposed in this thesis . 81

5.1.1 Repository Method . 82

5.1.2 Evolving Decision Rules . 83

5.1.3 Scenario Method . 84

5.2 Data sets creation . 85

5.3 Data sets description . 86

5.4 Individual representation . 87

5.5 Rule extraction . 91

5.6 Rule Simplification . 94

5.7 New rule detection . 103

5.8 Summary of the chapter . 106

6 Repository Method 107

6.1 Introduction and motivation . 108

6.2 Repository Method Procedure . 110

6.2.1 Creation of different solutions 112

6.2.2 Rule extraction . 113

6.2.3 Rule Simplification . 113

6.2.4 New rule detection . 114

6.2.5 The repository of rules . 114

6.3 Experimental Section . 114

6.3.1 Experiment: Comparison of RM performance with a standard GP116

6.3.2 Experiment: Comparison of RM and EDDIE-Arb 119

6.3.3 Experiment: Comparison of RM and C5.0 121

6.3.4 Experiment: Importance of the evolutionary process 123

6.3.5 Experiment: Importance of the accumulation of rules through

the evolutionary process . 129

6.3.6 Experiment: Rule contribution per individual 135

6.4 Conclusions . 138

x

7 Evolving Decision rules 141

7.1 Introduction and motivation . 142

7.2 Evolving Decision Rules Procedure . 144

7.2.1 Initialization of Population . 145

7.2.2 Rule extraction . 146

7.2.3 Rule Simplification . 146

7.2.4 Adding new rules in the repository 146

7.2.5 Creation of a new population 147

7.2.6 Rule evaluation . 148

7.3 Experimental section . 149

7.3.1 Experiment: Comparison of EDR with RM 150

7.3.2 Experiment: Comparison of EDR with EDDIE-Arb 152

7.3.3 Experiment: Comparison of EDR with C5.0 155

7.3.4 Experiment to test different levels of complexity 159

7.3.5 An illustrative example to analyse a set of decision rules produced

by EDR . 165

7.4 Conclusions . 173

8 Scenario Method 175

8.1 Introduction and motivation . 175

8.2 Scenario Method description . 177

8.2.1 Class division . 178

8.2.2 Rule extraction . 178

8.2.3 Rule evaluation . 179

8.2.4 Rule selection . 180

8.2.5 Tree pruning . 183

8.3 Experimental section . 184

8.3.1 Experiment: Number of pruned decision trees 187

8.3.2 Experiment: Effects of the pruning procedure 189

8.3.3 Experiment: Analysis of the tree size reduction 195

xi

8.4 Conclusions . 196

9 Conclusions and Future Research 198

9.1 Research summary . 198

9.2 Contributions . 201

9.3 Future research . 204

9.3.1 RM and EDR future research 204

9.3.2 Evolving Decision Rules (EDR) future research 206

9.3.3 Scenario Method future research 206

Part III

Appendix 208

Bibliography 219

List of Tables

2.1 Confusion Matrix to classify two classes 30

2.2 Some metrics using the components of the confusion matrix 32

5.1 Financial indicators used in the experiment 87

5.2 Explanatory variables used in the data set Arbitrage (see [114]) 88

5.3 Simplification table, Ti, Ts and Tn are thresholds (new, inferior and

superior respectively) . 101

5.4 List of the invalid cases which are not included in the Simplification table102

5.5 Steps to simplify a set of flexible conditions: using the Table 5.3 103

6.1 RM Results found when using Barclays. 118

6.2 ROC curve, the tangent lines indicate the best trade off between mis-

classifications and false alarms costs . 118

6.3 RM Results using Arbitrage data set 120

6.4 RM Results using Barclays 400. 122

6.5 Barclays Recall (1), precision (2) and accuracy (3) 124

6.6 GP and RM recall, precision and accuracy. RM was tested using differ-

ent precision thresholds PT = 10%,20%, . . . , 80%. In RM the generation

x means that RM gathered rules from populations P10, P20 . . . Px. . . . 128

6.7 Accumulated Repository Method results. Recall, precision and accu-

racy of (a) Best Individual, (b) AR10 (c) AR100 (d) AR1000. Precision

Threshold = 60% . 130

xii

xiii

6.8 Simple Repository Method (SRM) results. Recall, precision and accu-

racy of (a) Best Individual, (b) SR10 (c) SR100 (d) SR1000. Precision

Threshold = 60% . 131

7.1 EDR Results using Barclays, τ is the minimum precision threshold . . . 151

7.2 EDR Results using Arbitrage data set, τ is the minimum precision

threshold . 154

7.3 EDR Results using Barclays400 data set, τ is the minimum precision

threshold . 156

7.4 EDR Results using Tesco 400 data set, τ is the minimum precision

threshold . 158

7.5 EDR Results using Artificial 1 data set, τ is the minimum precision

threshold . 163

7.6 EDR Results using Artificial 2 data set, τ is the minimum precision

threshold . 163

7.7 EDR Results using Artificial 3 data set, τ is the minimum precision

threshold . 164

7.8 Set of rules for the example 1 . 170

7.9 Positive instances classified, where ei is a positive instance correctly

classified in the training data set and e′i is a positive instance correctly

predicted in the training data set . 171

7.10 List of independent variables . 172

8.1 Example, where TPβ=40 and FPβ = 20 183

8.2 Summary of Parameters. 186

8.3 Number of pruned trees by scenario method 189

8.4 (a) Precision before SM, (b) Precision after SM 192

8.5 Accuracy before and after scenario method was applied. 193

8.6 Recall before and after scenario method was applied. 194

8.7 Tree size reduction produced by scenario method 196

xiv

9.1 Table of contributions: RM - Repository method, EDR - Evolving deci-

sion rules, SM - Scenario Method, . 205

List of Figures

2.1 Example of a training data set, the first column represents the desired

output and the remaining columns are independent variables 16

2.2 ROC space . 34

2.3 shows a ROC curve and the tangent lines which indicate the best trade-

off between the false alarms and misclassification 35

2.4 The graphical representation of <Condition> → ”>”, var 3, 9.87 38

2.5 Grammar 1 . 39

2.6 A decision tree that meets the syntax of Grammar 1. 39

3.1 Structure of an evolution program [82] 44

3.2 The graph representation of the Full and Grow methods to create a new

population of programs . 50

3.3 The cross-point and the division of the decision tree made by the cut . 52

3.4 A recombination of two parents in order to create a new individual . . 52

3.5 Figure shows a mutated decision tree 53

5.1 How to create the training and testing data sets 86

5.2 Discriminator Grammar . 89

5.3 An decision tree created by using the Discriminator Grammar 90

5.4 Generating valid subtrees to mutate the node 5 in the decision tree . . 91

5.5 Rules from tree in Figure 5.3. Notice thta the node numbers correspond

to the original ones in the decision tree in Figure 5.3 94

xv

xvi

5.6 Valid cases for the thresholds Ti and Ts (inferior limit and superior limit,

respectively) where Ti ≤ Ts. 100

6.1 RM parameters and ROC curve using Barclays data set 116

6.2 RM parameters and ROC curve using Arbitrage data set 119

6.3 Comparison of RM and C5.0 parameters and results 121

6.4 Experiment: Importance of the evolutionary process, parameters and

results . 123

6.5 Results using Accumulated Repository Method (ARM) and Simple Repos-

itory Method (SRM), the experiment was performed using a PT=60%. 134

6.6 Contribution of decision rules . 135

6.7 Example: Confusion matrix of rules R1 and R2 and T = R1 ∨R2 136

7.1 Barclays parameters and results . 150

7.2 Barclays . 152

7.3 Barclays 400 records . 155

7.4 Tesco 400 records . 157

7.5 Results using three Artificial Data sets 159

7.6 Set of rules used to created the artificial data sets 161

8.1 A decision tree and its rule map . 179

8.2 Interval of the worst and the best scenario of Rβη = (Rβ ∨Rη) 182

8.3 Pruning Psedocode . 185

8.4 Pruned trees . 187

8.5 Precision improvement . 192

8.6 Accuracy improvement . 193

8.7 Recall improvement . 194

8.8 Tree size reduction . 195

Chapter 1

Introduction

Machine Learning (ML) is part of the Computer Science field. Its objective is to design

and develop algorithms and techniques that allow computers to ”learn”. ML provides

a wide range of algorithms, such as decision trees, support-vector machines, neural

networks, nearest neighbor algorithms, Naive Bayes and the evolutionary paradigm

[83]. In recent years ML techniques have been used extensively to solve a wide variety

of real-world problems. In the specific case of the classification problem, ML tech-

niques extend the past experiences into the future. The algorithm is trained using a

data set of examples. However, when the number of examples of the minority class

is very small in comparison with the remaining classes, it poses a serious challenge to

ML [63],[119],[5],[81]. In rare event detection, the prediction of the majority class is

favoured because it has a high chance of being correct. This characteristic is present

in many real-world problems, whose objective is to classify the minority class in im-

balanced data sets, for example: fraud detection [38], detection of oil spills in satellite

1

2

radar images [71], medical diagnosis [51], [118] and many other applications. To il-

lustrate the imbalanced class problem, consider a data set that classifies two classes

(positive and negative). The total number of examples in the data set is 100 cases,

where 3 cases are positive and the remaining are negative, if the classifier predicts all

the cases as negative, this is classifying correctly 97% of the total predictions. However,

it missed all the positive cases, which is the objective of the classification. Obviously

a prediction that detects more positive cases may be paid with more false alarms. It is

important to determine a balance between the detection of positive cases and the false

alarms. A range of classifications would give users the option to choose the best balance

between detecting positive cases and false alarms according to their requirements. This

characteristic is very important because a single classification could not be suitable for

a specific user. In contrast a range of classifications will be able to satisfy users with

different risk-guidelines. Another important advantage is to provide a comprehensive

solution that shows the real variables and conditions in the prediction. This allows

the users to understand the factors that are involved in the decision, thus they can

combine their knowledge in order to make a more informed and reliable decision.

1.1 Motivation

As we have explained above, the detection of the minority class could be a hard task.

However, the detection of these events could be crucial, as an instance, consider a

dangerous illness. The detection of this illness is crucial, thus the objective is to detect

as many cases as possible. However, such detection can trigger the increase of false

3

alarms. However, it could be more critical not to detect an ill patient than to apply

extra tests to a healthy patient, who was wrongly detected as positive. This work is

illustrated predicting future opportunities in financial stock markets, in cases where

the number of profitable opportunities is scarce. This happens, for example, when an

investor is trying to detect very high returns. As the number of opportunities with this

characteristics is very small, the system has to cope with imbalanced data sets. On the

other hand, different investors could have different risk guidelines according to their

current necessities or interests. While some investors are willing to take additional risk

for an investment, risk adverse investors may tend to take increased risks only if they

are warranted by the potential for higher returns. A range of classifications could suit

the requirements of both types of investors. Finally, investors may be interested in

understanding the variables and conditions in the prediction, thus the user can analyse

the conditions of the event and use additional knowledge to make a more informed

decision.

1.2 Objectives and research goals

The general objectives of this thesis are:

1. Classify the minority class in extreme imbalanced environments

2. Produce a range of classifications to suit the user’s preferences

3. Generate comprehensible solutions that can be read and understood by the user.

The understanding of every condition that is involved in the prediction allows

4

the users to apply their knowledge to take a more informed decision, more details

about comprehensive solutions are provided in section 2.2.

4. Improve the accuracy and precision of decision trees produced by a Genetic Pro-

gramming (GP) system [69].

To achieve these goals three methods (the three central chapters of this thesis)

have been developed. The approaches proposed in this thesis are based on machine

learning and supervised learning. The learning technique used in this research is the

evolutionary paradigm, which is inspired by the natural evolution theory developed by

Charles Darwin [28]. To achieve our goals, GP has been used in this research. The

approaches proposed in this thesis are designed to solve a binary classification problem.

Now, let us briefly explain the main reasons for selecting GP as a supervised learning

tool.

1. GP can evolve dynamic structures in size and shape. In contrast the repre-

sentation of other ML techniques, such as Genetic Algorithms (GAs) or Neural

Networks (NNs), usually have fixed size [4]

2. GP is able to produce decision trees that can be understood. This characteristic

is a key factor in this research because the interpretability of the solution allows

the user to analyse the variables and conditions which are involved in the solution.

3. GP is able to produce multiple solutions of a single problem, which facilitates the

search of patterns.

5

The approaches proposed in this thesis are designed to reduce the problem of the extra-

code generated by the GP, which is a common problem in this technique [2, 88, 104, 74].

The extra code constitutes in between the 40% and 60% of the total code. Given that,

our goal is to offer comprehensible solutions, it is important to remove the extra-code

in order to show the real variables and conditions involved in the solution. Now, let us

briefly describe the approaches proposed in this thesis:

1.2.1 Repository Method

The objective of Repository Method (RM) is to predict the minority class in imbalanced

data sets. As the number of examples in the minority class could be very small our

aim is to extract and collect different patterns that classify the positive cases (rare

instances) in different ways, increasing the probability of identifying similar cases in

future data sets. RM starts by analysing a set of solutions (decision trees) provided

by a standard GP. Then every rule is delimited, subsequently this is evaluated taking

into account the performance and novelty, this method has been designed to:

1. Classify the minority class in imbalanced data sets

2. Produce a set of rules that provide a range of classifications to suit the user’s

preferences

3. Provide a set of comprehensible rules that show the conditions and variables

involved in the decision.

6

1.2.2 Evolving Decision Rules

Evolving Decision Rules (EDR) is an evolutionary process, which is dynamic. EDR

evolves a population of decision trees to form a repository of rules. The resulting

rules are used to create a range of classifications that allows the user to choose the

best trade-off between the misclassifications and the false alarms costs. This approach

shares the same objectives with RM. As can be observed, RM and EDR share the same

objectives. However, the main difference of these approaches is the way to generate

the solutions. While RM is a deterministic process, whose set of candidate solutions is

provided by a GP system. EDR is a dynamic method, which creates new solutions by

means of the evolution of rules. A more detailed explanation of the differences of the

mentioned methods is provided in Chapter 7.

1.2.3 Scenario Method

Scenario Method (SM) is a pruning procedure for decision trees created by GP. This

pruning is based on the analysis of patterns in the decision tree. The characteristics of

this method are the following:

1. Analyse every decision tree to detect and remove the rules that do not contribute

to the classification task. Given that the pruning is performed by using a thresh-

old, the classification can be slightly tuned as liberal or conservative according

to the user preferences.

2. Simplify the decision trees to help to disclose the conditions and variables involved

in the solution.

7

Thus, we have two approaches (Repository method and Evolving decision Rules) fo-

cused on the detection of the minority class in imbalanced data sets. These are designed

to provide a range of classifications to suit the user’s risk-guidelines. According to Ling

and Li [78], in some cases a ranking classifier is more reliable than just a classifica-

tion. Finally, the goal of RM and EDR is to provide a set of comprehensible rules that

show the real variables and conditions. On the other hand, SM proposes a pruning to

improve the precision and accuracy of the predictions. The methods proposed in this

thesis were illustrated using financial data sets from the London Stock market. Ob-

viously a strong supposition in this research is the predictability of financial markets.

In technical analysis, it is believed that the investors and speculators react the same

way to the same kind of events [66]. It means that the patterns in financial prices

are usually followed by similar reactions. However, this has been strongly debated in

the financial environments, as this is explained in chapter 4. It is not the intention of

this work to enter into debate about the predictability of the financial markets. The

approaches proposed in this thesis are general methods and these can be applied to a

great variety of classification problems. Specifically, RM and EDR can be used in the

detection of the minority class in imbalanced environments, where the detection of the

minority class (positive cases) is crucial and the number of undetected positive cases

is more expensive than classify false alarms.

8

1.3 Thesis structure

This thesis has been structured in three parts, the first part provides an overview

of the required background literature to support the theory of the contributions in

this thesis, the background material has been divided in three chapters. Chapter 2

presents a machine learning literature review. It does not pretend to be either an

extensive or complete review of that field. Its objective is to present just the topics

closely related to this thesis. It starts with a learning definition and then it focuses on

specific topics, such as classification rule induction, metrics to evaluate the performance

of classifiers, the receiver operating characteristic (ROC) curve and the imbalanced

classification problem. Finally, the context free grammar, which is used to create and

maintain the decision trees used in this work, is introduced. Next, chapter 3 focuses

specifically on evolutionary computation. It starts with a general description of the

evolutionary theory and the evolutionary computation. After that, the evolutionary

technique Genetic Programming (GP) is described. Next, some specific GP issues that

are related to the contributions of this thesis such as bloat and crossover are explained.

Finally, a literature review about evolution of decision rules is provided. Chapter 4

provides a brief explanation of financial issues. The methods presented in this thesis

are illustrated with financial data sets and the attributes are formed by indicators

derived from technical analysis. First, an explanation of markets efficiency is given.

After that, the fundamental and technical analysis is briefly explained. Finally, the

financial indicators used in this thesis are described. The second and principal part of

this thesis presents the contributions of this research. This part is composed of four

9

chapters that introduce the three methods proposed in this thesis. Chapter 5 introduces

the common procedures that are used in the proposed approaches of this thesis. It was

decided to describe the common procedures in a separated chapter in order not to

repeat the same information in different chapters and to keep the methods’ description

short and simple. It is advisable to read carefully this chapter because the justification

and aims of those processes are provided. Chapter 6 introduces the first approach of

this thesis whose name is Repository Method (RM). This is a novel approach, whose

aim is to gather patterns from decision trees produced by a GP system. The goals

of this method are 1) to predict the minority class in imbalanced environments, 2) to

provide a range of classifications to suit the user’s necessities and 3) to provide a set of

rules that can be interpreted by the user. This approach analyses a set of decision trees

produced by a GP system to gather useful patterns to form a repository of rules. This

Chapter explains in detail the procedure of this approach, the experiments description,

results and finally the conclusions. Chapter 7 describes the Evolving Decision Rules

(EDR), this approach is an evolutionary method whose objective is to evolve a set of

rules (patterns). This chapter provides a literature review about previous works in the

context of evolutionary algorithms, the complete explanation of the method as well

as the experiments and results to test our approach. Chapter 8 introduces a pruning

method for decision trees generated by GP. This approach analyses each decision tree in

order to delimit its rules and evaluate the contribution of each rule to the classification

task. This approach is called Scenario Method (SM). This chapter introduces the

complete explanation of this method, the previous works and the experiments that

10

were carried out to test our approach. Finally, Chapter 9 summaries the contributions

of this thesis and provides the conclusions and future work of this research. The third

part of this thesis is composed of the appendix, which describes the algorithms of the

methods proposed in this thesis.

Part I

Background Literature

11

Chapter 2

Machine learning

This chapter presents a general description of the machine learning field, it does not

pretend to be an exhaustive review of that area, but it provides enough background

information to support the contributions proposed in this thesis. The chapter is struc-

tured as follows: section 2.1 contains a brief description in general of the Artificial

Intelligence and Machine Learning fields. After that, the remaining of this chapter

is focused on specific issues that are related to this work. Section 2.2 describes some

classification rule induction techniques, while section 2.3 explains the problem of classi-

fication in imbalanced environments. Next, section 2.4 describes the metrics that were

used to evaluate the performance of the methods proposed in this thesis, thus sections

2.4.1 and 2.4.2 describe the confusion matrix and some evaluation metrics respectively.

Section 2.4.3 gives a brief introduction about the Receiver Operating Characteristic

(ROC) curve. Finally, section 2.5 provides an introduction of the context free gram-

mars, which are used as a format to create the decision trees used in this research.

12

13

2.1 Machine learning

One of the fundamental goals of Artificial Intelligence (AI) is to endow machines with

learning capabilities. Turing proposed to mimic intelligence by training machines using

”an appropriate course of education” as he literally explained in [117]. Machine learning

(ML) is a field of the AI. It is a multidisciplinary area, which embraces other disciplines

such as probability and statistics, computational complexity theory, information theory,

philosophy, neurobiologist and other fields [83]. ML is focused on techniques that create

computer programs capable of producing new knowledge to improve their performance

[67]. That knowledge is acquired by means of input information (experience) and the

analysis of data. A formal definition of a learning system is provided by Michalski et

al.

”Learning denotes changes in the systems that are adaptive in the sense that these

enable the system to do the same task or tasks drawn from the same population more

efficiently and more effectively the next time”[67]

Mitchell [83] defines the intelligence as the ability to learn, to adapt and to mod-

ify behaviour. He asserts that learning involves improving the performance of a task

through the experience, and he formally defines this as:

”A computer program is said to learn from experience E with respect to some class

of task T and performance measure P, if its performance at task in T, as measured by

P, improves with experience E” [83]

14

At this point let us explain the difference between intelligence and knowledge:

knowledge is useful information that has been registered and store by the individ-

ual. The intelligence is the capacity of the individual to use this information in order

to achieve a specific purpose [41]. According to Mitchell [83], machine learning tech-

niques can be classified by the way that these learn. He categorizes the techniques as

1) supervised learning, 2) unsupervised learning and 3) reinforcement learning.

This dissertation has been developed in the frame of the supervised learning. Thus

the other learning techniques’ definitions are out of the scope of this dissertation.

However the interested reader is referred to [83].

Supervised learning The objective is to create a model from past information which

is also called training data set, it consists of input values and desired outputs.

The main characteristic of the supervised learning is that this kind of learning

receives feedback (desired output) to acquire knowledge. After seeing a number

of training examples, the task of a supervised learning system is to predict the

value of the model for any valid input. To achieve this, the learning system has

to generalize from the presented data to unseen situations.

2.1.1 Training data set

The methods presented in this thesis use supervised learning. The experience is pro-

vided by a training data set, which contains examples with the inputs and the desired

outputs. Figure 2.1 shows an example of a training data set. The first column rep-

resents the desired output of the learning program, in this case it is a classification

15

of two categories which are represented by 0 and 1. The next columns are indepen-

dent variables or attributes which describe the behaviour of the class in that record.

In general, every instance in the training data can be the representation of physical

objects, images, actions, processes, concepts, etc. A variable is called ordered or nu-

merical if its values are numbers. A variable is called categorical if this takes values

from a finite set of options which have not any natural order [15]. In the same vein

Flach and Lavrac [40] pointed out the difference between an example and an instance.

They explain that an instance is composed of an established collection of attributes:

Ai where i ∈ {1, . . . , n}. Every attribute can be a real number (continuous) or a finite

set of values (discrete). On the other hand, an example ej is a vector of attributes

which is tagged with a class label ej=(v1,j, . . . , vn,j, cj) where each vi,j is a value for the

attribute Ai and cj ∈ {c1, . . . , ck} is the label of a class from the set of valid classes.

It is clear that in supervised learning a set of examples is used to train the learning

system. On the other hand, in unsupervised learning a set of instances is used. All the

contributions in this thesis have been trained using supervised learning. However, we

are going to use the words example and instance as synonymous.

2.1.2 Designing a learning program

Mitchell [83] asserts that the design of a machine learning system requires the following

elements: 1) the specification of the type of training experience, 2) the design of the

target function that will measure the system performance, 3) the representation of the

target function and 4) the definition of the learning process, these are explained below:

16

Figure 2.1: Example of a training data set, the first column represents the desired
output and the remaining columns are independent variables

OUTPUT INPUT (Attributes or independent variables)
V ar1 V ar2 V ar3 V ar4 V ar5 V ar6 · · ·

0 .672 .898 .015 .232 .772 .429 · · ·
0 .333 .456 .433 .462 .733 .249
1 .623 .326 .566 .562 .224 .429
1 .633 .776 .777 .367 .444 .259
0 .635 .966 .885 .657 .564 .629
1 .343 .536 .433 .662 .244 .627
0 .893 .256 .755 .672 .224 .259
0 .563 .876 .465 .662 .444 .257

0
...

. . .

Training Experience selection The first step to design a learning program is to

select the training data, which is the experience that is going to provide the

knowledge to the learning system. The selection of the experience has an impor-

tant effect in the success of the system. There are three important characteristics

of the information that can have a big impact in the result:

1. The kind of feedback or knowledge that is provided by the training experi-

ence, this can be direct or indirect knowledge. In this research the knowledge

is supplied directly because the training data provides the desired output

(the label of the class) as was explained in the previous section. But in some

other cases the only knowledge available is provided in an indirect way.

2. The second characteristic is the way in which the learning system controls

the sequence of the training data. The examples in the training data sets

17

that are provided in this thesis are chronologically ordered.

3. The third characteristic requires that the experience be representative of the

situation(s) to learn. Usually learning systems are more accurate when the

training and testing data sets have similar distribution. However, sometimes

it is necessary to learn from a data set that has different distribution from

the final data set.

Target Function selection To design the target function it is important to keep in

mind the following factors: 1) the precise type of knowledge that has to be learned

by the system and 2) the utility of that knowledge to improve the performance

of the learning system. The target function evaluates the performance of the

learning program, this evaluation has to measure the acquired knowledge and

the way that it is used to solve the problem. It has to assign high scores to the

successful actions, so it can be easy to identify the effective ones. At this point it

is very important to identify all the features that the target function has to take

into account and to evaluate.

Determine the representation of the learning function Once the precise type

of knowledge to learn has been determined, the next step is to define the rep-

resentation that the learning program will use to describe the target function.

Some problems that are complex have to use more expressive representations of

the target function in order to make a reliable evaluation. The methods proposed

in this thesis are based on supervised learning and these will be evaluated using

18

the metrics described in section 2.4.2. It means that the representation of the

target function is determined by an arithmetic formula.

Determine a learning mechanism In this part of the process it is necessary to

define the mechanism that is going to learn from the experience. At this point

of the thesis it is still too early to fully explain the learning mechanism of our

approaches, the descriptions are provided in chapters 6,7 and 8.

2.2 Classification rule induction

This section provides a brief overview of the classification rule induction field, focusing

on those aspects that are important for this research. Given a training data a classi-

fier maps objects to Classification rule induction is a field of Machine Learning [20],

[67],[83]. According to Fawcett [37], the objective of a classifier system is to create a

mapping between examples and predicted classes. The examples are formed by a col-

lection of past observations (training data set). Each of the examples is pre-classified

using a class label, the goal is to predict unseen examples. In order to measure the per-

formance of the classifier, it is tested in another set of data, which is also called testing

data set. The result can be a continuous output as a regression, but the result of other

models can be a discrete output. For example, a label which indicates the predicted

class of the instance [15]. The number of classes could be two (binary classification) or

more (multiple classification). The approaches proposed in this thesis are designed to

solve a binary classification problem.

Breiman et al. [15] pointed out that the main goals of classification are: 1) to

19

generate an accurate classification model able to predict unseen cases and 2) discover

the predictive structure of the problem. It means to provide an understanding of the

variables and conditions that control or are involved in the event. The interpretability

of the model helps to understand the conditions that set apart one class from another.

In many cases both objectives are important. For these reasons a good classifier has to

be able to produce accurate classifications, with the limitation of the data, and provide

understanding of the predictive structure of the data [15]. This idea is reinforced

by other researchers such as Flach and Lavrac [40] who distinguish models designed

for prediction from models designed for understanding. They remark that sometimes

models, which provide a poor representation of the solution, have better predictive

power than methods that provide comprehensible models. As an instance, we can

mention the Artificial Neural Networks (ANN)[18].

On the other hand, Henery [55] exposed some characteristics that are required in a

classifier, these are the following:

• Accuracy or the reliability of the prediction, it is usually represented by the

number of correct predictions. However, in some cases this measure can vary

according to the requirements of the user, such as the desire to detect a specific

class.

• The speed of the classifier, in some cases where the speed of the classifier is a key

factor, the user could prefer to sacrifice accuracy in order to get speed.

20

• Interpretability of the solution, in many cases the understandability of the so-

lution is needed in order to have a better understanding of the conditions that

trigger the event.

• Time to learn, it refers to the size of the training data set and the time that the

classifier takes to learn new patterns and to be adjusted to new conditions.

In this research one of the key factors is the interpretability of the solution. Thus,

the user will be able to analyse the conditions and relations that control the event.

This allows the user to apply his/her professional knowledge in order to make a more

reliable decision.

Classification models

In data mining and machine learning a predictive model can be represented by a

decision tree, these are also called classification trees. According to Breiman et al. [15],

binary trees are a useful way to look at data in classification or regression problems.

In decision tree structures, branches could represent conjunctions and/or disjunc-

tions and the leaves represent classifications and features related to that classification.

As was mentioned, one of the classification objectives is to produce a model, it could

be a regression when the values are continuous and a label when there the output is

discrete. A model is a large structure which summarizes features and relationships that

satisfy a large number of cases (e.g. a decision tree), while a pattern is a local structure

which meets the requirements of few cases is the search space (e.g a rule) [121].

Classification is about discovering structural patterns in data, in ML there are

21

different ways for representing patterns. The first step is to understand which is the

desired output. Once it has been established, it is easy to design the structure to

generate it. The methods described in chapters 6 and 7 are rule discovery tools, whose

objective is to collect a set of rules that capture patterns from a specific class.

The model produced by the classifier can be represented in different ways, for

example: decision trees [15], [98], [113], finite state automats [109], graphs and networks

[18] and binary vectors (in Genetic Algorithms) [26],[64]. Some of these classifiers can

be rewritten as a collection of rules, this is the case of C4.5 [98] developed by Quinlan,

who argues that 1) a collection of rules is more intelligible than decision trees, especially

when these are large and 2) the structure of trees could create sub-concepts to be

fragmented. There are many definitions of rule, but in this research we work with the

following definition:

”A rule is a substructure of a model which recognizes a specific pattern in the

database and takes some actions” [121].

There are many machine learning techniques that have been developed for classifi-

cation and prediction. We will just provide two illustrative examples of classification

works in the field of ML. Given that, the interpretability of the model is a required

condition, this section does not mention any classifier that produces hidden models

as Artificial Neural Networks. The reader can find a series of classifiers based on

evolutionary algorithms in section 3.4. The following paragraph briefly describes two

important works in ML, which use decision trees: 1) Classification and Regression

Trees by Breiman and 2) Quinlan’s classifiers.

22

The Classification and Regression Trees (CART) algorithm was developed by Breiman

and his colleagues [15], this is a statistical algorithm to build binaries trees to solve

classification and regression problems. CART uses a set of examples to create a deci-

sion tree, the examples hold attributes that provide information to set apart the data.

The splitting is performed recursively, in each partition the aim is to minimize the

impurity, which is an indicator that measures the similarity of a data set, the smaller

the number the less impure the sample set is. An stopping criteria is used to finish

the algorithm. As the authors described the main elements of CART are: 1) a set of

binary questions, 2) a splitting condition that can be evaluated, 3) a stop splitting rule

and 4) a policy to assign every terminal node to a class. Each node in the decision

tree, holds a binary question about a characteristic of the object to classify. Finally,

the leaves of the tree hold the prediction based on the training data set.

The methods to create top down induction trees, developed by Ross Quinlan [97],

[98]. His first classifier was ID3, subsequently it was refined to produce C4.5 and the

last version of this tool is C5. Quinlan’s classifiers are based on the idea that each

attribute of the data set can make a decision that splits the data into smaller subsets.

For that reason, the Information Gain is measured for each attribute. The split will be

made using the attribute with the highest normalized information gain. This classifier

is used in chapters 5 and 6 to compare the performance of the approaches proposed on

those chapters.

23

2.3 Imbalanced classes

Machine learning classifiers, like other forecasting techniques, extend the past expe-

riences into the future. However, the imbalance between positive (minority class)

and negative cases (the remaining classes) poses a serious challenge to machine learn-

ing techniques [63],[119],[5],[81]. In rare event detection, negative classifications are

favoured because these have a high chance of being correct.

A data set is imbalanced, when there are many more examples from one class than

the others, it causes that classifiers tend to predict the largest class(es) ignoring the

small one(s). Consider a data set that classifies two classes (positive and negative).

The total number of examples in the data set is 100 cases, where 3 cases are positive

and the remaining are negative. If the classifier predicts all the cases as negative, this

is classifying correctly 97% of the total predictions. However, it missed all the positive

cases, which could be the objective of the classification.

According to Chawla [21], the imbalanced data set problem has been addressed

in two different ways: 1) the data level and 2) the algorithmic level. Let us briefly

describe some of the most relevant works of these techniques.

Data level

The data level techniques involve a pre-processing of data, thus many re-sampling

methods, such as random over-sampling 1 and random under-sampling 2 have been

used. However, more sophisticated forms of re-sampling have been proposed. Next

1Random over-sampling - Random replication of the minority class
2Random under-sampling - Random removal of the majority class

24

paragraphs describe some of the most relevant approaches of re-sampling.

Hart [54] proposed the Condensed Nearest Neighbour Rule (CNN); it is an under-

sampling method that eliminates the redundant examples of the majority class that

are distanced from the decision border. The mentioned algorithm extracts a subset of

examples from the training data set using the idea of mutual nearest neighbourhood

to select examples near to the decision line.

After that, Tomek [111] improved the CNN method introducing an algorithm to

detect borderline and noisy examples. To briefly explain this approach, let ei and ek be

two examples from different classes, and d(ei, ek) be the distance between ei and ek. A

tuple (ei,ek) is a Tomek link if there is not an example eα, such as d(ei, eα) < d(ei, ek)

or d(ek, eα) < d(ei, ek). If two examples form a Tomek link, then either 1) one of

these examples is noise or 2) both examples are borderline. Tomek links can be used

as an under-sampling or as a data cleaning method. When Tomek links are used as

an under-sampling method, only the examples of the majority class are removed. In

contrast, examples of both classes are eliminated when Tomek links are used as a data

cleaning method.

Kubat and Matwin [70] proposed an under-sampling technique for removing the

negative examples and keeping all the positive instances. First, the authors classi-

fied the examples in four categories: 1) Noisy examples, 2) borderline examples, 3)

redundant examples and 4) safe examples. The authors proposed to remove the noisy

and borderline examples by using the Tomek links technique [111]. The redundant

examples from the negative class are removed using CNN [54].

25

Chawla et al.[87] proposed the Synthetic Minority Over-sampling Technique (SMOTE).

The mechanism of this approach is to under-sample the majority class and to over-

sample the minority class using synthetic minority class examples. The latest are

created by taking each minority class instance and introducing synthetic examples

along the line segments joining any/all of the k- minority class nearest neighbours.

Depending on the amount of over-sampling required, neighbours from the k-nearest

neighbours are randomly chosen. Experimental results using C4.5, Ripper and a Naive

Bayes classifier, showed that SMOTE achieved better results that just under-sample

the majority class. To measure the result the authors used the ROC curve (see section

2.4.3).

Batista et al. [5] performed an evaluation of ten different sampling methods, the

following algorithms were tested:

1. Random over-sampling

2. Random under-sampling

3. Tomek links [111]

4. Condensed Nearest Neighbor (CNN) [54]

5. One side selection - Tomek links [111] + CNN [54]

6. CNN [54] +Tomek links [111]. As can be realized, this method is similar to one

side selection. However, it first applies CNN and after Tomek links.

26

7. Neighborhood Cleaning Rule [76]. Let ei be an example from the majority class,

for each example ei the three nearest neighbours are found. If the classification of

the three nearest neighbours of ei contradicts the class of ei, then ei is removed.

However, if ei belongs to the minority class and its three nearest neighbours

misclassify ei, then the nearest neighbours that belong to the majority class are

eliminated.

8. Synthetic Minority Over-sampling Technique (SMOTE) [87]

9. Smote [87] + Tomek links [111]

10. Smote [87] + ENN - the latest tends to eliminate more examples than Tomek

links. ENN is used to remove examples from the minority and the majority class.

Thus, any example that is misclassified by its three nearest neighbours is removed

from the training data set.

To measure the performance of the classifiers the authors used the area under the

ROC curve (see section 2.4.3). The experimental results showed that the over-sampling

methods provide more accurate results than the under-sampling techniques. In addi-

tion two of the new approaches in that work (Smote + Tomek and Smote + ENN)

performed very well for data sets with a small number of positive examples. Addition-

ally, experimental results disclosed that random over-sampling is very competitive in

comparison to more complex over-sampling techniques.

Hall and Joshi [52] proposed to enhance SMOTE. As was mentioned, SMOTE re-

balances the data sets by under-sampling the majority class and generating synthetic

27

examples of the minority class. However, the authors argued that the percentages of

under-sampling and over-sampling are not predefined, thus they proposed a method

to determine these percentages. The authors proposed a wrapper to evaluate the

performance function, which includes a measure of the minority class accuracy. The

experiments were performed using Ripper as classifier; the results showed that this

approach is effective in optimizing the evaluation function,

However, re-sampling techniques may cause some problems in the learning process.

As an instance, the introduction of examples of the minority class can slow down

the performance of the classifier when the data set is large. When the over-sampling

introduces copies of the minority class, it can produce over-fitting. On the other hand,

the under-sampling may remove useful examples from the data set.

Algorithm level

This level comprises techniques that modify the algorithm of the classifier, such as,

adjusting the cost of each class and learning from one class. Next paragraphs briefly

describe some approaches, at the algorithm level, designed to deal with the imbalanced

data set problem.

According to Ling and Sheng [79] in data mining the Cost-Sensitive Learning is a

type of learning that takes the misclassification costs into consideration. The aim of

this type of learning is to minimize the total misclassification cost. This technique has

been applied by Pazzani et al. [92], the authors proposed the Reduced Cost Ordering

algorithm, they assigned different weights or costs to each example depending on the

28

class. Li [77] built a binary classifier (buy or not buy) to predict investment opportu-

nities using a GP system. However, when the number of profitable opportunities was

small, he proposed to assign costs to each class by using a constrained fitness function.

[99] Raskutti and Kowalczyk proposed to combine under-sampling and over-sampling

methods with weighting imbalance compensation techniques. The authors increased

the imbalance until extreme situations when the large set of negative examples was

ignored and the training was provided from positive examples only. The experimen-

tal results suggest that one-class learning from positive examples is a very effective

technique for imbalanced data sets and high dimensional noisy feature space.

To solve the problem of imbalanced data, Chen et al. [22] incorporated new features

to the Random Forests method (RF) [14]. The authors proposed 1) to balance RF and

2) to weight RF. The Balanced Random Forest (BRF) algorithm is briefly described

as follows: 1) For each iteration in RF, draw a bootstrap sample from the minority

class and randomly draw the same number of cases with replacement from the majority

class. 2) The CART algorithm is used to induce a classification tree, but at each node,

instead of searching through all variables for the optimal split, only search through

a set of randomly selected variables. 3) The first and second steps are repeated a

specific number of times. Aggregate the predictions of the group and make the final

classification.

The Weighted Random Forest (WRF) assigned weight to each class; these weights

are used in the RF algorithm in two places: 1) in the tree induction procedure the class

weights are used to bias the Gini criterion for finding splits and 2) the class prediction

29

of each terminal node is determined by a weighted majority vote. The class prediction

for RF is determined by aggregating the weighted vote from each individual tree, where

the weights are average weights in the terminal nodes.

Imbalance levels

According to japkowicz [63], data sets can have different levels of imbalance, in that

work a series of experiments was performed using different levels of imbalance and three

methods to deal with this problem: over-sample, under-sample and use recognition

ignoring one class. The mentioned work concluded that every method works differently

for every level of imbalance. The present work is focused on finding opportunities in

imbalanced environments. In this work we used elements of chance discovery. It is

important to keep in mind that in imbalanced data sets the classifier performance

must not be measured only by the accuracy [71],[96]. Apparently, the accuracy is the

metric, which is evident to use, to measure the performance of a classifier. However, this

measure assumes that the class distribution in the data set is constant and relatively

balanced [95]. The accuracy is not necessarily an efficient metric for a classifier’s

performance [65].

2.4 Metrics to evaluate a classifier performance

This section describes some metrics that have been used in ML to measure the per-

formance of binary classifiers. First, the concept of confusion matrix is explained in

section 2.4.1. After, some metrics that have been defined using the components of the

confusion matrix have been introduced in section 2.4.2. Next, the Receiver Operating

30

Characteristic curve is described in section 2.4.3.

2.4.1 Confusion Matrix

A confusion matrix displays the data about actual and predicted classifications done

by a classifier [68]. This information is used in supervised learning to determine the

performance of classifiers and some learning systems. Given an instance and two classes

(positive and negative) there are four possible results: The instance is positive and it

is classified as positive (true positive). The instance is negative and it is counted as

positive (false positive). The instance is positive and it is classified as negative (false

negative). The instance is negative and it is predicted as negative (true negative).

Table 2.1 shows a confusion matrix for two classes.

Table 2.1: Confusion Matrix to classify two classes

Actual Actual
Positive Negative

Positive Prediction

True Positive False Positive
(TP) (FP)

Negative Prediction

False Negative True Negative
(FN) (TN)

Total Total
Positive Negative

31

True Positive (TP) Number of correct predictions in positive cases

False Positive (FP) Number of incorrect predictions that were classified as

positive when the instance is negative

False Negative (FN) Number of incorrect predictions that were classified as

negative when the instance is positive

True Negative (TN) Number of correct negative predictions

2.4.2 Metrics using Confusion Matrix

Many metrics have been defined using the elements in the confusion matrix, Table

2.2 presents just the metrics that are relevant for this work. There are more metrics

derived from the confusion matrix information. However, the most relevant measures

for the methods proposed in chapters 6, 7 and 8 are the accuracy, precision and recall.

The accuracy has been used widely to measure the performance of many classifiers

[40]. However, the this may not be an adequate metric when the number of cases

in the minority class is very small in comparison with the number of cases in the

other class(es) [71]. As an instance, consider a data set of two classes that holds 100

examples, where 98 of them are negative and just 2 of them are positive cases. If

the system classifies all of them as negative, the accuracy will be 98% , apparently

it is a very high performance. However, the classifier missed all positive cases, this

phenomenon is called ”imbalanced classes”, more information is provided in section 2.3.

Unfortunately in the real world, the detection of relevant events relies on the prediction

of the minority class. For example: Financial opportunities detection, illness detection,

fraud detection, etc. For that reason, the next section introduces Receiver Operating

Characteristic, which is a more reliable way to measure a classifier performance.

32

Table 2.2: Some metrics using the components of the confusion matrix

Accuracy is the proportion of the total number of predictions that were
correctly made, this is determined by the equation:

Accuracy = TP+TN
TP+FP+FN+TN

Recall it is also called sensitivity or true positive rate, the recall is the
proportion of positive cases that were correctly identified, it is
determined by the formula:

Recall = TP
TP+FN

Precision is the proportion of positive cases that were correctly predicted.
This is calculated as follows:

Precision = TP
TP+FP

Specificity it is also called true negative rate and it is the proportion of neg-
ative cases that were correctly predicted, it is determined by the
equation:

Specificity = TN
TN+FP

False positive rate is the proportion of negative cases that were wrongly predicted as
positive. It is determined by the formula:

False positive rate = FP
FP+TN

False negative
rate

is the proportion of positive cases that were wrongly predicted as
negative, it is calculated using the equation:

False negative rate = FN
FN+TP

2.4.3 Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) is a technique that graphs the performance

of a classifier that predicts two classes (positive and negative). It is able to select the

best trade-off between successful cases and false alarms based on benefits and costs

[37],[94]. It has been used to evaluate the performance of diagnosis tests [91], [118],

[51],[80].

The ROC graph is constructed by plotting the true positive rate (recall) on the

33

Y-axis and the false positive rate on the X-axis [53],[37]. Figure 2.2 shows the ROC

space. As can be seen, ROC graph is plotted in the space of (0,0) and (1,1). The

performance of the classifier is plotted in (0,0) when it does not find any positive case

and it does not report any false alarm. Thus, this gets all the negative cases right but

it gets all the positives wrong. The other point is (1,1) where the totality of the cases

are classified as positive, it reports all the positive cases, but it fails to predict the

negative instances.

According to Fawcett [37], the performance of a classifier is better than another

if it is plotted in a left upper part of the ROC space. The classifiers whose perfor-

mance is plotted in the left hand side in the ROC space close to the X-axis, are called

conservative, because these make a positive classification just when these have strong

indications or evidence, as a result these have few false alarms. On the other hand,

classifiers on the upper right hand side of the ROC space are called liberal because

these make positive classifications with unsubstantial evidence. Thus, these are able

to classify almost all the positive cases. However, these have a high rate of false posi-

tive. Finally, the diagonal line between (0,0) and (1,1) describes the performance of a

classifier that randomly predicts the instances. The space behind the diagonal usually

remains empty but in some cases, where the classifier performs worse than random, it

is suggested that the classifier answer is negative correlated with the actual data.

ROC curve

The result of a discrete classifier is a confusion matrix, which represents a single tuple

of false positive and true negative rate. This produces a single point in the ROC graph.

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
P

os
iti

ve
 r

at
e

o

x

*

x

Liberal
classification Perfect

 classification

Conservative
 classification

o o

x

x

*
*

Random performance
 classification

*

x

o

x

x

*

x

Figure 2.2: ROC space

There are some classifiers that manage a threshold in order to tune the precision of the

classification. Since every threshold value produces a point in the ROC space, a ROC

curve can be formed by moving the threshold.

Area under the ROC curve (AUC)

One of the most used ROC curve metrics is the Area Under the Curve (AUC). The

AUC has been used widely in fields such as signal detection [106], in medical diagnosis

[50] and many other fields to indicate the quality of the classifier [118]. Huang and Ling

[60] showed theoretically and empirically that AUC is a better measure than accuracy.

When AUC =1 it means that the classifier is perfectly accurate. The closer AUC is to

1, the better the classifier performance is. When AUC is close to .50 it represents the

performance of a random classifier.

35

Choosing the best operating point

ROC can be used to estimate the best threshold of a classifier, calculating the best

balance between the cost of missclassifying positive and negative cases. In order to

calculate the best trade-off:

Let µ be the cost of false positive or false alarm
β be the cost of false negative
ρ be the percentage of positive cases

The following equation defines the slope of the line that describes the best trade-off

between misclassifying positive and negative cases.

Slope = µ · (1− ρ)/(β · ρ) (2.4.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive rate

T
ru

e
P

os
iti

ve
 R

at
e

µ− Cost of False Positive

ß− Cost of False Negative

µ=1,ß=1

µ=1,ß=5

µ=5,ß=1

Figure 2.3: shows a ROC curve and the tangent lines which indicate the best trade-off
between the false alarms and misclassification

The optimal classification point of the classifier (according to µ and β) is the point,

which the line is tangent to the ROC curve. Figure 2.3 shows a ROC curve and the

tangent lines which indicate the best balance between the false alarms and misclassifi-

cation cases using different costs. We have selected ROC to measure the performance

36

of the approaches in this thesis for the following reasons:.

1) ROC is able to deal with imbalanced data sets. One of the main goals of this

research is to detect the minority class in imbalanced environments. Chapters 6

and 7 are focused on extreme imbalanced environments.

2) ROC is capable of measuring the performance of classifiers that rely on thresholds.

The methods proposed in this thesis are tuned by thresholds (see Chapters 6 and

7).

3) ROC is able to tune the behaviour of the classifier. The methods proposed in this

thesis are desingned to provide a range of classifications, which can be plotted in

the ROC space. The objective is to allow the user to choose the best trade-off

between miss-classification and false alarms costs.

2.5 Context-Free Grammar

This section introduces the concept of Context-Free Grammar (CFG), this technique

is used to describe the structure of the decision trees used in this research. The use of

CFG offers the following advantages:

1. it determines the initial structure of the decision trees

2. it establishes a format that helps to maintain the syntax of decision trees during

the evolutionary process

3. it makes the tree structure comprehensive to the user

37

In the field of computer science, as well as in the linguistics, a CFG is a formal

system that describes a language, it specifies the valid texts that can be conceived

from each symbol [101]. The concept of CFG was introduced by Chomsky [25] as a

form to describe natural languages, he asserts that each language can be represented by

different grammars, all of them constructed by the same method. Subsequently Backus

Normal Form (BNF) was presented as a formal notation to represent the syntax of

ALGOL programs [35]. Nowadays BNF is the most common notation used to express

context-free grammars. Let us introduce two formal definitions of grammar and CFG.

Definition 1. ”A context free grammar G is a four-tuple G ={N, Σ, P, S} where S is

the start symbol, N and Σ are alphabets3. N is the set of elements called nonterminals

and Σ contains the terminal symbols. P is a finite set of ordered pairs (A,α) where

A ∈ N and α ∈ (N ∪ Σ). The elements (A,α) ∈ P are named productions and they

are written as: A → α” [86]

In other words, CFG is a set of productions and this starts with a non-terminal

symbol, every symbol can be replaced by a given sequence of terminal or non-terminal

symbols [101], as an instance :

<S> → <Condition>
<Condition> → <Operation>, <Variable>, <Threshold>
<Operation> → ”<” | ”>”
<Variable> → var1 | var2 | ... varn

<Threshold> → Real number

The previous grammar is composed of five productions, <S> is the start sym-

bol and <Condition> is composed of the elements <Operation>, <Variable> and

<Threshold>. All of them are called nonterminal because these can be replaced by

3An alphabet is a finite set of symbols [86]

38

other values. The first production asserts that the symbol <Operation> can be re-

placed by the sequence consisting of the two symbols ”<” or ”>”, a sequence separated

by the vertical bar ’|’ indicates a choice. These elements are called terminal symbols

because these cannot be replaced. In other words, the symbols that never appear on

the left side of the production are called terminals. The following statement represents

an instance of <Condition>, using the inverse Polish notation, this can be translated

as the equation: var 3 > 9.87. Figure 2.4 shows the graphic representation of that

production.

>

Var3 9.87

Figure 2.4: The graphical representation of <Condition> → ”>”, var 3, 9.87

Figure 2.5 shows Grammar 1, which is an example of a grammar to generate decision

trees that classify two classes. Figure 2.6 shows an example of a decision tree that meets

the syntax of Grammar 1. Tracking the logic of the decision tree the following rules

can be identified:

R1 = {var3 > 0.5 and var4 > 0.7}
R2 = {var3 > 0.5 and var1 < 0.1}

2.6 Summary of the chapter

This chapter provided an overview of the Machine Learning field and the specific topics

that are related to this thesis. A brief description about classification rule induction

was described in section 2.2. An explanation about the problem of imbalanced classes

39

Figure 2.5: Grammar 1

G → <Root>
<Root> → ”If-then-else”,<Conjunction> | <Condition>,”Class”,”No Class”
<Condition> → <Operation>, <Variable>, <Threshold>
<Conjunction> → ”AND”|”OR”,<Conjunction>|<Conditional>,

<Conjunction>|<Conditional>
<Operation> → ”<” | ”>”
<Variable> → var1 | var2 | ... varn

<Threshold> → Real number

Class No class

IF

AND

>

.5Var3

OR

Var4 Var1

>

.7

<

.1

Figure 2.6: A decision tree that meets the syntax of Grammar 1.

was introduced in section 2.3, additionally some approaches to deal with this problem

were briefly described. Section 2.4 described the metrics that were used to evaluate the

performance of the approaches in this thesis. Section 2.4.3 provided a brief introduction

about the ROC curve. Finally, section 2.5 gave an introduction of the context free

grammars.

Chapter 3

Evolutionary Computing and
Genetic Programming

Last chapter provided an overview of the machine learning area, now the present chap-

ter focuses on the specific machine learning paradigm that is used in the contributions

of this thesis, which is Evolutionary Computing. First a brief introduction of the bi-

ological processes that have inspired the field of evolutionary computing is given in

section 3.1. Subsequently a resume about the main aspects of evolutionary computing

is provided. Next, section 3.3 introduces Genetic Programming (GP), which is the

specific evolutionary technique used to build the contributions of this thesis. In this

section there are some specific topics whose theory supports the approaches proposed

in this thesis, such as the GP properties (section 3.3.1), introns and bloat (section

3.3.3), convergence and diversity (section 3.3.4). Finally, a survey literature review

about evolution of rules is given in section 3.4.

40

41

3.1 Evolutionary theory

The theory of the evolution was developed by Charles Darwin in 1859 [28], he explained

that in a population of individuals, natural selection plays an important role and it

favours those individuals that are better adapted or fitted to the environment. If an

individual behaves positively in the environment it will be propagated by means of the

offspring, otherwise this will die without producing any descendant. Darwin identified

small random variations between generations, whose objective is to introduce variety in

the population, these alterations are called mutations. He pointed out that the success

of an individual depends on how well it is adapted to the environment. The remaining

of this section is dedicated to relevant issues in the understanding of the evolutionary

process. Thus, the next paragraph introduces the concept of Deoxyribonucleic Nucleic

Acid, which has inspired the representation of individuals in evolutionary computing.

Deoxyribonucleic Nucleic Acid

The discovery of Deoxyribonucleic nucleic acid (DNA) started in 1869 when Friedrich

Miescher obtained the first crude purification of DNA. He analysed the properties and

composition of the DNA substance. Later in 1953 Watson and Crick deciphered the

DNA structure. It was not until 1944 that Avery, MacLeod, and McCarty demon-

strated that DNA is the molecular material that transmits the hereditary information

[27]. DNA comprises the genetic instructions used in the process of development and

functioning of all living organisms. DNA contains the code needed to create other

components of cells, such as proteins and molecules. The DNA segments that carry

42

the genetic information are called genes. DNA is organised into structures called chro-

mosomes and the set of chromosomes within a cell forms a genome. A chromosome

constitutes a physically organised structure of DNA. Evolutionary computing has taken

these concepts as inspiration to represent individuals. For more detailed information

about this topic the interested reader is referred to [7], [4].

Genotype and phenotype

In 1911 Johannsen pointed out the difference between phenotype and genotype. Geno-

type is the specific DNA code of a living organism or individual, this information is

written in a genetic code. This is copied at the time of cell division or reproduction and

is passed from one generation to the next [4]. These control the formation of protein

macromolecules, as well as the regulation of the metabolism and synthesis. Phenotype

is the physical manifestation of a living organism, this is composed of the set of ob-

servable features of the individual, such as the physical appearance and constitution or

a specific manifestation such as size, colour, or behaviour. These concepts will be used

in chapters 6 and 7 where a collection of rules is formed. The selection of these rules

is based on the performance (phenotype) and the novelty, which is determined by the

genotype.

3.2 Evolutionary Computing

Evolutionary Computing (EC) is an area of computer science, it involves the study of

problem solving, optimization and ML techniques. Evolutionary Computing is inspired

43

by biological processes such as population-based evolution and natural selection. EC

mimics the principles of evolution and hereditary [34]. One of the first works in this

field was made in 1965 by Fogel [42] and it was called evolutionary programming.

In 1975 Holland introduced the genetic algorithms [58]. Michalewicz [82] uses the

term Evolution Program (EP) for all the systems that are based on the evolutionary

theory. He defined an EP as a probabilistic algorithm that embraces a population of

individuals P (t) = {xt
1, . . . , x

t
n} for generation t. Where each individual represents

a possible solution to the problem. A new population is created (generation t + 1)

by means of selecting the fittest individuals. In order to create new solutions, part

of the population is renovated by means of the genetic operators. The most common

operators are mutation and crossover. Mutation is a small alteration in the individual,

while the crossover is the combination of two (or more) individuals to produce new

descendants, Figure 3.1 describes the steps of a general EP algorithm. Michalewicz

[82] considers that every EP must have the following components:

1. A genetic representation to express the potential solutions of the problem

2. A mechanism to create an initial population of potential solutions

3. A function to evaluate the performances of the individuals.

4. Genetic operators that create new individuals.

5. Values for the parameters that control the EP.

Now, let us describe the general and common aspects of the mentioned elements.

However, the specific characteristics that only apply for Genetic Programming, are

44

Procedure evolution program
Begin

t ←− 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
Begin

t ←− t + 1
select P (t) from P (t− 1)
alter P (t)
evaluate P (t)

end
end

Figure 3.1: Structure of an evolution program [82]

given in section 3.3.

The representation of the individuals

Representation is the way to symbolize the genotype of the individuals. The repre-

sentation must be able to express the solution to the problem. The individual could

be represented by a binary string as in Genetic Algorithms [58], decision trees as in

Genetic Programming [69], graphs [110] or grammar [100].

A mechanism to create an initial population of potential solutions

The objective of the population is to hold a set of possible solutions of the problem.

Usually the initial population is generated at random, but some heuristics can be used

to guide the initial individuals toward the optimal solution.

45

Fitness function

The fitness function measures the ability of the individual to solve the problem, in

other words, it measures how the individual is adapted to the environment (µ). The

fitness can be evaluated in different ways, it depends on the nature of the problem, the

most common approach to measure fitness is to create a metric, which assigns a scalar

fitness value to each individual in the population.

Genetic Operators

The objective of the genetic operators is to create new individuals derived from the

existing ones. The most popular operators are crossover and mutation, let us explain

each of them in detail:

Crossover The objective of the recombination or crossover is to create new individ-

uals by merging the information of two (or more) individuals which are called

parents. Crossover is a stochastic process because this is applied based on a prob-

ability, where the fittest individuals have a high chance to be selected to have

offspring. However, the population may converge to a global suboptimal, when a

mediocre individual (suboptimal) has extraordinary good fitness in comparison

with the remaining population. In that cases there is a genetic operator that can

reintroduce new variety in the population, it is called mutation.

Mutation A mutation is a small variation in a random place of the genotype of the

individual. This is used mainly to introduce new variations in the population.

This operator reconstitutes the diversity that has been lost during the exploration

46

phase. This is a stochastic process because it is applied at random based on a

probability that is determined by the user.

Values for the parameters that control the EP

All the evolutionary techniques hold a set of parameters that control the execution,

the commonest parameters are: the number of generations, population size or the

probability to apply the genetic operators. The list of parameters varies according to

the type of technique used and the specific characteristics of the EP.

Finally, another important aspect of the EP is the stopping condition. The popula-

tion could be evolved until a performance goal is achieved. However, EPs are stochastic

processes and there is not the certainty that a specific optima is going to be reached.

For that reason, there are more stopping criteria, such as to reach a specific number of

generations or to evolve the process for a specific period of time.

3.3 Genetic programming

This section introduces the specific evolutionary technique that is used in the ap-

proaches proposed in the contributions of this thesis. Genetic Programming (GP)

developed by Koza [69] is an evolutionary technique whose individuals are computer

programs. These are hierarchically structured and undergo adaptation by means of

changes in size and shape through the evolutionary process [69]. The most popular

representation of the GP systems are decision trees. However, other structures, such

as graphs and finite state machines [108], are also used.

47

Reasons to choose GP as ML tool

To achieve our objectives GP has been selected as a supervised learning tool for the

following reasons:

1. GP is able to evolve dynamic structures in size and shape to represent the solu-

tions.

2. GP is capable of producing multiple solutions to a single problem. This charac-

teristic is very important in RM and EDR (chapters 6 and 7 respectively). The

variety of solutions helps to form a bigger set of rules to identify rare cases in

imbalanced environments.

3. GP is able to produce decision trees that can be understood by the user. This

characteristic is a key factor in this research, because the interpretability of the

solution allows the user to analyse the variables and conditions which are involved

in the decision. This allows the user to combine his/her knowledge to make a

more informed decision.

The elementary components to build an individual (program) in GP are the ter-

minals and functions, these are the alphabet of the programs. The terminal set is

composed of the variables and constants of the programs. In a typical tree-based GP

the terminals are located on the end of every branch. On the other hand, the functions

are responsible for processing the values of the system, these can be terminals or other

functions’ output. The function set is composed of the functions and operators that

help to express the solution of the problem. The function set can be constituted by a

48

great variety of operators, such as:

• Arithmetic operations (+,-,*,etc.)

• Mathematical functions (sin cos, exp,log)

• Boolean operations (AND, OR, NOT)

• Conditional operator (if-Then-Else)

• Functions causing iteration (Do-Until)

• Comparison operators (>, <, 6=, =)

• Other domain-specific functions may be defined

Koza [69] has summarized the main three steps for evolving a population of com-

puter programs as follows:

1. Generate an initial population - GP starts with an initial population of

computer programs, these must be suitable programs to solve or approximate

a solution of the problem. These were created using the pertinent terminals

and functions to deal with the enquired problem. Usually these programs are

generated at random, but some initial heuristics can be used.

2. Perform the following action until a termination condition has been

reached

49

2.1 Execute every program in the population to measure its fitness, this is asso-

ciated with the quality of the solution proposed for the problem.

2.2 Create a new population of computer programs by means of the actions

described below, these are applied using a probability based on fitness.

(a) Copy existing computer programs to the new population, it is also called

clonation

(b) Produce new computer programs by means of the recombination or

crossover.

(c) Introduce random changes in the structure of the individuals by means

of the mutation.

3. The best computer program, according to the fitness function, is designated the

best approximated solution to the problem.

Initialization of the population

The initialization is the creation of the first population, in the majority of the cases it is

generated at random. However, in some cases it is created using heuristics. Given that

the representation of the GP individuals has variable size, the initialization of every

individual can use the full and/or the growth method. The graphic representation of

the initialization methods is illustrated in Figure 3.2

• Full method each branch of the tree has a predefined number of nodes. Thus,

the decision trees created by this method have regular shape, as Figure 3.2 shows.

50

Full method Grow method

Figure 3.2: The graph representation of the Full and Grow methods to create a new
population of programs

• Grow method every branch may have a different number of nodes, the tree

is constructed stochastically with a maximum program size. For a tree-based

GP the maximum program size can be seen in two different ways: 1) maximum

number of nodes in the whole decision tree or 2) the maximum depth of the tree.

The depth of a node ni is measured by the minimal number of nodes from the

root to the node ni. Thus, the maximum depth of the tree T is the maximum

depth of the nodes in T .

Fitness and Selection

The fitness is a metric that indicates how well a program is performing to solve a

problem. This measure is used during the evolution to determine the probability to be

selected for crossover or reproduction. There are different selection techniques based

on the fitness of the individual. However, the most popular methods are the following:

fitness-proportionate selection This method was proposed by Holland [58]. Let

f(si(t)) be the fitness of the individual si in generation t. Under this method the

51

probability that individual si will be copied in the next generation is given by

the following formula:

f(si(t))∑n
j=1 f(sj(t))

where n is the number of individuals in the population

Tournament In the tournament selection a set of individuals is picked out from the

population at random, the number of individuals involved in the tournament

is determined by the user. Then the individual with the best fitness is finally

selected.

The main genetic operators are: crossover, mutation and reproduction [4]. The

reproduction operator is very simple, it consists in making an identical copy of the

individual. However, the other operators need a more detailed explanation:

Crossover (sexual recombination)

The crossover creates new offspring by taking parts of each parent. As GP is usually

represented by decision trees, the crossover works as follows: Once the parents are

chosen from the population, a node in each parent is selected randomly, it is called

cross-point. Notice that, the size of the parent in the majority of the cases is different.

The crossover cuts parents in two parts: 1) the subtree from the root to the cross-point

and 2) the subtree lying from the cross-point. The first child is built using the rooted

part of the first parent and the subtree lying of the second parent. The second child is

formed in similar way, swapping the roles of the parents. In other words, the second

parent contributes to the rooted part of the subtree. Figure 3.4 shows a recombination

52

of two individuals to create new offspring. The idea behind the crossover is that if both

parents are good enough to deal with a problem, these new individuals that combine

parts of those parents can outperform the parents fitness.

Figure 3.3: The cross-point and the division of the decision tree made by the cut

Figure 3.4: A recombination of two parents in order to create a new individual

Mutation

The mutation in an asexual operator, it introduces random changes in the structure of

the individuals. The mutation starts selecting a node mutation-point in the individual,

53

the subtree lying in this mutation-point is removed and this is replaced by a subtree

generated at random. Figure 3.5 shows an example of a decision tree that was mutated.

Figure 3.5: Figure shows a mutated decision tree

3.3.1 GP closure and Sufficiency properties

As we have previously mentioned, GP is an evolutionary technique that uses dynamic

structures that change in shape and size. For that reason, there are some properties that

are exclusively for GP and these are not competence of other evolutionary algorithms,

such as the closure and the sufficiency properties. These properties are relevant for this

research, for that reason this section provides a brief introduction about the mentioned

properties.

Closure of the function and terminal sets

Given that GP deals with variable structures that have to be combined, it is important

that the function and terminal sets have the closure property. This property states that

the each function should be able to deal with all the values that it may receive as input

[4]. To understand the closure property, let F be the set of functions and T be the

54

set of the possible terminals in the GP definition. The closure property requires that

functions in F accept any possible value that may be output from any composition of

functions in F and terminals in T [69]. This is easy to achieve for some function and

terminal sets, such as boolean functions. However, more attention is needed in most

domains. The closure property is desirable, but it is not absolutely needed, instead

it is possible to discard individuals which does not represent a feasible solution or to

assign penalties.

Sufficiency of the function and the terminal sets

The sufficient property requires that the set of functions and terminals of the GP will

be able to express the solution of the problem. When a GP is designed it is important

to analyse the problem carefully in order to select the variables with explanatory power

and the operators that can represent potential solutions to the problem.

3.3.2 Building Blocks

The schemata theory presented by Holland [58] gives a robust explanation of why

GAs works. This theory was designed for fix-length strings, for a detailed explanation

the reader is referred to [58], [82]. However, the analogue theory for GP is more

complex because individuals have dynamic structure with variable size and shape. Koza

has asserted that the individuals generated by GP hold building blocks, this could be

any subtree or tree. Individuals that hold good building blocks have better fitness.

When individuals have good fitness these improve the likelihood of being selected for

reproduction or crossover, it means that good blocks are likely to multiply and spread

55

over the population. However, the argument of Koza was informally formulated, this

principle was extended by O’Reilly and Oppacher [90], who based on the schemata

theory from Holland, and the do not care symbol # was introduced to define fragments

of tree. After that Poli and Langdon [75] have developed a new schema theorem for

GP using a one-point crossover and one-point mutation to evolve the GP.

3.3.3 Bloat and introns

This section introduces the concept of introns and bloat, which will be used in chapters

5,6,7 and 8.

One of the main advantages of GP is that it is able to evolve a population of

programs that have dynamic shape and size representation, which lets them adapt to

the solution. However, it is difficult to determine the size or the shape of a program

in advance. The programs produced by GP tend to grow. However, this growth is not

necessarily proportional to the quality of the resultant solution. The code growth is a

common problem in GP [2, 88, 104, 74] , the extra code constitute between the 40%

and 60% of the total code, this effect is called bloat. This phenomenon was discovered

by Koza [69]. However, Angeline [2] was the first researcher to associate this junk code

with the term introns. In biology, introns are assumed as a sequence of junk DNA

with no function. However, more recently this definition has been questioned, since it

is known that introns contain several short sequences that are important for efficient

splicing. In GP the code growth has been studied for Tackett [107], he demonstrated

that the ”size problem” depends directly on selection pressure. He asserted that under

56

random selection there is no size problem. On the other hand, Blickle and Thiele

[8] asserted that code growth protects individuals against the disruptive effects of the

crossover, they asserted that an individual with ”redundancy” is more likely to survive

the destructive effects of crossover. The same argument has been supported by other

research, such as [88], [74]. On the other hand, Soule [104] asserts that crossover

and mutation protection is not the only cause of code growth. He argued that the

representation of the problem (syntax of the decision tree) also affects the code growth.

Code growth has been controlled introducing a variety of methods. According to

Soule [105], the methods to control bloat can be grouped in three main types: parsi-

mony pressure, operator modification and code modification. Parsimony pressure tries

to evolve small solutions penalizing large individuals, for instance, to establish a maxi-

mum depth allowed [69], tarpeian method 1 [93] or the implementation of the Minimum

Description Length principle (MDL) in the fitness function [61]. Operator modification

is represented by non-destructive crossover [103]. Finally, code modification involves

changing the structure of the code during or after the evolution, e.g. the pruning

method implemented by Eggermont et al. [33].

According to Soule, code modification methods have not been explored in depth

because these involve the use of more computational resources [103]. However, research

on other machine learning techniques [15, 98] prefers pruning instead of a stopping

criterion, it has been pointed out that pruning is slower but more reliable because this

produces more exploration. Unfortunately, the pruning procedures for decision trees

1This method assign zero to a proportion of the offspring whose length is above the average of the
population size

57

generated by statistical methods as CART [15] or Quinlan’s classifiers [97] are not

suitable for decision trees generated by GP systems. The decision trees created by GP

are built in different way and the pruning affects are different, as can be noticed in the

following cases: 1) pruning a leave from a statistical decision tree causes generalizing

the classification. But, the decision trees created by GP tend to accumulate unused

code, thus pruning a node from a GP decision tree may or may not generalize the

classification. 2) statistical decision trees hold the most general conditions near to

the root, thus the information of each condition is more specific depending on the

node level2. In contrast, the type of information provided by the conditions in the GP

decision trees is not necessarily related to the position of the node.

In our understanding the only method to prune decision trees produced by a GP

system, before the submission of this thesis, is the approach proposed by Eggermont

[33]. He proposed to analyze the decision trees to remove the unused code generated by

the GP system. He argues that the resulting trees contain only meaningful information

and these are smaller and easier to understand and evaluate.

Eggermont used static analysis techniques to detect introns from decision trees.

Thus let T be an individual, thus T has to be evaluated is scanned for introns. These

introns are marked and a pruned copy T0 of T is made in which the introns are removed.

If T0, which is semantically the same as T , matches a tree Tc found in the fitness cache

the individual T is assigned the fitness of Tc. If T0 does not match any tree in the

cache it is evaluated using the fitness function and stored in the cache. In this case T is

2The level of a node nk is the number of nodes from nk to the root

58

assigned the fitness of T0. The experimental results showed that the understandability

and speed of GP classification algorithms can be improved, without compromising the

accuracy of the prediction. Additionally, the detection and pruning of introns also lets

to identify syntactically different trees that are semantically the same.

3.3.4 Population diversity and convergence

This subsection introduces some material related to the diversity, the objective is to

support the contributions that are presented in chapter 6 and 7 of this thesis, which

implemented a mechanism to ensure the variety of the population. In order to em-

phasize the relevance of the diversity, we present the following citations from purely

biological material. Charles Darwin wrote in his book On the Origin of Species

”...unless profitable, variations do occur, natural selection can do nothing”

[28]

Furthermore Murray [84] asserted the following :

”Variation is an essential property of biological systems, every level or or-

ganisation presents variations in some parameters, in some space or time”.

”...Probably a very small biochemical change will give a host species a sub-

stantial degree of resistance to a highly adapted microorganisms. This has

an important evolutionary effect. It means that it is an advantage to the

individual to possess a rare biochemical phenotype. Because of its rarity it

will be resistant to diseases which attack the majority of its fellows. And it

59

means that it is an advantage to the species to be biochemically diverse, and

event to be mutable as regards genes concern in disease resistance” [84]

In the computer science field Koza [69] defines variety as the percentage of individ-

uals that have exact duplicate(s) in the population. According to Burke [16], the loss

of diversity during the exploration phase may cause a poor global search. Burke and

fellows presented an analysis of loss of diversity in GP, from results they concluded

that this can cause different behaviour in different problems, in a deceptive problem

the increase of diversity helps to tackle the deception.

The convergence suggests the lost of diversity in the population and the beginning of

the local search phase [16]. According to Koza [69], it is called premature convergence

when the population converges to a global suboptimal. Premature convergence can

take place when a suboptimal individual has extraordinary good fitness in comparison

to the rest of the population, causing that the GP falls in a suboptimal solution.

3.4 Evolution of decision rules

This section introduces the most relevant works about the evolution of decision rules,

which is the main objective of the contribution in Chapters 6 and 7. The literature

review is divided in three parts, the first introduces some relevant works that follow the

Pittsburgh approach using Genetic Algorithms (GAs) [58]. The second part describes

some systems that have been developed using GAs and the Michigan approach. Finally,

the last part describes some works that evolve decision rules by using GP.

GAs creates a population of individuals or solutions using fixed-length binary strings

60

to represent the individuals in the population. Those works have been grouped by De

Jong [30] in two different approaches, the first was developed by Holland [56], it is called

Michigan approach. The main characteristic of this technique is to evolve rules, where

each rule is represented by a chromosome or individual and the complete population

constitutes the solution of the problem. On the other hand, there is another perspective

to evolve decision rules, which was developed by Kenneth De-Jong and Stephen F.

Smith [102]. Each individual represents a complete set of rules, every rule is fixed-

length, but every individual is composed of a variable number of rules. This approach

has been called The Pittsburgh approach. So the fitness function has to be able to

measure the effectiveness of the rule set. The interested reader is referred to [30], [62]

for more details about the differences in the mentioned approaches. In the beginning

both approaches were introduced to classify data sets that hold nominal attributes.

The following paragraphs briefly describe some subsequent works that have introduced

techniques to deal with continuous values and variable length rules

Pittsburgh approach

De-Jong and colleagues [64] used GA to evolve a set of rules (Pittsburgh approach).

The authors called this application GA batch-incremental concept learner GABIL. The

GA evolves fixed-length rules, for attributes whose values are nominal. Each individual

is composed of a variable number of rules, it means that the individual size is variable

too.

Janikow [62] follows the Pittsburgh approach and he proposed GIL (Genetic-based

61

Inductive learning). He declared three types of operations: 1) the rule set level, 2) the

rule level and 3) the condition level. The operations in the rule set level are composed of

rules exchange, rules copy, new event, rule generalization (it picks two random rules and

replaces these by the most specific generalization of both rules) and rule specialization,

the latest replaces two random rules by the most general specialization of them. In the

rule level the operations can introduce or drop conditions, turning conjunctions into

disjunctions. Finally, the condition level holds three operators 1) reference change, it

removes or adds a single domain value to the condition. 2) Reference extension whose

objective is to extend the domain of the variable in the condition and 3) reference

restriction, this operator removes some domain values from the condition.

Corcoran and Sen [26] used a GA to evolve a set of rules based on the Pittsburgh

approach. The contribution of that work was to evolve rules with continues variables

rather than using a binary representation. They reported that using a GA with real

number encoding can be used effectively in classification problems. This approach uses

a fixed-length chromosome to represent a set of rules. This approach tries to maximizes

the number of correct predictions. When rules predict different classes a voting system

is used to solve the conflict.

Kwedlo and Kretowski [72] introduced a new approach named Evolutionary Deci-

sion Rule Learner with Multivariate Discretization (EDRL-MD). This approach has

the ability to search simultaneously for threshold values for all the attributes that hold

continuous values (multivariate discretization). The search technique used by this ap-

proach is an Evolutionary Algorithm (EA). The individual’s chromosome is represented

62

by a variable-length string, which is formed by a set of fixed-length substrings, each

substring encodes a condition related to one attribute. The chromosome encodes a

rule set. This approach uses the following genetic operators: 1) changing condition

(mutes a single condition of the attribute), 2) positive example insertion, 3) negative

example removal and 4) rule drop which are applied to a single chromosome or rule

set. Additionally, the crossover and rule copy requires two rule sets.

Bobbin and Yao [9], [10] were interested in evolving rules for nonlinear controllers by

using the Pittsburgh approach. They proposed an evolutionary algorithm to evolve sets

of rules using a novel degenerated tree rule structure. Every gene represents a single

rule and the genes are combined in a complex topology. This allows the coming genes

to modify the actions of previously activated genes. Each individual in the population

represents a set of rules which finally determines the complete solution of the problem.

Given that the algorithm is able to add and remove rules, it means that the algorithm

evolves variable-length structures.

Fidelis and co-workers [39] proposed an approach based on GAs in the hope that

it could discover comprehensible IF-THEN rules. The novelty of that approach was

to have a fixed length at the genotype level but the number of conditions (which is

mapped at the phenotype level) is variable. The key ingredient that allows this feature

in the genotype-phenotype mapping was an element at the genotype level that the

authors called weight. As the authors explained in their paper, the results in regard

to accuracy were promising in one of the data sets but more importantly, they showed

how the GA was able to find consistent and comprehensible rules.

63

Michigan approach

Let us introduce a brief review about the Holland’s classifier systems [58], this approach

is the pioneer of the Michigan style. The complete population represents the solution

to the problem, every individual in the population represents one single rule, which is

composed by a set of conditions. Every rule holds a credit, it determines the fitness

of the rule. A key element is a macht list, when an instance is classified the system

selects all the rules that mach that instance, the ”don’t care” symbol in the syntax of

the conditions is used to allow the generalizations. Given that, the different rules can

predict different results, thus a formula is applied to determine the prediction. The

rules that match the instance and participate in the decision are rewarded or punished

according to the quality of the solution. The evolutionary process creates new solutions

by means of the crossover and mutation, these are applied using a probability according

to the reward of each individual.

A Learning Classifier Systems (LCS) [57] is a machine learning approach that uses

evolutionary techniques, reinforcement learning and other heuristics to create an adap-

tive system. This is composed of a population of rules and a credit system, which

is aided by reinforcement learning and a GA. A distinguished work in this area was

developed by Wilson [120], his system (XCS) uses a GA in niches defined by the match

sets, instead of applying this to the whole set of examples. According to the author,

the population tends to form a complete and accurate mapping from inputs and actions

to payoff predictions. The interested reader can find more information about learning

classifier systems in [17].

64

Evolving decision rules using GP

Now, let us introduce some systems to create classification rules based on GP: Bo-

jarczuk et al. [12], [13] proposed a GP system to discover classification rules. Each

individual in the population represents a rule set in disjunctive form and classifies just

one class of the k classes. Every individual will be evaluated for every possible class.

Then the tree is said to classify the class that better suits the tree. The result of the

evolution are k individuals, where each of them represents a set of rules for each class.

Finally, the performance of every individual is evaluated by its ability to predict the

class and the simplicity of the solution. The same authors in a previous approach [11]

had proposed a similar method but instead of assigning a different class to each deci-

sion tree the GP was run as many times as the number of classes in order to generate

a decision tree per class. Obviously the final step is to create an agreement between

the predictions of the different k classifiers.

De Falco et al. [29] used a GP to perform an automatic discovery of classification

rules. This approach evolves decision trees, that classify just one class, and the GP is

run as many times as the number of classes. According to the authors, individuals are

formed by rules encoded as a tree structure. In other words, the tree represents a rule

which is composed of disjunctions and conjunctions. The contribution of this work is

the post-processing work to assign every instance to just one class and eliminate the

undetermined cases.

Niimi and Tazaki [85] proposed a rule discovery technique by means of the gen-

eration of association rules using an apriori algorithm, those rules are converted in

65

decision trees, which will be used as the initial population of the GP. After evolving

that population, the best individual of the population is converted into classification

rules.

Cao et al. [19] introduced a hybrid evolutionary algorithm (HEA) to discover rule

sets to predict the concentration of chlorophyll. This application has two main stages:

1) a GP is used to evolve a set of rules and 2) a GA is applied to optimize the random

parameters in the rule set. Each chromosome can be represented as a vector of binary

trees. Next, a simplification is performed by means of the following procedures: 1)

simplification of the arithmetic subtrees and 2) simplification of the comparison sub-

trees and 3) simplification of the logical subtrees. Finally, each generation, a parameter

optimization is performed using a general GA.

It seems that the majority of the research to evolve decision rules has been done in

the frame of the GAs, some of the reasons are the following:

• Since a decision tree could contain several rules, a process to separate the decision

trees in rules is needed. Especially when rules have to be evaluated individually

as the Michigan approach does.

• The GP systems tend to accumulate introns, which may introduce confusion in

the interpretation of the rules. Thus, a simplification process is needed to remove

the extra-code.

• Some systems that use the Michigan approach, in discrete domains as [17], [120],

66

have a mechanism to ensure having at least one rule that match every possi-

ble instance. The representation of the chromosome of the GAs facilitates the

matching conditions. This task is aided by the use of the ”don’t care” symbol in

the syntax of the conditions, which allows generalizations.

As can realize it is easier to implement the Michigan approach using a GA. In

contrasts, a Pittsburgh classifier can be implemented using a GP system, because

every individual represents a complete set of rules, as a decision tree usually does. For

that reason, some approaches to evolve decision rules using GP have been proposed

[13], [29], [19] and [85]. However, we have to bear in mind that GP generates extra-code

that should be removed in order to avoid confusion in the interpretation of the rules.

Differences and advantages of our contributions and the previous works

As can be seen from previous paragraphs, it is clear how GA and GP have been used

to evolve decision rules. Our approaches, as will be explained in Chapters 6 and 7,

have been designed to produce a set of rules to classify positive cases in imbalanced

environments and to provide a range of classifications. The next paragraphs present

a brief discussion about the differences and advantages of our contributions and the

previous works.

Learning classifiers that use the Michigan approach, as [120], [57], have implemented

heuristics to ensure having at least one rule that matches every potential instance in

the data set. Since at least one of the rules has to match every instance, some problems

may arise when the number of attribute is high, because the number of possible cases

67

could be extremely big. Additionally when more that one rule classify the instance

and these do not agree about the classification, then a formula or a voting system has

to be implemented to decide the class.

One of the objectives of this work is to predict the minority class in imbalanced

data sets, for that reason our approaches (chapters 6 and 7) focus on gathering patterns

that identify the minority class. However, to decide if a rule is good enough to make

the prediction could be a problem. We have taken advantage of the collection of rules

and we have proposed to group these by their precision, it allows us to create a range

of classifications to suit the risk preferences of the investor. In contrasts, despite the

fact that the result of a traditional Michigan LCS is a set of rules, it is not able to

provide a range of classifications to suit the user’s needs as our approaches do. Because

the Michigan approach generates rules that match every possible case, if the rules were

grouped by precision or another parameter to create a range of solutions many cases

could not be considered in each group. Another mayor difference is the representation of

the rules; our approaches are able to represent variable-length rules by evolving decision

trees using GP. However, the side effect is the risk of having extra-code (introns), for

that reason our approaches have implemented a process to remove the redundant code

and the conditions that are not affecting the rule.

On the other hand, standard LCS represent rules using fixed-length structures that

have to be carefully designed to achieve a good representation of the solution, specially

to represent continuous values. Finally, our approaches are able to tune the conditions’

thresholds taking advantage of the complete evolutionary process.

68

Since an objective of this work is to detect the minority class in high imbalanced

data sets, we have proposed to gather as many patterns as possible of the minority

class, it means that the same example could be classified using different rules. In the

Pittsburgh approach each individual holds a set of rules that represents the complete

solution to the problem. In this framework it is not possible to collect different patterns

that classify the same examples as our approaches do.

As was mentioned, some researchers have proposed approaches to evolve decision

rules by using GP [85], [12], [13]. Every decision tree classifies a single class, when the

evolutionary process has been completed the best individual of the evolution is con-

verted into classification rules. The authors claim that their approaches are able to gen-

erate comprehensible rules. However, GP systems accumulate extra-code [69],[2],[107],

[103] and unless the rules are simplified to remove the extra-code it is not possible to

identify the real conditions in the decision rule. In contrast, the methods proposed in

this thesis provide a rule simplification process that removes the extra-code helping

to identify the real conditions of the rules. Cao et al. have included a simplification

process in their approach. However, this is focused on facilitating the execution of

the program by removing the redundant conditions. But it does not remove all the

conditions that are not affecting the performance of the decision rules such as the vac-

uous conditions (see definition 4 in section 5.6). In contrast our simplification process

removes those conditions. On the other hand, our approaches collect as many patterns

as possible of the minority class. But the approaches that use GP to evolve a set of

rules, as [12], try to minimize the size of the decision tree to reduce the number of

69

introns, this may limit the productions of patterns.

Finally, the approaches that use GP to get a set of rules obtain the rules from the

best individual of the evolution. In contrast we believe that the complete population

could contain useful information, for that reason our approaches collect rules and tune

the conditions’ thresholds using the information in the complete population.

3.5 Summary of the chapter

This chapter provided an overview of the Evolutionary Computing field. A brief intro-

duction of the biological processes that have inspired this field was given. The chapter

also introduced the evolutionary technique, which is called Genetic Programming. The

latest will be used in the subsequent chapters to build the contributions of this thesis

(Chapters 5, 6, 7 and 8). Finally, a survey literature review about evolution of decision

rules was provided, this information will be used in chapter 7.

Chapter 4

Financial Analysis

Many machine learning techniques have been applied to financial problems. For ex-

ample, [23],[24] provide excellent readings from various areas of computational finance.

Financial forecasting is one of the most important fields in this area [115]. As was

mentioned in previous chapters the methods proposed in this thesis use supervised

learning. Our approaches are illustrated to predict opportunities in financial data sets,

the examples to train our methods are composed of a signal and a set of attributes or

independent variables. Those variables are financial indicators derived from technical

analysis. This chapter explains basic financial elements in order to provide the reader

with an overview of financial markets and technical analysis. This chapter is organised

as follows: Section 4.1 provides a brief description of financial markets. Next, section

4.2 introduces the Efficient Markets Hypothesis (EMH).

The next sections introduce two different ideologies for the financial markets, thus

section 4.2.1 introduces the fundamentalism, while section 4.2.2 describes the technical

analysis. Finally, section 4.2.2 describes the technical analysis indicators used in this

research.

70

71

4.1 Financial Markets

Financial markets can be defined as an association of institutions whose objective is to

act as an intermediary between suppliers and users of money. This mechanism allows

to trade financial securities, commodities and other exchangeable items. According

to Bain [3], the financial system has five main groups of participants: 1) savers, 2)

Investors and borrowers, 3) financial intermediaries, 4) brokers and advisers and 5)

regulators. The end-users are the savers and investors, the savers have money accessible

to lend and the investors need to borrow money to buy capital goods or improve their

business.

One of the main objectives of financial markets is to exchange funds between differ-

ent economic units [31]. The financial markets can be divided into different categories

according to the traded assets:

• Capital markets

• Bond markets

• Commodity markets

• Derivatives markets

• Futures markets

• Foreign exchange markets

The examples presented in this thesis are focused on the analysis of prices in stock

markets, which are part of the capital markets.

72

4.2 Efficient Market hypothesis

One of the most relevant concepts in finance is efficiency. The Efficient Market hy-

pothesis (EMH) asserts that financial markets are ”informatively efficient”, or that

prices on traded assets, reflect all known information and therefore are unbiased in the

sense that they reveal the collective beliefs of all investors about future scenarios [36].

The EMH states that it is not possible to consistently outperform the market by using

any information that the market already knows, except by luck. In EMH hypothesis,

information is defined as anything that may affect prices that is known in the present

and thus appears randomly in the future. A market is efficient with respect to a par-

ticular information set A if it is impossible to make abnormal profits by using this set

of information to make trading decisions. There are different forms of efficiency [31]:

1. Weak Form Efficiency. A market is weak form efficient, if security prices repro-

duce the information in past price movements

2. Semi-strong Form Efficiency. A market is semi-strong form efficient, if the secu-

rity price fully indicate all publicly available information, such as the company

annual reports, earning and dividends announcements and so on.

3. Strong Form Efficiency. A market is strong form efficient, if the security prices

fully reflect all relevant information publicity available or not.

73

4.2.1 Fundamental Analysis

The aim of Fundamental analysis is to examine the corporation’s financial statements

and balance sheets in order to prognosticate future trends of their securities. Funda-

mental analysis studies past records of assets, earnings, sales, products, management

and markets, such analysis relies on the idea of the existence of a fundamental value

for the financial asset. Fundamental analysts believe that the asset will be priced at its

real value. In other words, if the asset is undervalued the recommendation is to buy,

because the asset will rise to its fundamental value. Such strategy produces a profit

due to the fact the asset was bought when it was cheaper. On the other hand, when

the asset is overvalued the recommendation is to sell.

4.2.2 Technical Analysis

The historical data has been used by financial analysts as a source of information to

try to predict future events. It is believed that investors and speculators react on the

same way to the same kind of events [66]. This means that the patterns in financial

prices are usually followed by similar reactions.

Technical analysis is a technique to evaluate stocks by analysing statistics gener-

ated by market activity, such as past prices and trading volume [32]. Technical analysts

attempts to identify patterns that can suggest future behaviour, it does not pretend

to measure a security’s intrinsic value. Technical analysts believe that the historical

information about the stocks and markets can indicate the tendency of future perfor-

mance. The objective of technical analysis is to find patterns in price changes, rates of

74

change, and changes in volume of trading without taking into account the fundamental

market factors. There are investors who make their decisions based on the advice of

technical analysis, they are called technicians. Technical analysis supposes that stock

prices have trends, and the motion of the stock trend will continue in the same di-

rection. The technical analysis aim is to detect the direction and the strength of the

trend. The earlier the trend is detected the more profit can be made by the investor.

Two classical concepts in technical analysis are support and resistance. Such concepts

refer to price levels at which prices stop going up and down.

4.2.3 Financial indicators

There are many indicators derived from the technical analysis. However, this chapter

only describes the financial indicators that were used in this research. Nevertheless,

the techniques developed on this work are not limited to such indicators.

Moving average

Nowadays there are many types of moving average. However, the basic is the simple

moving average, this is the mean of the previous n data points. Let P (t) be the price

in the time t then the moving average of the last n closing prices is determined by the

formula:

MA(t, n) =

∑n
k=1 P (t− k)

n
(4.2.1)

Two important aims of moving averages are to emphasize the direction of a trend

75

and to smooth the fluctuations on prices and volume, having as a consequence the

reduction of noise. Typically, upward momentum is detected when a short-term moving

average (e.g.5-day) crosses above a long-term moving average (e.g. 50-day). On the

other hand, a downward momentum is confirmed when a short-term average crosses

below a long-term average.

Technicians need to keep their perspective. Thus, they need to detect changes on

minor and major trends. For that reason, technical analysts compute moving averages

with different periodicity (usually a short-term and a long-term). For example, it is

useful to use a moving average with a short and long period of time, a moving average

of 5 days is able to detect a change in a small trend and a moving average of 60 days

can detect changes in a bigger trend.

It can be seen that, technical analysis indicators are statistical measures that can

easily be applied in a great variety of situations, not just to financial problems.

Filter indicator

This indicates to buy and sell stocks if their price movement reverses direction by a

minimal predefined percentage. For example the filter rule indicates that the stock

should be bought if this reverses a downtrend and rises by specific percentage from its

low price.

The equation of the filter indicator is the following:

Filter(t, n) =
Pt − Pmin(1,n)

Pmin(1,n)

(4.2.2)

76

where Pt is the price in the time t and Pmin(1,n) is the minimum price in the time

from 1 to n.

Breakout indicator

At this point let us introduce the support and resistance definitions. The support is

a price level at which the price stops going down. On the other hand, resistance is

the point which the price stops going up. These concepts will be useful to understand

some indicators. The breakout happens when a new trend (upwards or downwards)

starts. The point at which a price breaks out either above or below a stable tendency

or trend-line. Once the price breaks above its resistance or below its support, its likely

to continue in the same direction. The formula to calculate the Trading break-out

indicator is described below.

TRB(t, n) =
Pt − Pmax(1,n)

Pmax(1,n)

(4.2.3)

where Pmax(1,n) is the maximum price in the time from 1 to n.

Momentum indicator

The Momentum indicator measures the acceleration or speed at which the security’s

price is changing. It is determined by the formula:

Mom(t, n) = P (t)− P (t− n) (4.2.4)

The moving average momentum indicator is defined as follows:

77

MomMA(t, n) =

∑n
k=1 Mom(t− k, n)

n
(4.2.5)

In addition, some financial indexes were used, such as:

Financial Times-Stock Exchange 100 stock index

The Financial Times-Stock Exchange 100 stock index is the index of 100 large capital-

ization companies stock on the London Stock Exchange, it is also known as ”Footsie”

LIBOR

The LIBOR is established on a daily basis by the British Bankers’ Association. It is an

interest rate at which banks can borrow funds from other banks in the London interbank

market. The LIBOR is derived from a filtered average of the world’s most creditworthy

banks’ interbank deposit rates for large loans with maturities from overnight to one

full year. The LIBOR is the world’s most widely used point of reference for short-term

interest rates. This is important since it is the rate, at which the world’s most preferred

borrowers are able to borrow money. Some of the countries that use the LIBOR as a

reference rate are the United States, Canada, Switzerland and England.

4.2.4 Risk

The approaches presented in chapters 6 and 7 present two different approaches, whose

objective is to provide a range of classifications. Thus, the user can choose the best

trade-off between misclassification and false alarms according to the investor prefer-

ences, which usually are related to the user’s risk guidelines. This section introduces

78

some concepts related to the risk.

A fundamental idea in finance is the trade-off between risk and return. The greater

the amount of risk that an investor is willing to take on, the greater the potential

return is. Thus, lower returns are associated with lower risk investments and higher

potential returns are associated with investments of higher risk, because investors need

to be compensated for taking on additional risk.

A risk averse investor tends to take higher risk only if it is warranted by the

potential for higher returns. On the other hand, a risk lover investor behaves in

opposite direction: i.e. making investments of higher risk with a lower expected return.

Because of the risk-return tradeoff, investors must bear in mind their personal risk

tolerance when choosing investments. Taking higher risk is the price for achieving

higher returns; however, in order to make money investors can’t cut out all risk. The

goal instead is to find an appropriate balance that generates profits, at a bearable risk

rate to the user.

4.3 Summary

This chapter has presented an overview of the financial topics involved in this thesis.

The financial indicators presented in this chapter will be used to form the data sets

used to test the contributions of this work.

Part II

Thesis Contributions

79

Chapter 5

Research overview

The contribution of this thesis is composed of three methods called: Repository Method,

Evolving Decision Rules and Scenario Method. These approaches share common pro-

cedures such as the delimitation of rules or rule simplification. This chapter contains

the details of those processes that are used in more than one method. It was decided

to set apart those procedures in order not to repeat the same information in different

chapters and to simplify the description of each method. This chapter also presents

the general structure of the data sets used in the experimental sections. The detailed

information about specific data sets is usually described in each chapter in the ex-

perimental section. This chapter is very important because it describes in detail the

objective and the mechanism of each procedure, which will be used in the subsequent

three chapters.

This chapter is organised as follows: First, section 5.1 briefly introduces the meth-

ods proposed in this thesis, this description is used as a reference to understand the

processes described in this chapter. Section 5.2 describes the procedure to assign the

output (label) to the training and testing data sets. Next, section 5.3 describes in

80

81

general the data sets used in this research. Section 3.3 explains the reasons why GP

has been chosen as a machine learning tool to discover patterns. Section 5.4 explains

the process to create decision trees capable of detecting an increase/decrease in stock

prices. The following sections describe common procedures that were used in the meth-

ods proposed in this thesis. Thus, section 5.5 explains the rule extraction procedure,

while section 5.6 introduces the process of Rule simplification. Next, section 5.7 de-

scribes the actions taken to detect new rules (New rule detection). Finally, section 5.8

summarizes the main aspects of the chapter.

5.1 Approaches proposed in this thesis

We focus our attention on the detection of the minority class (positive cases) using

binary classification. This inspired by the desire to predict big movements in stock

prices. The occurrence of such movements is infrequent, but these may have a signif-

icant impact. On the other hand, we are interested in generating a range of solutions

capable of fitting different user’s needs. Finally, an important characteristic for the

user is the interpretability of the solutions, this allows us to analyse the conditions and

variables that are involved in the solution. This understanding allows the user to apply

his/her knowledge in order to make a better decision. Repository Method and Evolving

Decision Rules, described in chapters 6 and 7 respectively, are focused on situations

where positive instances are rare. On the other hand, Scenario Method (Chapter 8)

proposes a pruning procedure, whose objective is to improve the precision and accuracy

of the predictions. Notice that, the complete explanation of each method is described

82

in the subsequent chapters, the information provided in the coming sections does not

pretend to be a substitute for the full explanation. Therefore, the following sections

are useful in providing a context in which to refer to the procedures described in this

chapter.

5.1.1 Repository Method

The objective of Repository Method (RM) is to extract and collect different rules that

classify the positive cases (rare instances) in different ways, increasing the probability

of identifying similar cases in future data sets. RM analyses a set of solutions provided

by a standard GP. Then the rules (patterns) in every decision tree are identified. Sub-

sequently, these are evaluated taking into account the performance and novelty. The

performance is compared to a predefined precision threshold. A range of classifications

can be created by varying the value of the precision threshold. Let us now outline the

main steps of RM:

1. Creation of different solutions: to generate a set of solutions by using a GP.

2. Rule extraction: to analyse every decision tree created by a GP system in order

to define their rules. Each rule is evaluated individually to select those patterns

that contribute to the classification task.

3. Rule simplification: to simplify the selected rules by removing redundant and

unused code.

4. New rule detection: to detect and store useful and new rules.

83

5.1.2 Evolving Decision Rules

Evolving Decision Rules (EDR) is an evolutionary system that has been designed to

evolve decision rules to form a collection of patterns. The result is a set of rules,

these are grouped by precision in order to create a range of classifications. This allows

the user to choose the classification that best fit the user’s needs looking for the best

trade-off between the misclassifications and the false alarms costs. The steps in this

approach are describe below.

1. Initialization of population: to create a new population of random decision trees.

2. Rule extraction: to analyse every decision tree to define its rules.

3. Rule simplification: to simplify the representation of each rule by removing un-

used code.

4. Adding new rules in the collection: to examine the simplified rules for detecting

new patterns in order to form a collection of rules.

5. Creation of the next generation: to create a new generation of decision trees

taking as parents the collection of rules originated in the previous steps.

As can be noticed RM and EDR share some procedures, for that reason it is impor-

tant to focus our attention on the difference between EDR and RM. As was mentioned,

the aim of RM is to analyse a set of decision trees (population) produced by a GP sys-

tem to pick up useful patterns (rules). Thus RM is a deterministic process when a

specific precision threshold is applied to a specific population of decision trees. On the

84

other hand, EDR is an evolutionary process that evolves decision rules. The rules that

achieve a specific precision threshold are stored in a repository and the new individuals

are created using the rules in the repository as parents. Thus EDR is able to generate

different solutions every time this is performed.

5.1.3 Scenario Method

Scenario Method (SM) is a pruning procedure for decision trees that were produced

by a GP system. SM analyses every decision tree T to delimit its rules. Every rule is

evaluated individually in order to identify the useful patterns in T . The rules that are

not contributing to the classification task will be removed from T . We believe that the

pruning of non useful rules can help to simplify the decision tree and to improve the

accuracy of the prediction. Let us outline the main procedures which are involved in

SM.

1. Rule extraction: to identify the rules in every decision tree.

2. Rule evaluation: to evaluate the performance of each rule.

3. Rule selection: to select the rules that contribute to the classification task.

4. Tree pruning: to remove from the decision tree, those rules that are not con-

tributing to the classification task.

85

5.2 Data sets creation

The approaches in this thesis are illustrated by detecting investment opportunities in

financial stock markets, using supervised learning (see section 2.1). The experience is

provided by a training data set, which is formed by examples, each example provides

a series of attributes and the desired outputs. The attributes of each example are

indicators derived from the financial technical analysis (see chapter 4). The output is

a signal, which is determined looking ahead to a horizon of n units of time, it tries to

detect an increase/decrease of at least r%.

Let Pt be the price of the stock in time t

r% be the minimum percentage of increase/decrease required

n be the number of units of time that we are looking ahead

δ be the signal, it is 1 when there is an increase/decrese of at

least r% and 0 otherwise.

Thus, the signal is calculated as follows:

δIncrease =

1 If Pt · (1 + r) < maximum(Pt+1, . . . , Pt+n)

0 Otherwise

δDecrease =

1 If Pt · (1− r) > minimum(Pt+1, . . . , Pt+n)

0 Otherwise

The mechanism to find the signal has been previously used in other works [77],

[112]. Figure 5.1 illustrates the signal detection. As can be seen, the tendency of the

future prices is analysed, looking for a decrease/increase that achieves a predefined

threshold.

86

0 50 100 150 200 250 300 350 400 450 500
2000

2500

3000

3500

4000

4500

5000

5500

Time t t + 20

Pt is the price in time t

Pt

Pt+20

Figure 5.1: How to create the training and testing data sets

5.3 Data sets description

This section introduces the attributes of the training and testing data sets, which were

used in the experiments of this thesis. The data sets Barclays, Tesco that were used

in chapter 6, 7 and 8, are composed of the independent variables in Table 5.1. As can

be seen, every indicator has been calculated using two periods of time, a short and a

long one. The detail about the number of examples, the rate of return and the number

of days that we are looking ahead for the movement is specified in the experimental

section in the corresponding chapters.

According to Bellman [6], the higher the dimensionality, the harder the problem.

This is due to the search space becomes bigger and it is more difficult to find the

solution to the problem. Some of the data sets used in this research are composed of

around twenty attributes, which increases the complexity of the search.

87

Table 5.1: Financial indicators used in the experiment

Short Long
Indicator name period period

(Days) (Days)
Price moving average 12 50
Price Trading breaking rule 5 50
Filter rule 5 63
Price volatility 12 50
Volume moving average 10 60
Momentum 10 60
Momentum 10 days moving average 10 –
Momentum 60 days moving average 60 –
Generalized Momentum indicator 10 60
FOOTSIE moving average 12 50
LIBOR: 3 months moving average 12 50

In order to compare our approach to EDDIE-Arb [114], we used the data set called

Arbitrage. According to the authors, the data were obtained from LIFFE and the

independent variables used in this data set reflect the fundamental relationship between

the spot, options and futures, none of which are technical trading indicators. The

independent variables used in the Arbitrage data set are listed in Table 5.2. Given

that our objective was to compare our approaches with EDDIE-Arb we used the same

data set with the same independent variables.

5.4 Individual representation

According to Koza [69], the set of terminals and primitive functions have to be able to

represent the solution of the problem (sufficiency property, section 3.3.1). The Discrim-

inator Grammar (DG) in Table 5.2 is a BNF grammar (see section 2.5) that produces

decision tree structures that classify or not a single class (binary classification). DG

is proposed in this work because it helps to simplify the delimitation of rules, which

88

Table 5.2: Explanatory variables used in the data set Arbitrage (see [114])

No Name Description
1 Moneyness Strike Price/Underlying Index Level
2 Basis % (x10000) Futures price minus spot index level,

divided by futures price, multiplied
by 10,000

3 Und (x10) Spot index level divided by futures
price, multiplied by 10

4 Interest Ask % The LIBOR ask rate for the matu-
rity closest to the maturity of fu-
tures contract, multiplied by 100

5 Futures (T-t) The nave trigger, profit after trans-
action costs, divided by futures
price, multiplied by 1,000,000

6 C-P % (x100) The difference between the call and
the put prices, divided by futures
price

7 Profit after TC (x1,000,000) The nave trigger, profit after trans-
action costs, divided by futures
price, multiplied by 1,000,000

is a task used in all the approaches proposed in this thesis. The objective of DG is

to capture patterns that describe a specific class. Notice that a DG decision tree is

true when at least one rule is satisfied, this implies that the decision tree classifies the

instance as positive and it is not necessary to execute the remaining parts of the tree.

To explain the execution of DG decision trees, let LHS be the left hand side node

of its parent and RHS be the right hand side node of its parent. As it is mentioned

in the definition 2, section 5.5, a rule is composed by a set of conditions associated

by conjunctions. It means that the operator ”AND” indicates that the LHS and RHS

conditions are part of the same rule. In contrast, the operator ”OR” indicates that the

tree has been splitting in different rules. In other words, the subtrees that are lying

down the LHS and RHS are creating different rules.

Figure 5.3 illustrates a decision tree that was created using DG. When there is

89

Figure 5.2: Discriminator Grammar

G → <Root>
<Root> → ”If-then-else”,<Conjunction> |

<Condition>,”Class”,”No Class”
<Condition> → <Operation>, <Variable>, <Threshold> | <Variable>
<Conjunction> → ”AND”|”OR”,<Conjunction>|<Conditional>,

<Conjunction>|<Conditional>
<Operation> → ”<” | ”>”
<Variable> → var1 | var2 | ... varn

<Threshold> → Real number

The DG grammar has three main functions:

1. Classify just a single class, this allows us to capture useful patterns that distin-

guish one class from another (binary classification).

2. Establish the format or structure to create the initial population of decision trees

in the evolutionary process.

3. Maintain the validity of the decision trees’ structure. This is achieved by instruct-

ing the genetic operators (crossover and mutation) to attend the DG guidelines,

as a consequence the validity of the decision trees is maintained.

As can be seen, DG creates decision rules that hold comparisons of two variables

and comparisons of a variable and a threshold. A similar structure was used by [11],

[12], [13], [29] to evolve decision rules that classify or not a single class.

maintaining the closure property

This subsection explains how the DG grammar helps to maintain the GP closure prop-

erty (see section 3.3.1). Figure 5.4 shows an example of how the genetic operator

90

Var1Var3

>

OR

0.61Var3

<Var2Var1

>

AND

Var3Var2

>

OR

0.56Var3

>

AND

IF

Class No Class

0

1

2

R =Var > 0.56 and Var >Var1 3 2 3

R =Var > 0.56 and Var >Var and Var < 0.61

R =Var > 0.56 and Var >Var and Var > Var

2 3

3 3

1 2 3

1 2 3 1

Figure 5.3: An decision tree created by using the Discriminator Grammar

mutation uses the grammar to maintain the strong type GP, satisfying the closure

property. The structures are constrained by the grammar producing just valid indi-

viduals according to the specifications in the DG. As can be observed in Figure 5.4,

the node to mutate is node 5. Thus, the parent of node 5 is node 1 and the syntax of

that node is determined by <Conjunction> in DG, analysing the syntax of the second

child of <Conjunction>, it can be a <Conjunction> or a <Conditional>. Thus, node

5, can be replaced by a subtrees with syntax <Conjunction> or <Conditional>.

In the case of the crossover a cross-point is selected randomly in each parent, if

these are compatible (i.e. these can be swapped producing valid trees according to

DG) the crossover is performed. Otherwise new cross-points are selected until these

are compatible.

91

0.61Var3

>

0.56Var3

>

AND

IF

Class No Class

0

1

2

3 4

5

6 7

8

Node to mutate

Parent

9

Parent node <Conjunction> ►”AND”|”OR”,<Conjunction>|<Conditional>
<Conjunction>|<Conditional> Thus the system will generate just valid children

for the parent node (node 1),for example:

─

Var1Var3

>

OR

0.61Var3

<Var3Var2

>

Figure 5.4: Generating valid subtrees to mutate the node 5 in the decision tree

5.5 Rule extraction

Rule extraction is a process that divides decision trees into rules; this allows us to

analyse the performance of each component. Rule extraction is used in RM, EDR and

SM (chapters 6,7 and 8 respectively). In each method the rule extraction is used for

different purposes. RM (chapter 6) extracts rules from a set of decision trees (candidate

solutions) in order to form a collection of rules. EDR (Chapter 7) divides decision trees

into rules in order to evolve a population of rules. On the other hand, SM (Chapter 8)

defines the rules to perform a selective pruning of the decision tree, with the purpose

of improving the precision and accuracy of the prediction.

92

Objective

At this point the following question arises, what is the advantage of converting a

decision tree to a set of rules? Researchers of other machine learning techniques, such

as, Quinlan [98] (classifier C.45) and Breiman et al [15], have rewritten the decision

trees produced by their classifiers in order to obtain a set of rules. Quinlan pointed

out two main arguments: firstly, the collection of rules is more comprehensible than

decision trees, especially when these are large. Secondly, the structure of the tree could

create sub-concepts that can be fragmented and replicated in the same tree. In this

work we have identified two main reasons for dividing a decision tree into its rules:

1. Identify the patterns in every decision tree. The approaches proposed in this

thesis are focused on patterns rather than models, for that reason the rules that

represent valuable patterns need to be identified. As was mentioned in section

2.2, a decision tree represents a model of the data set, while a rule represents a

pattern, it means a local structure which meets the requirements of few cases in

the search space.

2. Rules are easier to understand than decision trees, this characteristic allows the

user to appreciate the real variables and conditions that are involved in the de-

cision rule.

Procedure

In the context of this work, let us define a condition as an association of nodes with

syntax <Condition> in DG. For illustrative purposes, the nodes in Figure 5.3 have

93

been numbered. When we refer to condition cα, it is the condition formed by nodes α,

α + 1 and α + 2. For example: c6 ={var2 > var3} in Figure 5.3.

Definition 2. A rule Ri ∈ T , is a set of conditions that are associated by conjunctions,

”AND”. Ri represents a minimal set of conditions that satisfies the tree T, ∀Ri ∈ T .

Rule extraction is a process that analyses a decision tree to delimit its rules by

identifying the minimal sets of conditions that satisfy the tree T. As an instance,

the minimal sets of conditions that satisfy the tree in Figure 5.3 are R1={c2, c6},

R2={c2, c10, c14} and R3={c2, c10, c17}, where R1,R2 and R3 are rules and ci represents

a condition, whose operator is in node i. Thus, the decision tree is satisfied when at least

one of its rules has been satisfied. If the rules embedded in the decision tree in Figure

5.3 are represented as independent decision trees, the result is the set of decision trees

in Figure 5.5. As can be observed, all the conditions are associated by conjunctions.

This means that those decision trees are satisfied when all their conditions are satisfied.

Any instance in the data set that satisfies at least one of the decision trees in Figure

5.5 is able to satisfy the tree in Figure 5.3. Expressing a rule as a decision tree, whose

conditions are associated just by conjunctions, is a key factor for EDR (chapter 7)

because it allows us to create new decision trees from decision rules.

Notice that, if the precision of the rule Rk is bigger than 0, then Rk classifies at least

one positive case. This constraint is very important for RM, EDR and SM because

it discards rules which are composed of contradictory or unresolved conditions, (e.g.

R1 = {var1 > var1} or R2 = {var1 > var2 and var1 < var2}). This constraint

guarantees that rules will be composed of combinations of conditions that are feasible

94

Var3Var2

>

0.56Var3

>

AND

IF

Class No Class

0

1

2

3 4

6

7
8

20
21

0.61Var3

<

Var2Var1

>

AND

0.56Var3

>

AND

IF

Class No Class

0

1

2

3 4

9

10

11
12

14

15 16

20
21

Var1Var3

>

Var2Var1

>

AND

0.56Var3

>

AND

IF

Class No Class

0

1

2

3 4
10

11
12

17

18
19

20
21

Figure 5.5: Rules from tree in Figure 5.3. Notice thta the node numbers correspond
to the original ones in the decision tree in Figure 5.3

to satisfy. The pseudo-code of this procedure is described in the algorithm ExtractRules

(see appendix)

5.6 Rule Simplification

The main aim of the rule simplification process is to remove the unused code that is

produced by the GP [103]. The simplification of rules is used in RM and EDR methods,

described in chapters 6 and 7 respectively.

Before to provide a more detailed explanation about the objective of rule simplifi-

cation, let us define the following terms.

Definition 3. Redundant condition: A condition ci in a rule R is redundant if there

exist at least another condition ck ∈ R such as ck implies ci

95

Definition 4. Vacuous condition: A condition ci is vacuous in a rule R in relations

to a data set D if under the conditions in R, ci does not affect the decision of the rule,

such as the Performance(R) = Performance(R− ci)

Redundant conditions are those which are repeated or report the same event

e.g. R1 = {V ar1 > 0.5 and V ar1 > 0.7} the first condition is redundant. Given

that decision trees in the GP process are initially created at random, thus, there is

the risk that trees hold repeated conditions or conditions that does not affect the real

performance of the rule. This problem gets worse through generations because of the

accumulation of introns [2],[103]

Vacuous conditions do not affect the decision of the rule, for example, in financial

markets the trading volume is always bigger or equal to 0. Thus, a condition such as

Trading Volume>0 is always valid without exception, so this condition does not affect

the decision of the rule. Some conditions do not affect the decision of a tree or rule

in combinations with other conditions and in a specific data set. However, these may

affect the decision in other data sets. For that reason, it is important to remove that

code.

Objective

The aim of rule simplification is to remove the extra-code that is not affecting the

performance of the rule. The main objective of removing the redundant conditions is

to simplify the representation of the rule, whose advantages are:

1. to reduce the computational effort by reducing the number of evaluations

96

2. to make the rule more comprehensible for the user

On the other hand, the advantages provided by removing the vacuous conditions

are the following:

1. to disclose the real variables and conditions of the patterns represented by the

rule.

• it allows the user to understand the real conditions that are involved in the

decision.

• it allows to identify the duplication of patterns in a collection of rules, which

is an important element of EDR and RM because it assures to have different

rules in terms of genotype, increasing the variety of the solutions. In other

words, this helps to detect the real similarities and differences in a set of

rules.

2. to remove conditions that are not affecting the performance of the rule in the

training data set, this reduces the risk of including conditions whose behaviour

could be unpredictable in future data sets.

3. to reduce the computational effort by reducing the number of evaluations

There are some approaches that have been used GP to generate a set of rules, for

example: [11], [85], [12], [13], [29]. These approaches claim to generate comprehensible

rules. However, the GP tends to grow and accumulate introns or extra-code [69], [2],

[107], [8], [104]. We presume that a simplification process has to be performed in order

97

to recognize the real variables and conditions that are involved in each rule. Only Cao

et al [19] included a simplification process in their approach to remove redundant code.

However, that simplification does not remove the extra-code that is not affecting the

decision. The reader interested in introns and the generation of rule sets using GP is

referred to chapter 3.

Procedure

To simply decision rules, the first step is to remove the redundancy, and then remove

the vacuous conditions. To remove redundant conditions, we have defined two types

of conditions: hard conditions and flexible conditions.

Definition 5. A hard condition is the equation that compares two variables (e.g.

var1 < var2)

Definition 6. A flexible condition is the equation between a variable and a threshold

(e.g. var1 < 0.8)

Definition 7. Two conditions are said to be similar if these have the same variable

(see DG). For example, var1 < 3 and var1 < 2 are similar conditions.

Definition 8. similar conditions is a term to define a group of conditions that have the

same variable and operator(see DG). For example, var1 < 3 and var1 < 2 are similar

conditions.

Conditions have been divided, in hard and flexible, because the conditions that

compare thresholds could be difficult to differentiate (e.g. var1 < 0.8912 and var1 <

0.8910). However, these can be easily simplified (e.g. V ar1 < 0.8910). The simplifica-

tion of rules can be summarized in the following steps:

98

Let Rk = {ci} be the set of conditions in the rule Rk.

• If c1, c2 ∈ Rk are hard conditions and c1 = c2 then Rk= Rk − c2

• If c1, c2 ∈ Rk are flexible conditions and c1 and c2 are similar conditions then c1

and c2 are simplified using the simplification table (see Table 5.3).

• If ci ∈ Rk and Performance(Rk) = Performance(Rk − ci) then Rk= Rk − ci

As can be noticed, the first and second steps remove the redundant conditions,

while the third step removes the vacuous conditions.

Simplification of flexible conditions

The last paragraph described the general explanation for simplifying rules. In this

section the procedure to simplify a set of flexible conditions using the simplification

table is explained and an example showing this mechanism is given.

Let Rk be a rule whose conditions are related by conjunctions and meet the syntax

<Condition> in DG. Thus, the value of every variable varj can be described by two

thresholds inferior limit Ti and superior Limit Ts, where Ti ≤ Ts. Those thresholds

can be real values or can be ∅ value. It means that the value of variable varj is not

restricted to that frontier. The following paragraph describes the procedure to simplify

a set of similar conditions c1, c2 . . . , cn. It is important to bear in mind that similar

conditions are flexible conditions and these compare the same variable varj.

1.- Initialize the thresholds of the variable varj, thus Ti = Ts = ∅. It means that there

is not any previous condition that restricts the value of varj.

2.- For each new condition ca find the simplification instruction in Table 5.3 by match-

ing the following criteria:

99

2.1 Match Ti and Ts in column Present Thresholds in Table 5.5

2.2 Match the syntax of condition ca in the column New condition in Table 5.3

2.3 The new threshold Tn has to satisfy the equation in column Previous condi-

tion in Table 5.3

3.- Once the simplification instruction has been found, this has to be applied to Ti

and Ts in order to update the present thresholds.

Simplification table

This paragraph explains the elements of the simplification table (see table 5.3). Each

row in the table describes conditions that restrict the value of the variable var by means

of the thresholds Ti, Ts and Tn (inferior, superior and new threshold, respectively). It

is important to bear in mind that the set of conditions must be feasible to satisfy and

Ti must be less or equal to Ts.

Given the mentioned constraints, the valid cases for Ti and Ts are illustrated in

figure 5.6. Each of those cases is combined with conditions that describe the relation

between Ti,Ts and Tn. However, not all that cases are presented in the simplification

table because some of them do not meet all the constrains. Table 5.4 shows the invalid

cases. Cases 1 and 2 are invalid because the conditions can not be satisfied, it means

that these conditions does not classify any positive case. It is fear to say that using

GP these combinations of conditions may appear. However, the methods proposed in

this dissertation use the simplification procedure just when the set of conditions has

classified at least one positive case, it means that these can be satisfied. On the other

100

hand, cases 5 and 6 are invalid because the conditions are satisfied just when Ts < Ti.

-6 If Ti, Ts = ∅///////////////////////

-6 If Ti 6= ∅ and Ts = ∅[///////////
Ti

-6 If Ti = ∅ and Ts 6= ∅//////////////////]
Ts

-6 If Ti, Ts 6= ∅ and Ti ≤ Ts[///////]
Ti Ts

Figure 5.6: Valid cases for the thresholds Ti and Ts (inferior limit and superior limit,
respectively) where Ti ≤ Ts.

To illustrate the function of Table 5.3, let us explain the following example: The

objective is to simplify the following set of similar conditions: R1 = {c1, c2, c3, c4, c5}

where

c1 = {varj > 0.1}
c2 = {varj < 6.0} Simplification

c3 = {varj < 4.0} =⇒ 0.1 < varj < 2

c4 = {varj > 0.0}
c5 = {varj < 2.0}

101

Table 5.3: Simplification table, Ti, Ts and Tn are thresholds (new, inferior and superior
respectively)

No. Present Conditions Simplification
Instruc Thresholds Instruction

tion Inferior Superior New Previous conditions Inferior Superior
limit limit Inf lim Sup lim condition limit limit

1 ∅ ∅ var < Tn ∅ Tn

2 ∅ ∅ Tn < var Tn ∅
3 ∅ Ts var < Tn Ts ≤ Tn ∅ Ts

4 ∅ Ts var < Tn Tn < Ts ∅ Tn

5 ∅ Ts Tn < var Tn < Ts Tn Ts

6 Ti ∅ var < Tn Ti < Tn Ti Tn

7 Ti ∅ Tn < var Ti ≤ Tn Tn ∅
8 Ti ∅ Tn < var Tn < Ti Ti ∅
9 Ti Ts var < Tn Ti ≤ Tn Tn < Ts Ti Tn

10 Ti Ts var < Tn Ti ≤ Tn Ts < Tn Ti Ts

11 Ti Ts Tn < var Ti < Tn Ts ≤ Tn Ti Ts

12 Ti Ts Tn < var Ti ≤ Tn Tn < Ts Tn Ts

Notice that, the number of the conditions has no relation to the position of the

node in the decision tree. Table 5.5 presents the steps to simplify the set of conditions

in R1, let us explain every row of the table in detail.

Row 1 First, initialize the inferior limit Ti and the superior limit Ts of varj using ∅.

Next, look for the simplification instruction in Table 5.3 following the next steps:

• Since Ti, Ts = ∅, we look for these values in the present thresholds column,

in Table 5.3. As can be seen, the instructions that meet this requirement

are instructions 1 and 2.

• The new condition to be introduced is c1={varj > 0.1}. It means that c1 has

the syntax var > Tn. We look for the syntax in the New Condition column

(Table 5.3). The simplification instruction that satisfies this requirement is

102

Table 5.4: List of the invalid cases which are not included in the Simplification table

No. Present Conditions Simplification
Instruc Thresholds Instruction

tion Inferior Superior New Previous conditions Inferior Superior
limit limit Inf lim Sup lim condition limit limit

1 ∅ Ts Tn < var Ts ≤ Tn – –
2 Ti ∅ var < Tn Tn ≤ Ti – –
3 Ti Ts var < Tn Tn ≤ Ti Tn ≤ Ts – –
4 Ti Ts Tn < var Tn ≤ Ti Ts ≤ Tn – –
5 Ti Ts var < Tn Tn ≤ Ti Ts ≤ Tn – –
6 Ti Ts Tn < var Tn ≤ Ti Tn ≤ Ts – –

the instruction number 2.

• Applying the instruction 2, the new threshold Tn has to replace the inferior

limit thus Ti = Tn = 0.1

Row 2 The present thresholds are Ti = 0.1 and TS = ∅. The simplification instructions

that satisfy this specification are 7,8,9 and 10. But the following specifications

have to be achieved too:

• The new condition is c2 = {varj < 6}, it means that c2 has syntax varj < Tn.

Thus, the simplification instructions 7 and 8 meet the new requirement (see

column New condition in Table 5.3).

• As Ti < Tn (0.1<6), we look in the previous conditions column (Table

5.3) this formula. Thus, the simplification instruction that meet all the

requirements is instruction 8.

• Applying the simplification rule 8 the thresholds are modified as follows:

Ti = Ti = 0.1 and Ts = Tn = 6.

103

• The simplification of the remaining rows follows the same procedure. The

simplification of the example is 0.1 < varj < 2

The pseudo-code that describes the simplification of flexible conditions is described

in the algorithm: IdentifyRange() in the appendix

5.7 New rule detection

Objective

This process helps to maintain the variety of the patterns, it is used in RM and EDR

(Chapters 6 and 7 respectively). The aim of this procedure is to identify new patterns

to form a set of rules. Once a rule Rk has been simplified, we have to determine the

novelty of Rk, comparing this against the rules in the collection. To compare rules

effectively, these have been divided into hard and flexible

Definition 9. Ri is a hard rule, if it is composed exclusively of hard conditions

Definition 10. Ri is a flexible rule if it has at least one flexible condition

Table 5.5: Steps to simplify a set of flexible conditions: using the Table 5.3

No. Inferior Superior New Simplification Final
Step limit limit Condition instruction Condition

Ti Ts Table 5.3
0 ∅ ∅ vark > .1 2 0.1 < vark

1 0.1 ∅ vark < 6 8 0.1 < var3 < 6
3 0.1 6 vark < 4 12 0.1 < vark < 4
4 0.1 4 vark > 0 14 0.1 < vark < 4
5 0.1 4 vark < 2 12 0.1 < vark < 2

104

Definition 11. Rk and Ri are similar rules if these have the same hard conditions and

similar flexible conditions.

The comparison of hard rules is straightforward, but the comparison of flexible rules

is more complex, because rules contain thresholds, for instance:

R1= (V ar1 > V ar2, V ar3 > 0.30) and

R2= (V ar1 > V ar2, V ar3 > 0.35) are similar rules

At this point an important question arises, how to choose between two similar

rules?, we propose to pick the rule with the best performance, it helps to tune the

thresholds in flexible conditions by taking advantage of the knowledge acquired by the

evolutionary process.

Let Rep be the repository of rules

µ be the maximum allowed number of rules in Rep

Rk be a rule such as Rk /∈ Rep

Fitness be the fitness function

Rw be a rule such as Rw ∈ Rep and Fitness(Rw) ≤ Fitness(Ri) ∀Ri ∈ Rep

Size be the function that measure the number of rules in Rep

1. Rk is a hard rule and ∃ Ri ∈ Rep such as Ri = Rk thus the rule is discarded in

order not to duplicate Ri

2. Rk is a hard rule and 6 ∃ Ri ∈ Rep such as Ri = Rk and Size(Rep) < µ thus Rk

has to be added to Rep, it means Rep = Rep ∪Rk

3. Rk is a hard rule and 6 ∃ Ri ∈ Rep such as Ri = Rk and Size(Rep) = µ and

Fitness(Rk) > Fitness(Rw) thus Rk has to be added to Rep

105

4. Rk is a hard rule and 6 ∃ Ri ∈ Rep such as Ri = Rk and Size(Rep) = µ and

Fitness(Rk) ≤ Fitness(Rw) thus Rk is discarded

5. Rk is a flexible rule and 6 ∃ Ri ∈ Rep such as Rk and Ri are similar rules and

Size(Rep) < µ thus Rk is added to Rep

6. Rk is a flexible rule and 6 ∃ Ri ∈ Rep such as Rk and Ri are similar rules and

Size(Rep) = µ thus Rk is discarded

7. Rk is a flexible rule and ∃ Ri ∈ Rep such as Rk and Ri are similar rules and

Fitness(Rk) ≤ Fitness(Ri) then Rk is discarded because there is a similar rule

Ri whose conditions hold thresholds that perform better than the thresholds in

Rk.

8. Rk is a flexible rule and ∃ Ri ∈ Rep such as Rk and Ri are similar rules and

Fitness(Rk) > Fitness(Ri) then Ri is replaced by Rk because the latest performs

better.

The instructions to deal with the mentioned cases can be summarized as follows:

• If Rk is a hard rule and 6 ∃ Ri ∈ Rep, such as Ri = Rk then Rep = Rep ∪ Rk, but if

Size(Rep) > µ then Rep = (Rep−Rw) ∪Rk

• If Rk is a flexible rule and ∃ Ri ∈ Rep such as Rk and Ri are similar rules and

Fitness(Rk) > Fitness(Ri) then Rep = (Rep−Ri) ∪Rk

• If Rk is a flexible rule and 6 ∃ Ri ∈ Rep such as Rk and Ri are similar rules then

Rep = Rep ∪Rk, but if Size(Rep) > µ then Rep = (Rep−Rw) ∪Rk

106

Notice that, the number of rules is limited by the parameter µ and when the size

of Rep is bigger than µ the worse rule in Rep has to be deleted. On the other hand,

the replacement of rules is an important part of this process because this is applied

to flexible rules (those rules that hold conditions with continuous thresholds). Thus,

every time a flexible rule is replaced by a better similar rule, the thresholds are being

approximated to the optimal values.

5.8 Summary of the chapter

The chapter focused on describing and justifying common procedures that are used to

build up the contributions presented in the next three chapters of this thesis. Basically,

this chapter is composed of two parts. The first is a description of the data sets used in

this research, whose aim is to describe the process to assign categories to each record

in the data sets. The second is a description of the basic procedures used to build the

approaches proposed in this thesis.

Chapter 6

Repository Method

This chapter presents a novel approach called Repository Method (RM) [46], [49], [43],

[45]. This method is based on machine learning and supervised learning (section 2.1).

Machine learning classifiers extend the past experiences into the future. However, the

class imbalance in the data sets poses a serious challenge to machine learning techniques

[63], [119], [5], [81]. Because the prediction of the majority class is favoured, due to it

has a high chance of being correct.

Objective

The main objectives of RM are:

1. to classify the minority class in imbalanced environments

2. to produce a range of solutions to suit different user’s preferences

3. to generate a set of comprehensive decision rules that can be understood by the
user and present the real variables and conditions in the decision

The remaining of this chapter is organised as follows: Section 6.1 presents the

introduction and motivation of this work; Section 6.2 describes the RM procedure,

while Section 6.3 describes the experiments to test our method. Finally, Section 6.4

summaries the conclusions.

107

108

6.1 Introduction and motivation

RM is inspired by a previous work called EDDIE [112], [77], [116], [114]. EDDIE is

a financial forecasting tool that trains a GP using a set of examples. Every instance

in the data set is composed of a set of attributes (financial indicators). The signal is

calculated looking ahead to a future horizon of n units of time, trying to detect an

increase/decrease of at least r% (see section 5.2). However, when the value of r is very

high, which implies an important movement in the stock price, the number of elements

in the minority class is extremely small and it becomes very difficult to detect those

cases.

This work is motivated by the interest of finding high movements in stock prices,

which requires detecting the minority class in imbalanced environments. Evolutionary

Algorithms have the ability to create multiple solutions to a single problem. To take

advantage of this feature, we propose to mine the knowledge acquired by an evolution-

ary process. The aim is to extract and collect different rules (patterns) that classify the

cases in the minority class in different ways, increasing the probability of identifying

similar cases in the future.

Previous works

In our understanding, there is no similar application that mines the knowledge acquired

by a evolutionary process as RM does. The closest application that we found was

PADO by Teller [108]. He used several individuals (programs) from the population in

order to classify a set of examples. Then a voting system was used in order to achieve

109

an agreement between individuals. In contrast, our application is focused on patterns

rather than models (see section 2.2). RM collects patterns from different individuals

in the population and from different generations of the evolutionary process. Those

patterns classify a single class (positive), the absence of patterns indicates that the

classification is negative, in other words RM creates a binary classifier. Furthermore,

RM performs a simplification of conditions to provide a comprehensible set of rules that

other applications based on GP would not able to offer because GP systems generate

extra-code [2, 88, 104, 74] that constitute between 40% and 60% of the total code (see

section 3.3.3). And unless a simplification of that code is performed it is not possible

to offer a solution that shows the real variables and conditions in the decision.

There exist other evolutionary techniques to produce a set of decision rules (see

section 3.4). The majority of them use GAs to evolve a population of rules (Michigan

approach [58], [120],[17]) or a population of sets of decision rules (Pittsburgh approach

[64]). Both approaches are developed in the frame of GAs whose representation (length

strings) could limit the search of the optimal solution. Since the Michigan approach

(see section 3.4) is concerned about covering all possible instances, this could be prob-

lematic when the number of variables or attributes is high. In contrast RM is focused

on capturing the patterns of the minority class. On the other hand, the Pittsburgh

approach (see section 3.4) evolves sets of rules, it limits the number of possible rules

because the size of the individual increases every time a new rule is added

Due to the characteristics of RM, it has been used in the area of Chance discovery,

which is the discipline that studies the detection of rare, but significant events that

110

may have an important impact [1],[89].

6.2 Repository Method Procedure

To detect the cases in the minority class, let us call them positive cases, we propose to

compile several solutions to classify in different ways the positive examples. To gen-

erate multiple solutions, we use Genetic Programming (GP), which is an evolutionary

technique that is able to produce multiple solutions to a single problem (see section

3.3). The aim of RM is to collect a big collection of rules that holds different patterns

(see section 2.2) of the positive cases. In the context of this work, patterns are rep-

resented by rules. Let us define a rule Ri ∈ T as a minimal set of conditions whose

intersection satisfies the decision tree T (see sections 2.2, 5.5). We believe that the

patterns that hold few positive cases could be eliminated in the evolutionary process.

That is, consider the rules R1 and R2 in the following example:

Let R1, R2 be two different rules

E1 be the set of positive examples correctly classified by R1

E2 be the set of positive examples correctly classified by R2

Consider E1 ⊂ E2 and the Precision(R1) ≤ Precision(R2). It is more likely that

rule R2 survives during the evolutionary process. Because R2 is better, however, it is

not possible to know if R1 and R2 would classify the examples using different criteria

that could be useful for detecting positive cases in future data sets. If R1 and R2 are

different rules maybe in another data set R1 is able to classify examples that R2 cannot,

for such reason we consider useful to keep R1. If we are evolving decision trees and the

111

tree T holds rules R1 and R2, thus the part that holds R1 can be removed from the tree

without affecting (or affecting positively because Precision(R1) ≤ Precision(R2)) the

overall performance of the tree, an illustrative example is presented in section 7.3.5.

Repository Method overview

To generate many candidate solutions, we use a population or a set of populations

created by a GP system. RM analyses the decision trees in order to select and collect

patterns capable of identifying the positive cases. Those patterns or rules will be stored

in a structure that is called repository. The selection is based on the performance and

novelty of the solution. The performance is determined by the precision of the rule

(phenotype), while the novelty is determined by the conditions and variables that

compose every rule (genotype). Let us introduce an overview of the main steps of our

approach:

1. Creation of different solutions: to create a large set of candidate solutions.

2. Rule extraction: to analyse every decision tree in order to identify the rules in

the tree. Every rule Ri is evaluated using the training data set. If Ri achieves a

predefined Precision Threshold (PT), then Ri will pass to the next step, otherwise

Ri is discarded (see section 5.5).

3. Rule simplification: to simplify the decision rule Ri by removing the redundant

and vacuous conditions (see section 5.6).

4. New rule detection: to compare the rule Ri to the rules stored in the repository.

112

The objectives are: a) to pick and store new rules and b) to replace an existing

rule when the new rule Ri is similar and performs better (see section 5.7).

A general overview of RM has been presented. The next sections explain every

procedure, but some detailed explanations are provided in Chapter 5.

6.2.1 Creation of different solutions

To generate multiple solutions, we use a GP system to evolve a population of decision

trees. However, in the majority of the evolutionary algorithms, the normal procedure

is to choose the best individual of the complete evolution as the optimal solution of

the problem. In contrast, we believe that the remaining individuals in the population

could contain useful patterns that are not necessarily present in the best individual of

the evolution.

To generate a set of solutions we propose to save a complete population of decision

trees generated by a GP system. Thus, a population of n individuals is evolved using

a standard GP, in a specific generation the entire population is saved. Let Pk be the

population in generation k. Since we believe that some useful rules could be lost during

the evolutionary process, we propose to gather information from a set of populations:

P10, P20 . . . P100. Notice that, the fitness function of the GP in the experiments of this

chapter is the geometric mean of the product of the precision and recall, which is a

common metric to measure the performance of a classifier in imbalanced environments

[71].

The decision trees in this work meet the syntax of Discriminator Grammar (DG)

113

(see Figure 5.2). This grammar helps to simplify the delimitation of rules, producing

decision trees that classify or not a single class. A more detailed explanation of the

representation of the decision trees is provided in section 5.4.

6.2.2 Rule extraction

The aim of this procedure is to analyse the decision trees in order to delimit their

rules, by identifying and separating the patterns in every decision tree. Once a rule

Rk ∈ T has been delimited, it is evaluated using the training data set. If the precision

of Rk achieves a predefined Precision Threshold (PT), then Rk is considered for the

next step, otherwise the rule is discarded. PT is a parameter set by the user. Section

5.5 provides the complete explanation of the rule extraction process.

6.2.3 Rule Simplification

The objective of rule simplification is to remove redundant and vacuous conditions

(see definitions 3 and 4 in section 5.6). Given that, decision trees that are generated

by a GP process tend to grow and accumulate extra-code (often known as introns)

[2],[88],[104],[74]. The complete explanation of this process is provided in section 5.6.

Rule simplification is a relevant task for the following reasons:

1. Disclose the real variables and conditions of the patterns

2. Remove conditions that are not affecting the performance of the rule in the

training data set, reducing the risk of unpredictable behaviour in future data

sets.

3. Identify the duplication of rules in the repository

114

6.2.4 New rule detection

The aim of this procedure is to identify new patterns to form a repository of rules.

The procedure is to add new rules to the repository of rules and replace old rules

with similar rules that perform better. The complete explanation of this procedure is

provided in section 5.7. The following procedure determines if the rule Rk is added or

not to the rule repository Rep.

6.2.5 The repository of rules

After explaining the RM procedure, an important question arises. How to choose the

best value of PT to create the repository of rules?. We propose to use several values

for the PT in order to produce several repositories. The idea behind this procedure

is to provide a range of classifications. Thus, the user can choose the best trade-off

between misclassifications and false alarms according to its preferences. The results

can be plotted in the ROC space (see section 2.4.3). Thus, when the PT is close to

1 the prediction will be conservative and when PT is close to 0 the prediction will be

liberal.

6.3 Experimental Section

To test our approach a series of experiments was performed. The first experiment (sec-

tion 6.3.1) was designed to test the performance of RM. Furthermore it demonstrated

how to select the best trade-off between misclassification and false alarms using the

ROC curve. The experiment in section 6.3.2 compares the performance of RM with

115

EDDIE-Arb. The experiment in section 6.3.3 compares RM with C5.0. The next exper-

iment was designed to show the impact of the evolutionary process in the performance

of RM (see section 6.3.4), this experiment shows the effect of 1) the accumulation of

rules between generations and 2) the number of decision trees analysed by RM. Finally,

an experiment to investigate the number of rules that each individual in the population

provides to the repository of rules is explained in Section 6.3.5. A series of preliminary

experiments were performed in order to select the parameters to execute the GP.

116

6.3.1 Experiment: Comparison of RM performance with a

standard GP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive rate

T
ru

e
P

os
iti

ve
 R

at
e

PT = 10%

PT = 20%

PT = 30%

PT = 50%

PT = 60%

PT = 70%

PT = 80%

AUC = 0.77

Data set: BARCLAYS
March,1998-January,2005
Rate of return : 15%
Number of days : 10
Tendency movement : Increase

Training data set :
Training examples: 887
Positive examples: 39 (4.3%)

Testing data set
Testing examples: 831
Positive examples: 24 (2.8%) GP Parameters

Population size : 1,000
Number of runs : 20 Crossover probability: .80
AUC : 0.77 Mutation probability : .05

Hill-climbing prob : .05
Populations Selection : tournament (2)

P10, P20, . . . , P100 Fitness function :
√

Precision ·Recall

Figure 6.1: RM parameters and ROC curve using Barclays data set

Objective

The aim of this experiment is to test the performance of RM and compare it with a

standard GP system. In addition, it shows the use of the ROC curve to look for the

best trade-off between misclassifications and false alarms costs.

Procedure

RM was tested using different values for the precision threshold PT ={10%,20%,. . . ,80%}.

In this experiment, RM gathered rules from the entire populations P10, P20, . . . , P100

to form a repository of rules. The recall, precision and accuracy of RM and the best

117

individual of the standard GP are presented in Table 6.1. The table displays averaged

results from 20 runs of RM and the GP using the testing data set.

Observations

A standard GP produces a single prediction for every data set, in contrast, RM was

designed to provide a range of classifications, which allows the investor to tune the

prediction according to his/her risk guidelines. If the user’s requirement is to detect

as many positive cases as possible, the PT has to decrease to move to the liberal

part in the ROC space. In contrast, if the user’s preference is to reduce the risk,

then the PT has to increase to move to the conservative part. Notice that, the recall

declines when PT increases. Because the selection of rules becomes stricter and fewer

rules are selected decreasing the number and variety of rules in the repository. Note

that the results provided by RM have better recall than the recall of the best GP

individual. The result of the standard GP is plotted in (0.10, 0.15) in the ROC space,

which describes a conservative prediction. The RM predictions have been distributed

along the ROC curve, this allows users to choose the most suitable choice for their

requirements. According to the experimental results, it was possible to detect from

24% to 76% of the positive cases with an accuracy higher than 71% (see Table 6.1).

The GP has better accuracy than the majority of the choices in RM because the GP

tends to predict negative classification, which has a high chance of being correct. The

experiment shows that RM is able to pick out rules that together classify more positive

cases. In addition, most of the extra positive classifications were correctly predicted,

which is reflected in both recall and precision. Since more errors were made (not as

118

Table 6.1: RM Results found when using Barclays.

PT Recall Precision Accuracy

0.8 0.24 0.085 0.90
0.7 0.45 0.091 0.85
0.6 0.52 0.095 0.84
0.5 0.60 0.094 0.82
0.4 0.72 0.086 0.77
0.3 0.76 0.071 0.71
0.2 0.85 0.048 0.51
0.1 0.97 0.033 0.20
GP 0.14 0.04 0.87

much, in proportion, as the correct classifications), the overall accuracy has decreased.

Given that our goal is to improve recall and precision, it is an acceptable price to pay.

Table 6.2: ROC curve, the tangent lines indicate the best trade off between misclassi-
fications and false alarms costs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive rate

T
ru

e
P

os
iti

ve
 R

at
e

PT = 10%

PT = 20%

PT = 30%

PT = 40%

PT = 50%

PT = 60%

PT = 70%

PT = 80%

µ− Cost of False Positive

ß− Cost of False Negative

µ=1,ß=20
µ=1,ß=5

(.83,.97)

(.50,.85)

(.29,.76)

(.17,.50)

(.15,.52)

(.13,.45)

(.08,.24)

(.23,.72)

False False Slope
Positive Negative Tangent

Cost Cost
1 1 33.6
1 5 6.7
1 10 3.3
1 15 2.2
1 20 1.6
1 25 1.3
1 30 1.1

The AUC (see section 2.4.3) obtained by RM is 0.77, according to Giedrius [118], it

describes a moderately predictive classifier. Figure 6.2 presents the ROC curve plotted

by RM and the table with the slope of the tangent lines, which represent the best

trade-off between misclassification and false alarms when the price of misclassifying is

β =1,5,10,. . . ,30 and the false alarm cost is µ=1.

119

6.3.2 Experiment: Comparison of RM and EDDIE-Arb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC = .83

Precision Threshold (PT)

PT =.40

PT =.60

False positive rate

T
ru

e
P

os
iti

ve
 r

at
e

Data set: Arbitrage

Tendency movement : Increase

Training data set :
Training examples: 1,006
Positive examples: 242 (24%)

Testing data set
Testing examples: 635
Positive examples: 159 (25%)
Number of runs : 20

GP Parameters
AUC : 83.5 Population size: 1,000

Crossover probability: .80
RM Populations Mutation probability : .06
P10, P20, . . . , P100 Hill-climbing prob : .05

Selection : tournament (2)

Fitness function :
√

Precision ·Recall

Figure 6.2: RM parameters and ROC curve using Arbitrage data set

Objective

The objective of this experiment is to compare the performance of RM with the per-

formance of EDDIE-ARB [114]. For more information about the data set Arbitrage

see Section 5.3.

Procedure

As in the previous experiment our approach was tested using different values for the

precision threshold (PT ={10%,20%,. . . ,100%}). The repository was formed gathering

and accumulating rules from the populations P10, P20, . . . , P100.

120

Table 6.3: RM Results using Arbitrage data set

PT Recall Precision Accuracy

1 0.00 0.00 0.75
0.90 0.54 0.96 0.88
0.80 0.58 0.88 0.88
0.70 0.62 0.74 0.85
0.60 0.68 0.59 0.80
0.50 0.74 0.41 0.67
0.40 0.80 0.38 0.62
0.30 0.97 0.31 0.45
0.20 1.00 0.25 0.25
0.10 1.00 0.25 0.25

EDIIE-Arb 0.42 1.00 0.85

Observations

The recall, precision and accuracy of RM and EDDIE-Arb are presented in Table 6.3.

As can be observed, EDDIE-Arb detected 42% of the positive cases with precision = 1.

The result of EDIIE-Arb is plotted in the point (0, 0.42) in the ROC space. The result

obtained by EDIIE-Arb is slightly better than RM results since this is plotted over

the ROC curve generated by RM. However, RM offers other choices that detect more

positive cases, for example: the recall and accuracy of RM when threshold =70%,80%

and 90% exceed EDIIE-Arb recall and accuracy. However, the precision of EDDIE-Arb

is better than RM precision. On the other hand, the solutions produced by RM are

distributed along the ROC curve, which allows the user to choose the most suitable

prediction according to their requirements. So it is possible to detect from 54% to 68%

of the positive cases with an accuracy greater than or equal to 80% when the PT =

.90,.80,.70,.60 (see Table 6.3).

121

6.3.3 Experiment: Comparison of RM and C5.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(0,0)

(1,1)

False positive rate

T
ru

e
P

os
tiv

e
R

at
e

AUC = 0.74

PT = .10

PT = .20

PT = .30

PT = .50

PT = .70

Data set: Barclays (400)

Rate of return : 15%
Number of days : 10
Tendency movement : Increase

Training data set :
Training examples: 400
Positive examples: 15 (3.7%)

Testing data set
Testing examples: 400 GP Parameters
Positive examples: 13 (3.2%) Population size: 1,000

Crossover probability: .80
Number of runs : 20 Mutation probability : .05
AUC : 0.74 Hill-climbing prob : .08

Selection : tournament (2)

RM Populations Fitness function :
√

Precision ·Recall
P10, P20, . . . , P100

Figure 6.3: Comparison of RM and C5.0 parameters and results

Objective

The aim of this experiment is to compare the performance of RM with classifier C.5

developed by Quinlan [98]. C.5 is a machine learning system that extracts informative

patterns from data; the classifier generated by C.5 is expressed as a decision tree or

a sets of if-then rules. In the ML literature C4.5 (the previous version of C5.0) is

considered one of the most relevant classifiers [67], [83], [121], [20].

122

Table 6.4: RM Results using Barclays 400.

Thres-
Recall Precision Accuracy

hold
1.00 0.00 – 0.97
0.90 0.22 0.17 0.94
0.80 0.24 0.16 0.93
0.70 0.25 0.14 0.93
0.60 0.32 0.11 0.89
0.50 0.37 0.10 0.87
0.40 0.50 0.09 0.82
0.30 0.57 0.08 0.78
0.20 0.77 0.06 0.61
0.10 0.94 0.04 0.25
C5 0.00 – 0.97

Procedure

To perform the experiment, we used the trial C.5 version. This demonstration version

cannot process more than 400 training or testing cases. For that reason, the size of the

training and testing data sets had to be adjusted to meet this constraint. Quinlan’s

algorithm was tested using ten-fold cross-validation and standard parameter settings.

Observations The recall, precision and accuracy obtained by RM and C.5 are pre-

sented in Table 6.4. As can be observed, the result obtained by C.5 was true positive

=0, false positive=0, false negatives = 13, true negative = 387. This is plotted in the

point (0,0) in the ROC space, which describes a conservative prediction. The classifier

C.5 obtained an excellent accuracy (97%). However, it did not detect any positive

cases. On the other hand, RM generated a range of solutions to satisfy different users’

preferences (conservative or liberal), because the predictions are distributed in the ROC

space. Thus, we can detect half of the positive examples with accuracy of 82%, using

a PT=40%.

123

6.3.4 Experiment: Importance of the evolutionary process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random AUC =.69
Generation 10, AUC =.74
Generation 100, AUC =.76

False positive rate

T
ru

e
P

os
iti

ve
 r

at
e

Data set: Barclays

Rate of return : 15%
Number of days : 10
Tendency movement : Increase

Training data set :
Training examples: 887
Positive examples: 39 (4.3%)

Testing data set
Testing examples: 831
Positive examples: 24 (2.8%) RM Parameters
Number of runs : 20 Population size: 1,000

Crossover probability: .80
Populations Mutation probability : .05
P0 Hill-climbing prob : .05
P10 Selection : tournament (2)

P10, P20 . . . P100 Fitness function :
√

Precision ·Recall

Figure 6.4: Experiment: Importance of the evolutionary process, parameters and re-
sults

Objective

The objective of this experiment is to show the importance of the evolutionary process

as a generator of solutions. To achieve our goal, this section has been divided in two

series of experiments.

Procedure (First part)

The performance of RM was measured using populations from different stages of the

evolutionary process. Thus, RM was tested using the following populations:

1. A random population of decision trees P0

124

Table 6.5: Barclays Recall (1), precision (2) and accuracy (3)

Random Generation Generation
PT decision 10 100

trees (P0) (P10) (P10 . . .P100)

% (1) (2) (3) (1) (2) (3) (1) (2) (3)

100 0 – .97 0 – .97 0 – .97
90 0 – .96 0 – .97 .26 .09 .90
80 0 – .96 0 – .97 .26 .09 .90
70 0 – .96 0 – .96 .45 .09 .86
60 0 – .96 .01 .06 .96 .52 .10 .85
50 0 – .96 .03 .05 .95 .64 .10 .83
40 0 – .96 .07 .05 .93 .75 .09 .78
30 .12 .07 .93 .18 .07 .91 .81 .06 .65
20 .38 .09 .87 .63 .09 .81 .83 .05 .54
10 .89 .04 .38 .93 .04 .35 .96 .03 .20

2. A population that was evolved for 10 generations, let us call it P10

3. The accumulation of ten populations from different generations P10, P20 . . . P100.

Observations

The results obtained in the experiment are presented in Table 6.5. Figure 6.4 displays

the ROC curves plotted by RM in the experiments described previously. Now, let us

describe in detail the result in every experiment.

• Random population P0 - Using a random population the AUC = .69, as

can be observed from figure 6.4, the majority of the points are clustered in the

conservative part of the ROC curve. It means that these did not classify any

positive case. However, RM was able to generate an interesting choice for the

investor, when PT=20% recall =38%, precision=9% and accuracy= 87%. Given

that, the population was generated at random, the patterns captured by RM

125

were created by chance.

• Population P10 - Using a population evolved for ten generations the performance

of RM improved, since the AUC increased from 0.69 to 0.74. In this experiment

RM offers two valuable choices when PT=30% and PT=20%. However, one of

the choices is on the conservative side and the other in the liberal part of the

ROC curve as Table 6.5 shows.

• Populations P10, P20 . . . P100 - Using the accumulation of ten populations from

different stages of the evolutionary process, the AUC increased from 0.74 to 0.76,

as was expected. However, the AUC increase is not as important as the fact that

the predictions have been distributed along the ROC curve. This allows users to

choose from a range of options the most suitable prediction according to their

requirements. Thus, it is possible to detect from 26% to 75% of the positive cases

with an accuracy greater or equal to 78% using the PT =.40,.50,. . . ,.90 (see Table

6.5).

When RM was tested in a set of decision trees that were randomly created the AUC

drops to 0.69. When the evolutionary process advances, the quality of the predictions

improves. It can be seen in: a) the AUC increase and b) the distribution of the

predictions in the ROC space. These indicate that the evolutionary process really

helps to create the rules for RM. As can be observed, the evolutionary process plays

an important role in discovering patterns because it increases the AUC and distributes

the predictions in the ROC space.

126

Procedure (Second part)

To provide a complete picture about how the evolutionary process helps to produce

useful patterns, the previous experiment was repeated, but this time RM used the

following sets of populations: {P10}, {P10, P20} . . . {P10, P20, . . . , P100}

Observations

Table 6.6 presents the recall, precision and accuracy of the experiment. As can be

seen, the best individual of the evolution is unstable because its recall and precision

fluctuate from generation to generation. The following paragraphs analyse the results

by indicators:

Recall - The recall obtained by RM increases consistently with the generations. Note

that, when PT increases the recall declines, it is because the selection of rules becomes

stricter and fewer rules are selected, this decreases the number and variety of the rules

in the repository. Notice that, except for some cases in the earliest generations, RM

shows better recall than the best GP individual. It might be due to, at the beginning of

the evolutionary process, most of the trees are not too far from being random, it limits

the production of useful rules. However, when the evolutionary process advances, it

tends to generate more and better patterns, in consequence RM recall improves.

Precision - As can be seen in Table 6.6, the RM precision fluctuates slightly. However,

it shows an upward trend when PT ≥ 40% and a downward tendency when PT ≤ 20%.

On the other hand, the GP precision oscillates significantly, but it does not exhibit any

clear tendency. As can be observed, in the majority of cases the precision of the

127

standard GP is overcome by RM precision.

Accuracy - The improvement in recall and precision is paid for, in some cases, by

decrease in accuracy. Thus, the GP has better accuracy than RM because it tends

to predict negative classifications. Experiments show that RM picks out rules that

together classify more positive cases. Most of the extra positive classifications were

correctly made. This is reflected in both, increase in recall and precision. Since more

errors were made (not as much, in proportion, as the correct classifications), the overall

accuracy has decreased. If the goal is to improve the recall and precision, it is an

acceptable price to pay. However, if the objective is to improve the accuracy, the user

can choose a conservative prediction, which is produced using a high PT.

128

Table 6.6: GP and RM recall, precision and accuracy. RM was tested using different
precision thresholds PT = 10%,20%, . . . , 80%. In RM the generation x means that
RM gathered rules from populations P10, P20 . . . Px.

RECALL
Repository Method PT

Gen GP 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 %
10 1% 93% 65% 23% 7% 3% 1% 0% 0%
20 0% 94% 69% 41% 23% 9% 4% 3% 0%
30 12% 95% 75% 58% 42% 25% 14% 6% 2%
40 11% 95% 80% 66% 52% 38% 25% 15% 5%
50 11% 96% 80% 72% 59% 45% 34% 20% 8%
60 7% 96% 81% 72% 63% 50% 40% 30% 12%
70 16% 96% 82% 75% 65% 55% 45% 34% 14%
80 8% 96% 82% 75% 70% 58% 48% 39% 17%
90 6% 96% 82% 75% 71% 58% 48% 40% 19%
100 16% 96% 82% 76% 73% 60% 49% 43% 21%

PRECISION
Repository Method PT

Gen GP 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 %
10 1% 4% 9% 6% 3% 2% 1% 0% 0%
20 0% 4% 8% 8% 7% 4% 2% 2% 0%
30 2% 4% 7% 9% 9% 7% 5% 3% 1%
40 4% 4% 7% 9% 9% 9% 7% 5% 4%
50 6% 4% 6% 8% 9% 9% 8% 6% 6%
60 6% 3% 6% 8% 9% 10% 9% 8% 7%
70 5% 3% 6% 8% 9% 9% 9% 8% 6%
80 3% 4% 6% 8% 9% 9% 9% 8% 6%
90 7% 3% 5% 7% 9% 9% 9% 8% 7%
100 2% 3% 5% 7% 9% 9% 9% 9% 7%

ACCURACY
Repository Method PT

Gen GP 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 %
10 97% 34% 79% 90% 94% 96% 97% 97% 97%
20 97% 31% 75% 86% 91% 93% 95% 95% 97%
30 92% 28% 70% 83% 87% 90% 92% 93% 96%
40 92% 26% 67% 79% 85% 88% 90% 92% 95%
50 93% 24% 63% 77% 83% 87% 89% 90% 94%
60 94% 23% 61% 75% 82% 86% 88% 89% 93%
70 89% 23% 59% 72% 81% 85% 87% 88% 92%
80 93% 23% 58% 72% 78% 83% 86% 87% 91%
90 94% 21% 56% 72% 77% 83% 85% 87% 91%
100 86% 20% 55% 71% 77% 82% 85% 86% 90%

129

6.3.5 Experiment: Importance of the accumulation of rules

through the evolutionary process

Objective

The previous experiment showed that the combination of diverse rules outperforms

the precision and accuracy produced by a standard GP in an extreme imbalanced

environment. At this point two important questions arise concerning the factors that

favour RM:

1. Can RM obtain similar results taking rules from a smaller set of individuals,
instead of the complete population?

2. Is it beneficial to gather rules from previous generations?

Those questions are answered by performing the following experiment.

Procedure

To uncover the effect of the accumulation of rules from previous generations, let Ac-

cumulated Repository Method (ARM) be the procedure that collects rules through

different generations and let Simple Repository Method (SRM) be the process that

compiles rules just from one generation. AR and SR denote two rules repositories

created by ARM and SRM, respectively. Superscripts specify the generation of the

population. Subscripts indicate the number of top individuals in the population. For

instance, AR70
100 is a repository that compiles rules from the top 100 individuals in the

population. These rules were accumulated during generations 10,20,. . . ,70. On the

other hand, SR70
10 is a repository that comprises rules from the top 10 individuals of

the population at generation 70.

130

Table 6.7: Accumulated Repository Method results. Recall, precision and accuracy of
(a) Best Individual, (b) AR10 (c) AR100 (d) AR1000. Precision Threshold = 60%

Gen Recall Precision Accuracy
(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

10 1% 2% 2% 2% 1% 1% 2% 1% 97% 96% 96% 97%
20 0% 3% 3% 4% 0% 2% 2% 2% 96% 96% 96% 95%
30 12% 5% 8% 14% 2% 2% 3% 5% 94% 95% 93% 92%
40 11% 8% 11% 25% 4% 3% 4% 7% 90% 94% 92% 90%
50 11% 9% 17% 34% 6% 4% 5% 8% 93% 93% 91% 89%
60 7% 10% 20% 40% 6% 5% 6% 9% 94% 93% 91% 88%
70 17% 12% 25% 45% 6% 6% 7% 9% 87% 93% 90% 87%
80 10% 18% 32% 48% 4% 7% 8% 9% 93% 92% 89% 86%
90 6% 20% 34% 48% 7% 7% 8% 9% 94% 91% 88% 85%
100 14% 23% 36% 49% 2% 7% 8% 9% 88% 90% 88% 85%

To answer the first question, we have to investigate the effects of the number of indi-

viduals involved in the rule selection. For that purpose, ARM was used to create three

accumulated repositories. The first repository gathers rules from the top ten individ-

uals in the population, the second collects rules from the top 100 individuals. Finally,

the third repository compiles rules in the complete population (1000 individuals), let

us call them AR10,AR100 and AR1000, respectively.

The populations used in this experiment were created by a standard GP using the

Barclays data set described in section 6.3.1. This experiment produces a large amount

of results, which is impractical to analyse. For that reason we focus our attention on

just a single PT value. We decide to chose PT=60% because it is able to detect around

50% of the positive cases.

To answer the second question, we test the effects of the rule accumulation through

previous generations. Thus, the last experiment was repeated, but this time SRM was

applied.

131

Table 6.8: Simple Repository Method (SRM) results. Recall, precision and accuracy
of (a) Best Individual, (b) SR10 (c) SR100 (d) SR1000. Precision Threshold = 60%

Gen Recall Precision Accuracy
(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

10 1% 2% 2% 1% 1% 1% 2% 1% 97% 96% 96% 97%
20 0% 1% 3% 4% 0% 3% 3% 2% 96% 97% 96% 95%
30 12% 2% 7% 12% 2% 1% 3% 5% 94% 95% 94% 93%
40 11% 4% 7% 20% 4% 3% 3% 6% 90% 95% 93% 91%
50 11% 3% 14% 28% 6% 2% 5% 8% 93% 94% 92% 90%
60 7% 6% 13% 31% 6% 5% 5% 9% 94% 94% 92% 89%
70 17% 7% 17% 35% 6% 5% 6% 8% 87% 94% 91% 88%
80 10% 10% 21% 41% 4% 7% 6% 9% 93% 93% 90% 87%
90 6% 12% 20% 36% 7% 6% 6% 8% 94% 93% 90% 87%
100 14% 14% 23% 41% 2% 7% 7% 8% 88% 92% 90% 86%

Observations

The Effect of the number of individuals- This paragraph describes the impact

of the number of decision trees in the population. As was mentioned, a series of ex-

periments was carried out using: (a) the best individual, (b) the top 10 individuals,

(c) the top 100 individuals of the population and (d) the complete population (1,000

individuals). Those decision trees were used to gather patterns. Table 6.7 shows the

results (recall, precision and accuracy) of the experiment. In order to have a graphic

idea about the results, these have been plotted in Figure 6.5. As can be seen from Fig-

ure 6.5, the recall, precision and accuracy of the best individual oscillates considerably

through generations.

Recall- The recall obtained by ARM (Figure 6.5 i) steadily increases through the gen-

erations. This clearly improves when the number of individuals (decision trees), in the

rule collection, increases. It indicates that there exists a great potential of patterns in

the entire population that are not necessarily included in the best individual(s) of the

132

evolution.

Precision- The precision of ARM and SRM (Figure 6.5 iii,iv) shows an upward trend

among generations. In addition, the number of individuals clearly improves the preci-

sion of the prediction.

Accuracy- The accuracy (Figure 6.5 v,vi) steadily decreases through generations. Fur-

thermore the increase in the number of individuals affects negatively the accuracy of

the classification. In other words, when the number of individuals in the population

decreases, the number of patterns decreases too. Thus the predictions become conser-

vative. The conservative predictions benefit accuracy, while liberal predictions worsen

accuracy.

The effect of gathering rules from previous generations - In order to analyse the

effects of the accumulation of rules from previous generations, we compare the results

of ARM (Figure 6.5 i,iii,v) and SRM (Figure 6.5 ii,iv,vi). As can be seen, the trends in

recall, precision and accuracy presented by SRM are similar to those in ARM. As can

be seen from figure 6.5, the recall and precision reported by ARM (i),(iii) outperformed

the SRM results (ii),(iv). Since ARM accumulates rules through generations and SRM

does not, it indicates that the collection of rules from previous generations contribute

to improve RM performance. It means that some useful rules could be lost during the

evolutionary process. In addition, the collection of rules from preceding generations

helps to maintain the variety and tackle the convergence (see section 3.3.4).

133

Reducing the number of evaluations required - An alternative perspective from

these results is that RM can be used to reduce the number of evaluations in GP. For

example, Figure 6.5 (i) shows that at generation 40, ARM achieved higher recall (0.25)

than the best recall achieved by GP (0.18, which was achieved at generation 70). Figure

6.5 (iii) shows that at generation 40, ARM achieved precision (0.066) same as the best

precision achieved by GP (which was achieved at generation 90). Similarly, at genera-

tion 50, SRM achieved accuracy, precision and accuracy better than or comparable to

the best achieved by GP in later generations.

In many applications, evaluations are very expensive. In these problems, users will

benefit from the reduction of evalutions. The above results show that RM could be an

effective tool for reducing the number of evaluations in GP.

134

Accumulated Repository Simple Repository

(i) ARM Recall (ii) SRM Recall

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

R
ec

al
l

Best Individual
Repository 10 individuals
Repository 100 individuals
Repository 1,000 individuals

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
ec

al
l

Generations

Best Individual
Repository 10 individuals
Repository 100 individuals
Repository 1,000 individuals

(iii) ARM Precision (iv) SRM Precision

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
re

ci
si

on

Generations

Best Individual
Repository 10 individuals
Repository 100 individuals
Repository 1,000 individuals

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Generations

P
re

ci
si

on

Best Individual
Repository 10 individuals
Repository 100 individuals
Repository 1,000 individuals

(v) ARM accuracy (vi) SRM Accuracy

10 20 30 40 50 60 70 80 90 100
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Generations

A
cc

ur
ac

y

Best Individual
Repository 10 individuals
Repository 100 individuals
Repository 1,000 individuals

10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Generations

Best Individual	
Repository 10 individuals
Repository 100 individuals
Repository 1,000 individuals

Figure 6.5: Results using Accumulated Repository Method (ARM) and Simple Repos-
itory Method (SRM), the experiment was performed using a PT=60%.

135

6.3.6 Experiment: Rule contribution per individual

Data set: BARCLAYS

Rate of return : 15%
Number of days : 10
Movement : Increase

Training data set
Training examples: 887
Positive examples: 39

Testing data set
Testing examples: 831
Positive examples: 24

GP Parameters
Number of runs : 20 Population size: 1,000

Crossover probability: .80
Populations Mutation probability : .05
P10, P20, . . . , P100, Hill-climbing prob : .05

Selection : tournament (2)

Thresholds PT: Fitness function :
√

Precision ·Recall
0.60, 0.70, 0.80

Figure 6.6: Contribution of decision rules

Objective

The objective of the present experiment is to investigate the number of rules that each

individual in the population provides to the repository of rules, we hypothesize that

individuals with low fitness are able to provide good decision rules. To illustrate this

point, consider the following example: let T be a decision tree, such as T follows the

DG grammar and holds two rules, thus T = {R1, R2}. The confusion matrix of each

rule is shown in figure 6.7.

136

Rule R1 Rule R2

Actual Actual
Positive Negative Positive Negative

Positive
10 0

Positive
10 0

prediction prediction
Negative

0 90
Negative

90 0
prediction prediction

Decision tree T

Actual
Positive Negative

Positive
10 0

prediction
Negative

90 0
prediction

Figure 6.7: Example: Confusion matrix of rules R1 and R2 and T = R1 ∨R2

As can be observed in figure 6.7, rule R1 correctly classifies all the examples, thus

the accuracy, precision and recall = 100%. In contrast R2 classifies all the cases as

positive, which is incorrect, then accuracy = 10%, precision = 100% and recall = 10%.

As was mentioned in section 5.5, a DG decision tree can been seen as a collection of

rules associated by disjunctions such as T = {R1 ∨ R2}, it means that T is satisfied

when at least one of its rules is satisfied. Thus, the tree T classifies an example as

positive when R1 is true or R2 is true. Given that, R2 classifies all the examples as

positive then T classifies all the instances as positive. Thus the performance of the tree

T is accuracy = 10%, precision = 100% and recall = 10%. The overall performance

of the tree is very low, despite the fact that it holds a rule that classifies perfectly the

data set. This example illustrates a low fitness decision tree that holds a valuable rule

137

that has been ignored due to the overall performance of the decision tree.

Procedure

In order to probe our claims, the following experiment was performed: the number of

rules that every individual provides for the repository was counted. Figure 6.6 displays

the number of rules that every individual in the population gives to the repository.

The X-axis represents every individual in the population; these are ordered according

to their fitness function. The best individual is in the first position, while the worst

individual is in position 1,000 individuals. To smooth the graph, the number of rules

was averaged on groups of twenty individuals. On the other hand, Y-axis represents

the average number of rules that every individual provides for the rule repository.

The experiment was repeated using the precision thresholds, PT =60,70,80. It is

important to bear in mind that RM extracts rules starting from the best individual of

the population, subsequently it takes the next individual in the ranking and so on. To

count the number of rules that every individual provides for the rule repository, the

following conditions were applied: 1) If a rule is present in more than one individual,

that rule will be assigned to the first individual where it was found, it means that rules

with the highest fitness will be benefited in the tally and 2) when a flexible rule Ri ∈ Ta

is replaced by a similar rule Rk ∈ Tb because the latter performs better, the rule will

be assigned to individual Tb.

138

Observations

As can be seen from Figure 6.6, RM picks rules from all sectors of the population,

even from the lowest fitness individuals. The number of rules tends to reduce slightly

when the ranking of the individual decreases. As can be observed, the graph oscillates

considerably, it may be because the population has converged and individuals that

have similar fitness could hold the same rules. Since novelty is a necessary condition to

be selected, the contribution of rules is concentrated in the first individual of the group

of alike individuals. As one might expect, the number of rules tends to decrease when

PT increases due to the method becoming more selective and fewer rules are selected.

6.4 Conclusions

This chapter presented a novel approach called Repository Method (RM), whose target

is to mine the knowledge acquired by a GP system to compile patterns of the minority

class (positive cases) in imbalanced environments. RM has been designed to compile

patterns from different individuals and stages of the evolutionary process.

Experimental results showed that RM detected more positive cases than a standard

GP, classifier C5.0 and EDDIE-Arb (see sections 6.3.1, 6.3.2 and 6.3.3, respectively).

From those experimental results we conclude that the first objective of RM has been

achieved.

In addition, a series of experiments to analyse the factors that work in favour of

RM was performed in section 6.3.5. The experimental results showed that gathering

rules from several individuals of the population helps to collect patterns to classify

139

more positive cases, which is reflected in the recall improvement. The majority of

the positive cases were correctly predicted, as it is shown in the improvement of the

precision. On the other hand, the experiment in section 6.3.5 showed that some useful

rules can be lost in the evolutionary process, for that reason the accumulation of rules,

through generations helps to classify more positive cases. From those results we can

conclude that the factors that benefit RM are 1) the collection of rules from several

individuals of the population and 2) the accumulation of rules though generations.

To reinforce the first argument, another experiment was performed in section 6.3.6

to count the number of rules provided by every individual in the population. This

experiment showed evidence that there is a great potential of patterns in the complete

population of decision trees, even in individuals with low fitness.

The experimental results in section 6.3.5, also suggests that RM can be used to

reduce the required evaluations in GP. Fewer evaluations were required by RM in

order to reach the precision, recall and accuracy achieved by the best individual of the

GP population (see Figure 6.5).

From experimental results (see sections 6.3.1, 6.3.2 and 6.3.3) it was observed that

RM offers a range of classifications to suit different user’s preferences. Those results

address the second goal of this method. In addition, the experiment in section 6.3.4

was designed to disclose the importance of the evolutionary process to produce useful

patterns. As was observed, when RM was applied to a random population the majority

of the predictions were clustered in the conservative part of the ROC space. However,

when the evolutionary process advanced, this produced populations with more useful

140

patterns, thus it produced different classifications, from conservative to liberal, to suit

different user’s preferences.

The third goal of this method is to produce comprehensible solutions that can be

understood by the user. For that purpose, a simplification process was included in RM

in order to remove the conditions that are not affecting the decision of the rule. We

shall leave it to Chapter 7, whose method used the same simplification procedure, to

show an illustrative example about the interpretability of the decision rules.

RM is a general method, and therefore, this should not be limited to financial

forecasting problems. It could be useful for classification problems where chances are

rare (i.e. where the data set is extremely imbalanced).

Chapter 7

Evolving Decision rules

This chapter presents a new approach to generate and evolve a set of decision rules,

this is called Evolving Decision Rules (EDR). The aims of this method are:

1. To classify the minority class in imbalanced environments

2. To produce a range of solutions to suit different user’s risk-guidelines

3. To generate comprehensive decision rules that can be understood by the user

As will be realized Repository Method (see Chapter 6) and EDR share the same

aims and some procedures, however, the mechanism of each approach is different.

RM is a method that analyses decision trees which were produced by a GP system.

This picks up useful rules (patterns) to predict the minority class in imbalanced data

sets. RM is a deterministic process because given a specific precision threshold and

a specific set of decision trees the result is deterministic. On the other hand, EDR is

an evolutionary process that evolves decision rules, generating different solutions every

time it is performed (see section 5.1.2)

141

142

This chapter is organised as follows: section 7.1 exposes the motivation of this

work and provides a brief explanation of the previous works done in this area. This

also discloses the main differences between those works and our approach. Section 7.2

describes the procedure of EDR. Next, section 7.3 describes the experiments and results

to test our approach. It includes an analysis in order to compare our results with those

found by a standard GP, EDDIE-ARB and C.5. Next, an illustrative example, that

analyses the role of the set of decision rules produced by EDR, is given in section 7.3.5.

Finally, the conclusions are given in Section 7.4.

7.1 Introduction and motivation

EDR [47], [48] is inspired by a previous work that is called Repository Method (RM)

[46], [49], [43], [45].As was mentioned, many real world problems need the detection of

the minority class. To deal with this problem we proposed Repository Method (RM)

described in chapter 6. RM explores the solutions proposed by a GP in order to gather

rules (patterns) that classify the minority class in imbalanced environments. This

technique uses a threshold to produce several classifications. However, to obtain useful

decision rules, RM has to rely on the results obtained by a GP system, such dependance

could be a disadvantage. For that reason we propose EDR to evolve decision rules.

EDR is an evolutionary process that is based on selection, mutation and hill-climbing1.

This method has been designed to evolve a set of decision rules that holds different

patterns of the positive cases. As was shown in section 6.3.5, some rules that classify

1Hill-climbing is a stochastic technique to find the global optimum where the search is given by
trying one step in each direction and then choosing the steepest one[73]

143

positive cases could be eliminated during the evolutionary process. For that reason,

we propose to collect rules in order to ensure that all the useful patterns produced by

the evolutionary process, will be included in the final solution to the problem.

Previous works

Section 3.4 provides a survey of the literature on systems that evolve decision rules.

The majority of those works have used genetic algorithms to evolve a complete set of

rules (Michigan approach [58]) or a population of sets of rules (Pittsburgh approach

[102], [64]).

Our approach has some similarities to the Michigan approach because EDR evolves

rules and the solution of the problem is composed of a complete set of rules. In contrast

in the Pittsburgh approach every individual in the population represents a complete

set of rules, thus every individual holds an integral solution of the problem.

Some researches have created systems to evolve decision rules by using a normal GP

[85], [12], [13]. Every decision tree classifies a single class, when the evolutionary process

has been completed the best individual of the evolution is converted into classification

rules. The authors claim that their approaches are able to generate comprehensible

rules. However, GP tends to accumulate extra-code [69],[2],[107], [103] and unless

the rules are simplified, these reveal the real variables and conditions in the rule. In

contrast EDR provides a simplification of rules that helps to identify the real conditions

of the rules. Given that our objective is to predict the minority class, in imbalanced

environments, we believe that it is better to collect all the available patterns. Otherwise

the best tree of the evolution would contain patterns that may not repeat themselves in

144

future data sets. The example in section 7.3.5 illustrates that situation. Finally, none

of those applications are able to provide a range of solutions to suit different user’s

references.

7.2 Evolving Decision Rules Procedure

This section describes the EDR procedure, it starts by describing the general mecha-

nism. Next, an overview of EDR is introduced and finally, a description of each step

is given.

EDR evolves a set of decision rules by using GP, this receives feedback from a key

element that is called repository. Let us define the repository as a structure, whose

objective is to store a set of rules. Those rules classify or not a single class (binary

classification) and these are used to create a range of classifications that allows the

user to choose the best trade-off between the misclassifications and false alarms costs

(see section 2.4.3). The list of procedures involved in EDR are the following:

1. creation of the initial population

2. Extraction of rules

3. Rule simplification 5.6).

4. Adding new rules to the repository

5. Creation of a new population

6. Testing EDR:

145

A general description of EDR has been introduced; in the following sections this

approach will be described. However, the details of some procedures are explained in

Chapter 5

Algorithm 1: EDR()

input : integer PopulationSize,
real PrecisionThreshold,
integer NumInitialInstances,
integer MaxNumberOfRules,
real PercentInstances,
real HillClimbingProb,
real NumGenerations,

output : List

begin1

List Population = CreateInitialPopulation(PopulationSize);2

List Repository3

for j=1 to NumRules do4

for every Ti ∈ Pop do5

Ti ← {Ra}; /* the set of rules in Ti*/6

for every Ra ∈ Ti do7

if Precision(Ra) > PrecisionThreshold then8

Ra’ ← Simplification(Ra);9

if Size(Repository) = MaxNumberOfRules then10

/* where Precision(Rw) < Precision(Rk) ∀11

Rk ∈ Repository Repository ← Repository - Rw

Repository ← Repository U Ra12

CreatePopulation(PopulationSize,NumInitialInstances,PercentInstances,13

HillClimbingProb);14

return Population;15

end16

7.2.1 Initialization of Population

The objective is to create a collection of candidate solutions. We created an initial

population of decision trees using the Discriminator Grammar (DG) (see section 5.4).

The population is created at random using the growth method (see section 3.3).

146

At this point a question arises, if the system evolves decision rules why is the popu-

lation composed of decision trees? As was pointed out, in section 5.5, a single individual

(decision tree) could contain more than one rule, thus the creation of decision trees

generates more solutions. Because disjunctions (OR) increases notably the number of

rules in the decision tree, as a consequence the probability of finding valuable patterns

increases too.

7.2.2 Rule extraction

This part of the process analyses every decision tree to define its rules and select those

patterns that are useful for the classification. Once a rule Rk ∈ T has been defined,

it is evaluated. If the precision of Rk achieves a predefined Precision Threshold (PT),

where PT > 0, then Rk is considered for the Rule simplification process, otherwise Rk

is discarded. The details of this process are explained in section 5.5.

7.2.3 Rule Simplification

The aim of rule simplification is to remove vacuous and redundant conditions (defi-

nitions 4 and 3 respectively). The explanation of this process is detailed in section

5.6.

7.2.4 Adding new rules in the repository

Once a rule Rk has been simplified, we have to determine the novelty of that rule by

comparing Rk to the existing rules in the repository. The explanation of this process

is given in section 5.7.

147

7.2.5 Creation of a new population

This section describes the procedure to generate a new population of individuals. As

was mentioned previously, the initial population was created randomly. However, in

the subsequent generations the population will be totally replaced by a new popula-

tion of decision trees. These are created by means of the mutation and hill-climbing of

the existing rules in the repository. The number of rules in the repository is variable

because it depends on the new patterns that have been found. The number of rules

is limited by µ, which represents the maximum number of rules in the repository (see

pseudo-code CreatePopulation() algorithm is in the appendix). The creation of a new

generation of individuals is described below:

Let Rep be the repository of rules

µ be the maximum number of rules in Rep

ϕ be the number of initial descendants per rule in Rep

s be the current number of rules in Rep

ρ be the size of the population

β be the percentage of population created by the rules

h be the hill-climbing probability

• If (s · ϕ ≤ ρ). At the beginning of the evolutionary process, when the product of

the current number of rules in Rep multiplied by the number of initial descendant

per rule is less than the population size, the system will replace the population in

the following generation with ϕ offspring per rule. If the number of new offspring

is less than the population size, then the remaining individuals will be created

randomly by the grow-method.

148

• If (s · ϕ > ρ). It is obvious that the repository is continuously growing and so,

there is a maximum number of rules that can be stored. Now, we have to consider

when the product of the current number of rules in Rep multiplied by the number

of initial descendant per rule is greater than the population size (ϕ · s > ρ), then

the rules have to reproduce less and of course, the number of offspring is limited

by |ρ / s|. As the value of the division is truncated, the number of offspring is

less than the size of the population, thus the remaining individuals are created

at random.

• If (s = µ and s > ρ) When the repository is totally full and the number of rules

is greater than the population size, thus just a fraction of rules in Rep is allowed

to produce one descendant. The rules to produce offspring are selected randomly

without any type of elitism. However, those descendants will produce only β%

of the population. The remaining individuals will be created at random in order

to create variety. β is a parameter, which is determined by the user.

• The hill-climbing is applied randomly using a probability h, this will be one of

the descendants of a rule, the remaining individuals, if any, are produced by

mutation.

7.2.6 Rule evaluation

Once the evolutionary process has finished, the rules in the repository will be used to

classify the testing data set as follows:

1. Sort the rules by precision in descending order

149

2. Define a set of thresholds τ = {τi} between [0,1] separated at regular intervals

for example: τ={0,.05, · · · ,.95,1}

3. For each threshold τi, select those rules from Rep whose precision is greater or

equal to τi, then store those rules in a sub-repository Repτi
= {Rτik

} where Rτik

is a rule, such as, Precision(Rτik
) ≥ τi ∀ Rτik

∈ Repτi
.

4. For each example in the data set, if at least one of the rules in the sub-repository

satisfies the example, this is classified as positive, otherwise it is considered neg-

ative.

EDR has been designed to produce as many classifications as the number of thresh-

olds τ . Each of those classifications can be plotted in ROC space (section 2.4.3), the

result is a curve that can be used to measure the general performance of the classifier

and to choose the best tradeoff between misclassifications and false alarms.

7.3 Experimental section

This section describes a series of experiments to test our approach. First, a series of

experiments was performed to compare EDR performance with a standard GP, RM,

EDDIE-Arb and classifier C.5 (sections 7.3.1 7.3.2 7.3.3, 7.3.3). Next, an experiment

to test the performance of RM at different levels of complexity is described in section

7.3.4. Finally, an illustrative example that analyses a set of rules is shown in section

7.3.5. Preliminary experiments were performed to find out a good set of parameters

for executing EDR.

150

7.3.1 Experiment: Comparison of EDR with RM

Name: BARCLAYS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate
T

ru
e

P
os

iti
ve

 R
at

e

AUC = .81

Precision Threshold (PT)

PT = .40

PT = .70

March,1998-January,2005
Rate of return : 15%
Number of days : 10
Movement tendency : Increase

Training data set :
Training examples: 887
Positive examples: 39 (4.3%)

Testing data set
Testing examples: 831
Positive examples: 24 (2.8%) EDR Parameters

Precision Threshold PT : 0.08
Number of runs : 20 Population size ρ : 1,000
AUC : 0.81 Number of initial offspring ϕ: 10

Individuals at random β : 20
Max number of rules µ : 2,500
Number of generations : 25
Hill-climbing prob : 0.14

Figure 7.1: Barclays parameters and results

Objective of the experiment

The objective of this experiment is to analyse the performance of EDR and to compare

this with RM performance.

Procedure

The parameters used to run RM are listed in Figure 6.1. The set of rules generated by

EDR, was used to create twenty classifications using the same number of thresholds τ .

Observations Figure 7.1 shows the ROC curve created by EDR. Notice that, the

classifications provided by EDR are well-distributed over the ROC curve, thus, it is

151

Table 7.1: EDR Results using Barclays, τ is the minimum precision threshold

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.01 0.09 0.97 0.50 0.78 0.10 0.78
0.95 0.01 0.09 0.97 0.45 0.83 0.08 0.72
0.90 0.02 0.11 0.97 0.40 0.85 0.07 0.64
0.85 0.05 0.10 0.96 0.35 0.86 0.05 0.55
0.80 0.08 0.10 0.95 0.30 0.90 0.04 0.41
0.75 0.18 0.11 0.93 0.25 0.94 0.04 0.25
0.70 0.23 0.11 0.92 0.20 0.98 0.03 0.14
0.65 0.34 0.11 0.90 0.15 1.00 0.03 0.06
0.60 0.51 0.11 0.87 0.10 1.00 0.03 0.06
0.55 0.61 0.11 0.84 0.05 1.00 0.03 0.06

possible to find conservative and liberal predictions. Now, let us discuss the points

that form the curve. For instance, when τ is equal to 0.50, the recall shows high

performance because EDR was able to detect 78% of the positive examples, this result

has not sacrificed accuracy (78%). When the investor’s risk-guidelines are conservative,

EDR offers a range of suitable classifications. For instance, with the threshold τ=

0.70 the system is able to classify 23% (almost a quarter) of positive cases with very

high accuracy (92%). On the other hand, when τ is below 0.40, then the classifier’s

performance tends to decrease because the number of new positive cases that are

detected are paid for with a serious decrease in accuracy and precision.

RM comparison - The result provided by RM and EDR is a set of classifications,

which are distributed in the ROC space. Thus, we use the AUC to compare the

performance of the classifiers. As was shown in section 6.3.1 the AUC obtained by RM

was 0.77, which is outperformed by the AUC generated by EDR (0.81).

152

7.3.2 Experiment: Comparison of EDR with EDDIE-Arb

Name: Arbitrage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC = .93

Precision Threshold (PT)

PT =.95

PT =.60 Movement tendency : Increase

EDR Parameters
Precision Threshold PT : 10%
Population size ρ : 1,000
Number of initial offspring
ϕ

:10

Individuals at random β : 20%
Max number of rules µ : 2,000
Number of generations : 30
Hill-climbing prob : 5%

Number of runs : 20
AUC : .93
Training data set Testing data set
Training examples: 1,006 Testing examples: 635
Positive examples: 242 (24%) Positive examples: 159 (25%)

Figure 7.2: Barclays

Objective of the experiment

The objective of this experiment is to compare EDR performance with EDDIE-ARB.

Additionally, EDR is compared to RM performance.

Procedure

As can be seen from Figure 7.2, the Arbitrage data set is imbalanced because the

minority class is composed of 24% of the total cases in the training data and 25% in

the testing data set. However, the imbalance is not so high as in the previous example.

153

Observations

Let us analyse the results obtained by EDR. As can be seen from Table 7.2, EDR

detected 70% of the positive examples with a precision of 92% and an accuracy of 90%

when τ = 0.95. On the other hand, almost the totality (96%) of the positive cases is

predicted with an accuracy of 65% using τ= 0.60. When τ is smaller than 0.55 the

performance of the classifier becomes liberal and the increase in the recall is paid for

by a serious decrease in accuracy.

EDDIE-Arb - The performance of EDDIE-Arb was True Positive=66.8, False Pos-

itive=0 False Negative=92.2 and True Negative=476. Thus, the false positive rate =0

and the true positive rate = 0.42. It means that, EDDIE-Arb result is plotted at the

point (0,0.42). It is fair to say that the approach proposed by Tsang et al. [114]

achieved greater precision (100%), detecting 42% of the positive cases. However, EDR

detected more positive cases moving towards the liberal predictions; obviously it is

paid for by loosing precision. It is important to notice that, EDR offers a full-range

of classifications to fulfill the user’s requirements, this is not the case for GP systems,

which offer a single result.

RM - The performance obtained by RM using the same data set produced a ROC

curve whose AUC=83.5, while the AUC obtained by EDR was 93% (see Figure 7.2),

which means that EDR outperformed the results of RM.

154

Table 7.2: EDR Results using Arbitrage data set, τ is the minimum precision threshold

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.62 0.95 0.90 0.50 1.00 0.35 0.53
0.95 0.70 0.90 0.91 0.45 1.00 0.32 0.46
0.90 0.76 0.83 0.90 0.40 1.00 0.29 0.38
0.85 0.77 0.74 0.88 0.35 1.00 0.26 0.29
0.80 0.82 0.66 0.85 0.30 1.00 0.25 0.25
0.75 0.88 0.58 0.81 0.25 1.00 0.25 0.25
0.70 0.90 0.53 0.77 0.20 1.00 0.25 0.25
0.65 0.95 0.46 0.71 0.15 1.00 0.25 0.25
0.60 0.96 0.41 0.65 0.10 1.00 0.25 0.25
0.55 0.99 0.39 0.61 0.05 1.00 0.25 0.25

155

7.3.3 Experiment: Comparison of EDR with C5.0

Objective of the experiment

The aim of this experiment is to compare the performance of our approach with the

performance of the trial version of C.5 developed by Quinlan. However, this version

can not process more than 400 training or testing cases. For that reason, the size of the

data sets had to be adjusted to meet this requirement. Quinlan’s algorithm was tested

using ten-fold cross-validation and standard parameters setting. The experiment was

performed using two data sets Barclays and Tesco sections 7.3.3 and 7.3.3 respectively.

Name: Barclays 400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC = .82

Precision Threshold (PT)

PT =.40

PT=.35

PT=.55

Rate of return : 15%
Number of days : 10
Movement tendency : Increase

Training data set :
Training examples: 400
Positive examples: 15 (3.7%)

Testing data set
Training examples: 400 EDR Parameters
Positive examples: 13 (3.2%) Precision Threshold PT : 6%

Population size ρ : 1,000
Number of runs : 20 Number of initial offspring ϕ: 10
AUC : .82 Individuals at random β : 15%

Max number of rules µ : 700
Number of generations : 25
Hill-climbing prob : 15%

Figure 7.3: Barclays 400 records

156

Table 7.3: EDR Results using Barclays400 data set, τ is the minimum precision thresh-
old

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.06 0.11 0.95 0.50 0.31 0.13 0.91
0.95 0.06 0.11 0.95 0.45 0.42 0.13 0.89
0.90 0.06 0.11 0.95 0.40 0.58 0.11 0.84
0.85 0.06 0.11 0.95 0.35 0.75 0.09 0.74
0.80 0.06 0.10 0.95 0.30 0.88 0.07 0.63
0.75 0.07 0.11 0.95 0.25 0.96 0.06 0.48
0.70 0.08 0.11 0.95 0.20 0.98 0.05 0.37
0.65 0.10 0.10 0.94 0.15 1.00 0.03 0.04
0.60 0.15 0.12 0.93 0.10 1.00 0.03 0.03
0.55 0.20 0.12 0.93 0.05 1.00 0.03 0.03

Observations

The result obtained by C.5 is the following: True positive = 0, false positive=0, false

negatives = 13, true negative = 387. This classification is plotted at the point (0,0) in

the ROC space. As can be seen, C.5 produced a highly accurate prediction (96.7%).

However, it failed to detect the positive cases. In contrast EDR was able to detect

more than a half (58%) of the positive examples using τ=40%. Since EDR offers

liberal and conservative options for the user, it is possible to choose different types of

classifications. For example, a liberal prediction is made by using τ =.35, the recall

is 75% and the accuracy is still acceptable (74%). On the other hand, a conservative

prediction is made when τ =.55, the recall is low (20%), but is highly accurate (93%).

The ROC curve obtained by EDR is plotted in Figure 7.3. The results obtained by

EDR (recall, precision and accuracy) are displayed in Table 7.3.

157

Name: TESCO 400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC = .75

Precision Threshold (PT)

PT =.60

PT=.50

PT=.65

Rate of return : 10%
Number of days : 10
Movement tendency : Decrease

Training data set :
Training examples: 400
Positive examples: 34 (9%)

Testing data set
Training examples: 400 EDR Parameters
Positive examples: 14 (4%) Precision Threshold PT : 6%

Population size ρ : 1,000
Number of runs : 20 Number of initial offspring ϕ: 10
AUC : .75 Individuals at random β : 15%

Max number of rules µ : 2,000
Number of generations : 30
Hill-climbing probability : 15%

Figure 7.4: Tesco 400 records

Observations

C.5 comparison - The result obtained by C.5 is the following: True positive = 0, false

positive=0, false negatives = 14, true negative = 386. As in the previous experiment

it failed to detect the positive cases. On the other hand, EDR could detect more than

a half (55%) of the positive examples when τ=60%. As can be seen in Figure 7.4,

the points in the ROC curve are well distributed along this. It means that EDR is

able to offer liberal and conservative options for the user. For example, conservative

predictions are made by using a τ=1,.95,.90,.85 the recall is around 16% and 19%, and

the accuracy between 90% and 91%. In contrast a liberal prediction is made when τ

=50%, the recall is (79%) and the accuracy is acceptable (60%). The completed results

158

Table 7.4: EDR Results using Tesco 400 data set, τ is the minimum precision threshold

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.16 0.10 0.91 0.50 0.79 0.07 0.60
0.95 0.16 0.10 0.91 0.45 0.83 0.07 0.55
0.90 0.18 0.10 0.91 0.40 0.94 0.06 0.45
0.85 0.19 0.10 0.90 0.35 0.95 0.06 0.35
0.80 0.29 0.11 0.87 0.30 0.99 0.05 0.21
0.75 0.38 0.11 0.85 0.25 1.00 0.04 0.08
0.70 0.39 0.10 0.84 0.20 1.00 0.04 0.05
0.65 0.48 0.10 0.80 0.15 1.00 0.04 0.04
0.60 0.55 0.09 0.77 0.10 1.00 0.04 0.04
0.55 0.61 0.09 0.72 0.05 1.00 0.04 0.04

obtained by EDR are plotted in Figure 7.4, which shows that AUC = .75. The recall,

precision and accuracy are displayed in Table 7.4.

159

7.3.4 Experiment to test different levels of complexity

Name: Artificial

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Artificial 1 AUC =0.81
Artificial 2 AUC =0.79
Artificial 3 AUC =0.43

False positive rate
T

ru
e

po
si

tiv
e

ra
te

Training data set
Number of examples : 600
Positive examples

Artificial1 : 28 (4.6%)
Artificial2 : 18 (3%)
Artificial3 : 18 (3%)

Testing data set
Number of examples : 600
Positive examples

Artificial1 : 29 (4.8%)
Artificial2 : 17 (2.8%) EDR Parameters
Artificial3 : 18 (3%) Precision Threshold PT : 6%

Population size ρ : 1,000
Number of runs : 20 Number of initial offspring

ϕ:
10

Individuals at random β : 15%
Artificial1 AUC= .81 Max number of rules µ : 2,000
Artificial2 AUC= .79 Number of generations : 30
Artificial3 AUC= .43 Hill-climbing probability : 15%

Figure 7.5: Results using three Artificial Data sets

Objective

The objective of this experiment is to test EDR using two data sets with different levels

of complexity and a data set whose signal was labeled at random, which means that it

does not have any pattern.

Procedure

We do not have a formal definition of rule complexity. However, for simplicity we

measure the complexity of the data sets counting the number of conditions that are

160

involved in the solution. When the number of conditions in the solution increases, then

we say that the solution is more complex. In order to control the complexity of the

data in the experiment, we created three artificial data sets. The data set Artificial1

was created as follows:

1. A set of 1,200 records was created, every record holds eight independent variables

with real values. Every variable was randomly generated in a range of [0-1].

2. Every record was labeled with a class (positive or negative). The records that

meet the requirements in at least one of the rules in S1 (see Figure 7.6) is labeled

as positive, otherwise the record is classified as negative.

3. The data was split in two data sets (training and testing) holding the same

number of records (600).

The second artificial data set Artificial2 was created repeating the steps 1-3 , but

using S2 instead of S1 (see Figure 7.6). And the third data set (Artificial3) the signal

(label) was randomly categorised.

Observation

Before we start the analysis of the results in the testing data sets, let us present the

results obtained by EDR in the training data set for each of the experiments. Using

Artificial1 AUC=.99, Artificial2 AUC=.90 and Artificial3 AUC=.91. As can be

observed, EDR captures patterns from all the training data sets. However, let us

analyse the results in the testing data sets:

161

Figure 7.6: Set of rules used to created the artificial data sets

S1={ R1 = var1 > 0.99
R2 = var2 < 0.009
R3 = var5 < 0.898 and var5 > 0.89
R4 = var5 < 0.01
R5 = var6 > 0.88 and var6 < 0.89 }

S2={ R1 = var1 > 0.5 and var1 < 0.58 and var2 > 0.5 and var3 < 0.7 and
var4 < var3

R2 = var3 < 0.45 and var3 > var2 and var3 > var4 and var3 > var5

and var3 > var6

R3 = var8 < 0.898 and var8 > 0.86 and var5 > 0.065 and var5 < 0.35
and var3 > var7

R4 = var1 > 0.5 and var1 < 0.58 and var2 > 0.5 and var3 < 0.7 and
var4 < var3 and var4 < var6

R5 = var6 > 0.56 and var7 > var6 and var8 > var6 and var8 < var1

R6 = var1 > var7 and var1 > var6 and var6 < 0.23 and var5 < var6}

S3= Random selection

Artificial1 - According to our definition of complexity, Artificial1 is a data set

which has a low level of complexity. As can be observed from Figure 7.5, the AUC

obtained by EDR is .81, surprisingly EDR does not offer any conservative prediction,

as can de seen in Table 7.5. However, EDR found classifications that detect the 70%

of the positive cases with accuracy of 80% when τ > .85. On the other hand, when

τ decreases the detection of positive cases increases steadily as the number of false

alarms.

Artificial2 - Artificial2 is more complex than the previous data set. As can be

observed from Figure 7.5, the AUC obtained by EDR is .79. It means that the per-

formance of EDR in Artificial1 was slightly better than in Artificial2. As can be

observed in the ROC curve, EDR was unable to classify a small part of the positive

162

cases. Those cases were classified just when τ was really low. Looking for an explana-

tion of this phenomenon the data set was analysed, it was discovered that rule R3 ∈ S2

produces a single positive case in the testing data set but it did not generate any posi-

tive case in the training data set. It means that the instance was not identified because

there was not a pattern to train EDR.

Artificial3 - As was explained previously, this data set was labeled randomly. It

means that, there are no patterns in the training data set that show the patterns to

classify similar cases in future data sets. As was expected EDR gathered patterns from

the training data set, but these were not repeated in the testing data set. Figure 7.5

shows the ROC curve plotted by EDR using Artificial3. As can be seen, the AUC

obtained is .43, the performance of EDR was very low, according to the ROC space

described in Section 2.4.3, EDR produced a random classification because the patterns

captured in the training data were not repeated in the testing data set. The main

reasons for the low performance using EDR, which is a classifier based on supervised

learning, can be summarized as follows:

1. The data set does not contain any patterns or the independent variables do not

describe the behaviour of the data set.

2. The signal in the data set is labeled incorrectly

3. The patterns in the training data set do not repeat in the testing data set

The general observations of this experiment are the following: EDR is able to dis-

cover patterns to classify rare cases in imbalanced data sets. However, it is necessary

163

Table 7.5: EDR Results using Artificial 1 data set, τ is the minimum precision threshold

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.70 0.15 0.80 0.50 0.84 0.10 0.65
0.95 0.70 0.15 0.80 0.45 0.85 0.11 0.65
0.90 0.70 0.15 0.80 0.40 0.87 0.09 0.59
0.85 0.70 0.15 0.80 0.35 0.92 0.09 0.54
0.80 0.72 0.15 0.80 0.30 0.94 0.08 0.47
0.75 0.74 0.15 0.78 0.25 0.98 0.07 0.37
0.70 0.74 0.15 0.78 0.20 0.98 0.06 0.27
0.65 0.76 0.13 0.74 0.15 1.00 0.05 0.08
0.60 0.77 0.12 0.72 0.10 1.00 0.05 0.05
0.55 0.77 0.12 0.72 0.05 1.00 0.05 0.05

Table 7.6: EDR Results using Artificial 2 data set, τ is the minimum precision threshold

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.65 0.14 0.88 0.50 0.81 0.06 0.64
0.95 0.65 0.14 0.88 0.45 0.82 0.06 0.63
0.90 0.65 0.14 0.88 0.40 0.86 0.05 0.55
0.85 0.66 0.14 0.88 0.35 0.86 0.05 0.49
0.80 0.67 0.14 0.87 0.30 0.87 0.04 0.44
0.75 0.69 0.12 0.85 0.25 0.88 0.04 0.35
0.70 0.69 0.12 0.85 0.20 0.89 0.03 0.26
0.65 0.77 0.08 0.73 0.15 0.92 0.03 0.11
0.60 0.78 0.07 0.71 0.10 0.92 0.03 0.10
0.55 0.78 0.07 0.70 0.05 0.92 0.03 0.10

to provide a representative training data set in order to capture the patterns to pre-

dict future cases. The complexity of the rules does not seem to affect seriously the

performance of EDR. However, more research needs to be done about this.

164

Table 7.7: EDR Results using Artificial 3 data set, τ is the minimum precision threshold

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.14 0.02 0.81 0.50 0.24 0.02 0.66
0.95 0.14 0.02 0.81 0.45 0.24 0.02 0.66
0.90 0.14 0.02 0.81 0.40 0.25 0.02 0.64
0.85 0.14 0.02 0.81 0.35 0.25 0.02 0.63
0.80 0.14 0.02 0.81 0.30 0.37 0.02 0.52
0.75 0.14 0.02 0.81 0.25 0.46 0.02 0.41
0.70 0.14 0.02 0.81 0.20 0.55 0.02 0.32
0.65 0.15 0.02 0.79 0.15 0.90 0.03 0.09
0.60 0.15 0.02 0.79 0.10 0.90 0.03 0.09
0.55 0.15 0.02 0.79 0.05 0.90 0.03 0.09

165

7.3.5 An illustrative example to analyse a set of decision rules

produced by EDR

Objective

This section analyses a set of decision rules that were produced by EDR, the objectives

of this study are:

1. To show how a larger collection of rules can help to detect the minority class in

imbalanced environments

2. Shows the comprehensibility of the solutions provided by EDR

Procedure

The example was taken from BARC-400, it means that the training and the testing data

sets are composed of 400 records each. The training data set has 15 positive examples,

while the testing has 13. The set of rules for this analysis achieved a precision of 1 in

the training data set, this set of rules is displayed in Table 7.8. The complete set of

rules classifies eight positive examples, it means recall= 53% in the training data set.

Table 7.9 shows the map of the positive examples that every rule classifies. As can

be observed, every rule classifies three or four cases each. Given that the precision of

the rules was 1, it means that the rules do not classify any negative case. Obviously

there is overlapping in the classification. However, an important question arises here:

Is it useful to keep a collection of rules that overlap their predictions?. This question is

relevant because this will support one of the main claims of this method. This example

was designed to answer that question.

166

Observations

As can be seen from Table 7.8, the set of rules classifies 4 true positives. Additionally

it predicts 31 false alarms. Thus, the results obtained in the example are recall =23%,

precision =09% and accuracy=.89.

Let us analyse the set of rules in Table 7.8, as the novelty is a basic condition for

it to be included in the repository, notice that rules contain common conditions, but

these are not identical rules. However, there is overlapping in the classification and

even identical classification in rules R6, R7, R8, R9 and in rules R11, R14, R15 and R17.

It means that the genotype is different, but the phenotype is similar. Obviously we

are taking as the phenotype the behaviour of rule. In the cases mentioned the rules

produced the same results, let us analyse in detail the conditions and variables that

are involved in each set of rules.

Let Sa = {R6, R7, R8, R9} be the set of rules to analyse

As was expected Sa holds a set of different rules because EDR provides a mechanism

to select different patterns, avoiding repeating the same rules in the repository (see

section 5.7, 5.6). However, it is important to analyse the variables and relations that

are involved in each rule in order to determine if those rules could be correlated.

As can be seen from Table 7.8, R6 is different from the other rules in Sa, because

R6 does not have any equal hard condition or similar condition to those rules in Sa. On

the other hand, R7, R8 and R9 share the conditions: var10 < var17 and var7 > 0.0727,

as the following paragraph shows:

167

R6 = var3 > var18 ∧ var11 < −0.5056

Common conditions

R7 = var4 > var15 ∧
︷ ︸︸ ︷
var10 < var17 ∧ var7 > 0.0727

R8 = var15 < var22 ∧ var10 < var17 ∧ var7 > 0.0727
R9 = var15 < var20︸ ︷︷ ︸ ∧ var10 < var17 ∧ var7 > 0.0727

Different
condition

Let Rc be the rule that is formed by the common conditions in R7, R8 and R9

thus Rc = {var10 < var17 ∧ var7 > 0.0727}. A new evaluation was performed using

Rc, the result was True Positive =4, False Positive=15, False Negative=11 and True

Negative=370. It means that rules R7, R8 and R9 are more specialized than Rc, because

Rc classifies 15 false alarms.

Given that var15 is involved in Different condition in R7, R8, R9 it is important to

verify if the other variables (var22 and var20) are correlated and if var4 is inversely

correlated to var22 and/or var20. As can be seen from Table 7.10, the indicators are:

var4 =PTRB-50, var20= LDNIB3MMA-50 and var22=UK01Y00MA-50.

As can be seen, the decision rules produced by EDR can be understood by the

user. However, the understanding of those rules depends on the expertise of the user

to interpret the variables or attribute that were used to train the classifier. In this

particular case the user has to be able to understand the financial indicators that were

used to predict future movement in the stock prices. Thus, the financial and technical

analysis knowledge of the user is crucial to understand the conditions in the rules.

Other domains will require that users are familiar with the variables that are modeling

the classifier. Now, let us to analyse the following set of rules:

168

Sb = {R11, R14, R15, R17}.

Obviously Sb holds a set of different rules. However, it is important to analyse the vari-

ables and relations that are involved in each rule in order to determine if those rules

could be correlated. As can be seen from Table 7.8, R17 is different from the other

rules in Sb. Because R17 does not have any equal hard condition or similar condition

with another rule in Sb. On the other hand, R11, R14 and R15 have in common the

conditions: var7 < 0.0727 and var12 > Threshold. where Threshold ∈ [−1185,−1082]

R17 = var1 < −0.072 ∧ var5 > −0.0445

Common conditions

R11 = var8 < var13 ∧
︷ ︸︸ ︷
var7 > 0.0727 ∧ var12 > −1082.

R14 = var13 < −0.160 ∧ var7 > 0.0727 ∧ var12 > −1082.
R15 = var4 < −0.213︸ ︷︷ ︸ ∧ var7 > 0.0727 ∧ var12 > −1185.

Different
condition

Let Rd be the rule that is formed by the common conditions in R11, R14, and R15

thus Rd = {var7 > 0.0727 ∧ var12 > −1185.}. A new evaluation was performed using

Rd, the result was True Positive =3, False Positive=11,False negative=12 and True

Negative=374. It means that R11, R14 and R15 are more specialized than Rd because

these do not classify any false alarm as Rd does. R11 differs because of the condition

var8 < var13 where price volatility over 50 days is more than the moving average of

10 days of the momentum indicator of 10 days. The fact that R11 and R14 classify

the same instances in the testing data set could suggest a correlation between them.

Finally, it is important to verify if var4 and var13 are correlated. As can be seen in

169

Table 7.10, the indicators are: var4 =PTRB-50, var12= MOM-10MA-10.

There is a big variety of decision trees that can be formed with a subset of rules in

Table 7.8 that does not classify any positive case in the testing data set, for example:

Ta = {R2, R4, R17}

Tb = {R1, R5, R15}

Tc = {R3, R4, R11}

As can be seen in Table 7.9, Ta, Tb, Tc are not able to classify any positive case in

the testing data set. However, if we evaluate the fitness of Ta, Tb, Tc using the training

data set, the performance is equal to the complete set of rules in Table 7.8, because

every rule has precision =1. It means that the classification in the training data set

for: Ta= Tb= Tc = {TP=8,FP=0,FN=5 and TN=387}. However, in the testing data

set, Ta, Tb, Tc do not classify any positive example. It was shown that a bigger set

of rules classifies more positive cases. It may be due to the fact that every positive

instance could be classified using more than one pattern, as was shown in the example.

However, it is difficult to predict which of the patterns are going to be repeated in

future data sets.

Our analysis shows that in imbalanced data sets the reduction of rules could de-

crease the number of positive detections (it applies to the negative ones too). For that

reason, we collect all the available patterns in the data set. Obviously the increase in

recall causes a decrease in precision. However, the decision to increase the false alarms

in order to improve the recall is finally made by the user.

170

Table 7.8: Set of rules for the example 1

Rule
Rule Description

Detec-
tions

R1 var9 > var15 and var10 < var17 and var7 > 0.0727 4
R2 var3 > var24 and var6 < var7 and var21 > var24 4
R3 var3 > var20 and var13 < −527.9 4
R4 var3 > var18 and var6 > var13 and var9 < var18 and var21 > var24 4
R5 var3 > var24 and var6 < 0.0413 4
R6 var3 > var18 and var11 < −0.5056 4
R7 var4 > var15 and var10 < var17 and var7 > 0.0727 4
R8 var10 < var17 and var15 < var22 and var7 > 0.0727 4
R9 var10 < var17 and var15 < var20 and var7 > 0.0727 4
R10 var1 < var21 and var2 < var21 and var3 > var21 and var24 < 0.0136 3
R11 var8 > var13 and var7 > 0.0727 and var12 > −1082. 3
R12 var10 < var20 and var15 < var23 and var7 > 0.0727 3
R13 var10 < var21 and var6 < 0.0936 and var22 < −0.067 3
R14 var7 > 0.0727 and var12 > −1082. and var13 < −0.160 3
R15 var4 < −0.213 and var7 > 0.0727 and var12 > −1185. 3
R16 var10 < var20 and var15 < var20 and var7 > 0.0727 3
R17 var1 < −0.072 and var5 > 0.0445 3

There are many classifier systems based on GPs which claim to evolve a set of rules.

These calculate the fitness of the individual by measuring the result of the classification

and the ”simplicity” of the solutions, for example [11], [12], [13], [59]. Other works just

divide the resulting decision tree into rules, for example [85]. In those cases the GP is

favouring the shortest solutions as Ta, Tb, Tc instead of a bigger tree that hold more

rules. On the other hand, Yin et al [122] created a set of rules using GP discarding

rules in order to find the minimal set of rules. That procedure was implemented to

reduce the bloat in the evolutionary process.

171

Table 7.9: Positive instances classified, where ei is a positive instance correctly classified
in the training data set and e′i is a positive instance correctly predicted in the training
data set

Training data set
Rule e1 e2 e3 e4 e5 e6 e7 e8 Sum
R1 X X X X 4
R2 X X X X 4
R3 X X X X 4
R4 X X X X 4
R5 X X X X 4
R6 X X X X 4
R7 X X X X 4
R8 X X X X 4
R9 X X X X 4
R10 X X X 3
R11 X X X 3
R12 X X X 3
R13 X X X 3
R14 X X X 3
R15 X X X 3
R16 X X X 3
R17 X X X 3
Sum 4 12 14 3 5 9 9 4

Testing data set
Rule e′1 e′2 e′3 Sum
R1 0
R2 0
R3 0
R4 0
R5 0
R6 X 1
R7 0
R8 0
R9 0
R10 0
R11 X 1
R12 0
R13 X 1
R14 X 1
R15 0
R16 0
R17 0
Sum 2 1 1

172

Table 7.10: List of independent variables

var1 = Price moving average 12 days
var2 = Price moving average 12 days
var3 = Price Trading breaking rule 5 days
var4 = Price Trading breaking rule 50 days
var5 = Filter rule 5 days
var6 = Filter rule 63 days
var7 = Price volatility 12 days
var8 = Price volatility 50 days
var9 = Volume moving average 10 days
var10 = Volume moving average 60 days
var11 = Momentum indicator 10 days
var12 = Momentum indicator 60 days
var13 = Momentum 10 days moving average 10 days
var14 = Momentum 60 days moving average 60 days
var15 = Generalized Momentum indicator 10 days
var16 = Generalized Momentum indicator 60 days
var17 = FOOTSIE moving average 12 days
var18 = FOOTSIE moving average 50 days
var19 = LIBOR: 3 months moving average 12 days
var20 = LIBOR: 3 months moving average 50 days
var21 = UK01Y00 moving average 12 days
var22 = UK01Y00MA moving average 50 days
var23 = UK10Y00MA moving average 12 days
var24 = UK10Y00MA moving average 50 days

173

7.4 Conclusions

In this chapter, we have presented a new approach, which we have called Evolving

Decision Rules (EDR). This method was designed to classify the minority class in

imbalanced data sets. The system’s output is a set of decision rules, which based on

a threshold τ produces a range of classifications to suit the investor’s preferences. For

a detail analysis, we have used the Receiver Operating Characteristic (ROC) curve,

which helps to visualize the distribution of the classifications in the ROC space. In the

same vein, we have used the Area Under the ROC curve (AUC) to measure the general

performance of our approach and to compare this with Repository Method proposed

in Chapter 6.

The core of our approach is based on GP, which is aided by a repository of rules. The

aim of this repository is to collect useful patterns that are used to produce the following

population in the evolutionary process. The main operators of EDR are mutation

and hill-climbing, these produce offspring of the collected patterns. Furthermore a

simplification process is used to simplify the rules in the repository in order to produce

more comprehensible solutions. On the other hand, the removal of extra-code, allows

a reduction in the computational effort.

The results obtained in this chapter show that EDR classifies more positive cases

(minority class) than RM (section 7.3.1), EDDIE-Arb (section 7.3.2) and C5.0 (section

7.3.3, 7.3.3) in imbalanced environments. From experimental results we conclude that

the first goal of this method has been achieved.

From experimental results (see sections 7.3.1, 7.3.2, 7.3.3, 7.3.3) we noticed that

174

EDR produces a series of classifications able to be adapted to the user’s needs (from

conservative to liberal predictions). From experimental results we observed that the

second goal of EDR was accomplished.

Finally, an illustrative example is analysed in section 7.3.5 in order to 1) explain

how a bigger collection of rules is able to classify more positive cases in imbalanced

environments and 2) show the comprehensibility of the solutions provided by EDR.

It was shown that a bigger set of rules has more chance of classifying the positive

cases. Obviously the increase in the recall causes a decrease in precision. However, the

decision to increase the false alarms in order to improve the recall is finally made by

the user.

As can be observed from this example, EDR produces comprehensible rules that

can be analysed by the user in order to understand the conditions and variables in

the rule. Thus, users can combine their knowledge in order to make a more informed

decision. The example discloses the understandability of the solutions proposed by

EDR, thus we assume that the third goal of this method has been achieved.

Chapter 8

Scenario Method

The present chapter introduces a new approach, which is named Scenario Method (SM)

[44]. The aim of this method is to prune decision trees produced by a GP system in

order to:

1. improve the accuracy and precision of the classification

2. simplify the decision trees

This chapter is organized as follows: Section 8.1 presents the introduction and moti-

vation of this approach, while section 8.2 describes the procedures of SM. Next, section

8.3 presents the experiments to test our approach. Finally, section 8.4 summarizes the

conclusions.

8.1 Introduction and motivation

Decision trees have been widely used in Machine Learning (ML) for classification and

prediction. However, the over-fitting and complexity of the resulting trees have shown

the necessity for pruning procedures. Several classifiers have incorporated pruning

175

176

methods, for example: Classifier CART implemented minimal cost-complexity pruning

[15], ID3 incorporated reduced error pruning and pessimistic pruning [97], while clas-

sifier C4.5 introduced Error-based pruning [98]. Breiman [15] and Quinlan [97] have

asserted that tree simplification can benefit almost all decision trees when removing

parts that do not contribute to the classification task. They argued that the resulting

trees are less complex and more comprehensible, furthermore, the simplification helps

to avoid the over-fitting.

Decision trees generated by GP [69] tend to grow [2, 88, 104, 74], many times this

growth is not proportional to the quality of the solution (see section 3.3.3). To con-

trol the code growth, a variety of methods have been introduced, these are grouped

in three main types: parsimony pressure, operator modification and code modification

[105]. Parsimony pressure tries to evolve small solutions penalizing large individu-

als. Operator modification is represented by non-destructive crossover [103], whose

objective is the preservation of the building blocks (see section 3.3.2) as the brood re-

combination method 1. Code modification involves changing the structure of the code

during or after the evolution, this technique has not been explored in depth since it

uses more computational resources [103]. However, other ML techniques [15, 98] use

pruning because it produces more exploration. We believe that decision tree simpli-

fication can be beneficial to trees produced by GP. But it is important to point out

that the pruning procedures for statistical methods are not suitable for pruning GP

1The brood method is inspired by some natural species, which produce far more children than are
expecting to live but just the fittest offsprings will survive. Selecting the best children ensures that
the good blocks will be preserved [107]

177

decision trees and viceversa. Because GP decision trees are builded in different way

and the pruning causes different effects as it is described in section 3.3.3. In our un-

derstanding the only method to prune decision trees produced by a GP system, before

the submission of this thesis, is the approach proposed by Eggermont [33] (see section

3.3.3).

8.2 Scenario Method description

The aim of this approach is to simplify decision trees and improve their precision and

accuracy. An analysis, based on hypothetical scenarios, is performed in order to identify

the parts of the tree that contribute to the classification task. Those fragments that

reduce the tree performance are removed. Let us introduce an overview of the main

steps of SM:

1. Class division: to create decision trees that classify a single class.

2. Rule extraction: to identify every rule Ri in the decision tree T .

3. Rule evaluation: to evaluate individually every rule Ri.

4. Rule selection: to determine if the rule Ri is contributing to the classification

task. If Ri is not good enough, Ri will be deleted at the next step.

5. Tree pruning : to remove the nodes that are involved in the rule, without affecting

the other rules in the tree.

178

The next sections explain every procedure, but some detailed explanations are

provided in Chapter 5.

8.2.1 Class division

To divide the classification problem, a population per each class is evolved indepen-

dently. The class division has been used previously by [12], [12], [29]. For this purpose,

decision trees are generated using Discriminator Grammar (DG), this grammar pro-

duces trees that classify or not a single class (see section 5.4).

8.2.2 Rule extraction

This process analyzes every decision tree T in the population in order to define its

rules. The rule Rk can be expressed as a conjunction of conditions such as Rk =

(ck1 ∧ ck2 ∧ · · · ckt) where kt is the number of conditions in rule Rk. Thus, to satisfy

Rk, every condition in this rule has to be satisfied. Given that, our goal is to remove a

specific rule without affecting the remaining ones, we need an structure to control the

rules and their nodes.

Let Rule Map be a matrix that lists the decision rules of a tree T, as well as the

conditions of each rule in T .

If T = {R1 ∨ R2 ∨ . . .}, where Ri is a rule. Then the kth-row in the rule map is

composed of the conditions in Rk. Given that the size of rules could be different, the

size (number of nodes) of the matrix will be N x L, where N is the number of rules in

the tree, and L is the size of the largest rule. When the length of a rule is smaller than

179

Var1Var3

>

OR

0.61Var3

<Var2Var1

>

AND

Var3Var2

>

OR

0.56Var3

>

AND

IF

Class No Class

0

1

2

3 4

5

6

7
8

9

10

11 12

13

14

15 16

17

18
19

20
21

Rule Map =

2 6 0

2 10 17

2 10 14[[
Figure 8.1: A decision tree and its rule map

L the empty spaces will be filled using 0. Figure 8.1 shows an example of a decision

tree and its rule map. The conditions are represented by the number of the node in

the operation (see section 5.4). A more detailed explanation about rule extraction is

provided in section 5.5.

8.2.3 Rule evaluation

This section explains the procedure to evaluate the performance of each rule in the

decision tree T. Every rule Ri ∈ T is evaluated using the training data set, the result

is registered in a confusion matrix (see section 2.4.2). Thus, there will be a confusion

matrix Mi for each rule Ri ∈ T .

It is important to keep in mind that SM could be applied to prune trees that classify

imbalanced data sets. According to Kubat et al. [71], in imbalanced environments, it

180

is not reliable to measure the performance of a classifier only by using the equation of

accuracy. Let 8.2.1 be the equation to measure the rule contribution.

Ev(Ri) =

{ (
TPi

TPi+FNi

)(
TPi−FPi

TPi+FPi

)
if TPi + FPi > 0

0 Otherwise
(8.2.1)

In previous chapters (6 and 7) the fitness function was measured by the recall

multiplied by the precision. The mentioned formula was used because the methods

that are proposed in those chapters were designed to detect the minority class in

imbalanced data sets whose level of imbalanced is high (see section 2.4.2). On the

other hand, the main objective of SM is to prune decision trees, and the data set can

be or not imbalanced. It means that SM is not focused just on imbalanced data sets.

Let us analyse the equation 8.2.1, as can be seen the first parenthesis encloses the recall

and the second parenthesis encloses an expression similar to precision, but it penalizes

the false positive cases. As can realise the change is basically the penalization of positive

cases by subtracting the number of false positive to the number of true positives. The

objective is to encourage the increase of the true positive cases and the decrease of the

false positive cases. Notice that, TPi + FNi is a constant number for every Ri because

it depends on the data set.

8.2.4 Rule selection

Once the rules in tree T have been evaluated, the next step is to perform a rule selection

based on hypothetical scenarios of the conjunction of rules. Let Rβ be the rule with the

highest evaluation Ev(), thus Rβ is taken as a starting point. To disclose the potential

181

of the remaining rules Rη ∈ T, the Best and the Worst scenario for Rβη = (Rβ ∨ Rη)

are calculated, note that Rβη is the disjunction of rules Rβ and Rη. The best scenario

is calculated assuming that the true positives cases in Rβ and Rη are not overlapped

and the false positive cases maximally overlap. Thus, the best scenario for the true

positive and false positive cases are calculated as follows: TPβη
+ = TPβ + TPη and

FPβη
+ = max(FPβ, FPη). Superscripts are used to indicate the scenario, it could

be worst (-) or best (+), subscripts are used to denote rules. The worst scenario is

calculated in exactly the opposite way, it assumes that true positive cases maximally

overlap and false positive cases do not overlap. Thus, the worst scenario for true

positive and false positive cases is TPβη
− = max(TPβ, TPη) and FPβη

− = FPβ +FPη.

Once the best and the worst scenarios are calculated, Formula 8.2.1 is applied to them

as follows:

Ev(Rβη
+) = TPβ+TPη

TPη+FNη
· TPβ+TPη−max(FPβ ,FPη)

TPβ+TPη+max(FPβ ,FPη)

Ev(Rβη
−) = max(TPβ ,TPη)

TPη+FNη
· max(TPβ ,TPη)−FPβ−FPη

max(TPβ ,TPη)+FPβ+FPη

Let us define the Potential of Improvement (PI) of a rule Rη as the capacity of Rη

to improve the tree T ′ = {Rβ}. Notice that T ′ is the tree that holds just the rule

Rβ, which is the best rule of the tree T . The potential of improvement pretends to

measure the possibility that the performance of Rβ ∨ Rη will be better than the rule

Rβ. We propose to measure this by calculating the worst and the best scenario of

Rβη = Rβ ∨Rη and evaluating each of them. Thus, PI is calculated using the distance

between the evaluation of Rβ and the evaluation of the best scenario of Rβ ∨ Rη as

182

Figure 8.2 shows. To normalize the measure, this is divided into the distance from the

worst and the best scenario of Rβ ∨Rη.

PI(Rη) =

{
Ev(Rβη

+)−Ev(Rβ)

Ev(Rβη
+)−Ev(Rβη

−)
ifEv(Rβ) ≤ Ev(Rβη

+)

0 Otherwise

[]

Eval(R)
B

Potencial of Improvement

Eval(R) Eval(R)
Bn Bn

+ −

Figure 8.2: Interval of the worst and the best scenario of Rβη = (Rβ ∨Rη)

Once the potential of improvement is calculated, it is necessary to decide whether

or not the rule Rη is beneficial to the tree. A threshold from 0 to 100% is used to

determine the level of pruning, this will be defined as the Pruning Threshold θ. If

(PI(Rη) < θ) the rule Rη will be pruned. When θ is close to 0 the level of pruning is

low, but when θ is close to 100% a hard pruning is performed.

At this point, an important question arises: why is the SM procedure preferred

rather than the direct evaluation of the combined rule Rβη?. The reasons are the

following: a) the direct evaluation of the new rule Rβη consumes more computational

resources and b) direct evaluation does not disclose the individual performance of

the rule. To illustrate the last point, we present an example showing that the direct

183

Table 8.1: Example, where TPβ=40 and FPβ = 20

Rη Rβ ∩Rη Rβ ∨Rη

(TPη, FPη) (TPβη, FPβη)
Rη=1 (1, 15) (0, 15) (41, 20)
Rη=2 (10, 2) (10, 1) (40, 21)

evaluation of (Rβη ∨Rβ) does not give a good performance estimation of Rη. Imagine

that the evaluation of Rβ = (TPβ, FPβ) = (40,20). Next, we add the rules R1 and R2

from Table 8.1. The performance of R1 = (TP=1,FP=15). As can be observed, R1

produces more misclassifications than accurate predictions. However, direct evaluation

suggests that R1 is able to improve the tree (see Table 8.1). In contrast, SM discards

this rule if we apply a low pruning threshold (greater than 7%). Next, let us analyze

R2, whose performance indicates that it is able to classify with a good rate of precision

(83%). Nevertheless, direct evaluation discards R2 because it classifies the same true

positive cases that Rβ (see Table 8.1). However, the fact that R2 and Rη classify the

same subset of examples in the training data set does not mean that those rules classify

the same cases in other data sets (see example in section 7.3.5). SM only discards R2

when a hard pruning threshold is applied (bigger than 82%).

8.2.5 Tree pruning

After the rule selection process is performed, those rules that do not achieve the ex-

pected θ are removed. During the pruning procedure, the condition map is used to

detect the relations between rules and determine those nodes in bad rules that can

be pruned without affecting the useful rules. The pruning pseudo-code is described in

Figure 8.3. Notice that, the pruning procedure cannot be applied to all decision trees.

184

Thus, it is not possible to prune the tree in the following cases:

1. The tree is composed of a single rule.

2. SM does not suggest pruning to improve the tree.

3. SM suggests pruning but all conditions to prune are involved in good rules.

4. The evaluation of the best rule is inferior to zero, it occurs when the number of

false positives exceeds the number of true positives.

Another way to eliminate the bad rules is to divide the tree into rules and just

delete the unwanted ones. However, the method proposed in this chapter could be

used to prune decision trees that later can be reintroduced in the evolutionary process.

8.3 Experimental section

To test our approach a series of experiments was performed. The first experiment

analyses the number of decision trees that can be pruned using SM (see section 8.3.1).

Next experiment (section 8.3.2), was designed to analyse a) the effects of SM on the

performance of the decision trees, b) the impact of parameter θ and c) the effect of

the SM through generations. Finally, the experiment in section 8.3.3 was designed to

analyse the effect of SM on the size of the decision trees.

The data set that was used to train the GP system in the experiment came from the

London stock market. The training data set contains 757 records (324 positive cases)

that describe the behavior of the closing price of TESCO stock. The testing data set

185

PROCEDURE Prune(T, Rk , ConditionMap)
BEGIN

/*Given the rule Rk =(nk1 ∩ nk2...∩nkj...)
where nkj is a conditional node and Rk is
the kth-row in ConditionMap*/

FOR each nkj ∈ Rk

IF (nkj /∈ Ri where i 6= k) THEN
/* If nkj is not part of other rule, delete it*/

BEGIN
np → Parent of node nkj
nb →The other child of node np

ng →Parent of node np

nc1, nc2 → The two children of node nkj

/* Delete nkj, its parent and its children*/
T → T − nkj, np, nc1, nc2

T → T + Link between ng and nb

END
ConditionMapkj → 0 /* Set 0 in node map */

Return T;
END

Figure 8.3: Pruning Psedocode

is composed of 262 records (85 positive cases). In both cases we look for an increase

in the closing price of at least 3% in ten days. The independent variables of the data

sets are described in section 5.3.

Creation of populations

To test our approach in different stages of the evolutionary process, we generate and

save populations from different points in the evolution. By doing so, a population of

1,000 individuals was created using DG, it was evolved during 100 generations. Every

twenty generations the complete population was saved, therefore the result was five

populations of 1,000 individuals each, let us call them P20, P40, · · · , P100. Subscripts

186

indicate the number of the generation.

Table 8.2 presents the GP parameters used to evolve the populations. These were

selected by means of a series of preliminary experiments.

Table 8.2: Summary of Parameters.

Parameter Value
Population size 1,000
Initialization method Growth
Generations 100
Crossover Rate 0.8
Mutation Rate 0.05
Selection Tournament (size 2)
Elitism Size 1
Fitness function Equation (8.2.1)
Control bloat growing 50% of those trees whose largest

branch exceed 7 were penalized with 20%
of the fitness for each node that
surpassed the largest branch allowed.

187

8.3.1 Experiment: Number of pruned decision trees

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Gen=20
Gen=40
Gen=60
Gen=80
Gen=100

Threshold values

N
um

be
r

of
 p

ru
ne

d
tr

ee
s

Pruned trees

Figure 8.4: Pruned trees

Objective

The objective of this experiment is to analyse the number of decision trees that were

pruned using SM. Specifically, we analysed the effects under the following conditions:

1. The effect of SM using different θ thresholds

2. The impact of SM when it is applied in different stages of the evolutionary process.

Procedure

SM was tested on a series of 25 runs, every series comprised five populations from

different stages of the evolutionary process. In order to discover the impact of θ, the

experiment was tested using different values for this parameter. The results of the

188

experiment were grouped and averaged by generation and pruning threshold.

Observations

Figure 8.4 plots the number of trees that were pruned by SM, every series represents

a population in a specific generation P20, P40, ..P100. As can be seen in X-axis, every

population was tested using different pruning thresholds.

Not surprisingly, these results show that the increase in pruned trees is related

to the number of generations. The number of pruned trees grows when the number

of generations increases, this occurs because the tree size rises and there are more

opportunities to perform a pruning. During earlier generations, the number of pruned

trees is low because in the beginning of the evolutionary process, the tree size is small

and trees must contain more than one rule in order to be pruned. As an example, the

average number of rules per tree in a population of generation twenty is 1.9. It means

that there are a high number of trees that hold only one rule, as a consequence these

can not be pruned.

On the other hand, as one might expect, the number of pruned trees increases

when θ increases, because the selection of rules of rules become stricter and more rules

have to be pruned. Table 8.3 displays the number of pruned trees per population and

threshold.

189

Table 8.3: Number of pruned trees by scenario method

θ Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
0 47.3 53.1 53.0 77.0 95.4
10 48.1 58.8 88.2 92.3 104.8
20 49.4 60.9 93.8 89.3 114.0
30 52.6 63.7 112.8 135.7 159.1
40 116.4 144.7 162.2 175.2 207.5
50 132.4 190.1 209.6 204.9 245.3
60 195.5 237.8 246.5 252.1 306.7
70 238.3 313.7 324.5 353.6 443.3
80 388.4 478.5 482.5 481.7 546.5
90 417.0 521.0 521.7 558.4 575.7
100 427.1 535.9 556.9 575.5 591.9

8.3.2 Experiment: Effects of the pruning procedure

Objective

This experiment was designed to analyse the following effects:

1. The impact of SM in the performance (precision, accuracy and recall) of the

decision trees.

2. The effect of the θ parameter.

3. The effect of the pruning procedure through generations.

Procedure

In order to discover the impact of θ, the experiment was tested using different values for

this parameter (θ = 0%,10%,..90%). To analyse the effect of SM through generations,

SM was used in different populations from different points in the evolution. All figures

given in this section denote average results from a series of 25 test runs.

190

Observations

Let us analyse the precision, accuracy and recall obtained by SM, using different θ

values and populations.

Precision improvement- Table 8.4 describes the precision of a standard GP before

and after SM was applied. As can be observed, the precision was improved in all cases.

The average precision improvement is 9%, while the minimum improvement is 2% and

the maximum is 18%. As can be seen from Table 8.4, the improvement precision is af-

fected by the generation of the population and the θ value. The precision improvement

declines when θ is close to 100%, or when the population starts to converge. When

θ is close to 1 a hard pruning is performed. Thus, SM prunes many rules, some of

them could be useful. On the other hand, the precision improvement tends to decrease

when the evolutionary process advances. Because the decision trees are more evolved.

In contrast at the beginning of the evolutionary process, most of the trees are not too

far from being random. Thus the analysis of their components and the pruning of bad

rules helps them to improve their precision.

Accuracy improvement- Figure 8.6 displays the accuracy improvement achieved

by SM. Every curve represents a population tested with different pruning thresholds.

As can be seen, SM helped to improve the accuracy in the majority of the cases. The

average improvement in accuracy is 4.6%. The best results are obtained when PI is

less than 60%. However, the number of pruned trees decreases when threshold does

191

the same. According to the experiment results, the best thresholds are between 40%

and 60%. In this range the accuracy improvement and the number of pruned trees

is high. The results of some experiments disclosed that it is possible to have a slight

decrease in the accuracy when the threshold is close to 100% and the population has

converged. This is because, when the PI is big the selection becomes stricter and some

useful rules could be pruned. Table 8.5 shows the accuracy of a standard GP and the

new accuracy when SM is used.

Recall decrease- As can be observed from Table 8.6, the recall has decreased in all

cases. As it was mentioned previously the precision increases using SM. However, it is

paid for a decrease in the recall. It means that the prediction is becoming conservative.

As can be seen in Figure 8.8, the recall tends to decrease more when the θ increases.

However, after SM has removed an important part of the rules, it tend to be stable.

It may be due to the majority of the rules that help to improve the recall has been

pruned.

192

0 10 20 30 40 50 60 70 80 90 100

0.02

0

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Generation 20
Generation 40
Generation 60
Generation 80
Generation 100

Pruning Threshold

P
re

ci
si

on
 im

pr
ov

em
en

t

Precision improvement

Figure 8.5: Precision improvement

Table 8.4: (a) Precision before SM, (b) Precision after SM

θ Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0.00 0.41 0.59 0.43 0.57 0.47 0.62 0.46 0.64 0.50 0.58
10 0.42 0.59 0.46 0.60 0.47 0.62 0.46 0.63 0.51 0.59
20 0.42 0.59 0.46 0.60 0.48 0.62 0.47 0.64 0.51 0.58
30 0.43 0.59 0.47 0.60 0.49 0.63 0.53 0.69 0.52 0.61
40 0.44 0.60 0.47 0.61 0.50 0.64 0.55 0.69 0.54 0.62
50 0.46 0.61 0.51 0.62 0.54 0.65 0.59 0.67 0.55 0.62
60 0.54 0.66 0.57 0.67 0.58 0.66 0.60 0.67 0.59 0.64
70 0.61 0.70 0.62 0.70 0.64 0.69 0.64 0.69 0.66 0.71
80 0.69 0.74 0.69 0.74 0.71 0.74 0.70 0.74 0.71 0.75
90 0.72 0.75 0.72 0.76 0.74 0.77 0.72 0.76 0.74 0.76
100 0.72 0.76 0.72 0.76 0.75 0.77 0.73 0.76 0.74 0.78

(a) Precision before SM, (b) Precision after SM

193

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Generation 20
Generation 40
Generation 60
Generation 80
Generation 100

Pruning Threshold (PT)

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Accuracy improvement

Figure 8.6: Accuracy improvement

Table 8.5: Accuracy before and after scenario method was applied.

θ Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0 0.54 0.65 0.56 0.66 0.57 0.66 0.53 0.67 0.58 0.65
10 0.55 0.64 0.57 0.65 0.58 0.65 0.53 0.67 0.59 0.65
20 0.54 0.64 0.57 0.65 0.58 0.65 0.54 0.66 0.59 0.65
30 0.55 0.65 0.58 0.65 0.59 0.65 0.60 0.68 0.61 0.66
40 0.55 0.65 0.59 0.66 0.59 0.65 0.61 0.68 0.62 0.65
50 0.56 0.65 0.60 0.66 0.61 0.66 0.63 0.68 0.62 0.65
60 0.59 0.66 0.63 0.67 0.64 0.67 0.64 0.67 0.64 0.66
70 0.63 0.67 0.65 0.68 0.66 0.68 0.66 0.68 0.67 0.68
80 0.67 0.68 0.67 0.68 0.68 0.69 0.67 0.69 0.68 0.69
90 0.67 0.68 0.68 0.68 0.69 0.69 0.68 0.69 0.69 0.69
100 0.67 0.68 0.68 0.68 0.69 0.69 0.68 0.69 0.69 0.69

(a) Accuracy before SM, (b) Accuracy after SM

194

10 20 30 40 50 60 70 80 90 100
0.13

0.14

0.15

0.16

0.17

0.18

0.19

Generation 20
Generation 40
Generation 60
Generation 80
Generation 100

Recall decrease

Pruning Threshold (PT)

R
ec

al
l d

ec
re

as
e

Figure 8.7: Recall improvement

Table 8.6: Recall before and after scenario method was applied.

θ Gen=20 Gen=40 Gen=70 Gen=80 Gen=100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

10 0.44 0.29 0.42 0.28 0.41 0.27 0.40 0.27 0.39 0.22
20 0.38 0.22 0.34 0.20 0.33 0.19 0.33 0.19 0.34 0.17
30 0.38 0.22 0.34 0.19 0.33 0.18 0.32 0.18 0.33 0.16
40 0.37 0.20 0.36 0.21 0.35 0.20 0.34 0.20 0.32 0.15
50 0.37 0.20 0.34 0.18 0.33 0.17 0.32 0.17 0.32 0.15
60 0.34 0.17 0.33 0.17 0.32 0.16 0.31 0.16 0.31 0.13
70 0.31 0.14 0.31 0.14 0.30 0.13 0.29 0.14 0.29 0.11
80 0.30 0.13 0.29 0.12 0.28 0.12 0.27 0.12 0.27 0.08
90 0.29 0.12 0.29 0.11 0.28 0.11 0.27 0.11 0.26 0.08
100 0.29 0.12 0.26 0.09 0.26 0.09 0.25 0.09 0.26 0.07

195

8.3.3 Experiment: Analysis of the tree size reduction

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

Gen=20
Gen=40
Gen=60
Gen=80
Gen=100

Threshold values

T
re

e
si

ze
 r

ed
uc

tio
n

pe
rc

en
ta

ge

Tree size reduction

Figure 8.8: Tree size reduction

Objective

The objective of this experiment is to show the reduction in the tree size after SM was

applied. In particular, we analyse the following effects:

1. The effect of SM using different θ thresholds

2. The impact of SM when it is used in different stages of the evolutionary process.

Procedure

In order to discover the impact of θ, the experiment was tested using different pruning

thresholds (θ = 0%,10%,..90%) and using populations from different stages of the

196

evolutionary process. The results of the experiment were grouped and averaged by

generation and pruning threshold.

Observations

Table 8.7 shows the percentage of the tree size reduction for generation. As can

be seen, SM reduces considerably the size of the trees, the average reduction is 27%.

Figure 8.8 shows the tree size reduction achieved in the experiment.

Table 8.7: Tree size reduction produced by scenario method

θ Gen=20 Gen=40 Gen=60 Gen=80 Gen=100

0 31% 30% 26% 23% 26%
10 28% 32% 26% 23% 26%
20 29% 31% 24% 21% 26%
30 32% 28% 24% 16% 21%
40 31% 28% 25% 16% 20%
50 31% 28% 24% 18% 21%
60 29% 32% 22% 20% 20%
70 29% 32% 22% 20% 19%
80 34% 35% 27% 27% 24%
90 37% 37% 30% 28% 28%
100 36% 40% 33% 36% 36%

8.4 Conclusions

This chapter presented a pruning method for decision trees, which is named Scenario

Method (SM). This pruning procedure was designed to prune decision trees generated

by a GP system. The aim of this method is to identify rules that enhance the clas-

sification task as well as those rules that reduce the performance of the tree. This

approach is based on the analysis of scenarios. The intensity of pruning is controlled

197

by a pruning threshold.

The experimental results in section 8.3.1 shows the number of decision trees that

can be pruned using SM. It was observed that decision trees in later generations are

more likely to be pruned than trees in earlier generations.

The experimental results in section 8.3.2, suggest that SM is able to identify useful

parts of the tree. The pruning of non useful conditions helps to improve the accuracy

and precision of some decision trees. However, the user has to bear in mind that such

improvement is paid for with loss of recall. The improvement achieved by SM varies,

it depends on the stage of the evolutionary process and the pruning threshold. From

experimental results, we conclude that the first objective of SM has been achieved.

The experiment in section 8.3.3 shows that SM is able to reduce the tree size. In

other words, the decision tree has been simplified. Since the introns (see section 3.3.3)

have been removed, then the decision tree can show the real variables and conditions in

the prediction. Those results prove that the second objective of SM has been achieved.

Chapter 9

Conclusions and Future Research

In this chapter we present the conclusions of the thesis and the directions of future

work. This chapter is organised as follows: first, our research is summarized in section

9.1. Next, a description of the contributions presented in this thesis is provided in

section 9.2. Finally, directions for further research are proposed in section 9.3.

9.1 Research summary

The research goals of this thesis are: 1) to classify the minority class in imbalanced

data sets, 2) to generate a range of classifications to suit different users needs, 3) to

create comprehensible solutions that can be understood by the user and 4) to improve

the accuracy and precision of decision trees produced by a GP system. To achieve our

goals, we have proposed three different methods, let us briefly summarize the work

that has been done in each of them.

In Chapter 6 a novel approach, which is named Repository Method (RM) was in-

troduced. The aims of this method are: a) to predict the minority class in imbalanced

data sets, b) to provide a range of classifications and c) to generate comprehensible

198

199

solutions. To achieve our first goal, we proposed to collect different patterns that iden-

tify the cases of the minority class. RM analysed a set of solutions (decision trees)

provided by a GP system in order to select and collect patterns (rules). A Precision

Threshold (PT) is used to select the rules, these will be collected in a structure that

is called repository. In order to create a range of solutions (second goal), the RM was

run several times using different values for the PT. The result was a set of repositories,

where each of them produces a different classification. Finally, in order to achieve our

third goal, a simplification process was used to eliminate the extra-code and disclose

the variables and conditions in the decision. The performance of RM was compared

to a standard GP, the classifier C5.0 and EDDIE-Arb (see sections 6.3.1, 6.3.3, 6.3.2

respectively). A series of experiments was carried out in order to find out the factors

that work in favour of RM. Our method was tested using populations of decision trees

from different stages of the evolutionary process, as can be observed in section 6.3.4.

Other series of experiments was performed in order to analyse the impact of the num-

ber of decision trees involved in the rule search (see section 6.3.5).

Chapter 7 presents the second method of this thesis, which is called Evolving De-

cision Rules (EDR). As in the previous method, the goals of EDR are: a) to predict

the minority class in imbalanced data sets, b) to provide a range of classifications and

c) to produce comprehensible solutions. We have achieved our first goal by collecting

patterns from a GP system. This method has a key factor, called repository, this is a

structure that stores rules that have been selected for their performance and novelty.

200

The new generations will be created using the rules in the repository as parents. The

final solution is a set of decision rules, these are used to form different subsets of rules

according to their precision. This produces a set of classifications (second goal), whose

results can be plotted in the Receiver Operating Characteristic (ROC) curve. A sim-

plification process was used in order to achieve our third goal. EDR performance was

compared to a standard GP, the classifier C5.0 and EDDIE-Arb (see sections 7.3.1,

7.3.3, 7.3.2 respectively). Finally, an example that illustrated a) how a set of rules can

detect more positive cases and b) the comprehensibility of the solutions, is described

in section 7.3.5.

The third method proposed in this thesis is called Scenario Method (SM). The aim

of this method is to improve the precision and the accuracy of decisions trees produced

by a GP system. This procedure analyses decision trees in order to remove parts of

the trees that do not contribute to the classification task. The improvement in the

precision and accuracy is paid with loss of recall. However, the users decide which of

these metrics is more important to them. An experiment was performed in order to find

out the number of decision trees that are favoured by this method (see section 8.3.1).

Section 8.3.2 presents an experiment that was designed to measure the performance of

the decision tree when SM procedure was applied. Finally, an experiment was run to

measure the percentage of reduction in the decision tree size after SM was used 8.3.3.

201

9.2 Contributions

The research presented in this thesis contributes to the fields of machine learning,

genetic programming, chance discovery and financial forecasting. The five major con-

tributions in this thesis are:

Minority class detection

We have proposed two different methods, RM and EDR, to detect the minority class

(positive cases) in imbalanced data sets by means of the collection of patterns. Ex-

perimental results (see sections 6.3.1, 6.3.2 and 6.3.3, respectively) showed that RM

detected more positive cases than a standard GP, classifier C5.0 and EDDIE-Arb. On

the other hand, from experimental results it was shown that EDR classifies more posi-

tive cases than RM , EDDIE-Arb and classifier C5.0 in imbalanced environments (see

sections 7.3.1, 7.3.2, 7.3.3, 7.3.3 respectively). From those results we conclude that the

first goal of this thesis has been achieved.

Produce a range of solutions

Both, RM and EDR have been designed to produce a range of solutions. These ap-

proaches collect and store multiple patterns (rules). Next, the resulting rules are

grouped by precision, in order to generate a range of classifications. From experi-

mental results (see sections 6.3.1, 6.3.2 and 6.3.3 and 7.3.1, 7.3.2, 7.3.3, 7.3.3), it was

observed that RM and EDR offer a range of classifications to suit different users pref-

erences (from conservative to liberal predictions). Thus the users can choose the best

202

trade-off between misclassification and false alarms costs according to their require-

ments. From those experimental results we observed that the second goal of this thesis

has been reached.

Simplification procedure

The third goal of this thesis is to produce comprehensible solutions that can be under-

stood by the user. For that reason, a simplification process was included in RM and

EDR in order to remove the conditions that are not affecting the decision of the rule.

The simplification process is introduced in section 5.7. This helps to remove extra-code

which is naturally produced by the GP process. Section 7.3.5 shows an example of the

comprehensibility of the decision rules. Based on the simplification procedure and on

the example in section 7.3.5 we have showed that our objective has been achieved.

However, the understanding of the proposed solutions requires that users are familiar

with the variables that form the classifier.

Precision and accuracy improvement

We have presented a pruning procedure, which is based on the analysis of decision

trees. The idea behind this method is to improve the accuracy and the precision of the

classification. From the experimental results in section 8.3.2 we conclude that SM is

able to identify useful parts of the decision trees. The pruning of non useful conditions

improved the accuracy and precision of some decision trees. However, the user has

to bear in mind that such improvement is paid with loss of recall. The improvement

achieved by SM varies; it depends on the stage of the evolutionary process and the

203

pruning threshold. Experimental results suggests that the improvement in precision

and accuracy has been achieved.

Analysis in GP

A series of experiments to analyse the factors that work in favour of RM was per-

formed in section 6.3.5. The experimental results showed that gathering rules from

several individuals of the population helps to collect patterns to classify more positive

cases, which is reflected in the recall improvement. The majority of the positive cases

were correctly predicted, it is exhibited in the improvement of the prediction. On the

other hand, the experiment in section 6.3.5 showed that some useful rules can be lost

in the evolutionary process, for that reason the accumulation of rules, through gener-

ations aids to classify more positive cases. From those results we observed that the

factors that benefit RM are 1) the collection of rules from several individuals of the

population and 2) the accumulation of rules though generations. To reinforce the first

argument, another experiment was performed in section 6.3.6 to count the number of

rules provided by every individual in the population. The experiment showed evidence

that there is a great potential of patterns in the complete population of decision trees,

even in individuals with low fitness. From this analysis we conclude that:

1. some useful patterns can be lost during the evolutionary process

2. useful patterns can be found in low-fitness individuals

An alternative interpretation of our results is that RM (Chapter 6) can be used to

reduce the number of evaluations required by GP to achieve the best precision, recall

204

and accuracy in imbalanced environments. This can be significant in applications where

evaluations are expensive.

9.3 Future research

This section introduces recommendations that may enhance and extend the research

in this thesis. Thus, the further work for Repository Method (RM) and Evolving

Decision Rules (EDR) is presented in section 9.3.1. Next, section 9.3.2 suggests future

research for EDR. Finally, the further work for Scenario Method (SM) will be proposed

in section 9.3.3.

9.3.1 RM and EDR future research

As was mentioned in section 2.4.2, there are many problems that require the detection of

the minority class in imbalanced data sets. A line of research is to test the applicability

of RM and EDR in other domains.

According to japkowicz [63] the approaches to solve the imbalance data set problem

work differently for every level of imbalance. Thus, another research direction would be

to perform a series of experiments to test RM and EDR, using data sets with different

levels of imbalance, to investigate their performance in each of them.

RM and EDR include a process to detect and eliminate the extra-code (introns),

which is produced in the GP evolution, by removing the redundancy and the vacuous

conditions (see definition 4 section 5.6). One of the advantages of removing the vacuous

conditions is to eliminate those conditions that are not affecting the performance of

205

Table 9.1: Table of contributions: RM - Repository method, EDR - Evolving decision
rules, SM - Scenario Method,

Contribution Chapter Method Empirical Other
description number name evidence methods

comparison
Minority class detection 6 RM Barclays, Barclays

400, Arbitrage
Standard
GP, C5.0,
Eddie-Arb

7 EDR Barclays, Barclays
400, Arbitrage, Tesco,
Artificial (1,2,3)

Standard
GP, C5.0,
Eddie-Arb

Produce a range of solu-
tions

6 RM Barclays, Barclays
400, Arbitrage

Standard
GP, C5.0,
Eddie-Arb

7 EDR Barclays, Barclays
400, Arbitrage, Tesco,
Artificial (1,2,3)

Standard
GP, C5.0,
Eddie-Arb

8 SM Barclays, Barclays
400, Arbitrage, Tesco,
Artificial (1,2,3)

Standard
GP, C5.0,
Eddie-Arb

Simplification proce-
dure

6 RM Barclays, Barclays
400, Arbitrage

Standard
GP, C5.0,
Eddie-Arb

7 EDR Barclays, Barclays
400, Arbitrage, Tesco,
Artificial (1,2,3)

Standard
GP, C5.0,
Eddie-Arb

8 SM Barclays, Barclays
400, Arbitrage, Tesco,
Artificial (1,2,3)

Standard
GP, C5.0,
Eddie-Arb

precision and accuracy
improvement

8 SM Barclays, Tesco

Analysis in GP 6 RM Barclays

206

the classification in that data set, but that could be unpredictable in other data sets.

An interesting future work would be to study the impact of removing the vacuous

conditions.

Another line of research is to compare RM and EDR with other approaches designed

to deal with imbalance data sets. These should be compared with techniques that work

in the data set level as the re-sampling or other algorithms as the random forest.

An interesting future research would be tp investigate the interpretability of the

decision rules produced by our approaches. An human expert can read the decision

rules that classify the positive examples in the testing data set. The objective is to

understand the conditions that are triggering the event, analyzing which of them are

classifying the example correctly and which of them do not do it. The understanding

of the decision rule can help to understand the solution of the problem.

9.3.2 Evolving Decision Rules (EDR) future research

EDR evolves a set of decision rules using the operators mutation and hill-climbing.

Given that, EDR does not use the crossover operator an interesting line of research is

to test the effect of this operator in EDR.

9.3.3 Scenario Method future research

Experimental results in chapter 8 suggested that SM is able to improve the precision

and accuracy of the decision trees. More investigation needs to be done in order to

find out the effects of SM when the pruned decision trees are reintroduced in the

207

evolutionary process.

Another research direction is to perform a series of experiments of SM using different

values of the pruning threshold and graph the results in the ROC space. The objective

of this experiment is to find out if the classifications, produced by the different levels

of pruning, are able to generate a well distributed ROC curve to offer a range of

predictions to suit different users’ guidelines.

Part III

Appendix

208

209

This section describes in pseudo-code the procedures in Repository method. In

order to describe clearly the experiment, the pseudo code for this procedure is included

in this section. Let us define the following notation:

Algorithm 2: Selection()

/*Repository method, main procedure*/

input : List Population
output: None

begin1

NumVariables ← Number of variables in training/testing data set;2

List Repository;3

for each tree T ∈ Population do4

begin5

/*Delimit the rule’s tree*/
NodeMap ← ExtractRules(T); Alg11

6

/*Number of rules in T is the number of rows in NodeMap*/
TotalRulesTree ← Number of rules in T ;7

for k=1 to TotalRulesTree do8

begin9

Rulek ← GetConditionList(T,NodeMap,k); Alg12
10

GetAdmission(Rulek, Repository); Alg4
11

end12

end13

end14

210

Algorithm 3: GetConditionList()

/*Gets the conditions that compose a rule Rk. NodeMap is a matrix
that lists the rules in T. Every row describes a rule by means of the
nodes that identify that condition */

input : Tree T, matrix NodeMap, int NumRule
output: List

begin1

int NumCond ← 0;2

PositionOperator ← 1; /*Constant values*/3

PositionLeave1 ← 2;4

PositionLeave2 ← 3;5

/*Counts the number of conditions in the rule*/
while NodeMap[NumRule, NumCond] 6= 0 do6

NumCond ← NumCond + 17

8

/*Declares a matrix to store conditions*/
ConditionList ← matrix[NumCond, 3];9

for k=1 to NumCond do10

begin11

/*Extracts the operator and the variables*/
StartCond ← NodeMap[NumRuke,k];12

ConditionList[k, PositionOperator] ← T [StartCond];13

ConditionList[k, PositionLeave1] ← T [StartCond+1];14

ConditionList[k, PositionLeave2] ← T [StartCond+2];15

end16

return ConditionList ;17

end18

211

Algorithm 4: GetAdmission()

/*Determines if the rule will be part of the rule repository or not*/

input : List Rulenew,
List Repository

output: Boolean

begin1

PrecisionThreshold ← Minimum precision required for a rule2

TrainingData ← The data training data set3

Different ← 0;4

Equal ← 1;5

Similar ← 2;6

TrainingEval ← EvaluateRule(Rulenew,TrainingData); Alg5
7

if TrainingEval ≤ PrecisionThreshold then8

return False9

/*Verify is the rule is contributing to the variety of the
collection*/

CondMapNew ← CreateConditionMap(Rulenew); Alg6
10

for each Rulek ∈ Repository do11

begin12

CondMapk ← Gets Rk condition map from the Repository;13

CompareRules ← (CondMapk,CondMapnew);14

case CompareRules = Similar15

Repository ← Repository - Rk;16

Repository ← Repository ∪Rnew;17

case CompareRules = Different18

Repository ← Repository ∪Rnew;19

case CompareRules = Equal20

Do nothing;21

end22

return;23

end24

212

Algorithm 5: EvaluateRule()

/*Evaluates the rule*/

input : Tree T, List Data
output: Decimal

begin1

/*Initialize the confusion matrix values*/
for j=1 to 2 do2

for k=1 to 2 do3

Mi(j,k)← 04

/*Evaluates the tree de data set Data*/
if prediction = Class and instance = Class then5

Mi(1,1) ← Mi(1,1)+16

if prediction = Class and instance = No Class then7

Mi(1,2) ← Mi(1,2)+18

if prediction = No Class and instance = Class then9

Mi(2,1) ← Mi(2,1)+110

if prediction = No Class and instance = No Class then11

Mi(2,2) ← Mi(2,2)+112

/*Estimates the precision and recall*/

Precision ← Mi(1,1)
Mi(1,1)+Mi(1,2)13

Recall ← Mi(1,1)
Mi(1,1)+Mi(2,1)14

/*Estimates the evaluation*/

Evaluation ← √
Precision×Recall15

return Evaluation;16

end17

213

Algorithm 6: CreateConditionMap()

/*Creates a condition map, this will be used to identify similarities in
the rules*/

input : List Rule
output: Matrix

begin1

PositionOperator ← 1; /*Constant values*/2

PositionLeave1 ← 2;3

PositionLeave2 ← 3;4

NumVar ← Number of variables in the training data;5

NumConditions ← Number of elements in Rule;6

/*Creates the map to register the conditions of the rule*/
CondMap ← matrix[NumVariables, NumVariables + 2]7

for j=1 to NumConditions do8

for k=1 to NumConditions + 2 do9

CondMap[j,k] ← ∅10

for k=1 to NumConditions do11

begin12

/*Extracts the conditions components*/
Operator ← Rule[k,PositionOperator];13

Leave1 ← Rule[k,PositionLeave1];14

Leave2 ← Rule[k,PositionLeave2];15

/*Register conditions composed of two variables*/
if (IsVar(Leave1)=True) and (IsVar(Leave2)= True) then16

if Leave1 6= Leave2 then17

VarId1 ← GetVarId(Leave1);18

VarId2 ← GetVarId(Leave2);19

if V arId1 < V arId2 then20

CondMap[VarId1,VarId2] ← Operator21

else22

CondMap[VarId2,VarId1] ← Switch(Operator)23

else24

/*conditions composed of a variable and a threshold*/
VarId1 ← GetVarId(Leave1);25

Threshold ← Leave2;26

CondMap ←27

IdentifyRange(CondMap,Operator,VarId1,Threshold);28

end29

return ConditionMap30

end31

214

Algorithm 7: IsVar()

/*Determines if the string is a variable or a threshold. All variables
identification starts with the substring ’Variable’ */

input : String Leave
output: Boolean
begin1

if (Leave = ’Variable’#) then2

return True;3

return False;4

end5

Algorithm 8: Switch()

/*Changes the sense of the inequality*/
input : String Operator
output: String
begin1

if Operator = ’<’ then2

return ’>’3

end4

if Operator = ’>’ then5

return ’<’6

end7

end8

215

Algorithm 9: IdentifyRange()

/*Identify the range of the threshold based in the inequalities of the
rule*/

input : matrix ConditionMap,
String Operator,
int VarId,
number Threshold

output: Matrix ConditionMap

begin1

NumVar ← Number of variables;2

Th1 ← ConditionMap[VarId, NumVar + 1];3

Th2 ← ConditionMap[VarId, NumVar + 2];4

case Th1 = ∅ and Th2 = ∅ and Op = ’<’5

Th2 ← Threshold6

case Th1 = ∅ and Th2 = ∅ and Op=’ >’7

Th1 ← Threshold8

case Th1 = ∅ and Th2 6= ∅ and Op=’<’ and Threshold < Th29

Th2 ← Threshold10

case Th1 = ∅ and Th2 6= ∅ and Op=’>’ and Threshold < Th211

Th1 ← Threshold12

case Th1 6= ∅ and Th2 6= ∅ and Op=’<’ and Th1 <Threshold13

Th2 ← Threshold14

case Th1 6= ∅ and Th2 = ∅ and Op=’>’ and Th1 < Threshold15

Th1 ← Threshold16

case Th1 6= ∅ and Th2 6= ∅ and Op = ’<’ and17

Th1 < Threshold < Th218

Th2 ← Threshold19

case Th1 6= ∅ and Th2 6= ∅ and Op = ’>’ and20

Th1 < Threshold < Th221

Th1 ← Threshold22

end23

ConditionMap[VarId, NumVar + 1] ← Th1;24

ConditionMap[VarId, NumVar + 2] ← Th2;25

return ConditionMap26

end27

216

Algorithm 10: Equal()

/*Compares two condition map*/

input : Matrix MapCond1, Matrix MapCond2

output: Number

begin1

Different ← 0;2

Equal ← 1;3

Similar ← 2;4

/*Compares the conditions composed of two variables*/
NumVariables ← Number of columns in MapCond15

for j=1 to NumVariables do6

for k=1 to NumVariables do7

if MapCond1[j][k] 6= MapCond2[j][k] then8

return Different ;9

end10

end11

/*Compares the conditions composed of a variable and a
threshold*/

Result ← Equal;12

for j = NumVariables + 1 to NumVariables + 2 do13

for k=1 to NumVariables do14

case MapCond1[j][k] 6= ∅ and MapCond2[j][k] 6= ∅15

Result ← Similar16

case MapCond1[j][k] 6= ∅ and MapCond2[j][k] = ∅17

return Diferent18

case MapCond1[j][k] = ∅ and MapCond2[j][k] 6= ∅19

return Different20

end21

end22

return Result ;23

end24

217

Algorithm 11: ExtractRules()

/*Delimit the tree’s rules*/
input : Tree T
output: Integer

begin1

N ← 0;2

L ← 0;3

/*Separates the rules of the tree in terms of its conditional nodes*/
for every Rj ∈ T do4

Rj = {nj1, nj2, · · · } N ← N+1; /*Stores the number of rules in5

T*/
NumNodes ← Number of conditional nodes in Rj6

if L < NumNodes then7

L ← Number of nodes in Rj8

end9

/*Initialize the matrix*/
for i = 0 to N do10

for j = 0 to L do11

NodeMap[i, j] ← 0 ;12

end13

end14

for each Rj where j = 1, 2, · · ·N do15

for each nji ∈ Rj do16

NodeMap[j, i] ← nji17

end18

end19

return NodeMap;20

end21

218

Algorithm 12: CreatePopulation()

input : integer PopulationSize,
integer NumInitialInstances,
real PercentInstances,
real HillClimbingProb,

output : List

begin1

int NumGeneration ← 0; /* Variable initialization*/2

int NumRules ← The number of rules in the Repository;3

int NumIndividuals ← 0;;4

List Population;5

/* Calculates the number of instances*/6

if NumRules > 0 then7

if NumRules · NumInitialInstances > PopulationSize then8

NumInstances = round(PopulationSize/NumRules);9

if NumInitialInstances = 0 then10

for k=1 to NumRules do11

if PercentInstances > Random Number then12

Rulek ← Rule number k in the repository of rules13

/* Apply the Hill-Climbing or Mutation*/14

if HillClimbingProb < Random number then15

NewIndividual ← HillClimbing(Rulek);16

else17

NewIndividual ← Mutation(Rulek);18

Population ← Population ∪ NewIndividual;19

NumIndividuals ← NumIndividuals + 1;20

else21

for k=1 to NumRules do22

Rulek ← Rule number k in the repository of rules23

IniInstances ←0;24

if HillClibingProb> Random Number then25

/* Apply the Hill-Climbing or Mutation*/26

NewIndividual ← HillClimbing(Rulek);27

Population ← Population ∪ NewIndividual;28

IniInstances ← 1;29

for k=1 to NumRules do30

NewIndividual ← Mutation(Rule);31

Population ← Population ∪ NewIndividual;32

NumIndividuals ← NumInstances · NumRules;33

for j=1 to PopulationSize do34

NumIndividuals ← Mutation(Rule);35

NewIndividual ← GenerateRandomTree();36

Population ← Population ∪ NewIndividual;37

return Population;38

end39

Bibliography

[1] Akinori Abe and Yukio Ohsawa, Special issue on chance disocvery, New Gener-
ation Computing, 1, vol. 21, Berlin: Springer and Tokyo: Ohmsha, November
2002, pp. 1–2.

[2] Peter Angeline, Genetic programming and emergent intelligence, Advances in
Genetic Programming (Kenneth E., ed.), MIT Press, 1994, pp. 75–98.

[3] Andrew David Bain, The economics of the financial markets, Blackwell, Oxford
UK and Cambridge USA, 1992.

[4] Wolfgang Banzhaf, Genetic programming : an introduction on the automatic
evolution of computer programs and its applications, Morgan Kaufmann, 1998.

[5] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard, A
study of the behaviour of several methods for balancing machine learning training
data, SIGKDD Explor. Newsl. 6 (2004), no. 1, 20–29.

[6] Richard Ernest Bellman, Adaptive control processes : a guided tour, Princeton
University Press, Princeton, N.J., 1961.

[7] Martin J. Bishop and Chris Rawlings (eds.), Dna and protein sequence analysis:
A practical approach, Oxford University Press, 1997.

[8] Tobias Blickle and Lothar Thiele, Genetic programming and redundancy, Genetic
Algorithms within the Framework of Evolutionary Computation (Workshop at
KI-94, Saarbrücken) (Im Stadtwald, Building 44, D-66123 Saarbrücken, Ger-
many) (J. Hopf, ed.), Max-Planck-Institut für Informatik (MPI-I-94-241), 1994,
pp. 33–38.

[9] J. Bobbin and X. Yao, Automatic discovery of relational information in com-
prehensible control rules by evolutionary algorithms, Proceedings of the Third
Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems (Can-
berra, Australia), 1999, pp. 117–123.

[10] Jason Bobbin and Xin Yao, Evolving rules for nonlinear control, 1999.

219

220

[11] Celia C. Bojarczuk, Heitor S. Lopes, and Alex A. Freitas, Discovering comprehen-
sible classification rules by using genetic programming: a case study in a medical
domain, Proceedings of the Genetic and Evolutionary Computation Conference
(Orlando, Florida, USA) (Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben,
Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, eds.),
vol. 2, Morgan Kaufmann, 13-17 July 1999, pp. 953–958.

[12] Celia C Bojarczuk, Heitor S Lopes, and Alex A. Freitas, An innovative appli-
cation of a constrained-syntax genetic programming system to the problem of
predicting survival of patients., Genetic Programming: Proc. 6th European Con-
ference (EuroGP-2003) (C. Ryan, M. Keijzer, R. Poli, T. Soule, E. Tsang, and
E. Costa, eds.), Lecture Notes in Computer Science, vol. 2610, Springer-Verlag,
April 2003.

[13] Celia C. Bojarczuk, Heitor S. Lopes, Alex A. Freitas, and Edson L Michalkiewicz,
A constrained-syntax genetic programming system for discovering classification
rules: application to medical data sets, Artificial Intelligence in Medicine 30
(2004), no. 1, 27–48.

[14] Leo Breiman, Random forests, Machine Learning 45 (2001), no. 1, 5–32.

[15] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles. J. Stone,
Classification and regression trees, Wadsworth International Group, United
States of America, 1984.

[16] E. Burke, S. Gustafson, and G. Kendall, Survey and analysis of diversity measures
in genetic programming, 2002, (Accepted as a full paper) Proceedings of the
Genetic and Evolutionary Computation Conference, 2002.

[17] Martin Volker Butz, Rule-based evolutionary online learning systems: learning
bounds, classification, and prediction, Ph.D. thesis, Champaign, IL, USA, 2004,
Adviser-David E. Goldberg.

[18] Robert Callan, Essence of neural networks, Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998.

[19] Hongging Cao, Friedrich Recknagel, Gea-Jae Joo, and Dong-Kyun Kim, Disovery
of predictive rule sets for chlorophyll-a dynamics in the nakdong river (korea) by
means of the hybrid evolutionaru algorithm hea, Ecological Informatics 1 (2006),
43–53.

[20] Jaime Guillermo Carbonell, Machine learning : paradigms and methods, MIT
Press, Cambridge, Mass, 1990.

[21] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz, Editorial: special
issue on learning from imbalanced data sets, SIGKDD Explor. Newsl. 6 (2004),
no. 1, 1–6.

221

[22] Chao Chen, Andy Liaw, and Leo Breiman, Using random forest to learn imbal-
anced data, Technical Report 666, Department of Statistics, University of Cali-
fornia, Berkeley, 2004.

[23] Shu-Heng Chen (ed.), Genetic algorithms and genetic programming in computa-
tional finance, Kluwer Academic, 2002.

[24] Shu-Heng Chen and Paul P. Wang (eds.), Computational intelligence in eco-
nomics and finance, Springer, 2004.

[25] Noam Chomsky, Syntactic structures, The Hague, Mouton, 1957.

[26] Arthur L. Corcoran and Sandip Sen, Using Real-Valued Genetic Algorithms to
Evolve Rule Sets for Classification, International Conference on Evolutionary
Computation, 1994, pp. 120–124.

[27] R. Dahm, Friedrich miescher and the discovery of dna, Developmental Biology
13 (2005), no. 278(2), 274–88.

[28] Charles Darwin, The origin of species, Jonh Murray, 1859.

[29] I. De Falco, A. Della Cioppa, and E. Tarantino, Discovering interesting classifi-
cation rules with genetic programming, Applied Soft Computing 1 (2001), no. 4,
257–269.

[30] K. De Jong, Genetic-algorithm-based learning, Machine Learning: An Artificial
Intelligence Approach (Volume III) (Y. Kodratoff and R. S. Michalski, eds.),
Kaufmann, San Mateo, CA, 1990, pp. 611–638.

[31] Rob Dixon and Phil Holmes, Financial markets : an introduction, series in ac-
counting and finance, International Thomson Business Press, 168-173 High Hol-
born, London, 1996.

[32] Robert D. Edwards and John Magee, Technical analysis of stock trends, At. Lucie
Press, Boca raton, Florida, 2001.

[33] Jeroen Eggermont, Joost N. Kok, and Walter A. Kosters, Detecting and pruning
introns for faster decision evolution, The 8th International Conference of Parallel
Problem Solving from Nature, Springer-Verlag, 2004.

[34] A. E. Eiben, Introduction to evolutionary comptutation, Springer-Verlag, Berlin,
Germany, 1993.

[35] Peter Naur et al, Revised report on the algorithmic language algol 60, Communi-
cacions of the ACM 6(1), vol. 1, 1963, pp. 1–17.

[36] E. F. Fama, Efficient capital markets: A review of theory and empirical work,
The Journal of Finance 23 (1970), no. 383.

222

[37] Tom Fawcett, Roc graphs: Notes and practical considerations for researchers,
Introductory paper, 2004.

[38] Tom Fawcett and Foster J. Provost, Adaptive fraud detection, Data Mining and
Knowledge Discovery 1 (1997), no. 3, 291–316.

[39] M. V. Fidelis, H. S. Lopes, and A. A. Freitas, Discovering comprehensible classifi-
cation rules a genetic algorithm, Proceedings of the 2000 Congress on Evolution-
ary Computation CEC00 (La Jolla Marriott Hotel La Jolla, California, USA),
IEEE Press, 6-9 2000, pp. 805–810.

[40] Peter Flach and Nada Lavrac, Intelligent data analysis, Springer-Verlag, Berlin,
Germany, 2003.

[41] Lawrence J Fogel, Title intelligence through simulated evolution : forty years
of evolutionary programming, Wiley series on intelligent systems, Imprint New
York, 1999.

[42] L.J. Fogel, A. J. Owens, and M.J. Walsh, Artificial intelligence through a sim-
ulation of evolution, Biophysics and Cybernetic Systems (Washington D.C.)
(A. Callahan M. Maxfield and L.J Fogel, eds.), Spartan, 1965, pp. 131–156.

[43] Alma Garcia-Almanza and Edward Tsang, Repository method to suit different
investment strategies, Congress on Evolutionary Computation (CEC), 2007.

[44] Alma Garcia-Almanza and Edward P.K. Tsang, Simplifying decision trees learned
by genetic algorithms, Congress on Evolutionary Computation (CEC), 2006,
pp. 7906–7912.

[45] Alma L Garcia-Almanza and Edward Tsang, Detection of stock price movements
using chance discovery and genetic programming, Innovation in Knowledge-Based
and Intelligent Engineering Systems (2007).

[46] Alma L Garcia-Almanza and Edward P.K. Tsang, The repository method for
chance discovery in financial forecasting, KES2006 10th International Confer-
ence on Knowledge-Based and Intelligent Information and Engineering Systems
(Springer-Verlag, ed.), 2006.

[47] Alma L Garcia-Almanza, Edward P.K. Tsang, and Edgar Galvan-Lopez, Evolving
decision rules to discover patterns in financial data sets, Computational Methods
in Financial Engineering (2007).

[48] Alma Lilia Garcia-Almanza and Edward Tsang, Evolving decision rules to predict
investment opportunities, International Journal of Automation and Computing
05 (2008), no. 1, 22–31.

223

[49] Alma Lilia Garcia-Almanza and Edward P.K. Tsang, Forecasting stock prices
using genetic programming and chance discovery, 12th International Conference
On Computing In Economics And Finance, 2006.

[50] D.M. Green and J.A. Swets, Signal detection theory and psychophysics, Robert
E. Krieger Publishing Co., New York, USA, 1974.

[51] M Greiner, D Pfeiffer, and RD. Smith, Principles and practical application of
receiver-operating characteristic analysis for diagnostic tests, Prevent Veterinary
Med 45 (2000), 23–41.

[52] Lawrence O. Hall and Ajay Joshi, Building accurate classiffers from imbalanced
data sets, 2005.

[53] James A. Hanley and Barbara J. McNeil, The meaning and use of the area under
a reciever operating characteristic roc curve, Radiology, vol. 143, W. Madison,
1998, pp. 29–36.

[54] P. E. Hart, The condensed nearest neighbor rule, IEEE Transactions on Informa-
tion Theory, 1968.

[55] R. J. Henery, Classification, Ellis Horwood, Upper Saddle River, NJ, USA, 1994.

[56] J. H. Holland, Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems, Machine Learning: An Artificial
Intelligence Approach: Volume II (R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, eds.), Kaufmann, Los Altos, CA, 1986, pp. 593–623.

[57] John Holland, Adaptation, vol. 4, Plenum, 1976.

[58] John H. Holland, Adaptation in natural and artificial systems, MIT Press, Cam-
bridge MA, 1975.

[59] Jih-Jeng Huang, Gwo-Hshiung Tzeng, and Chorng-Shyong Ong, Two-stage ge-
netic programming (2SGP) for the credit scoring model, Applied Mathematics
and Computation 174 (2006), no. 2, 1039–1053.

[60] Jin Huang and Charles X. Ling, Using auc and accuracy in evaluating learning
algorithms, vol. 17, IEEE Transactions on knowledge and Data Engineering, 2005,
pp. 299–310.

[61] Hitoshi Iba, Hugo de Garis, and Taisuke Sato, Genetic Programming using a Min-
imum Description Length Principle, Advances in Genetic Programming (Ken-
neth E. Kinnear, Jr., ed.), MIT Press, 1994, pp. 265–284.

[62] Cezary Z. Janikow, A knowledge-intensive genetic algorithm for supervised learn-
ing, Machine Learning 13 (1993), no. 2-3, 189–228.

224

[63] Nathalie Japkowicz, The class imbalance problem: Significance and strategies,
Proceedings of the 2000 International Conference on Artificial Intelligence (IC-
AI’2000), vol. 1, 2000, pp. 111–117.

[64] Kenneth A. De Jong and William M. Spears, Learning Concept Classification
Rules using Genetic Algorithms, Proceedings of the Twelfth International Con-
ference on Artificial Intelligence IJCAI-91, vol. 2, 1991.

[65] Alain Rakotomamon Jy, Optimizing area under roc curve with svms.

[66] Michael N. Kahn, Technical analysis plain and simple, 1 ed., Pearson education
limited, Great Britain, 1999.

[67] Yves Kodratoff, Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell,
Machine learning : an artificial intelligence approach, Morgan Kaufmann Pub-
lishers, inc., Palo Alto CA., 1990.

[68] Ron Kohavi and Foster Provost, Glossary of terms, Edited for the Special Issue on
Applications of Machine Learning and the Knowledge Discovery Process, vol. 30,
February 1998.

[69] John Koza, Genetic programming: On the programming of computers by means
of natural selection, The MIT Press, Cambridge, Massachusetts, 1992.

[70] Miroslav Kubat, Robert Holte, and Stan Matwin, Learning when negative exam-
ples abound, ECML ’97: Proceedings of the 9th European Conference on Machine
Learning (London, UK), Springer-Verlag, 1997, pp. 146–153.

[71] Miroslav Kubat, Robert C. Holte, and Stan Matwin, Machine learning for the
detection of oil spills in satellite radar images, Machine Learning, vol. 30, 195-
215, 1998.

[72] Wojciech Kwedlo and Marek Kretowski, An evolutionary algorithm using multi-
variate discretization for decision rule induction, Principles of Data Mining and
Knowledge Discovery, 1999, pp. 392–397.

[73] William Langdon and Riccardo Poli, Foundations of genetic programming,
Springer, San Francisco, California, 2002.

[74] William B. Langdon, Quadratic bloat in genetic programming, Proceedings of
the Genetic and evolutionary Computation Conference (GECCO-2000), 2000,
pp. 451–458.

[75] William B. Langdon and Ricardo Poli, Fitness causes bloat, Soft Computing in
Engineering Design and Manufacturing (London) (P. K. Chawdhry, R. Roy, and
R. K. Pant, eds.), Springer-Verlag, 1997, pp. 13–22.

225

[76] Jorma Laurikkala, Improving identification of difficult small classes by balanc-
ing class distribution, AIME ’01: Proceedings of the 8th Conference on AI in
Medicine in Europe (London, UK), Springer-Verlag, 2001, pp. 63–66.

[77] Jin Li, A genetic programming based tool for financial forecasting, PhD Thesis,
University of Essex, Colchester CO4 3SQ, UK, 2001.

[78] Charles X. Ling and Chenghui Li, Data mining for direct marketing: Problems
and solutions, Knowledge Discovery and Data Mining, 1998, pp. 73–79.

[79] Charles X. Ling and Victor S. Sheng, Cost-sensitive learning and the class im-
balance problem, Encyclopedia of Machine Learning. (C. Sammut, ed.), Springer,
2008.

[80] Honghu Liu and Tongtong Wu, Estimating the area under a receiver operating
characteristic curve for repeated measures design, Journal of Statistical Software
8 (2003), no. 12, 1–18.

[81] Kate McCarthy, Bibi Zabar, and Gary Weiss, Does cost-sensitive learning beat
sampling for classifying rare classes?, UBDM ’05: Proceedings of the 1st inter-
national workshop on Utility-based data mining (New York, NY, USA), ACM
Press, 2005, pp. 69–77.

[82] Zbigniew Michalewicz, Genetic algorithms + data structures = evolution pro-
grams, Springer, 2002.

[83] Tom M. Mitchell, Machine learning, McGraw-Hill, Boston, Mass, 1997.

[84] Joseph James Murray, Genetic diversity and natural selection, Oliver and Boyd,
Edinburgh, 1972.

[85] Ayahiko Niimi and Eiichiro Tazaki, Rule discovery technique using genetic pro-
gramming combined with apriori algorithm, Discovery Science, Third Interna-
tional Conference, DS 2000, Kyoto, Japan, December 4-6, 2000, Proceedings
(Setsuo Arikawa and Shinichi Morishita, eds.), Lecture Notes in Computer Sci-
ence, vol. 1967, Springer, 2000.

[86] Anton Nijholt, Context-free grammars : covers, normal forms, and parsing,
Springer-Verlag, Berling, 1980.

[87] Lawrence O. Hall W. Philip Kegelmeyer Nitesh V. Chawla, Kevin W. Bowyer,
Smote: Synthetic minority over-sampling technique, p. 321.

[88] Peter Nordin, Frank Francone, and Wolfgang Banzhaf, Explicitly Defined Introns
and Destructive Crossover in Genetic Programming, Proceedings of the Work-
shop on Genetic Programming: From Theory to Real-World Applications (Tahoe
City, California, USA) (Justinian P. Rosca, ed.), 9 July 1995, pp. 6–22.

226

[89] Yukio Ohsawa and Peter McBurney, Chance discovery, Springer, 2003.

[90] Una-May O’Reilly and Franz Oppacher, Hybridized crossover-based search tech-
niques for program discovery, Tech. Report 95-02-007, Santa Fe Institute, 1399
Hyde Park Road Santa Fe, New Mexico 87501-8943 USA, 1995.

[91] Seong Ho Park, Jin Mo Goo, and Chan-Hee Jo, Receiver operating characteris-
tic (roc) curve: Practical review for radiologist, Korean Journal of Radiology 5
(2004), no. 1, 11–18.

[92] M. Pazzani, C. Merz, P. Murphy, T Hume K Ali, and C.Brunk, Reducing misclas-
sification costs, Proceedings of the Eleventh International Conference on Machine
Learning, 1994, pp. 217–225.

[93] Ricardo Poli, A simple but theoretically-motivated method to control bloat in
genetic programming, Proceedings of the 6th European Conference, Springer-
Verlag, 2003, pp. 204–217.

[94] Foster J. Provost and Tom Fawcett, Robust classification for imprecise environ-
ments, Machine Learning, no. 3, 203–231.

[95] Foster J. Provost and Tom Fawcett, Analysis and visualization of classifier per-
formance: Comparison under imprecise class and cost distributions, Knowledge
Discovery and Data Mining, 1997, pp. 43–48.

[96] Foster J. Provost, Tom Fawcett, and Ron Kohavi, The case against accuracy
estimation for comparing induction algorithms, In Proc. Fifteenth International
Conference in Machine Learning, W. Madison, 1998, pp. 445–553.

[97] John Quinlan, Simplifying decision trees, International Journal of Machine stud-
ies, 1986, pp. 221–234.

[98] John Ross Quinlan, C.45 programs for machine learning, Morgan Kaufmann,
San Mateo California, 1993.

[99] Bhavani Raskutti and Adam Kowalczyk, Extreme re-balancing for svms: a case
study, SIGKDD Explor. Newsl. 6 (2004), no. 1, 60–69.

[100] Conor Ryan and Michael O’Neill, Grammatical evolution: A steady state ap-
proach, Late Breaking Papers at the Genetic Programming 1998 Conference (Uni-
versity of Wisconsin, Madison, Wisconsin, USA) (John R. Koza, ed.), Stanford
University Bookstore, 22-25 1998.

[101] Michael Sipser, Introduction to the theory of computation, Thomson, Boston,
c2006.

[102] Stephen Smith, Flexible learning of problem solving heuristics through adaptive
search, Proceedings 8th International Joint Conference on Artificial Intelligence,
August 1983.

227

[103] Terence Soule, Code growth in genetic programming, PhD Thesis, College of
Graduate Studies, University of Idaho, Moscow, Idaho, USA, 15 May 1998.

[104] Terence Soule and James Foster, Code size and depth flows in genetic program-
ming, Proceeding of the Second Annual Conference (John R. Koza, Kalyanmoy
Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick R. Riolo,
eds.), Morgan Kaufmann, 1997, pp. 313–320.

[105] Terence Soule and James A. Foster, Effects of code growth and parsimony pressure
on populations in genetic programming, vol. 6, Winter 1998, pp. 293–309.

[106] John Arthur Swets, Signal detection and recognition by human observers, Wiley,
New York, USA, 1964.

[107] Walter Alden Tackett, Recombination, selection, and the genetic construction of
computer programs, Ph.D. thesis, University of Southern California, Department
of Electrical Engineering Systems, USA, 1994.

[108] Astro Teller, Algorithm evolution with internal reinforcement for signal under-
standing, PhD Thesis, Carnegie Mellon University, 1998.

[109] Astro Teller and M. Veloso, PADO: Learning tree structured algorithms for or-
chestration into an object recognition system, Tech. Report CMU-CS-95-101,
Pittsburgh, PA, USA, 1995.

[110] Astro Teller and Manuela Veloso, Neural programming and an internal rein-
forcement policy, In fisrt international Conference on Simulated Evolution and
learning, Springer-Verlag, 1996, pp. 279–286.

[111] I. Tomek, Two modifications of cnn, IEEE Transactions on Systems Man and
Communications, 1976, pp. 769–772.

[112] Edward P.K. Tsang, Jin Li, and J.M. Butler, Eddie beats the bookies, Interna-
tional Journal of Software, Practice and Experience, 10, vol. 28, Wiley, August
1998, pp. 1033–1043.

[113] Edward P.K. Tsang, Jin Li, Sheri Markose, Hakan Er, Abdel Salhi, and Giulia
Iori, Eddie in financial decision making, Journal of Management and Economics,
4, vol. 4, November 2000.

[114] Edward P.K. Tsang, Sheri Markose, and Hakan Er, Chance discovery in stock
index option and future arbitrage, New Mathematics and Natural Computation,
World Scientific, 3, vol. 1, 2005, pp. 435–447.

[115] Edward P.K. Tsang and Serafin Martinez-Jaramillo, Computational finance,
IEEE Computational Intelligence Society Newsletter, IEEE, 2004, pp. 3–8.

228

[116] Edward P.K. Tsang, P. Yung, and Jin Li, Eddie-automation, a decision support
tool for financial forecasting, Journal of Decision Support Systems, Special Issue
on Data Mining for Financial Decision Making, 4, vol. 37, 2004.

[117] Alan Mathison Turing, The essential turing : seminal writings in computing,
logic, philosophy, artificial intelligence, and artificial life, plus the secrets of
enigma, vol. 1, Oxford : Clarendon Press, 2004.

[118] Giedrius Vanagas, Receiver operating characteristic curves and comparison of
cardiac surgery risk stratification systems, Interact CardioVasc Thorac Surg 3
(2004), no. 2, 319–322.

[119] Gary M. Weiss, Mining with rarity: A unifying framework, Special issue on learn-
ing from imbalanced data sets, vol. 6, 2004, pp. 7–19.

[120] S. W. Wilson, Classifier fitness based on accuracy, Evolutionary Computation 3
(1995), no. 2, 149–175.

[121] Ian H. Witten and Eibe Frank, Data mining : practical machine learning tools
and techniques with java implementations, Morgan Kaufmann, San Francisco,
Calif, 2000.

[122] Chuanhuan Yin, Shengfeng Tian, Houkuan Huang, and Jun He, Applying genetic
programming to evolve learned rules for network anomaly detection, Advances in
Natural Computation, First International Conference, ICNC 2005, Proceedings,
Part III (Changsha, China) (Lipo Wang, Ke Chen, and Yew-Soon Ong, eds.),
Lecture Notes in Computer Science, vol. 3612, Springer, 2005, pp. 323–331.

