Automatic Generation of XSLT Stylesheets Using
Evolutionary Algorithms

P. Garcia-Sanchez
Department of Architecture
and Computer Technology

University of Granada (Spain)
pgarcia@geneura.ugr.es

J.L.J. Laredo
Department of Architecture
and Computer Technology

University of Granada (Spain)

juanlu@geneura.ugr.es

ABSTRACT

This paper introduces a procedure based on genetic pro-

J.J. Merelo
Department of Architecture
and Computer Technology

University of Granada (Spain)
jmerelo@geneura.ugr.es

A.M. Mora
Department of Architecture
and Computer Technology

University of Granada (Spain)
amorag@geneura.ugr.es

gramming to evolve XSLT programs (usually called stylesheets
or logicsheets). XSLT is a general purpose, document-oriented

functional language, generally used to transform XML doc-
uments or, in general, solve any problem that can be coded
as an XML document. The proposed solution uses a tree
representation for the stylesheets as well as diverse specific
operators in order to obtain, in the studied cases and a rea-
sonable time, a XSLT stylesheet that performs the transfor-
mation.

Categories and Subject Descriptors

1.2.2 [Computing Methodologies|: Artificial Intelligence
- Automatic Programming; 1.7 [Computing Methodolo-
gies]: Document and Text Processing

General Terms
Algorithms

Keywords

Stylesheets, XML, XSLT, Evolutionary Computation Tech-
niques

1. INTRODUCTION

Since the Information technology (IT) industry has adopted
the XML dialects as standard information exchange format,
there is a business need for programs that transform one
XML set of tags to another, extracting information or com-
bining it in many possible ways. XSLT stylesheets (XML
Stylesheet Language for Transformations), also called logic-
sheets, were designed for this purpose: applied to an XML
document, they produce another.

The objective of this work is to find the XSLT logicsheet
that, from one input XML document, is able to obtain a
desired output XML document, which contains exclusively

Copyright is held by the author/owner(s).
GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

1701

J.P. Sevilla
Department of Architecture
and Computer Technology

University of Granada (Spain)
jpsevilla@geneura.ugr.es

P.A. Castillo
Department of Architecture
and Computer Technology

University of Granada (Spain)
pedro@atc.ugr.es

the information that is considered important from the first
one. To perform this task we have designed a genetic pro-
gramming algorithm where this logicsheet will be yielded,
using evolutionary operators.

2. XSLT USAGE

XSLT provides a general mechanism for the association of
patterns in a source XML document to the application of
format rules to these elements, but in order to simplify the
search space for the evolutionary algorithm, only three in-
structions of XSLT will be considered in this work: template,
that sets which XML fragment will be included when the el-
ement in its match attribute is found; apply-templates, which
is used to select the elements to which the transformation is
going to be applied and delegate control to the correspond-
ing templates; and finally value-of, which simply includes the
content of an XML document into the output file. This im-
plies also a simplification of the general XML-to-XML trans-
formation problem: we will just extract information from the
original document, without adding new elements (tags) that
did not exist in the original document. In fact, this makes
the problem more similar to the creation of an scraper, a
program that extracts information from legacy websites or
documents. Thus, we intend this paper just as a proof of
concept and initial performance measurement, whose gener-
alization, if not straightforward, is at least possible.

3. PROPOSED METHOD

We have implemented an evolutionary algorithm, convert-
ing XSLT stylesheets into tree structures and making them
evolve using variation operators. Every XSLT stylesheet is
evaluated using a fitness function that is related to the differ-
ence between generated XML and output XML associated to
the example (the desired to obtain). The solution has been
programmed using JEO, an evolutionary algorithm library
developed at University of Granada as part of the DREAM
project, which is available at http://www.dr-ea-m.org to-
gether with the rest of the project. The algorithm works as
shown in Figure 1.

The operators may be classified into two different types:
the first one consists in operators whose assignment is to
modify the XPath routes that contains the attributes of the



2y Initialize Population
Input XML }._
------ Generate XSLT with
Tee > Genetic Process €

-‘$~—~
& v

Generated XSLT
«
Generated XML

Output XML

Generate XML
with the XSLT

v

-------- > Compare Generated
XML with desired
______ i Output XML

v

Return the best XSLT

Figure 1: This figure shows how the algorithm
works. Each individual of the population is an XSLT
whose fitness is the comparison between the XML
that is generated and the desired output XML

XSLT instructions. The second type of operators are used
to modify the XSLT tree structure and take different shape
in each of them (so that the structure is kept). In order
to ensure the existence of the elements (tags) added to the
XPath expressions and XSLT instruction attributes, every
time one of them is needed it is randomly selected from the
input file.

Fitness is related to the differences between the desired
and the obtained output, but it has been also designed so
that evolution is helped. Instead of using a single aggrega-
tive function, fitness is a vector that includes the number of
deletions and additions needed to obtain the target output
from the obtained output, and the resulting XSLT stylesheet
length.

4. EXPERIMENTS AND RESULTS

To test the algorithm we have performed several experi-
ments with 7 different XML input and output files, and using
two different XSLT structures. The algorithm has been ex-
ecuted 30 times for each input XML and type of structure.
All files are available at the previously commented site.

In these initial experiments we have found which kind of
XSLT template structure is the most adequate for evolution,
namely, the one that matches the select attribute in apply-
templates with the match attribute in templates, and an
indeterminate number of value-of instructions within each
template. By constraining evolution in this way, we restrict
the search space to a more reasonable size, and avoid the
high degree of degeneracy of the problem, with many differ-
ent structures yielding the same result, that, if combined,
would result in invalid structures.

In general, we have also demonstrated that a XSLT logic-
sheet can be found just from an input/output pair of XML
documents for a wide range of examples, some of them par-
ticularly difficult.

1702

5. CONCLUSIONS

We present the results of an evolutionary algorithm de-
signed to yield the XSLT logicsheet that is able to make a
particular transformation from a XML document to another
(target or desired XML file). One of the advantages of this
application is that resulting logicsheets can be used directly
in a production environment, without the intervention of
a human operator; besides, it tackles a real-world problem
found in many organizations.

There are some questions and issues that will have to be
addressed in future papers:

e Using the DTD (Document Type Definition) associ-
ated to a XML file as a source of information for con-
versions between XML documents and for restrictions

of the possible variations.

Testing evolution with other kind of tools, such as a
chain of SAX filters.

Obviously, testing different kinds and increasingly com-
plex set of documents, and using several input and out-
put files at the same time, to test the generalization
capability of the procedure.

Using the identity transform as another frame for evo-
lution, as an alternative to the types of structures of
this work. The identity transform puts every element
found in the input document in the output document;
elements can then be selectively eliminated via the ad-
dition of single statements.

Tackle difficult problems from the point of view of a hu-
man operator. In general, the XSLT stylesheets found
here could have been programmed by a knowledge-
able person in about an hour, but in some cases, in-
put/output mapping would not be so obvious at first
sight. This will mean, in general, increase also the
XSLT statements used in the stylesheet, and also in
general, adding new types of operators.

All source code for the programs is available from http://
forja.rediris.es/websvn/wsvn/geneura/GeneradorXSLT/
under an open source licence (GPL).

6. ACKNOWLEDGMENTS

This work has been supported by the Spanish MICYT
project TIN2007-68083-C02-01, the Junta de Andalucia CICE
project P06-TIC-02025 and the Granada University and In-
tecna Soluciones SL. project OTRI-1515.



