Flow control using optical sensors - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2014

Flow control using optical sensors

Contrôle d'écoulement par capteurs optiques

Résumé

Flow control using optical sensors is experimentally investigated. Real-time computation of flow velocity fields is implemented. This novel approach featuring a camera for acquisition and a graphic processor unit (GPU) for processing is presented and detailed. Its validity with regards to speed and precision is investigated. A comprehensive guide to software and hardware optimization is given. We demonstrate that online computation of velocity fields is not only achievable but offers advantages over traditional particle image velocimetry (PIV) setups. It shows great promise not only for flow control but for parametric studies and prototyping also.A hydrodynamic channel is used in all experiments, featuring a backward facing step for separated flow control. Jets are used to provide actuation. A comprehensive parametric study is effected to determine the effects of upstream jet injection. It is shown upstream injection can be very effective at reducing recirculation, corroborating results from the literature.Both open and closed loop control methods are investigated using this setup. Basic control is introduced to ascertain the effectiveness of this optical setup. The recirculation region created in the backward-facing step flow is computed in the vertical symmetry plane and the horizontal plane. We show that the size of this region can be successfully manipulated through set-point adaptive control and gradient based methods.A physically driven control approach is introduced. Previous works have shown successful reduction recirculation reduction can be achieved by periodic actuation at the natural Kelvin-Helmholtz frequency of the shear layer.A method based on vortex detection is introduced to determine this frequency, which is used in a closed loop to ensure the flow is always adequately actuated. Thus showing how recirculation reduction can be achieved through simple and elegant means using optical sensors. Next a feed-forward approach based on ARMAX models is implemented. It was successfully used in simulations to prevent amplification of upstream disturbances by the backward-facing step shear layer. We show how such an approach can be successful in an experimental setting.Higher Reynolds number flows exhibit non-linear behavior which can be difficult to model in a satisfactory manner thus a new approach was attempted dubbed machine learning control and based on genetic programming. A number of random control laws are implemented and rated according to a given cost function. The laws that perform best are bred, mutated or copied to yield a second generation. The process carries on iteratively until cost is minimized. This approach can give surprising insights into effective control laws.
Le contrôle d'écoulement en utilisant des capteurs optiques est étudié dans un contexte expérimental. Le calcul de champs de vitesses en temps réel en utilisant une caméra pour l'acquisition et une carte graphique pour le calcul est détaillé. La validité de l'approche en terme de rapidité et de précision est étudiée. Un guide complet pour l'optimisation logicielle et matérielle est donné. Nous démontrons que le calcul dynamique de champs de vitesse est non seulement possible mais plus facile à gérer que l'utilisation d'un appareillage (PIV) classique. Un canal hydrodynamique est utilisé pour toutes les expériences. Celui-ci comporte une marche descendante pour le contrôle d' écoulements décollés. Les actionneurs sont des jets. Dans le cas de la marche descendante une étude paramétrique approfondie est faite pour qualifier les effets d'une injection en amont des jets, celle-ci étant traditionnellement effectuée à l'arrête de la marche.Plusieurs méthodes de contrôle sont étudiées. Un algorithme de contrôle basique de type PID est mis en place pour démontrer la viabilité du contrôle d'écoulement en boucle fermée par capteurs optiques. La zone de recirculation située derrière la marche est calculée en temps réel dans un plan vertical et horizontal. La taille de cette région est manipulée avec succès. Une approche basée sur des observations de la dynamique de l'écoulement est présentée.Des résultats précédents dans la littérature montrent que la recirculation peut être réduite avec succès en agissant sur l'écoulement à la fréquence naturelle de lâchés tourbillonnaires liés à l'instabilité de Kelvin-Helmholtz de la couche cisaillée crée par la marche. Une éthode basée de détection de vortex est introduite pour calculer cette fréquence, qui est ensuite utilisée dans une boucle de contrôle qui assure que l'écoulement est toujours pulsé à la bonne fréquence. Ainsi en utilisant des capteurs optiques la recirculation est réduite de façon simple.Ensuite nous implémentons un contrôle de type feed-forward dont l'efficacité a préalablement été démontrée en simulation. Cette approche vise à prévenir l'amplification de perturbations amont par la couche cisaillée. Nous montrons comment une telle méthode peut être implémentée avec succès dans un contexte expérimental. Enfin, nous implémentons également une approche radicalement différente basée sur un algorithme génétique. Des lois de contrôle aléatoires sont testées et évaluées. Les meilleurs sont répliquées, mutées et croisées. Ce processus se poursuit itérativement jusqu'à ce que le coût soit minimisé. Bien que lente à converger cette approche donne des résultats encourageants à travers une loi de commande originale.
Fichier principal
Vignette du fichier
2014PA066640.pdf (5.71 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01150428 , version 1 (11-05-2015)

Identifiants

  • HAL Id : tel-01150428 , version 1

Citer

Nicolas Gautier. Flow control using optical sensors. Fluid mechanics [physics.class-ph]. Université Pierre et Marie Curie - Paris VI, 2014. English. ⟨NNT : 2014PA066640⟩. ⟨tel-01150428⟩
337 Consultations
567 Téléchargements

Partager

Gmail Facebook X LinkedIn More