Skip to main content

A Comprehensive Comparison of Lexicase-Based Selection Methods for Symbolic Regression Problems

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2024)

Abstract

Lexicase selection is a parent selection method that has been successfully used in many application domains. In recent years, several variants of lexicase selection have been proposed and analyzed. However, it is still unclear which lexicase variant performs best in the domain of symbolic regression. Therefore, we compare in this work relevant lexicase variants on a wide range of symbolic regression problems. We conduct experiments not only over a given evaluation budget but also over a given time as practitioners usually have limited time for solving their problems. Consequently, this work provides users a comprehensive guide for choosing the right selection method under different constraints in the domain of symbolic regression. Overall, we find that down-sampled \(\epsilon \)-lexicase selection outperforms other selection methods on the studied benchmark problems for the given evaluation budget and for the given time. The improvements with respect to solution quality are up to 68% using down-sampled \(\epsilon \)-lexicase selection given a time budget of 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to the variant called BTSS from De Melo et al. [4].

  2. 2.

    problems: 589_fri_c2_1000_25, 606_fri_c2_1000_10, 623_fri_c4_1000_10, 1030_ERA, 607_fri_c4_1000_50, 581_fri_c3_500_25, 617_fri_c3_500_5, 654_fri_c0_500_10, 641_fri_c1_500_10, 1027_ESL, 519_vinnie, 647_fri_c1_250_10, 615_fri_c4_250_10, 230_machine_cpu, 207_autoPrice, 665_sleuth_case2002, 523_analcatdata_neavote, 621_fri_c0_100_10, 624_fri_c0_100_5, 591_fri_c1_100_10.

  3. 3.

    We track in each generation the MSE of the best-performing individual (according to the performance on the validation cases) in the current population. The normalized MSE is averaged over all problems every 10 min.

References

  1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 356–364. ACM (2019)

    Google Scholar 

  2. Boldi, R., et al.: Informed down-sampled lexicase selection: Identifying productive training cases for efficient problem solving. arXiv preprint arXiv:2301.01488v1 (2023)

  3. Chen, S.H.: Genetic Algorithms and Genetic Programming in Computational Finance. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-0835-9

  4. De Melo, V.V., Vargas, D.V., Banzhaf, W.: Batch tournament selection for genetic programming: the quality of lexicase, the speed of tournament. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 994–1002. GECCO ’19, ACM (2019)

    Google Scholar 

  5. Ding, L., Boldi, R., Helmuth, T., Spector, L.: Going faster and hence further with lexicase selection. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 538–541. ACM (2022)

    Google Scholar 

  6. Ding, L., Boldi, R., Helmuth, T., Spector, L.: Lexicase selection at scale. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2054–2062. ACM (2022)

    Google Scholar 

  7. Ding, L., Pantridge, E., Spector, L.: Probabilistic lexicase selection. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1073–1081. GECCO ’23, ACM (2023)

    Google Scholar 

  8. Ding, L., Spector, L.: Optimizing neural networks with gradient lexicase selection. In: International Conference on Learning Representations (2021)

    Google Scholar 

  9. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) Advances in Computation and Intelligence. ISICA 2010. LNCS, vol. 6382, pp. 181–192. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16493-4_19

  10. Ferguson, A.J., Hernandez, J.G., Junghans, D., Lalejini, A., Dolson, E., Ofria, C.: Characterizing the effects of random subsampling on lexicase selection. In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds.) Genetic Programming Theory and Practice XVII. Genetic and Evolutionary Computation, LNCS, pp. 1–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39958-0_1

  11. Fortin, F.A., de Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

    MathSciNet  Google Scholar 

  12. Geiger, A., Sobania, D., Rothlauf, F.: Down-sampled epsilon-lexicase selection for real-world symbolic regression problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1109–1117. GECCO ’23, ACM (2023)

    Google Scholar 

  13. Helmuth, T., Abdelhady, A.: Benchmarking parent selection for program synthesis by genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 237–238. GECCO ’20, ACM (2020)

    Google Scholar 

  14. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selection on diversity recovery and maintenance. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 983–990. GECCO ’16 Companion, ACM (2016)

    Google Scholar 

  15. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis: a diversity analysis. In: Riolo, R., Worzel, W., Kotanchek, M., Kordon, A. (eds.) Genetic Programming Theory and Practice XIII, pp. 151–167. LNCS, Genetic and Evolutionary Computation. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34223-8_9

  16. Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1030–1038. GECCO ’19, ACM (2019)

    Google Scholar 

  17. Helmuth, T., Pantridge, E., Spector, L.: On the importance of specialists for lexicase selection. Genet. Program. Evolvable Mach. 21(3), 349–373 (2020)

    Article  Google Scholar 

  18. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1039–1046. GECCO ’15, ACM (2015)

    Google Scholar 

  19. Helmuth, T., Spector, L.: Explaining and exploiting the advantages of down-sampled lexicase selection. In: ALIFE 2020: The 2020 Conference on Artificial Life, pp. 341–349. MIT Press (2020)

    Google Scholar 

  20. Helmuth, T., Spector, L.: Problem-solving benefits of down-sampled lexicase selection. Artif. Life 27(3–4), 183–203 (2021)

    Article  Google Scholar 

  21. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2014)

    Article  Google Scholar 

  22. Hernandez, A., Balasubramanian, A., Yuan, F., Mason, S.A., Mueller, T.: Fast, accurate, and transferable many-body interatomic potentials by symbolic regression. NPJ Comput. Mater. 5(1), 112 (2019)

    Google Scholar 

  23. Hernandez, J.G., Lalejini, A., Dolson, E., Ofria, C.: Random subsampling improves performance in lexicase selection. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2028–2031. GECCO ’19, ACM (2019)

    Google Scholar 

  24. Jundt, L., Helmuth, T.: Comparing and combining lexicase selection and novelty search. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1047–1055. ACM (2019)

    Google Scholar 

  25. Kelly, J., Hemberg, E., O’Reilly, U.M.: Improving genetic programming with novel exploration - exploitation control. In: Sekanina, L., Hu, T., Lourenco, N., Richter, H., Garcia-Sanchez, P. (eds.) Genetic Programming. EuroGP 2019. LNCS, vol. 11451, pp. 64–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_5

  26. Koza, J.R.: On the Programming of Computers by Means of Natural Selection, A Bradford Book, vol. 1. MIT Press, Cambridge (1992)

    Google Scholar 

  27. Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based genetic programming. In: Machado, P., et al. (eds.) Genetic Programming. EuroGP 2015. LNCS, vol. 9025, pp. 53–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_5

  28. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis of lexicase selection and epsilon-lexicase selection. Evol. Comput. 27(3), 377–402 (2019)

    Article  Google Scholar 

  29. La Cava, W., et al.: Contemporary symbolic regression methods and their relative performance. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2021)

    Google Scholar 

  30. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 741–748. GECCO ’16, ACM (2016)

    Google Scholar 

  31. La Cava, W.G., et al.: A flexible symbolic regression method for constructing interpretable clinical prediction models. NPJ Digit. Med. 6(1), 107 (2023)

    Article  Google Scholar 

  32. Moore, J.M., Stanton, A.: Lexicase selection outperforms previous strategies for incremental evolution of virtual creature controllers. In: ECAL 2017, The Fourteenth European Conference on Artificial Life, pp. 290–297 (2017)

    Google Scholar 

  33. Moore, J.M., Stanton, A.: Tiebreaks and diversity: isolating effects in lexicase selection. In: The 2018 Conference on Artificial Life, pp. 590–597. MIT Press, Cambridge, MA (2018)

    Google Scholar 

  34. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013)

    Article  Google Scholar 

  35. Pantridge, E., Helmuth, T., McPhee, N.F., Spector, L.: Specialization and elitism in lexicase and tournament selection. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1914–1917. GECCO ’18, ACM (2018)

    Google Scholar 

  36. Pham-Gia, T., Hung, T.L.: The mean and median absolute deviations. Math. Comput. 34(7–8), 921–936 (2001)

    MathSciNet  Google Scholar 

  37. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Press, Morrisville (2008)

    Google Scholar 

  38. Schweim, D., Sobania, D., Rothlauf, F.: Effects of the training set size: a comparison of standard and down-sampled lexicase selection in program synthesis. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2022)

    Google Scholar 

  39. Sobania, D., Rothlauf, F.: A generalizability measure for program synthesis with genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 822–829. GECCO ’21, ACM (2021)

    Google Scholar 

  40. Sobania, D., Rothlauf, F.: Program synthesis with genetic programming: the influence of batch sizes. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming. EuroGP 2022. LNCS, vol. 13223, pp. 118–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02056-8_8

  41. Sobania, D., Schweim, D., Rothlauf, F.: A comprehensive survey on program synthesis with evolutionary algorithms. IEEE Trans. Evol. Comput. 27(1), 82–97 (2023)

    Article  Google Scholar 

  42. Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 401–408. GECCO ’12, ACM (2012)

    Google Scholar 

  43. Spector, L., La Cava, W., Shanabrook S, Helmuth, T., Pantridge, E.: Relaxations of lexicase parent selection. In: Banzhaf, W., Olson, R., Tozier, W., Riolo, R. (eds.) Genetic Programming Theory and Practice XV, pp. 105–120. LNCS, Genetic and Evolutionary Computation. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90512-9_7

  44. Wagner, A.R.M., Stein, A.: Adopting lexicase selection for michigan-style learning classifier systems with continuous-valued inputs. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 171–172. ACM (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geiger, A., Sobania, D., Rothlauf, F. (2024). A Comprehensive Comparison of Lexicase-Based Selection Methods for Symbolic Regression Problems. In: Giacobini, M., Xue, B., Manzoni, L. (eds) Genetic Programming. EuroGP 2024. Lecture Notes in Computer Science, vol 14631. Springer, Cham. https://doi.org/10.1007/978-3-031-56957-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56957-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56956-2

  • Online ISBN: 978-3-031-56957-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics