
jGE - A Java implementation of Grammatical Evolution

LOUKAS GEORGIOU and WILLIAM J. TEAHAN
School of Informatics, University of Wales, Bangor, U.K.

Abstract: Grammatical Evolution (GE) is a novel evolutionary algorithm which uses an arbitrary variable-length
binary string to govern which production rule of a Backus Naur Form grammar will be used in a genotype-to-
phenotype mapping process. This paper introduces the Java GE project (jGE), which is an implementation of
GE in the Java language. The main difference between jGE and libGE, a public domain implementation of GE
in C++, is that jGE incorporates the functionality of libGE as a component and provides implementation of the
Search Engine as well as the Evaluator. The main idea behind the jGE Library (it can be downloaded at [16]) is
to create a framework for evolutionary algorithms which can be extended to any specific implementation such
as Genetic Algorithms, Genetic Programming and Grammatical Evolution.

Key-Words: Grammatical Evolution, Genetic Algorithms, Evolutionary Computation, Agents, jGE, libGE, GP

1 Grammatical Evolution

1.1 Motivation

The main goal of the Java GE (jGE) project at
Bangor is the implementation of an Evolutionary
Algorithms (EA) framework which will facilitate
further research into Evolutionary Algorithms (and
especially Grammatical Evolution). Grammatical
Evolution [8] was chosen as the main Evolutionary
Algorithm of the jGE Project because it facilitates,
due the use of a BNF Grammar, the evolution of
arbitrary structures and programming languages.

Other objectives of the jGE Library (and some
further reasons as to why Java was chosen as the
implementation language) are as follows:
• An open and extendable framework for the

experimentation with EAs;
• The creation of an Agent-Oriented Evolutionary

System (an agent-based framework);
• Bootstrap project for further research on the

application of the principles of the Evolutionary
Synthesis theory [5] in machines;

• Integration and interoperability with other
projects such as evolutionary algorithms with
knowledge sharing [15];

• Integration with other open source and free Java
projects like Robocode (e.g. evolution of
simulated robots using GE).

1.2 The Grammatical Evolution system

Grammatical Evolution [9] is an evolutionary
algorithm that can evolve complete programs in an
arbitrary language using a variable-length binary
string. The binary string (genome) determines which
production rules in a Backus Naur Form (BNF)
grammar definition are used in a genotype-to-
phenotype mapping process to generate a program.

O’Neill and Ryan [9] take inspiration from nature
and claim that Grammatical Evolution embraces the

developmental approach and draws upon principles
that allow an abstract representation of a program to
be evolved. This abstraction enables GE to do the
following things: it separates out the search and
solution spaces; it allows evolution of programs in an
arbitrary language; it enables the existence of
degenerate genetic code; and it adopts a wrapping
operation that allows the reuse of the genetic material.

According to O’Neill and Ryan [9], Grammatical
Evolution is based on the principles of the fields of
Evolutionary Automatic Programming, Molecular
Biology, and Grammars. Although Grammatical
Evolution is a form of Genetic Programming, it differs
from traditional GP in three ways [9]: it employs
linear genomes; it performs an ontogenetic mapping
from genotype to phenotype; and it uses a grammar to
dictate legal structures in the phenotypic space.

Regarding the use of grammars, O’Neill and Ryan
[9] state that they provide a simple, yet powerful,
mechanism that can be used for the description of any
complex structure such as languages, graphs, neural
networks, mathematical expressions, molecules
compounds. This was the main reason why
Grammatical Evolution was chosen as the main and
default Evolutionary Algorithm of the jGE Library.

Instead of trying to evolve computer programs
directly, which is the case in Genetic Programming
[3], [4], Grammatical Evolution uses a variable length
linear “genome” which governs how a Backus Naur
Form grammar definition is mapped to an executable
computer program.

Grammatical Evolution takes the approach that a
Genotype must be mapped to a Phenotype, like some
other former approaches (Genetic Algorithm for
Developing Software [11]), but it does not use a one-
to-one mapping, and moreover it evolves individuals
that contain no introns. It uses a Genetic Algorithm to
control what production rules are fired when there are
more than one choice for a Backus Naur Form non-
terminal symbol [12].

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp406-411)

In natural biology, there is no direct mapping
between the genetic code and its physical expression.
Instead, genes guide the creation of proteins which
affect the physical traits either independently or in
conjunction with other proteins [12]. Grammatical
Evolution treats each transition as a “protein” which
cannot generate a physical trait on its own. Instead,
each one protein can result in a different physical trait
depending on its position in the genotype and
consequently, the previous proteins that have been
generated.

Grammatical Evolution uses all the standard
operators of Genetic Algorithms, plus two new
operators: Prune and Duplicate. The gene duplication
is analogous to the production of more copies of a
gene or genes, in order to increase the presence of a
protein or proteins in the cell of a biological
organism. The gene pruning reduces the number of
introns in the genotype and according to [12] it results
in dramatically faster and better crossovers (Later
research questions the usefulness of this operator
because of the important role of introns [10]).

The main advantages of Grammatical Evolution
according to Ryan [12] are the following:
• It can evolve programs in any language;
• Theoretically, it can generate arbitrary complex

functions; and
• it has closer biological analogies to nature than

Genetic Programming.
But Grammatical Evolution is, like Genetic

Programming, subject to problems of dependencies
[12]. For example, the further a gene is from the root
of the genome, the more likely it will be affected by
the previous genes. Ryan et al. [12] suggest the
biasing of individuals to a shorter length and the
progressive generation of longer genomes.

A well known and freely available implementation
of Grammatical Evolution in the C++ language is
libGE from Nicolau [6]. Characteristics of libGE are
presented in [6] and [9].

2 jGE - Architecture

2.1 libGE vs. jGE

The libGE library is an implementation of the
Grammatical Evolution system written in the C++
language. A recent version is the 0.26 beta 1, 3 March
2006 [6]. libGE implements the Grammatical
Evolution mapping process. It can be used by an
evolutionary computation algorithm in order to map
the genotype (the result of the search algorithm) to
the phenotype (the program to be evaluated). As
Nicolau [6] says in the documentation “On its default
implementation, it maps a string provided by a
variable-length genetic algorithm onto a syntactically-
correct program, whose language is specified by a
BNF (Backus-Naur Form) context-free grammar.”

Our implementation of the Grammatical Evolution
system, the jGE Library, uses the Java programming
language.1 The main difference between jGE and
libGE is that jGE incorporates the functionality of
libGE as a component and provides implementation of
the Search Engine as well as the Evaluator. Namely,
as will be shown below, the jGE is a more general
framework for the execution of Evolutionary
Algorithms. Indeed, it still provides, like libGE, the
feature of using any other Search Engine and
Evaluator beyond that already provided by default in
jGE. Individual components of the jGE, such as the
GE Mapping Mechanism, the BNF Parser, and the
Mathematical Functions classes, may also be used
separately for special purpose projects.

Another main difference between jGE and libGE is
the goal of each project. libGE provides an
implementation of the Grammatical Evolution
mapping process. On the other hand, the goal of the
jGE Project is the development of a general
Evolutionary Algorithms Framework which facilitates
the incorporation and evaluation of Evolutionary
techniques; and the incorporation of agent-oriented
principles to develop implementations for parallel
distributed systems.

2.2 Overview of jGE (v0.1)

The main idea behind the development of the jGE
Library (current version is 0.1; it can be downloaded
at [16]) is to create a framework for evolutionary
algorithms which can be extended to any specific
implementation such as Genetic Algorithms, Genetic
Programming and Grammatical Evolution. This
means that instead of using a mapper-centric approach
like libGE, jGE uses a GA-oriented approach.
Namely, the libGE instead of being just the
implementation of the mapping mechanisms between
the Search Engine and the Evaluation Engine, it
provides libraries for both of these components. This
means that someone using jGE is able to specify the
core strategy of the evolutionary process by selecting
the following parameters:
• the desired implementations of the genetic

operators (selection, crossover, mutation, etc.);
• the genotype to phenotype mapping mechanism;
• the evaluation mechanism;
• the initial population;
• the initial environment (although currently not

yet implemented).
The purpose of the last parameter is to allow the

developer to specify an environment in which the

1 Ghanea-Hercock [1] lists several advantages of using

Java for the development of Evolutionary Algorithms
applications: automatic memory management, pure object-
oriented design, high-level data constructs (e.g.
dynamically resizable arrays); platform independent code;
and the availability of several complete EA libraries for EA
systems.

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp406-411)

population is living, and to influence not only the
creation of new generations but the phenotype of the
individuals as well, their growth process, and finally
their own genotypes before they reproduce new
offspring.

The problem specification and evolutionary
strategy can be created in an external XML file which
is loaded by the core mechanism of the jGE
framework. The core mechanism is then responsible
for allocating and executing the appropriate actions
and directives, and to produce the final results.

2.3 Components of jGE

The following diagram (Figure 1) shows the main
components of the jGE Library.

Figure 1: Component Diagram of the EA framework.

EA Core This is the main entry to the platform which
loads the necessary files and classes. It loads the EA
strategy to be executed and is responsible for checking
the supported features and configuration possibilities
of the EA strategy.
EA Strategy This supports the problem and
evolutionary process specification. It is responsible
for selecting the appropriate implementations of each
one of the configurable elements: Genetic Operations,
Mapper, Evaluator, and Logger.
Population This is a collection of classes which
abstracts a real world population.
Environment This is a collection of classes which
abstracts a real world environment.
Genetic Operations This component contains
different implementations of the genetic operations
such as selection, crossover, mutation etc.
Mapper This is responsible for the mapping of
genotype to phenotype. Any specific mapping process
can be implemented and executed by the EA strategy.
Evaluator The evaluator is used by the EA Strategy
to assign a fitness value to the phenotype of an
individual.
EA Logger This keeps track of the evolutionary
process and stores the data for monitoring of the

evolution of the individuals and for later use; that is,
the creation of statistical results.

3 jGE - Design and Implementation

3.1 Description of the jGE v0.1 Packages

This section briefly describes the packages of the
jGE v0.1 and further details of one of its components,
the Genetic Operations package. Even though jGE is
focused on the implementation of the Grammatical
Evolution system, it contains all the necessary
functionality for the execution and construction of
other Evolutionary Algorithms as well. Currently, as
well as GE, two other EC algorithms are
implemented: Standard GA and Steady-State GA.

jGE decomposes and implements some services
which are required by EC algorithms and provides
functionalities for the ad-hoc implementations of other
evolutionary based systems. In version v0.1, the
library is concentrated on Grammatical Evolution. But
this library can also be used by any other Java System
for the creation of evolutionary algorithms as well as
for other functionalities such as the parsing and
representation of BNF Grammar definitions, the
compilation and execution of Java programs, and the
generation of random numbers in specific ranges.

The classes of the library are organised in the
following packages. The detailed description of each
class and its services can be found in the Java
Documentation of the library (jGE v0.1
Documentation, see [16]):
Package: bangor.aiia.jge.core
This contains the core classes of the jGE library.
These classes implement the Grammatical Evolution
algorithm and some proof of concept experiments.
Indeed, the interfaces of this package define the
required functionality which must be provided by the
evaluation and mapping components of the system.
Package: bangor.aiia.jge.population
This package contains the classes which represent the
population of an evolutionary algorithm. A Population
is a collection of Individuals and each Individual has a
Genotype and a Phenotype.
Package: bangor.aiia.jge.evolution
The package evolution contains implementations of
GA algorithms and classes which decompose the main
operations of such algorithms (e.g. Crossover,
Mutation, etc.). These operations are implemented as
static methods and each class provides a collection of
different variations. The classes include: crossover;
duplication; genesis; mutation; pruning; selection. For
example, the class Crossover currently provides a
Standard One Point Crossover function but in
forthcoming versions of the library, other crossover
variations will be added.
Package: bangor.aiia.jge.ps
The problem specifications package contains
implementations of problem specifications which can

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp406-411)

be used for the evaluation of the individuals during an
EA run. Each time a new problem is examined, a new
problem specification class has to be created which
assigns the Fitness Value to the Individuals of a
Population. Classes are HammingDistance and
SymbolicRegression.
Package: bangor.aiia.jge.bnf
This package contains all the necessary classes for the
loading of a BNF Grammar definition and its
representation as Java objects.
Package: bangor.aiia.jge.util
The package bangor.aiia.jge.util contains some helper
classes. These classes implement common services
used by other classes of the jGE library, like
compilation and execution of java code, logging,
stochastic functions, etc.

3.2 Speed Improvements on the

Compilation/Execution of Java Code
The first version of the Evaluation component

used the JavaCompiler class to evaluate the Java
programs (phenotypes). This compiles (using the
javac.exe compiler), and executes (using the java.exe
runtime), once in each generation of a run, the
dynamically created java source code which are the
phenotypes of all the individuals of the population.

This is an extremely time consuming task and for
problems such as Symbolic Regression (see section
Experiments below), this is the most important factor
which effects the execution speed. In each Symbolic
Regression experiment the compilation/execution is
taking place once when a new run starts (for the
creation of the initial population) and once in each
generation (during the evaluation of the individuals
of the population).

Although the time complexity with respect to the
compilation/execution of java code is linear (Θ(N),
where N is the number of generations of a run), it is a
significantly time consuming task which can
significantly degrade overall performance.
Moreover, other problems will have a higher rate of
growth of execution time if they need to frequently
use the source code compilation and bytecode
execution tasks.

For the above reasons, some experiments were
conducted into alternative methods regarding the
compilation and execution of Java code. The
experimental evidence (see [16]) leads to the
conclusion that a much better solution than using
javac.exe and java.exe is the following setup:
a) Use of the Jikes compiler [2] for the compilation
of the java source code.
b) Utilization of the Dynamic Class Loading and
Introspection features of the Java Virtual Machine
(ClassLoader class, and the Reflection API).

Jikes is an open source Java compiler written in
the C++ language and translates Java source files
into the bytecode instructions set and binary format
defined in the Java Virtual Machine Specification.

Jikes has the following advantages as noted in the
official web site of the compiler: open source;
strictly Java compatible; high performance;
dependency analysis; constructive Assistance.

The Java ClassLoader is an important component
of the Java Virtual Machine which is responsible for
finding and loading classes at runtime. It loads
classes on demand into memory during the execution
of a Java program. Furthermore, it is written in the
Java Language and can be extended in order to load
Java classes from every possible source (local or
network file system, network resources, etc.). Using
both the ClassLoader and the Reflection API, it is
possible to perform the loading of Java bytecode and
its execution from inside of any Java program using
the same instance (process) of JVM.

In the current version (v0.1), the jGE Library
provides the option of using either the Sun JVM or
the IBM Jikes for the execution and compilation of
Java code.

3.3 Genetic Operations Component
One of the most interesting and useful components
of the jGE is the Genetic Operations component. Its
classes implement various versions and types of the
genetic operators as static methods. In this way, ad-
hoc implementations of evolutionary algorithms can
easily access the various genetic operations and use
them in different combinations. Currently the
following operators are implemented:
• Genesis: random creation of an initial pool of

binary string genotypes; and random creation of
an initial population of individuals.

• Selection: roulette wheel selection; rank
selection; N best and M worst selection.

• Crossover: standard one-point crossover for
fixed-length genotypes; standard one-point
crossover for variable-length genotypes.

• Mutation: standard one-point mutation.
• Duplication: standard duplication.
• Pruning: standard pruning.

An abstract class EvolutionaryAlgorithm defines
common properties and behaviours for evolutionary
algorithms like Genetic Algorithms, Genetic
Programming, and Grammatical Evolution. An
Evolutionary Algorithm simulates the biological
process of evolution. The evolution unit of this
process is the population as Darwinism argues [5].
The basic strategy of an Evolutionary Algorithm is
the following:

1. Initial Population Creation.
An initial Population is randomly created in case an
already initialised population is not given to the
algorithm.
2. In each Generation the following actions are
executed:
• Competition (Evaluation of the Individuals of

the Population).

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp406-411)

• Selection (The individuals to mate).
• Variation (Crossover, Mutation, Duplication,

Pruning, etc.).
• Reproduction (Creation of the new population,

the offspring, which replaces the old
population).

The subclasses of this class must implement the
concrete steps of the above strategy in order to
provide specific versions of Evolutionary
Algorithms.

Further, two evolutionary algorithms have been
implemented: the Standard Genetic Algorithm and a
version of a Steady-State Genetic Algorithm. For the
former, the following process is implemented:

1. Randomly Initialise the population, P (if not one
given).
2. Perform Fitness Evaluation of the initial
individuals in P.
3. Create an empty new population, P'.
4. Until P' is full:
• Select two individuals from P to mate using

Roulette Wheel Selection.
• Produce two offspring using standard one-

point crossover with probability Pc.
• Perform Point Mutation with probability Pm on

the two offspring.
• Perform Duplication with probability Pd on the

two offspring.
• Perform Pruning with probability Pp on the two

offspring.
• Add the two offspring into P'.

5. Replace P with P'.
6. Perform Fitness Evaluation of individuals in P.
7. Repeat steps 3 until 6 until termination criteria
are met (solution found or max generations
exceeded).
8. Return the best individual (solution) in current
population, P.

For the Steady-State Genetic Algorithm (SSGA),
the main idea is that a portion of the population P
survives in the new population P' and that only the
worst individuals are replaced. Namely, a few good
individuals will mate and their offspring will replace
the worst individuals. The rest of the population will
survive. The portion of the population P that will be
replaced in P' is known as the Generation Gap and is
a fraction in the interval (0,1). The default
implementation of SSGA uses a fraction, G = 2/n
(where n the size of the population). Namely, two
individuals will mate and their offspring will replace
the two worst individuals. In general, the number of
the individuals which will be replaced in each
generation is G * n. The SSGA process implemented
by this class is the following:

1. Randomly Initialise the population, P (if not one
given).
2. Perform Fitness Evaluation of the initial
individuals in P.

3. Create an empty population, P'.
4. Until new offspring = G * n
• Select two individuals from P to mate using

Roulette Wheel Selection.
• Produce two offspring using standard one-

point crossover with probability Pc.
• Perform Point Mutation with probability Pm on

the two offspring.
• Perform Duplication with probability Pd on the

two offspring.
• Perform Pruning with probability Pp on the

two offspring.
• Add the two offspring into P'.

5. Add the best n - (G * n) individuals of P into the
offspring P'.
6. Replace P with P'.
7. Perform Fitness Evaluation of the individuals in
P.
8. Repeat steps 3 until 7 until termination criteria
are met (solution found or max generations
exceeded).
9. Return the best individual (solution) in current
population, P.

In the case where G * n is not an even integer,
then the larger even integer less than G * n and
larger than 0 will be used.

The class GrammaticalEvolution implements the
default version of the Grammatical Evolution (with
a minor exception regarding the steady state
replacement mechanism as mentioned below). The
default implementation as described by O'Neill and
Ryan, uses a Steady-State replacement mechanism
such that two parents produce two children, the best
of which replace the worst individual in the
population only if the child has a greater fitness than
the individual to be replaced. Our implementation
uses a slightly different replacement mechanism
which is described above in the SSGA process.
Also, there is the option to use a Generational
replacement mechanism like in Standard GA.

Regarding the configuration of a Grammatical
Evolution run, O'Neill and Ryan suggest the
following: a typical wrapping threshold is 10; the
size of the codon is 8-bits; and typical probabilities
are: crossover – 0.9; mutation – 0.01; duplication –
0.01; pruning – 0.01.

The above configuration is the default of the
GrammaticalEvolution class. Further, this
implementation uses the following default values:
max. generations: 10; searching mechanism:
Steady-State GA; Generational Gap of the Steady-
State GA, G = 2/n (n = the population size).

The next section describes some proof-of-
concept experiments performed with the jGE
Library and presents the results.

4 Experiments
Experiments in [13] and [14] show that Grammatical
Evolution is able to solve Symbolic Regression,
Trigonometric Identity, and Symbolic Integration

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp406-411)

Problems. The adoption of the Steady State
approach [14] dramatically improves the
performance of the Grammatical Evolution
algorithm, making it as efficient in the mentioned
problems types as the Genetic Programming
algorithm. Also, [7] demonstrated the generation of
multi-line code in the classical Santa Fe Ant Trail
problem. Indeed, the last experiment showed that
Grammatical Evolution outperforms Genetic
Programming ([3] and [4]) in this specific problem
when GP does not use the solution length fitness
measure [7].

The following subsections briefly mention the
types of proof-of-concept experiments which have
been conducted with jGE and which lead to the
results and findings which are discussed in the last
section. Detailed set-ups and results of these
experiments are available at [16].

4.1 Hamming Distance Experiments
The Hamming Distance problem involves the
finding of a given binary string. The target string
was: 111000111000101010101010101010. For this
problem, Grammatical Evolution, Standard GA, and
Steady-State GA were compared.

4.2 Symbolic Regression Experiments
Symbolic Regression problems are problems of
finding some mathematical expression in symbolic
form that matches a given set of input and output
pairs. The particular function examined was the
following: f(x) = x4 + x3 + x2 + x.

4.3 Trigonometric Identity Experiments
The particular function examined was cos 2x, and
the desired trigonometric identity were 1-2sin2x (for
this reason the unary operator Math.cos was not
included in the BNF Grammar of this problem).

The objective of these experiments was to find a
mathematical expression identical to the examined
function.

5 Discussion
The results of the above experiments with jGE
confirmed three expected findings. First, that jGE
using Grammatical Evolution is able to produce
useful solutions even though these are not the best
possible or the fastest. Secondly, that different set-
ups and configurations of the searching and
evaluation mechanisms have a significant impact on
the quality and speed of the solution. Finally, the
need for more than a standard PC’s processing
power is prominent.

The above confirmed expectations show that
further research and work in this project toward its
mentioned goal and objectives (see section on
motivation) is promising. The above findings will
guide the next steps in this project. Namely, the next

version of jGE will provide implementations of more
Genetic Operators which will facilitate experiments
in a larger range of possible configurations. The need
for more processing power will be tackled with an
agent-based framework capable of executing
transparently on many machines (i.e. a parallel
distributed system). Finally, this agent-based
framework will guide the later development of an
agent-oriented evolutionary system.

References
[1] GHANEA-HERCOCK, R. (2003) Applied Evolutionary

Algorithms in Java. New York, NY: Springer.
[2] IBM Corporation (2004), Jikes 1.22. United States: NY.

Available from: http://jikes.sourceforge.net.
[3] KOZA, J.R. (1992) Genetic Programming: On the

Programming of Computers by the Means of Natural
Selection. Cambridge, MA: MIT Press.

[4] KOZA, J.R. (1994) Genetic Programming II: Automatic
Discovery of Reusable Programs. Camb., MA: MIT Press.

[5] MAYR, E. (2002) What Evolution Is. London: Phoenix.
[6] NICOLAU, M. (2006), libGE: Grammatical Evolution

Library for version 0.26beta1, 3 March 2006. Available
from: http://waldo.csisdmz.ul.ie/libGE/libGE.pdf.

[7] O’NEILL, M. and RYAN, C. (1999) Evolving Multi-line
Compilable C Programs. In Proc. of the Second European
Workshop on Genetic Programming, 1999, pp. 83-92.

[8] O’NEILL, M. and RYAN, C. (2001) Grammatical
Evolution. IEEE Transactions on Evolutionary Computation
5(4), 349-358.

[9] O’NEILL, M. and RYAN, C. (2003) Grammatical
Evolution: Evolutionary Automatic Programming in an
Arbitrary Language. USA: Kluwer Academic Publishers.

[10] O’NEILL, M., RYAN, C. and NICOLAU, M. (2001)
Grammar Defined Introns: An Investigation into Grammars,
Introns, and Bias in Grammatical Evolution. In Proceedings
of GECCO 2001.

[11] PATERSON, N. and LIVESEY, M (1997) Evolving caching
algorithms in C by GP. In Genetic Programming 1997,
pages 262-267. MIT Press.

[12] RYAN, C., COLLINS, J. J. and O’NEILL, M. (1998)
Grammatical Evolution: Evolving Programs for an Arbitrary
Language. Lecture Notes in Comp. Sci. 1391. First
European Workshop on Genetic Programming 1998.

[13] RYAN, C., O’NEILL, M. and COLLINS, J. J. (1998)
Grammatical Evolution: Solving Trigonometric Identities. In
Proceedings of Mendel 1998: 4th International Mendel
Conference on Genetic Algorithms, Optimisation Problems,
Fuzzy Logic, Neural Networks, Rough Sets held in Brno,
Czech Republic June 24-26 1998, pp. 111-119.

[14] RYAN, C. and O’NEILL, M. (1998) Grammatical
Evolution: A Steady State Approach. In Proceedings of the
Second International Workshop on Frontiers in
Evolutionary Algorithms, 1998, pp. 419-423.

[15] TEAHAN, W.J., AL-DMOUR, N., TUFF, P.G. (2005) On
thought, knowledge, evolution and search. In Proceedings of
Computer Methods and Systems CMS'05 Conference held in
Krakow, Poland 14-16 November 2005.

[16] UWB School of Informatics (2006), Java GE (jGE) Official
Web Site. United Kingdom: Bangor. Available from
http://www.informatics.bangor.ac.uk/~loukas/jge.

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp406-411)

