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Abstract: Grammatical Evolution (GE) is a novel evolutionary algorithm which uses an arbitrary variable-length 
binary string to govern which production rule of a Backus Naur Form grammar will be used in a genotype-to-
phenotype mapping process. This paper introduces the Java GE project (jGE), which is an implementation of 
GE in the Java language. The main difference between jGE and libGE, a public domain implementation of GE 
in C++, is that jGE incorporates the functionality of libGE as a component and provides implementation of the 
Search Engine as well as the Evaluator. The main idea behind the jGE Library (it can be downloaded at [16]) is 
to create a framework for evolutionary algorithms which can be extended to any specific implementation such 
as Genetic Algorithms, Genetic Programming and Grammatical Evolution. 
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1   Grammatical Evolution 
 
1.1 Motivation 

The main goal of the Java GE (jGE) project at 
Bangor is the implementation of an Evolutionary 
Algorithms (EA) framework which will facilitate 
further research into Evolutionary Algorithms (and 
especially Grammatical Evolution). Grammatical 
Evolution [8] was chosen as the main Evolutionary 
Algorithm of the jGE Project because it facilitates, 
due the use of a BNF Grammar, the evolution of 
arbitrary structures and programming languages.  

Other objectives of the jGE Library (and some 
further reasons as to why Java was chosen as the 
implementation language) are as follows: 
• An open and extendable framework for the 

experimentation with EAs; 
• The creation of an Agent-Oriented Evolutionary 

System (an agent-based framework); 
• Bootstrap project for further research on the 

application of the principles of the Evolutionary 
Synthesis theory [5] in machines; 

• Integration and interoperability with other 
projects such as evolutionary algorithms with 
knowledge sharing [15]; 

• Integration with other open source and free Java 
projects like Robocode (e.g. evolution of 
simulated robots using GE). 

 
1.2 The Grammatical Evolution system 

Grammatical Evolution [9] is an evolutionary 
algorithm that can evolve complete programs in an 
arbitrary language using a variable-length binary 
string. The binary string (genome) determines which 
production rules in a Backus Naur Form (BNF) 
grammar definition are used in a genotype-to-
phenotype mapping process to generate a program. 

O’Neill and Ryan [9] take inspiration from nature 
and claim that Grammatical Evolution embraces the 

developmental approach and draws upon principles 
that allow an abstract representation of a program to 
be evolved. This abstraction enables GE to do the 
following things: it separates out the search and 
solution spaces; it allows evolution of programs in an 
arbitrary language; it enables the existence of 
degenerate genetic code; and it adopts a wrapping 
operation that allows the reuse of the genetic material. 

According to O’Neill and Ryan [9], Grammatical 
Evolution is based on the principles of the fields of 
Evolutionary Automatic Programming, Molecular 
Biology, and Grammars. Although Grammatical 
Evolution is a form of Genetic Programming, it differs 
from traditional GP in three ways [9]: it employs 
linear genomes; it performs an ontogenetic mapping 
from genotype to phenotype; and it uses a grammar to 
dictate legal structures in the phenotypic space. 

Regarding the use of grammars, O’Neill and Ryan 
[9] state that they provide a simple, yet powerful, 
mechanism that can be used for the description of any 
complex structure such as languages, graphs, neural 
networks, mathematical expressions, molecules 
compounds. This was the main reason why 
Grammatical Evolution was chosen as the main and 
default Evolutionary Algorithm of the jGE Library. 

Instead of trying to evolve computer programs 
directly, which is the case in Genetic Programming 
[3], [4], Grammatical Evolution uses a variable length 
linear “genome” which governs how a Backus Naur 
Form grammar definition is mapped to an executable 
computer program. 

Grammatical Evolution takes the approach that a 
Genotype must be mapped to a Phenotype, like some 
other former approaches (Genetic Algorithm for 
Developing Software [11]), but it does not use a one-
to-one mapping, and moreover it evolves individuals 
that contain no introns. It uses a Genetic Algorithm to 
control what production rules are fired when there are 
more than one choice for a Backus Naur Form non-
terminal symbol [12]. 
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In natural biology, there is no direct mapping 
between the genetic code and its physical expression. 
Instead, genes guide the creation of proteins which 
affect the physical traits either independently or in 
conjunction with other proteins [12]. Grammatical 
Evolution treats each transition as a “protein” which 
cannot generate a physical trait on its own. Instead, 
each one protein can result in a different physical trait 
depending on its position in the genotype and 
consequently, the previous proteins that have been 
generated. 

Grammatical Evolution uses all the standard 
operators of Genetic Algorithms, plus two new 
operators: Prune and Duplicate. The gene duplication 
is analogous to the production of more copies of a 
gene or genes, in order to increase the presence of a 
protein or proteins in the cell of a biological 
organism. The gene pruning reduces the number of 
introns in the genotype and according to [12] it results 
in dramatically faster and better crossovers (Later 
research questions the usefulness of this operator 
because of the important role of introns [10]). 

The main advantages of Grammatical Evolution 
according to Ryan [12] are the following:  
• It can evolve programs in any language;  
• Theoretically, it can generate arbitrary complex 

functions; and  
• it has closer biological analogies to nature than 

Genetic Programming. 
But Grammatical Evolution is, like Genetic 

Programming, subject to problems of dependencies 
[12]. For example, the further a gene is from the root 
of the genome, the more likely it will be affected by 
the previous genes. Ryan et al. [12] suggest the 
biasing of individuals to a shorter length and the 
progressive generation of longer genomes. 

A well known and freely available implementation 
of Grammatical Evolution in the C++ language is 
libGE from Nicolau [6]. Characteristics of libGE are 
presented in [6] and [9]. 

 
2   jGE - Architecture 

 
2.1 libGE vs. jGE 

The libGE library is an implementation of the 
Grammatical Evolution system written in the C++ 
language. A recent version is the 0.26 beta 1, 3 March 
2006 [6]. libGE implements the Grammatical 
Evolution mapping process. It can be used by an 
evolutionary computation algorithm in order to map 
the genotype (the result of the search algorithm) to 
the phenotype (the program to be evaluated). As 
Nicolau [6] says in the documentation “On its default 
implementation, it maps a string provided by a 
variable-length genetic algorithm onto a syntactically-
correct program, whose language is specified by a 
BNF (Backus-Naur Form) context-free grammar.” 

Our implementation of the Grammatical Evolution 
system, the jGE Library, uses the Java programming 
language.1 The main difference between jGE and 
libGE is that jGE incorporates the functionality of 
libGE as a component and provides implementation of 
the Search Engine as well as the Evaluator. Namely, 
as will be shown below, the jGE is a more general 
framework for the execution of Evolutionary 
Algorithms. Indeed, it still provides, like libGE, the 
feature of using any other Search Engine and 
Evaluator beyond that already provided by default in 
jGE. Individual components of the jGE, such as the 
GE Mapping Mechanism, the BNF Parser, and the 
Mathematical Functions classes, may also be used 
separately for special purpose projects. 

Another main difference between jGE and libGE is 
the goal of each project. libGE provides an 
implementation of the Grammatical Evolution 
mapping process. On the other hand, the goal of the 
jGE Project is the development of a general 
Evolutionary Algorithms Framework which facilitates 
the incorporation and evaluation of Evolutionary 
techniques; and the incorporation of agent-oriented 
principles to develop implementations for parallel 
distributed systems. 

 
2.2 Overview of jGE (v0.1) 

The main idea behind the development of the jGE 
Library (current version is 0.1; it can be downloaded 
at [16]) is to create a framework for evolutionary 
algorithms which can be extended to any specific 
implementation such as Genetic Algorithms, Genetic 
Programming and Grammatical Evolution. This 
means that instead of using a mapper-centric approach 
like libGE, jGE uses a GA-oriented approach. 
Namely, the libGE instead of being just the 
implementation of the mapping mechanisms between 
the Search Engine and the Evaluation Engine, it 
provides libraries for both of these components. This 
means that someone using jGE is able to specify the 
core strategy of the evolutionary process by selecting 
the following parameters: 
• the desired implementations of the genetic 

operators (selection, crossover, mutation, etc.); 
• the genotype to phenotype mapping mechanism; 
• the evaluation mechanism; 
• the initial population; 
• the initial environment (although currently not 

yet implemented). 
The purpose of the last parameter is to allow the 

developer to specify an environment in which the 

                                                           
1 Ghanea-Hercock [1] lists several advantages of using 

Java for the development of Evolutionary Algorithms 
applications: automatic memory management, pure object-
oriented design, high-level data constructs (e.g. 
dynamically resizable arrays); platform independent code; 
and the availability of several complete EA libraries for EA 
systems. 
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population is living, and to influence not only the 
creation of new generations but the phenotype of the 
individuals as well, their growth process, and finally 
their own genotypes before they reproduce new 
offspring. 

The problem specification and evolutionary 
strategy can be created in an external XML file which 
is loaded by the core mechanism of the jGE 
framework. The core mechanism is then responsible 
for allocating and executing the appropriate actions 
and directives, and to produce the final results. 

 
2.3 Components of jGE 

The following diagram (Figure 1) shows the main 
components of the jGE Library. 

 

 
 

Figure 1: Component Diagram of the EA framework. 
 

EA Core This is the main entry to the platform which 
loads the necessary files and classes. It loads the EA 
strategy to be executed and is responsible for checking 
the supported features and configuration possibilities 
of the EA strategy. 
EA Strategy This supports the problem and 
evolutionary process specification. It is responsible 
for selecting the appropriate implementations of each 
one of the configurable elements: Genetic Operations, 
Mapper, Evaluator, and Logger. 
Population This is a collection of classes which 
abstracts a real world population. 
Environment This is a collection of classes which 
abstracts a real world environment. 
Genetic Operations This component contains 
different implementations of the genetic operations 
such as selection, crossover, mutation etc. 
Mapper This is responsible for the mapping of 
genotype to phenotype. Any specific mapping process 
can be implemented and executed by the EA strategy. 
Evaluator The evaluator is used by the EA Strategy 
to assign a fitness value to the phenotype of an 
individual. 
EA Logger This keeps track of the evolutionary 
process and stores the data for monitoring of the 

evolution of the individuals and for later use; that is,  
the creation of statistical results. 

 
3   jGE - Design and Implementation 

 
3.1 Description of the jGE v0.1 Packages 

This section briefly describes the packages of the 
jGE v0.1 and further details of one of its components, 
the Genetic Operations package. Even though jGE is 
focused on the implementation of the Grammatical 
Evolution system, it contains all the necessary 
functionality for the execution and construction of 
other Evolutionary Algorithms as well. Currently, as 
well as GE, two other EC algorithms are 
implemented: Standard GA and Steady-State GA.  

jGE decomposes and implements some services 
which are required by EC algorithms and provides 
functionalities for the ad-hoc implementations of other 
evolutionary based systems. In version v0.1, the 
library is concentrated on Grammatical Evolution. But 
this library can also be used by any other Java System 
for the creation of evolutionary algorithms as well as 
for other functionalities such as the parsing and 
representation of BNF Grammar definitions, the 
compilation and execution of Java programs, and the 
generation of random numbers in specific ranges. 

The classes of the library are organised in the 
following packages. The detailed description of each 
class and its services can be found in the Java 
Documentation of the library (jGE v0.1 
Documentation, see [16]): 
Package: bangor.aiia.jge.core 
This contains the core classes of the jGE library. 
These classes implement the Grammatical Evolution 
algorithm and some proof of concept experiments. 
Indeed, the interfaces of this package define the 
required functionality which must be provided by the 
evaluation and mapping components of the system. 
Package: bangor.aiia.jge.population 
This package contains the classes which represent the 
population of an evolutionary algorithm. A Population 
is a collection of Individuals and each Individual has a 
Genotype and a Phenotype. 
Package: bangor.aiia.jge.evolution 
The package evolution contains implementations of 
GA algorithms and classes which decompose the main 
operations of such algorithms (e.g. Crossover, 
Mutation, etc.). These operations are implemented as 
static methods and each class provides a collection of 
different variations. The classes include: crossover; 
duplication; genesis; mutation; pruning; selection. For 
example, the class Crossover currently provides a 
Standard One Point Crossover function but in 
forthcoming versions of the library, other crossover 
variations will be added. 
Package: bangor.aiia.jge.ps 
The problem specifications package contains 
implementations of problem specifications which can 
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be used for the evaluation of the individuals during an 
EA run. Each time a new problem is examined, a new 
problem specification class has to be created which 
assigns the Fitness Value to the Individuals of a 
Population. Classes are HammingDistance and 
SymbolicRegression. 
Package: bangor.aiia.jge.bnf 
This package contains all the necessary classes for the 
loading of a BNF Grammar definition and its 
representation as Java objects.  
Package: bangor.aiia.jge.util 
The package bangor.aiia.jge.util contains some helper 
classes. These classes implement common services 
used by other classes of the jGE library, like 
compilation and execution of java code, logging, 
stochastic functions, etc. 
 
3.2 Speed Improvements on the 

Compilation/Execution of Java Code 
The first version of the Evaluation component 

used  the JavaCompiler class to evaluate the Java 
programs (phenotypes). This compiles (using the 
javac.exe compiler), and executes (using the java.exe 
runtime), once in each generation of a run, the 
dynamically created java source code which are the 
phenotypes of all the individuals of the population. 

This is an extremely time consuming task and for 
problems such as Symbolic Regression (see section 
Experiments below), this is the most important factor 
which effects the execution speed. In each Symbolic 
Regression experiment the compilation/execution is 
taking place once when a new run starts (for the 
creation of the initial population) and once in each 
generation (during the evaluation of the individuals 
of the population). 

Although the time complexity with respect to the 
compilation/execution of java code is linear (Θ(N), 
where N is the number of generations of a run), it is a 
significantly time consuming task which can 
significantly degrade overall performance. 
Moreover, other problems will have a higher rate of 
growth of execution time if they need to frequently 
use the source code compilation and bytecode 
execution tasks. 

For the above reasons, some experiments were 
conducted into alternative methods regarding the 
compilation and execution of Java code. The 
experimental evidence (see [16]) leads to the 
conclusion that a much better solution than using 
javac.exe and java.exe is the following setup: 
a) Use of the Jikes compiler [2] for the compilation 
of the java source code.  
b) Utilization of the Dynamic Class Loading and 
Introspection features of the Java Virtual Machine 
(ClassLoader class, and the Reflection API). 

Jikes is an open source Java compiler written in 
the C++ language and translates Java source files 
into the bytecode instructions set and binary format 
defined in the Java Virtual Machine Specification. 

Jikes has the following advantages as noted in the 
official web site of the compiler: open source; 
strictly Java compatible; high performance; 
dependency analysis; constructive Assistance. 

The Java ClassLoader is an important component 
of the Java Virtual Machine which is responsible for 
finding and loading classes at runtime. It loads 
classes on demand into memory during the execution 
of a Java program. Furthermore, it is written in the 
Java Language and can be extended in order to load 
Java classes from every possible source (local or 
network file system, network resources, etc.). Using 
both the ClassLoader and the Reflection API, it is 
possible to perform the loading of Java bytecode and 
its execution from inside of any Java program using 
the same instance (process) of JVM. 

In the current version (v0.1), the jGE Library 
provides the option of using either the Sun JVM or 
the IBM Jikes for the execution and compilation of 
Java code. 
 
3.3 Genetic Operations Component 
One of the most interesting and useful components 
of the jGE is the Genetic Operations component. Its 
classes implement various versions and types of the 
genetic operators as static methods. In this way, ad-
hoc implementations of evolutionary algorithms can 
easily access the various genetic operations and use 
them in different combinations. Currently the 
following operators are implemented: 
• Genesis: random creation of an initial pool of 

binary string genotypes; and random creation of 
an initial population of individuals. 

• Selection: roulette wheel selection; rank 
selection; N best and M worst selection. 

• Crossover: standard one-point crossover for 
fixed-length genotypes; standard one-point 
crossover for variable-length genotypes. 

• Mutation: standard one-point mutation. 
• Duplication: standard duplication. 
• Pruning: standard pruning. 

An abstract class EvolutionaryAlgorithm defines 
common properties and behaviours for evolutionary 
algorithms like Genetic Algorithms, Genetic 
Programming, and Grammatical Evolution. An 
Evolutionary Algorithm simulates the biological 
process of evolution. The evolution unit of this 
process is the population as Darwinism argues [5].  
The basic strategy of an Evolutionary Algorithm is 
the following: 

 
1. Initial Population Creation. 
An initial Population is randomly created in case an 
already initialised population is not given to the 
algorithm.  
2. In each Generation the following actions are 
executed:  
• Competition (Evaluation of the Individuals of 

the Population). 
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• Selection (The individuals to mate). 
• Variation (Crossover, Mutation, Duplication, 

Pruning, etc.). 
• Reproduction (Creation of the new population, 

the offspring, which replaces the old 
population). 

 
The subclasses of this class must implement the 
concrete steps of the above strategy in order to 
provide specific versions of Evolutionary 
Algorithms. 

Further, two evolutionary algorithms have been 
implemented: the Standard Genetic Algorithm and a 
version of a Steady-State Genetic Algorithm. For the 
former, the following process is implemented:  

 
1. Randomly Initialise the population, P (if not one 
given). 
2. Perform Fitness Evaluation of the initial 
individuals in P. 
3. Create an empty new population, P'. 
4. Until P' is full: 
• Select two individuals from P to mate using 

Roulette Wheel Selection. 
• Produce two offspring using standard one-

point crossover with probability Pc. 
• Perform Point Mutation with probability Pm on 

the two offspring. 
• Perform Duplication with probability Pd on the 

two offspring. 
• Perform Pruning with probability Pp on the two 

offspring. 
• Add the two offspring into P'. 

5. Replace P with P'. 
6. Perform Fitness Evaluation of individuals in P. 
7. Repeat steps 3 until 6 until termination criteria 
are met (solution found or max generations 
exceeded). 
8. Return the best individual (solution) in current 
population, P. 
 

For the Steady-State Genetic Algorithm (SSGA), 
the main idea is that a portion of the population P 
survives in the new population P' and that only the 
worst individuals are replaced. Namely, a few good 
individuals will mate and their offspring will replace 
the worst individuals. The rest of the population will 
survive. The portion of the population P that will be 
replaced in P' is known as the Generation Gap and is 
a fraction in the interval (0,1). The default 
implementation of SSGA uses a fraction, G = 2/n 
(where n the size of the population). Namely, two 
individuals will mate and their offspring will replace 
the two worst individuals. In general, the number of 
the individuals which will be replaced in each 
generation is G * n. The SSGA process implemented 
by this class is the following:  

 
1. Randomly Initialise the population, P (if not one 
given). 
2. Perform Fitness Evaluation of the initial 
individuals in P. 

3. Create an empty population, P'. 
4. Until new offspring = G * n 
• Select two individuals from P to mate using 

Roulette Wheel Selection. 
• Produce two offspring using standard one-

point crossover with probability Pc. 
• Perform Point Mutation with probability Pm on 

the two offspring. 
• Perform Duplication with probability Pd on the 

two offspring. 
• Perform Pruning with probability Pp on the 

two offspring. 
• Add the two offspring into P'. 

5. Add the best n - (G * n) individuals of P into the 
offspring P'. 
6. Replace P with P'. 
7. Perform Fitness Evaluation of the individuals in 
P. 
8. Repeat steps 3 until 7 until termination criteria 
are met (solution found or max generations 
exceeded). 
9. Return the best individual (solution) in current 
population, P. 
 

In the case where G * n is not an even integer, 
then the larger even integer less than G * n and 
larger than 0 will be used. 

The class GrammaticalEvolution implements the 
default version of the Grammatical Evolution (with 
a minor exception regarding the steady state 
replacement mechanism as mentioned below). The 
default implementation as described by O'Neill and 
Ryan, uses a Steady-State replacement mechanism 
such that two parents produce two children, the best 
of which replace the worst individual in the 
population only if the child has a greater fitness than 
the individual to be replaced. Our implementation 
uses a slightly different replacement mechanism 
which is described above in the SSGA process. 
Also, there is the option to use a Generational 
replacement mechanism like in Standard GA. 

Regarding the configuration of a Grammatical 
Evolution run, O'Neill and Ryan suggest the 
following: a typical wrapping threshold is 10; the 
size of the codon is 8-bits; and typical probabilities 
are:  crossover – 0.9; mutation – 0.01; duplication –  
0.01; pruning – 0.01. 

The above configuration is the default of the 
GrammaticalEvolution class. Further, this 
implementation uses the following default values: 
max. generations: 10; searching mechanism: 
Steady-State GA; Generational Gap of the Steady-
State GA, G = 2/n (n = the population size). 

The next section describes some proof-of-
concept experiments performed with the jGE 
Library and presents the results. 
 
4   Experiments 
Experiments in [13] and [14] show that Grammatical 
Evolution is able to solve Symbolic Regression, 
Trigonometric Identity, and Symbolic Integration 
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Problems. The adoption of the Steady State 
approach [14] dramatically improves the 
performance of the Grammatical Evolution 
algorithm, making it as efficient in the mentioned 
problems types as the Genetic Programming 
algorithm. Also, [7] demonstrated the generation of 
multi-line code in the classical Santa Fe Ant Trail 
problem. Indeed, the last experiment showed that 
Grammatical Evolution outperforms Genetic 
Programming ([3] and [4]) in this specific problem 
when GP does not use the solution length fitness 
measure [7]. 

The following subsections briefly mention the 
types of proof-of-concept experiments which have 
been conducted with jGE and which lead to the 
results and findings which are discussed in the last 
section. Detailed set-ups and results of these 
experiments are available at [16]. 
 
4.1 Hamming Distance Experiments 
The Hamming Distance problem involves the 
finding of a given binary string. The target string 
was: 111000111000101010101010101010. For this 
problem, Grammatical Evolution, Standard GA, and 
Steady-State GA were compared. 
 
4.2 Symbolic Regression Experiments 
Symbolic Regression problems are problems of 
finding some mathematical expression in symbolic 
form that matches a given set of input and output 
pairs. The particular function examined was the 
following: f(x) = x4 + x3 + x2 + x. 
 
4.3 Trigonometric Identity Experiments 
The particular function examined was cos 2x, and 
the desired trigonometric identity were 1-2sin2x (for 
this reason the unary operator Math.cos was not 
included in the BNF Grammar of this problem). 

The objective of these experiments was to find a 
mathematical expression identical to the examined 
function. 
 
5   Discussion 
The results of the above experiments with jGE 
confirmed three expected findings. First, that jGE 
using Grammatical Evolution is able to produce 
useful solutions even though these are not the best 
possible or the fastest. Secondly, that different set-
ups and configurations of the searching and 
evaluation mechanisms have a significant impact on 
the quality and speed of the solution. Finally, the 
need for more than a standard PC’s processing 
power is prominent.  

The above confirmed expectations show that 
further research and work in this project toward its 
mentioned goal and objectives (see section on 
motivation) is promising. The above findings will 
guide the next steps in this project. Namely, the next 

version of jGE will provide implementations of more 
Genetic Operators which will facilitate experiments 
in a larger range of possible configurations. The need 
for more processing power will be tackled with an 
agent-based framework capable of executing 
transparently on many machines (i.e. a parallel 
distributed system). Finally, this agent-based 
framework will guide the later development of an 
agent-oriented evolutionary system. 
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