
Abstract 
We present Constituent Grammatical Evolution 
(CGE), a new evolutionary automatic program-
ming algorithm that extends the standard Gram-
matical Evolution algorithm by incorporating the 
concepts of constituent genes and conditional be-
haviour-switching. CGE builds from elementary 
and more complex building blocks a control pro-
gram which dictates the behaviour of an agent and 
it is applicable to the class of problems where the 
subject of search is the behaviour of an agent in a 
given environment. It takes advantage of the pow-
erful Grammatical Evolution feature of using a 
BNF grammar definition as a plug-in component to 
describe the output language to be produced by the 
system. The main benchmark problem in which 
CGE is evaluated is the Santa Fe Trail problem us-
ing a BNF grammar definition which defines a 
search space semantically equivalent with that of 
the original definition of the problem by Koza.  
Furthermore, CGE is evaluated on two additional 
problems, the Loss Altos Hills and the Hampton 
Court Maze. The experimental results demonstrate 
that Constituent Grammatical Evolution outper-
forms the standard Grammatical Evolution algo-
rithm in these problems, in terms of both efficiency 
(percent of solutions found) and effectiveness 
(number of required steps of solutions found).  

1 Background 

1.1 Grammatical Evolution 
Grammatical Evolution [O’Neill and Ryan, 2003] is an evo-
lutionary algorithm that can evolve complete programs in an 
arbitrary language using populations of variable-length bi-
nary strings. Namely, a chosen evolutionary algorithm 
(typically a variable-length genetic algorithm) creates and 
evolves a population of individuals and the binary string 
(genome) of each individual determines which production 
rules in a Backus Naur Form (BNF) grammar definition are 
used in a genotype-to-phenotype mapping process to gener-
ate a program. According to O’Neill and Ryan [2001], 

Grammatical Evolution’s unique features compared to other 
evolutionary algorithms are the degenerate genetic code 
which facilitates the occurrence of neutral mutations (vari-
ous genotypes can represent the same phenotype), and the 
wrapping of the genotype during the mapping process which 
enables the reuse of the same genotype for the production of 
different phenotypes. 

Grammatical Evolution (GE) takes inspiration from na-
ture. It embraces the developmental approach and draws 
upon principles that allow an abstract representation of a 
program to be evolved. This abstraction enables the follow-
ing: the separation of the search and solution spaces; the 
evolution of programs in an arbitrary language; the exis-
tence of degenerate genetic code; and the wrapping that 
allows the reuse of the genetic material.  

Before the evaluation of each individual, the following 
steps take place in Grammatical Evolution: 

i. The genotype (a variable-length binary string) is used 
to map the start symbol of the BNF grammar definition into 
terminals. The grammar is used to specify the legal pheno-
types. 

ii. The GE algorithm reads “codons” of 8 bits and the in-
teger corresponding to the codon bit sequence is used to 
determine which form of a rule is chosen each time a non-
terminal to be translated has alternative forms. 

iii. The form of the production rule is calculated using 
the formula form = codon mod forms where codon is the 
codon integer value, and forms is the number of alternative 
forms for the current non-terminal. 

Grammatical Evolution has been shown to be an effective 
and efficient evolutionary algorithm in a series of both static 
and dynamic problems [Dempsey et al., 2009]. However, 
there are known issues that still need to be tackled such as 
destructive crossovers [O’Neill et al., 2003], genotype 
bloating [Harper and Blair, 2006], and low locality of geno-
type-to-phenotype mapping [Rothlauf and Oetzel, 2006]. 

1.2 The Santa Fe Trail Problem 
The Santa Fe Trail (SFT) is an instance of the Artificial Ant 
problem and it is standard problem used for benchmarking 
purposes in the areas of Genetic Programming [Koza, 1992; 
Koza, 1994] and Grammatical Evolution [O’Neill and Ryan, 
2001; O’Neill & Ryan, 2003]. Its objective is to find a com-
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puter program to control an artificial ant, so that it can find 
all 89 pieces of food located on the grid. 

The more general Artificial Ant problem was devised by 
Jefferson et al. [Koza, 1992, p.54] with the Genesys-Tracker 
System [Jefferson et al., 1992]. The Santa Fe Trail was de-
signed by Christopher Langton [Koza, 1992, p.54], and is a 
somewhat more difficult trail than the “John Muir Trail” 
originally used in the Artificial Ant problem. Although there 
are other more difficult trails than the Santa Fe Trail, such 
as the “Los Altos Hills” [Koza, 1992, p. 156], it is acknowl-
edged as a challenging problem for evolutionary algorithms 
to tackle. The Santa Fe Trail has the following irregularities 
[Koza, 1992, p.54]: single gaps, double gaps, single gaps at 
corners, double gaps at corners (short knight moves), and 
triple gaps at corners (long knight moves). 

The artificial ant of the Santa Fe Trail problem operates 
in a square 32x32 toroidal grid in the plane. The ant starts in 
the upper left cell of the grid (0, 0) facing east. The trail 
consists of 144 squares with 21 turns, and the 89 units of 
food are distributed non-uniformly along it. The artificial 
ant can use three operations: move, turn-right, turn-left. 
Each of these takes one time unit. In addition, the artificial 
ant can use one sensing function: food-ahead. It looks into 
the square the ant is currently facing and returns true or false 
depending upon whether that square contains food or is 
empty respectively.  

It has been shown by Langdon and Poli [Robilliard et al., 
2006] that Genetic Programming does not improve much on 
pure random search in the Santa Fe Trail. This problem has 
become quite popular as a benchmark in the GP field and is 
still repeatedly used [Robilliard et al., 2006]. Hugosson et 
al. [2010] mention that the Santa Fe Trail has the features 
often suggested in real program spaces – it is full of local 
optima and has many plateaus. Furthermore, they note that a 
limited GP schema analysis shows that it is deceptive at all 
levels and that there are no beneficial building blocks, lead-
ing Genetic Algorithms to choose between them randomly. 
These reasons make the Santa Fe Trail a challenging prob-
lem for Evolutionary Algorithms. 

1.3 Performance of GE on the Santa Fe Trail  
Robilliard et al. [2006] say that in order to evaluate GP al-
gorithms using the Santa Fe Trail problem as a benchmark 
“… the search space of programs must be semantically 
equivalent to the set of programs possible within the origi-
nal SFT definition”. However, it has been argued that 
Koza’s [Koza, 1992] and GE’s [O'Neill and Ryan, 2003] 
search spaces are not semantically equivalent [Robilliard et 
al., 2006]. 

Georgiou and Teahan [2010] have proved experimentally 
the above claim and furthermore show that Grammatical 
Evolution gives very poor results in the Santa Fe Trail prob-
lem when a BNF grammar is used which defines a search 
space semantically equivalent with the search space used in 
the original problem [Koza, 1992]. Indeed, the same work 
proved experimentally that GE literature [O’Neill and Ryan, 
2001; O’Neill and Ryan, 2003] uses a BNF grammar which 
biases the search space and consequently gives an unfair 

advantage in GE when it is compared against Genetic Pro-
gramming in the Santa Fe Trail problem. Furthermore, it has 
been shown that during an evolutionary run, GE is not capa-
ble of finding solutions using the BNF grammar definition it 
uses in its benchmark against GP with less than 607 steps. 

When biasing the search space with the incorporation of 
domain knowledge (namely, suiting a grammar to the prob-
lem in question), this is a great advantage not only of 
Grammatical Evolution but of any grammar-based Evolu-
tionary Algorithm. But this is irrelevant when comparing 
the actual performance of an Evolutionary Algorithm be-
cause in the case of GE experiments mentioned in the litera-
ture, it is the human designed bias of the search space that 
improves the success rate of the algorithm. Consequently, it 
is not fair to compare GE with GP when semantically dif-
ferent search spaces are used. However, if the bias could 
emerge or be enforced during the evolution through some 
other mechanism (and not by design) this would be a differ-
ent case; for example, through evolution of the grammar or 
a different mechanism inspired by nature and biology like 
the one proposed in this work. 

2 Constituent Grammatical Evolution 

2.1 Motivation  
The goal of Constituent Grammatical Evolution (CGE) is to 
improve Grammatical Evolution in terms of effectiveness 
(percent of solutions found in a total of evolutionary runs) 
and efficiency (solution quality in terms of the characteris-
tics of the problem in question) in agent problems like the 
Artificial Ant [Koza, 1992]. The main benchmark problem 
in which CGE is first evaluated is the Santa Fe Trail prob-
lem using a BNF grammar definition which defines a search 
space semantically equivalent with this of the original defi-
nition of the problem by Koza [1992]. Consequently, the 
specific goals are: first, to improve the success rate of evolu-
tionary runs in the Santa Fe Trail problem against standard 
GE; and second, to find solutions which will require fewer 
steps than the solutions the GE algorithm is usually able to 
find. 

Constituent Grammatical Evolution takes inspiration 
from two very elementary concepts: genes and conditional 
behaviour switching. It augments the standard Grammatical 
Evolution algorithm by incorporating and utilising these 
concepts in order to improve the performance of the later in 
agent problems.  

The proposed evolutionary algorithm constitutes a condi-
tional behaviour switching evolutionary algorithm, based on 
the Grammatical Evolution algorithm, and which incorpo-
rates the notion of genes in the individual’s genotype. CGE 
builds from elementary and more complex building blocks a 
control program which dictates the behaviour of an agent. It 
is applicable to the class of problems where the subject of 
search is the behaviour of an agent in a given environment, 
like the Santa Fe Trail problem. CGE’s current implementa-
tion takes advantage of the powerful Grammatical Evolution 
feature of using a BNF grammar definition as a plug-in 
component to describe the output language to be produced 
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by the system (control program). Namely, it utilizes this 
powerful BNF based phenotype-to-genotype feature of GE 
which enables the implementation of the CGE’s unique fea-
tures (genes and conditional behaviour switching) in a 
straightforward and very flexible way. 

The main GE issues tackled by CGE are the following: 
• decreasing the actual search space without using do-

main knowledge of the problem in question and without 
changing the semantics of the search space defined by the 
BNF grammar compared with the original problem; 

• preventing destructive crossover events of Grammati-
cal Evolution; and 

• reducing the bloating of the genotype of the Grammati-
cal Evolution algorithm.  

The Constituent Grammatical Evolution algorithm aug-
ments the standard Grammatical Evolution algorithm, in 
order to tackle the above issues, with the incorporation of 
three unique features: 

• the conditional behaviour switching approach, which 
biases the search space toward useful areas; 

• incorporation of the notion of genes, which tackles the 
issue of destructive crossovers and provides useful reusable 
building blocks; and 

• restriction of the genotype size, which tackles the phe-
notype bloat phenomenon.  

2.2 CGE Algorithm Description 
The Constituent Grammatical Evolution algorithm uses the 
following inputs:  

1. Problem Specification (PS): A program which simu-
lates the problem in question and assigns to each individual 
and constituent gene a fitness value. 

2. Language Specification (BNF-LS): A BNF grammar 
definition which dictates the grammar of the output pro-
grams of the individuals which are executed by the problem 
specification simulator. 

3. Behaviour Switching Specification (BNF-BS): The 
BNF grammar definition which augments the Language 
Specification by incorporating in the original specification 
(BNF-LS) the switching behaviour approach. Namely, the 
BNF-BS specification is a BNF grammar definition which 
enforces a conditional check before each agent’s action and 
which results (in conjunction with the phenotypes of the 
constituent genes) to the BNF grammar definition used for 
the evolution of the agents. Using such an approach in the 
Artificial Ant problem, for example, the resultant ant control 
programs must perform a check (condition) whether there is 
food ahead or not. In this way the created control programs 
can be expressed as simple finite-state machines and a form 
of memory is incorporated indirectly in the ant’s behaviour. 

4. Grammatical Evolution Algorithm (GE): The genetic 
algorithm which is used for the evolution of the population 
of the individuals.  

The overall description of the Constituent Grammatical 
Evolution algorithm (Listing 1) is as follows.  

Using the CGE specific input parameters (IMC, S, G, L, 
E, CMin, CMax, and W) as defined below, a pool P of con-
stituent genes is created and filled in the following way. S 

genes are randomly created which are represented as binary 
strings. These genes will be candidates for the pool of the 
constituent genes. The minimum length of each string is 
CMin codons and the maximum length is CMax codons (the 
size in bits of each codon is specified by the GE algorithm; 
usually its value in the GE literature is eight).  
 
Set current constituent genes pool P of size S 

Repeat G times 

  Create a new empty pool P’  

  Repeat until P’ is full 

    Create gene N with genotype size L codons  

    Set i = 0 

    While i < E 

      Map genotype of N to its phenotype (wrap W) 

      Put N in a random environment location  

      Set direction of N randomly 

      Set interim fitness value Vi of N to 0 

      Repeat L times 

        Execute phenotype (program) of N 

        Calculate performance Vi’ of N 

        Set Vi = Vi + Vi’ 

      End Repeat   

    End While 

    Calculate and set fitness value F of gene N 

    Add N to P’ 

  End Repeat 

  Create a pool T of size 2*S 

  Add to T the genes of P and P’ 

  Sort T according the fitness values F of genes 

  Create an empty P’’ 

  Add to P’’ the best S genes of T 

  Replace P with P’’ 

End Repeat 

For each gene N in P 

  Add phenotype of N in BNF-BS grammar definition 

End For 

Create population R of individuals 

Evolve population R enforcing IMC limit to indi-

vidual’s genotype 

Listing 1: The Constituent Grammatical Evolution algorithm. 

 
The fitness function for the evaluation of the candidate 

constituent genes depends on the problem specification and 
is similar to the fitness function used for the individuals in 
the problem in question. The general concept behind the 
creation and evaluation of the constituent genes is to find 
reusable modules from which the genotype of the individual 
will be constructed. For demonstration purposes, the way 
constituent genes are evaluated (described below) is based 
on the implementation in the SFT problem. 

The fitness value F of each gene is calculated as follows. 
The gene is placed in a random location of the environment 
with a random heading. Then the gene’s genotype is 
mapped to its phenotype using the language specification 
BNF-LS (BNF grammar definition) and the Grammatical 
Evolution mapping formula with W genotype wraps limit. 
The gene’s code (the phenotype as for an individual) is exe-
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cuted for L times and evaluated to produce an interim fitness 
value. The interim fitness value is calculated E times. Then, 
the final fitness value of the candidate constituent gene is 
calculated with the formula 

 
(1) 

where: F is the final fitness value of the constituent gene 
used for comparison with other genes and for deciding 
whether it will placed in the genes pool or not; N (N � E) is 
the number or interim evaluations with fitness value > 0; Vn 

is the Interim fitness value of the interim evaluation n (0 � n 
� N); Vmax is the maximum interim fitness value found; and 
S is the number of steps performed during this interim 
evaluation. 

The genes of each generation are compared with the 
genes of the previous generation according to their fitness 
value and the best S genes of these two generations are 
placed in the pool P replacing the existing genes. This will 
be repeated for G generations. Finally, the pool P will be 
filled with the best S genes (and their corresponding pheno-
types) created during the G generations. 

When the genes pool is finally created and filled, the 
phenotypes of the constituent genes are added as terminal 
operators in the behaviour switching BNF grammar defini-
tion (BNF-BS). Then an initial population of individuals is 
created randomly where each individual consists of a con-
trol gene which dictates which original terminal operators 
and which constituent genes of the BNF-BS grammar defini-
tion are used and in what order. Finally, the population of 
individuals is evolved using the standard Grammatical Evo-
lution algorithm, enforcing the individual’s genotype size 
maximum limit IMC after each crossover. 

3 Experimental Results  

3.1 The Santa Fe Trail Problem 
The performance of the Constituent Grammatical Evolution 
(CGE) algorithm has been benchmarked against the Gram-
matical Evolution (GE) algorithm using the Santa Fe Trail 
problem. Two distinct benchmarks have been performed for 
the following situations: a) when GE uses the standard BNF 
grammar definition mentioned in the Grammatical Evolu-
tion literature [O’Neill and Ryan, 2001; O’Neill and Ryan 
2003] for the SFT problem, which defines a search space 
biased and not semantically equivalent with that of the 
original problem [Koza, 1992], named here BNF-O’Neill; 
and b) a BNF grammar named BNF-Koza which defines a 
search space semantically equivalent with the search space 
of the original problem as it was defined by Koza [1992]. 
When the Grammatical Evolution (GE) algorithm uses the 
BNF-O’Neill grammar, we will refer to it as “GE using 
BNF-O’Neill”. In the same way, when it uses the BNF-
Koza grammar, we will refer to it as “GE using BNF-Koza”. 

For these benchmarks, three series of experiments were 
performed to evaluate CGE, GE using BNF-Koza, and GE 
using BNF-O’Neill. In each series of experiments, five dis-
tinct experiments were conducted consisting of one hundred 

evolutionary runs each. Namely, a total of five hundred evo-
lutionary runs were performed for each algorithm. The tab-
leau in Table 2 shows the GE settings and parameters of 
each evolutionary run and the Table 3 shows the CGE spe-
cific parameters. The BNF grammars used in these experi-
ments are BNF-BS (Listing 4), BNF-Koza, and BNF-
O’Neill [Georgiou and Teahan, 2010]. 
 

Objective Find a computer program in the NetLogo programming 
language to control an artificial ant so that it can find 
all 89 pieces of food located on the Santa Fe Trail. 

Terminal 
Operators 

turn-left, turn-right, move, food-ahead, plus constituent 
genes when the CGE algorithm is used instead of the 
standard GE algorithm. 

Raw Fitness Number of pieces of food picked up before the ant 
times out with 650 operations 

BNF 
Grammar 

CGE: BNF-Koza (original) for Genes and BNF-BS 
(behaviour switching) for Ants. 
GE using BNF-Koza: BNF-Koza. 
GE using BNF-O’Neill: BNF-O’Neill. 

Evolutionary 
Algorithm 

Steady-State Genetic Algorithm, Generation Gap = 0.9 
Selection Mechanism: Roulette-Wheel Selection 

Initial  
Population 

Randomly created with the following restrictions: 
Minimum Codons = 15 and Maximum Codons = 25 

Parameters Population Size = 500, Maximum Generations = 50  
Mutation Prob. = 0.01,  Crossover Prob. = 0.9 
Codon Size = 8, Wraps Limit = 10 

Table 2: GE Tableau for the Santa Fe Trail. 

 
Codons Limit, IMC 250 Gene Evaluations, E 50 
Gene Pool Size, S 3 Gene Codons Min, CMin 10 
Gene Generations, G 850 Gene Codons Max, CMax 20 
Gene Code Iterations, L 10 Gene Max Wraps, W 5 

Table 3: CGE Settings for the Santa Fe Trail. 

 
N = {behaviour, op} 

T = {turn-left, turn-right, move, ifelse,  

     food-ahead, [, ]} 

S = behaviour 

P: 

<behaviour> ::= ifelse food-ahead [ <op> ] 

                [ <op> <behaviour> ]  

           | ifelse food-ahead [ <op> ][ <op> ]  

           | <op> 

<op> ::= turn-left | turn-right | move  

         | ... {Constituent Genes Phenotypes}(*) 

Listing 4: The BNF-BS Grammar Definition for the Santa Fe Trail 
problem. The phenotype of every constituent gene (*) is added as a 
production rule in the <op> non-terminal symbol. BNF-BS defines 
a search space semantically equivalent with that of the original 
problem [Koza, 1992]. 

 
Constituent Grammatical Evolution was successful at 

finding a solution in the Santa Fe Trail problem with very 
high success rates, ranging from 85% to 94% with an aver-
age success rate of 90%. The best solution found by CGE, 
requires only 337 steps and there is no GP or GE publica-
tion in our knowledge presenting a solution requiring less 
steps. The NetLogo code for this solution is shown in List-
ing 5. 
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ifelse food-ahead 

  [move] 

  [turn-right 

   ifelse food-ahead 

     [ifelse food-ahead  

       [ifelse food-ahead 

         [move move] [move] 

        ifelse food-ahead  

          [move move] [move] 

       ] 

       [turn-left] 

      move 

     ] 

     [ifelse food-ahead  

        [move] [turn-right] 

      ifelse food-ahead  

        [turn-left] 

        [turn-right 

         ifelse food-ahead  

           [move] 

           [ifelse food-ahead  

             [move] [turn-right] 

            move    

  ]  ]  ]  ]   

Listing 5: NetLogo code of the best solution (in terms of required 
steps) found by CGE  in the Santa Fe Trail problem. 

 
The Table 6 shows the detailed results of the experiments. 

The column “Best” shows the best value of all five experi-
ments. “Runs” is the number of evolutionary runs performed 
in the experiment, “Steps”, the required steps of the best 
solution found in the particular experiment, “Success”, how 
many evolutionary runs (percentage) found a solution, and 
“Avg.Suc.”, the average success rate of all five experiments. 
 

 Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 Best 
Runs 100 100 100 100 100 100 
Steps 393 375 393 377 337 337 
Success 85% 93% 89% 94% 87% 94% 
Avg.Suc. 90%  

Table 6: CGE Experimental Results in SFT. 

 
 Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 Best 
Runs 100 100 100 100 100 100 
Steps 419 507 415 541 479 415 

Success 8% 11% 10% 6% 13% 13% 

Avg.Suc. 10%  

Table 7: GE using BNF-Koza Experimental Results in SFT. 

 
 Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 Best 
Runs 100 100 100 100 100 100 
Steps 609 609 607 609 607 607 

Success 80% 76% 75% 81% 74% 81% 

Avg.Suc. 78%  

Table 8: GE using BNF-O’Neill Experimental Results in SFT. 

 

The results of the experiments using the standard GE with 
BNF-Koza and BNF-O’Neill can be seen in Table 7 and in 
Table 8. A cumulative frequency measure of success over 
500 runs of CGE and GE can be seen in Figure 9. 

The experimental results show that Constituent Gram-
matical Evolution outperforms Grammatical Evolution in 
terms of success rate whether the later uses a BNF grammar 
definition (BNF-Koza) which defines a search space seman-
tically equivalent with that used in the original problem 
[Koza, 1992], or whether it uses a BNF grammar definition 
(BNF-O’Neill) which defines a biased search space. In con-
trast, Constituent Grammatical Evolution is able to find 
much better solutions in terms of the required steps. 

 

Figure 9: CGE vs. GE on the Santa Fe Trail problem. 
 

The poor performance of GE using BNF-Koza can be ex-
plained if we take in account that this grammar definition 
defines a search space semantically equivalent with that of 
the original problem, which is very large, making it difficult 
for GE to find a solution due to its main issues which were 
mentioned in section 1.1. Instead, BNF-O’Neill defines a 
smaller search space and biases the search to areas where a 
solution can be found more easily (with higher success rate) 
but with the cost of excluding other areas where more effi-
cient programs could be found (using less steps). This is the 
reason why GE using BNF-O’Neill didn’t find solutions 
with less than 607 steps. In order to support the last argu-
ment, a series of five new experiments of one hundred evo-
lutionary runs each was conducted, setting the steps limit to 
606. In these experiments the success rate of GE was 0%, 
providing further experimental evidence that GE using 
BNF-O’Neill cannot find solutions with less than 607 steps.  

Furthermore, Georgiou & Teahan [2010] tried to solve 
the Santa Fe Trail problem using random search as the 
search mechanism of Grammatical Evolution instead of the 
standard steady-state genetic algorithm. Their results show 
that using the search space defined by the BNF-O’Neill 
grammar definition, GE with random search has a success 
rate of 50% in finding a solution. Instead, the success rate of 
GE with random search using the search space defined by 
the BNF-Koza grammar definition is just 1.4%. These re-
sults further support the claim that the BNF-O’Neill gram-
mar definition defines a different search space than the 
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BNF-Koza grammar definition, where solutions can be 
found more easily.  

The promising results of CGE benchmarking on the Santa 
Fe Trail problem raises the question whether it can outper-
form GE in other problems as well. For this reason, CGE 
was applied and benchmarked on two additional problems. 
The first is a more difficult version of the Santa Fe Trail 
problem and the second a typical maze search problem. 

3.2 The Los Altos Hills Problem 
The Los Altos Hills (LAH) problem is an instance of the 
Artificial Ant problem and was introduced by Koza [1992, 
p. 156]. The objective of this problem is to find a computer 
program to control an artificial ant, so that it can find all 157 
pieces of food located on a 100x100 toroidal grid. The ant 
starts in the upper left cell of the grid facing east. The trail 
consists of 221 squares with 29 turns. The artificial ant can 
uses the same operations as with the Santa Fe Trail problem. 

The Los Altos Hills trail is larger and more difficult than 
the Santa Fe Trail. It begins with the same irregularities and 
in the same order. Then it introduces two new kinds of ir-
regularity that appear toward the end of the trail.  

In order to evaluate CGE against GE, a series of three ex-
periments was conducted (CGE, GE using BNF-Koza, and 
GE using BNF-O’Neill), consisting of 100 evolutionary 
runs each using the configuration shown in Table 10 and in 
Table 11. The constituent genes evaluation formula used in 
this problem was the same as that used on the Santa Fe 
Trail.  

The BNF-BS grammar definition used in this problem is 
shown in Listing 12. Note that a slightly different BNF-BS 
grammar definition is used than that used for the Santa Fe 
Trail problem. These modifications in the BNF-BS grammar 
definition were applied because the solution to the Los Altos 
Hills problem (according to its specifications) requires less 
efficient individuals in terms of the fraction of steps and 
food pieces. Namely, the fraction is 19.2 (3000/156) against 
7.3 (650/89) for the Santa Fe Trail. 
 

Objective Find a computer program in the NetLogo programming 
language to control an artificial ant so that it can find 
all 157 pieces of food located on the Los Altos Hills 
trail. 

Terminal 
Operators 

turn-left, turn-right, move, food-ahead, plus constituent 
genes when the CGE algorithm is used instead of the 
standard GE algorithm. 

Raw Fitness Number of pieces of food picked up before the ant 
times out with 3000 operations 

BNF 
Grammar 

CGE: BNF-Koza (original) for Genes and BNF-BS 
(behaviour switching) for Ants. 
GE using BNF-Koza: BNF-Koza. 
GE using BNF-O’Neill: BNF-O’Neill. 

Evolutionary 
Algorithm 

Steady-State Genetic Algorithm, Generation Gap = 0.9 
Selection Mechanism: Roulette-Wheel Selection 

Initial  
Population 

Randomly created with the following restrictions: 
Minimum Codons = 50 and Maximum Codons = 100 

Parameters Population Size = 2000, Maximum Generations = 50  
Mutation Prob. = 0.01,  Crossover Prob. = 0.9 
Codon Size = 8, Wraps Limit = 10 

Table 10: GE Tableau for the Los Altos Hills problem. 

 
Codons Limit, IMC 750 Gene Evaluations, E 100 
Gene Pool Size, S 3 Gene Codons Min, CMin 40 
Gene Generations, G 1000 Gene Codons Max, CMax 100 
Gene Code Iterations, L 10 Gene Max Wraps, W 10 

Table 11: CGE Settings for the Los Altos Hills problem. 

 
N = {behaviour, op} 

T = {turn-left, turn-right, move, ifelse,  

     food-ahead, [, ]} 

S = behaviour 

P: 

<behaviour> ::= 

 <behaviour> ifelse food-ahead [<op>][<op> <behaviour>] |  

 <behaviour> ifelse food-ahead [<op>][<op> <behaviour>] |  

 ifelse food-ahead [ <op> ][ <op> <behaviour> ] |  

 ifelse food-ahead [ <op> ][ <op> <behaviour> ] |  

 ifelse food-ahead [ <op> ][ <op> ] |  

<op><op> ::= turn-left | turn-right | move  

         | ... {Constituent Genes Phenotypes} 

Listing 12: The BNF-BS Grammar Definition for LAH.  
 
 

 CGE GE BNF-Koza GE BNF-O’Neill 

Runs 100 100 100 
Best Solution’s Steps 1093 No solution No solution 

Success Rate 9% 0% 0% 

Table 13: Experimental Results of the Los Altos Hills problem. 

 
The experimental results are shown in Table 13. Even 

though the Los Altos Hill is a much more challenging prob-
lem than the Santa Fe Trail, CGE managed to find a solution 
in contrast to GE which wasn’t able to find one.  

The main reason why LAH proved to be so difficult for 
GE is: first, the two new irregularities introduced which 
require a more complex behaviour by the ant; and second, 
because these irregularities first appear at the end of the 
trail, with the consequence that the evolved population con-
verges to programs tackling only the first part of the trail 
which is identical to the Santa Fe Trail.  

3.3 The Hampton Court Maze Problem  
The third problem where CGE was benchmarked against 
GE is a typical maze searching problem [Teahan, 2010a]. 
The maze used for the experiments is the Hampton Court 
Maze [Teahan, 2010b; p. 79] which is a simple connected 
maze of grid size 39x23 (Figure 14). The goal is to find a 
program guiding the traveller agent from the entry square of 
the maze to the centre of the maze.  

As with the LAH, three experiments were conducted of 
one hundred evolutionary runs each in order to compare the 
performance of CGE, GE using BNF-Koza, and GE using 
BNF-O’Neill. The BNF grammar definitions used in these 
experiments are variations of those used in the SFT problem 
with the following differences: the replacement of the food-
ahead sensing operator with the wall-ahead? operator, the 
addition of two sensing operators, wall-left? and wall-
right?; and the addition of a non-terminal symbol for choos-
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ing any one of these sensing operators when a condition 
statement is to be selected. The sensing operators were in-
spired by the work of Sondahl [2005]. 

Figure 14: The Hampton Court Maze. Reprinted from [Teahan, 
2010b; p. 79]. 

 
The experimental configuration is shown in Tables 15 

and 16. The fitness value of the candidate constituent genes 
is calculated with the formula 

 
(2) 

where: F is the fitness value of the constituent gene used for 
comparison with other genes and for deciding whether it 
will placed in the genes pool or not; E is the number of per-
formed gene’s interim evaluations; Vn is the Interim fitness 
value of the interim evaluation n (0 � n � E); Vmax is the 
maximum interim fitness value found; and S is the number 
of operations (time steps) performed during the interim 
evaluation of the gene with the maximum interim fitness. 

Each interim fitness value of the candidate constituent 
genes is calculated with the formula 

 
(3) 

where: V is the interim fitness value; DS is the geometric 
distance between the gene and the exit of the maze before 
the gene executes its code; DP is the geometric distance be-
tween the gene and the exit of the maze after the execution 
of the gene’s code for L times (Gene Code Iterations); and P 
is the number of new path squares visited during the gene’s 
code execution. 

The results of these experiments are shown in Table 17. 
The Hampton Court Maze problem proved to be difficult for 
GE, mainly because the first square the agent visits when it 
enters the maze is assigned a high fitness value due its small 
geometric distance from the exit. This leads to convergence 
of the population to this local optimum. Namely it advances 
individuals which just execute the move operator. In con-
trast, CGE proved to be very effective for this problem be-
cause it was able to easily overcome this local optimum due 
to the constituent genes. Indeed, the solution it found re-
quires much fewer steps than those found by GE. 
 

Objective Find a computer program in the NetLogo programming 
language to control an artificial traveller agent so that 
it can find the centre of the maze. 

Terminal 
Operators 

turn-left, turn-right, move, wall-ahead?, wall-left?, 
wall-right?, plus constituent genes when the CGE 
algorithm is used instead of the standard GE algorithm. 

Raw Fitness The geometric distance between the agent’s position 
and the entrance to the centre of the maze before the 
agent times out with 500 operations, divided by the 
number of new squares of the path visited. 

Adjusted 
Fitness 

1 / (1 + Raw Fitness) 

BNF 
Grammar 

CGE: BNF-Koza (maze version) for Genes and BNF-
BS (behaviour switching maze version) for travellers 
(agents). 
GE using BNF-Koza: BNF-Koza (maze version). 
GE using BNF-O’Neill: BNF-O’Neill (maze version). 

Evolutionary 
Algorithm 

Steady-State Genetic Algorithm, Generation Gap = 0.9 
Selection Mechanism: Roulette-Wheel Selection 

Initial  
Population 

Randomly created with the following restrictions: 
Minimum Codons = 15 and Maximum Codons = 25 

Parameters Population Size = 100, Maximum Generations = 25  
Mutation Prob. = 0.01,  Crossover Prob. = 0.9 
Codon Size = 8, Wraps Limit = 10 

Table 15: GE Tableau for the Hampton Court Maze problem. 

 
Codons Limit, IMC 250 Gene Evaluations, E 50 
Gene Pool Size, S 3 Gene Codons Min, CMin 10 
Gene Generations, G 500 Gene Codons Max, CMax 20 
Gene Code Iterations, L 10 Gene Max Wraps, W 5 

Table 16: CGE settings for the Hampton Court Maze problem. 

 
 CGE GE BNF-Koza GE BNF-O’Neill 

Runs 100 100 100 

Best Solution’s Steps 384 439 494 

Success Rate 82% 1% 1% 

Table 17: Experimental results for the Hampton Court Maze prob-
lem. 

4 Conclusions  
Constituent Grammatical Evolution is a new evolutionary 
automatic programming algorithm that extends Grammatical 
Evolution by incorporating in the original algorithm the 
concepts of constituent genes and conditional behaviour-
switching. CGE builds from elementary and more complex 
building blocks a control program which dictates the behav-
iour of an agent and it is applicable to the class of problems 
where the subject of search is the conditional behaviour of 
an agent in a given environment. It takes advantage of the 
powerful Grammatical Evolution feature of using a BNF 
grammar definition as a plug-in component to describe the 
output language to be produced by the system.  

CGE is able through its conditional behaviour-switching 
feature to focus the search in more useful areas by decreas-
ing the actual search space without using domain knowledge 
of the problem in question and without changing semanti-
cally the original search space. Indeed, due to the constitu-
ent genes and genotype size limit features of CGE, the 
Grammatical Evolution issues of destructive crossover 
events and genotype bloating are tackled respectively.  
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The experimental results presented in this paper show that 
CGE outperforms the standard GE algorithm in the Santa Fe 
Trail problem whether the later uses a search space semanti-
cally equivalent with that of the original GP problem [Koza, 
1992], or whether it uses the biased search space of the 
standard Grammatical Evolution system (BNF-O’Neill) 
used in the Grammatical Evolution literature as was first 
presented by O’Neill and Ryan [2003]. Namely, CGE 
achieves better results than the standard Grammatical evolu-
tion algorithm in terms of both efficiency (percent of solu-
tions found) and effectiveness (number of required steps of 
solutions found). Further experimental results show that 
CGE outperforms GE in two additional and more difficult 
problems, the Los Altos Hills and the Hampton Court Maze. 

All experiments mentioned in this study have been per-
formed using the jGE library [Georgiou and Teahan, 2006a; 
2006b; 2008], which is a Java implementation of the 
Grammatical Evolution algorithm, and the jGE NetLogo 
extension, which is a NetLogo extension of the jGE library. 
The simulation of the Santa Fe Trail problem is imple-
mented in the NetLogo modelling environment. The source 
code of the jGE library, the jGE NetLogo extension, and the 
Santa Fe Trail simulation in NetLogo, are freely available 
[Georgiou, 2006; Wilensky, 1999]. 
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