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This chapter explores several extensions to genetic programming for applications involving the
forecasting of real world chaotic time series. We first used Genetic Symboli c Regression (GSR),
which is the standard genetic programming technique applied to the forecasting problem in the
same way that it is often applied to symboli c regression problems [Koza 1992, 1994]. We observed
that the performance of GSR depends on the characteristics of the time series, and in particular that
it worked better for deterministic time series than it did for stochastic or volatile time series. Taking
a hint from this observation, an assumption was made in this study that the dynamics of a time
series comprise a deterministic and a stochastic part. By subtracting the model built by GSR for the
deterministic part from the original time series, the stochastic part would be obtained as a residual
time series. This study noted the possibility that GSR could be used recursively to model the
residual time series of rather stochastic dynamics, which may still comprise another deterministic
and stochastic part. An algorithm called GRR (Genetic Recursive Regression) has been developed
to apply GSR recursively to the sequence of residual time series of stochastic dynamics, giving
birth to a sequence of sub-models for deterministic dynamics extractable at each recursive
application. At each recursive application and after some termination conditions are met, the sub-
models become the basis functions for a series-expansion type representation of a model. The
numerical coeff icients of the model are calculated by the least square method with respect to the
predetermined region of the time series data set. When the region includes the latest data set, the
model reflects the most recent changes in the dynamics of a time series, thus increasing the
forecasting performance. This chapter shows how GRR has been successfully applied to many real
world chaotic time series. The results are compared with those from other GSR-like methods and
various soft-computing technologies such as neural networks. The results show that GRR saves
much computational effort while achieving enhanced forecasting performance for several selected
problems.

17.1  Problem Definition : Data Driven Model Building

The purpose of data driven model building in n-dimensional Euclidean space is to find
the function RRf n →:  where the m data set 

m

n RR ),(  is known. Rewriting the
problem in terms of the time series analysis and forecasting li terature [Casdagli 1993], we
would li ke to find the function f in the following equation.
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where 
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��� ���x  is the time series value of the i-th data set at time TIME, t is current time, T
is future time (also called lead time or prediction horizon), τ  is delay time (also called
lag time or lag spacing), and (i)

tx  is delay lag vector. T+= tw  is forecast time.



Note that (i)
tx  is a point in the n-dimensional state-space nR  reconstructed from a scalar

time series. Pseudo code for the general data driven model building process is

1. Obtain the scalar time series data : ,
0

x  ,
1

x  ,
2

x  ...
2. Analyze the data to get information about reasonable values of T, τ , n
3. Prepare the m data set from the reconstructed n-dimensional state-space, nR
4. Build the model from the m data set through a method, such as GSR.

It is not guaranteed to obtain reasonable values of T, τ , n; they depend on the
characteristics of the data set. Algorithms or methods to determine T, τ , n may be
another area of research. Also, it should be noted that nR should be sufficiently dense
(large m) to the extent that time series dynamics is clearly depicted in the space.

17.2  Genetic Symbolic Regression and Data Driven Model Building

In this chapter, GSR is an ad hoc acronym for Genetic Symbolic Regression and refers to
the standard genetic programming technique applied to a symbolic regression problem.
Symbols may represent either complex concepts or simple values. GSR implements an
elaborate set of symbolic operations designed to search possible combinations of
symbolic elements, i. e. the symbol space, based on the principle of natural selection.

Our problem of finding the functional relationship or model in Eq. (17.1) is none other
than finding the appropriate symbolic form through which we can understand and
forecast the dynamics carried by the series of data set. GSR helps us in solving the
situation that we have no information about the shape and domain of the symbol space,
and the meaningful symbolic forms should be found within the limited computational
resources.

17.3  A New Algorithm; Genetic Recursive Regression (GRR)

The newly proposed GRR has five (5) major mechanisms that are different from the
standard GSR. They are the recursive regression, the series-expansion type representation
of a regression model, the multiple populations to efficiently get basis functions of the
regression model, the real-time update of the numerical coeff icients in the regression
model and the extensive use of the derived terminal set.

Figure 17.1 shows the overall flow of the Genetic Recursive Regression. See section
17.3.1 for the concepts and formulation of the recursive regression. Section 17.3.2
addresses how to integrate a regression model based on several basis functions obtained
by GSR. Section 17.3.3, 17.3.4 and 17.3.5 address the parallel computational architecture,
the adaptation of a model to the latest data and the derived terminal set, respectively.



Figure 17.1
The overall flow of the proposed method, GRR to construct a regression model and forecasting with it.

Prepare time series for training and validation.
The state-space is reconstructed

Run = 1

Determine the symbolic forms
of basis functions by parallel
GP. Calculate the numerical
coeff icients, and construct a
model. Calculate performance
measure, such as NMSE.

Termination
conditions met ?

Forecast the point, p
with available lag vector

Update the numerical coeff icients
with respect to an appropriately
determined data region. Get new
lag vector.

No more data
to forecast ?

End

p = p + 1

NO

YES

YES

Calculate the residual
time series

Run = Run + 1

NO



17.3.1 Recursive Regression

It may be practical to assume that real world time series is somewhat deterministic, and
somewhat stochastic in its dynamics. If a data set is from a system of purely physical
characteristics, e. g. the FIRNH −

3
laser [Hübner 1993], it is usually more deterministic

than stochastic. On the other hand, a data set from highly volatile economic system or
physiological system is more stochastic than deterministic.

When we tried GSR for various data sets, it was relatively easy to model and forecast
deterministic time series than stochastic ones. In this chapter, it was assumed that the
governing system dynamics of a given time series is composed of deterministic and
stochastic part. That is,
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During study, it was confirmed that 
ticdeterminis

f
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 is captured relatively easily at an early
stage of GSR application. But, even with much increased computational efforts, it was
very diff icult to enhance the performance measure. If a data set is highly stochastic or
volatile such as the foreign currency exchange rate, even the moderately performing
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f
~

could not be obtained.
The solution was the recursive or the zoom-in regression. Let’s see what this means in

more detail. Recursion starts from zooming in on the difference or the residual time
series
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. The phrase ‘zoom-in’  comes from the fact that the modeling
procedure is now applied to the residual time series of which order of magnitude is
smaller than that of the original time series. The computational parameters remain
unchanged from those used for obtaining 

ticdeterminis
f
~

. By the first recursive modeling
procedure, we will have another pair of deterministic and stochastic part
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When the desirable level of performance is not reached with the stil l available
computational resources, the modeling procedure is restarted with respect to the residual
time series from Eq. (17.3). And the process goes on over and over again.

Now, let v  be the number of the applied recursive modeling procedure. Then, the
recursive model building procedure is given by

                      )(~ v

stochastic
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ticdeterminis
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stochastic
f , ,...3,2,1,0=v             (17.4)

Note that Eq. (17.4) becomes Eq. (17.3) when v  is 0. The left-hand-side of Eq. (17.3) is
the first residual time series obtained by non-recursive modeling through GSR.



Figure 17.2
The concept of the recursive regression.

Figure 17.2 shows the concept of the recursive regression. (0)~
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become basis functions that are to be integrated into a final regression model. See section
17.3.2.

17.3.2 Representation of the Regression Model as a Series Expansion

Usually, the standard GSR produces one symbolic form as a regression model. But, GRR
involves several symbolic forms to use in the series-expansion type representation of the
regression model.

Now, let (0)~
ticdeterminis

f  = )(
1

xg  be the symbolic form from the first application of the
modeling procedure. At this stage, our regression model is written as
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where the numerical coeff icients jα  are obtained by the least square method with
respect to the training data set. If the second modeling procedure (= the first recursive
regression) produces another symbolic form, say (1)~

ticdeterminis
f = )(2 xg , our regression model

is now modified to

Time series, f

Recursively

Integration of basis functions into a model
Through the least square numerical coeff icients

Basis functions: sub-model, fdeterministic

Residual Time Series,  f-fdeterministic
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Since the numerical coeff icients are re-calculated when there is any new symbolic
form, the coeff icient symbols in Eq. (17.5) and Eq. (17.6) do not necessaril y have the
same numerical values. The final representation of our model would be
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The recursive modeling procedure can be considered as the gradual effort to find basis
functions or sub-models )(xjg  for the deterministic behavior remaining in the residual
time series, )1()()1v( ++ −= v

ticdeterminis

v

stochasticstochastic
fff .

17.3.3 Parallel Computational Architecture

Since each population can designate the best symbolic form as the model, a modeling
procedure wil l produce only one basis function if it uses only a single population.
However, GRR uses multiple populations to produce as many basis functions as there are
populations undergoing evolution.

In fact, GRR is based on a parallel architecture to find multiple basis functions in one
modeling procedure. Because of the limited computational resources to search the vast
symbol space, we can not find a correct symbolic form for the dynamics of a given data
set by applying only once the modeling procedure. There wil l be enormous variations in
the attributes of the symbolic forms that are only partiall y or locall y successful for
identifying the time series dynamics.

Integration of the various locall y successful symbolic forms is done as follows: let P
the number of populations, then there wil l be P symbolic forms found for the first
modeling procedure, that is, we have x)(1,1g , x)(2,1g , x)(3,1g ,…, x)(,1 Pg . With these,
the parallel version of Eq. (17.7) is
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And the final regression model can be rewritten as
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In Eq. (17.8) and Eq. (17.9), the first subscripts stand for the modeling procedure, and the
second subscripts stand for the number of the population.



There is a point to note for determining a basis function in Eq. (17.9). The best
individual from a population replaces an existing individual of a special population called
super population at each generation if and only if its fitness excels that of the individual
being replaced. Otherwise, it is simply discarded. The number of the best individuals in
the super population remains unchanged.

No individuals of the super population are engaged in the evolutionary processes of
the ordinary populations. Only the individuals that survived the whole generations can
become the basis functions in Eq. (17.9). In this context, the super population is different
from something like the multi-agent team , e.g. [Luke 1996]; agents or team members are
somehow engaged in the evolutionary processes. See section 17.4.2 for more detail.

17.3.4 Adaptive Update of the Numerical Coefficients.

Once the basis functions along with numerical coeff icients are determined with respect to
the training data set, the modeling procedure is over. An ideal model may be the one that
forecasts data for any region of the given time series. However, usually our model is far
from the ideal one for several reasons. For example, the limited number of data in the
training region may not contain sufficient information to build an ideal model. Moreover,
the dynamics of real world chaotic time series are generall y largely time dependent.

Therefore, the forecasting performance of a model becomes poorer for a region that is
distant from the training region. The simplest way to achieve forecasting performance in
the remote region as good as those attainable for the training region may be to build a
new model using the latest data region as a new training region. But the new model
should be buil t in time to become a meaningful forecaster for the given time series.

This chapter explores more timesaving approach. The numerical coeff icients are
updated adaptively with respect to the newly available data set, so that as much latest
information as possible is reflected in the model to enhance the forecasting performance.
This may correspond to tuning up or adaptation of the existing model to the latest system
dynamics.

17.3.5 Derived Terminal Set

An arbitrary function can be expressed as a series expansion with the basis orthogonal
functions and the corresponding numerical coeff icients. Taking a hint from this fact, we
introduce a derived terminal set (DTS) and examine whether it can contribute to
improving performance of a regression model when the model is expressed as a series
expansion, li ke Eq. (17.9). DTS is obtained by applying an orthogonal function to a state-
space coordinate variable jx .
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where 
i

T )( jx is, in this chapter, )]arccos(cos[, jji xiT ×=  or the Tschebyshev function
of order i applied to the state-space coordinate variable jx . We include DTS above in
the terminal set along with the set of the normal state-space coordinate variables,

,,, 2ττ −− ttt xxx ( )τ1..., −− ntx  and a terminal which generates a random number between 0.0
and 1.0.

17.4  Implementation Issues

17.4.1  Fitness Assignment

Each symbolic form, i.e. individual in a population is assigned a value called the fitness,
which measures how well the symbolic form fits the data set.  In this chapter, the fitness
value is the inverse of either NMSE (Normalized Mean Squared Error) or CV
(Coeff icient of Variation) calculated with respect to a predetermined subset, i.e. a region
of the given time series. They are defined by
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where )(~ ix , )(ix are the predicted and the observed numerical values for the i-th datum.
x  and 2ˆΩσ  denote the sample average and sample variance of the observed values in the
predetermined subset of data [Weigend 1993]. ρ is the number of data points over which
CV or NMSE is calculated. MSE  stands for Mean Squared Error.

17.4.2 Super Population and Migration between Multiple Populations

By the evolutionary processes, we hope there is an overall increase in the performance or
the fitness. But, also true is that good enough attributes (= structures and contents of
symbolic forms) in one generation might be subject to destruction later through the blind
application of the genetic symbolic operations. So, there is a need to keep the good
enough attributes safely.

In addition to multiple populations undergoing evolution, GRR has a special-purpose
population called the super population of which sole service is to store desirable
attributes.



At the end of each generation, the best symbolic form is selected from each evolving
populations. The size of the super population is equal to the number of such ordinary
populations. Once the super population is full at a generation, any newly selected
symbolic form after the generation is allowed to replace the existing one in the super
population if and only if its fitness excels that of at least one individual in the super
population.

No individuals at a generation in the super population are transferred to or injected
into the ordinary populations; they only represent the best individuals that survived up to
the generation. This means that they do not involve themselves in the evolutionary
processes of the ordinary populations. Therefore, we should differentiate the super
population from the concept of eliti sm [Goldberg 1989]. An elite individual or the multi-
agent team member [Luke 1996] is somehow engaged in the evolutionary processes.

Obviously, we need to avoid any semantic repli cation in the super population. For
example, ))) (/  (sin  (

113
xxx+  is an example of semantic replications possible for

33
1.0)) (sin  ( xx =+ . Individuals of the super population after the last generation become

the basis functions, Eq. (17.9). If there is any semantic repli cation among basis functions,
it should be avoided before computing the numerical coeff icients.

After operations to breed offspring are over, migrations occur between the ordinary
popluations. In this chapter, the total number of migration operation is fixed to 1 % of the
total number of individuals in all populations. Single migration is based on four random
numbers. The first and second ones are to identify two populations between which a
migration operation occurs. The third random number is compared with the migration
probabilit y, 0.02 here. The fourth random number is to identify an individual to replace.
No migration to and from the super population is allowed.

17.4.3 Dealing with Absurd Attributes of a Symbolic Form

Symbolic forms sometimes contain mathematically or computationally absurd or
nonsense attributes. Division-by-zero or negative values given to a function which
requires only positi ve argument(s) results in the mathematical absurdity. Computational
absurdity occurs when the attributes result in overflow or underflow for given computing
systems.

For these cases, the numerical equivalent of the attributes is arbitrarily given, and the
performance measures of the symbolic form are reduced by one hundred (100) times.
This poli cy gives a definite penalty to the symbolic form for having the absurdity. By the
reduced performance measures, their chances of being selected as parents to breed
offspring become very small.



17.4.4 Division of the Data Set: Training, Validation and Prediction Regions

There are three regions in the time series data. That is, T, V, and P regions. The region T
is called the “training region”, and comes first. Symbolic forms are constructed through
the application of the evolutionary symbolic computation with respect to the region T.

Coming next is the V region or the “validation region”. When a regression model
captures spurious information in the T region such as noise, the forecasting performance
becomes low in the “prediction”  or P region even if its performance in the T region was
high. The problem is termed as over-fitting. See [Zhang 1993], [Smith 1993] for details.
To prevent the over-fitting or over-training, the performance of any model constructed by
the training data is evaluated with respect to the validation region.

When the validation performance deteriorates as compared to that in the former
modeling procedure, the modeling procedure stops on the assumption that the model has
started to capture spurious or excessive information such as noise or disturbance. This is
the so-called early stopping policy [Geman 1992]. Also see [Weigend 1991].

The last region is called the “prediction” or P region. And, it is the region where the
real effectiveness of the constructed model is manifested. Unless otherwise specified, the
number of data points in T, V, and P region was 200, 100, 100 respectively for all time
series that were applied in this chapter.

17.4.5 Termination Conditions

There may be two kinds of termination conditions. One is set by the limit on the
computational resources; after the predetermined number of the generation is passed, the
process of searching attributes of symbolic forms is terminated. The other one is natural;
if the desired level of model performance, i.e. the performance criteria is achieved, there
is no need to continue. For example, if NMSE or CV is 0.01 for a given data set, the
model is sufficiently good and the modeling procedure stops. Deterioration in the
validation performance also stops the procedure, see section 17.4.4.

17.4.6 Some Manipulations on the Raw Data

A DTS element 
i

T )( jx of Eq. (17.10) is defined on the interval [ 1  ,1− ]. Therefore, the
raw interval or [minimum, maximum] of any state-space coordinate variable jx  should
be modified to [ 1  ,1− ]. It is done by the following equation.
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Then, 
i

T )( jx  => )]arccos(cos[, jji yiT ×=  = )]arccos(cos[ baxi j +× . The minimum
and maximum values of the raw data, min−n

jx  and max−n

jx , should be determined for all
regions of a data set. If they are determined only for the training region, values less than

min−n

jx or greater than max−n

jx  result in values less than –1 or values greater than 1,
respectively, by Eq. (17.13). This situation causes mathematical absurdities. See section
17.4.3.

Let min
jx  and max

jx be the minimum and the maximum of the variable jx  encountered
in the training region. In this chapter, they are expanded by the following equations.

min−n

jx  = min
jx maxminminmax )1()( jjjj xxxx ηηη −+=−−

max−n

jx  = max
jx minmaxminmax )1()( jjjj xxxx ηηη −+=−+            (17.14)

Therefore, the expanded effective interval [ min−n

jx , max−n

jx ] is 2η +1 times broader than the
raw [ min

j
x , max

j
x ].  In this chapter, the expansion ratio is arbitraril y set to η =2.

17.5 Application to Real World Chaotic Time Series

17.5.1 Benchmarking

GRR was benchmarked with respect to three points of view. The effects of introducing
DTS are not mentioned in this benchmarking, but discussed in the next section where
GRR is applied to more stochastic time series. See section 17.5.2.2. We can see evident
effects of DTS for stochastic time series. The three points of view are

1. How effective is the adaptive update of the numerical coefficients; for this, a new
terminology “ impact step” is introduced. The impact step γ  is the number of data points
between the data point to predict and the last data point of the region with respect to
which the coeff icients are updated. To predict tx , the numerical coeff icients in Eq.
(17.7) or Eq. (17.9) are updated with data 200−−γtx  ~ γ−tx . The performance was observed
with γ  = 1,  2,  4,  6,  8,  12,  15,  20,  30,  40.
2. How effective is the parallel architecture; this was assessed by comparing the
performances from single population with those from multiple populations.
3. How effective is the recursion; this was assessed by observing the performances with
and without recursive regression.

17.5.1.1 Data and Computational Settings

For the benchmarking purpose, the time series data set generated by solving the Mackey-
Glass equation was used, [Oakeley 1994]. The Mackey-Glass equation simulates the
nonlinear dynamics of the human blood flow, and is written by
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In Eq. (17.15), the constants are a = 0.1, b = 0.2, c = 10, and ∆ = 30. To generate time
series, the first 40 random seeds are prepared in the range [0.5, 1.5]. For the numerical
values after the 40-th datum, Eq. (17.15) was used.

GRR was benchmarked with three groups of computations. Each group has ten (10)
computations, identified by ID’s li ke c## where ## is the computation number. See Table
17.1 for detail s. The total number of symbolic forms allowed is 4500 in all computations,
c1 ~ c30, for the sake of fair evaluation of the three points of view. Early termination
could reduce the number. For the division of the data set, see section 17.4.4.

17.5.1.2 Benchmarking Results and Discussion

We applied GRR ten times for each computations c1 ~ c30. And the best model from a
computation was taken for inter-comparisons between c1 ~ c30.

Effects of the Adaptive Update of the Numerical Coefficients

The allowed number of modeling procedures was 5; the first modeling procedure
followed by four recursive modeling procedures. Note that all applications of GRR to the
first group computations, c1 ~ c10, stopped only after the first recursion because the
termination condition of NMSE (0.01 in the region T) had been met.

The performances of the best models in each computation are summarized in Table
17.2. Each numerical entry represents the NMSE value after the first recursion. First,
observe the remarkable performance for every computation. The model was almost exact
in capturing the dynamics carried by the time series data.

Table 17.1
Computational settings for benchmarking purpose, see section 17.5.1. There are three computation groups. For
parameters that are not specified in this table, see Table 17.6.

1st Group 2nd Group 3rd Group
Computation ID c1 ~ c10 c11 ~ c20 c21 ~ c30

No. of Runs allowed 5 5 1

Population Size 15 30 30

No. of Populations 5 1 5

Generation Limit 12 30 30

Description Recursion with
multiple populations

Recursion with
single population

No recursion with
multiple populations



Table 17.2
NMSE values from the 1st group computations, see Table 17.1. γ  is the impact step, section 17.5.1. In this
table, NT = NMSE in Region T, NV = NMSE in Region V, NP = NMSE in Region P; Section 17.4.4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

γ 1 2 4 6 8 12 15 20 30 40

NT 0.00345 0.00767 0.00437 0.00345 0.00767 0.00437 0.01083 0.00586 0.00345 0.00767

NV 0.00526 0.01038 0.00401 0.00563 0.01100 0.00407 0.01378 0.01027 0.00493 0.01071

NP 0.00203 0.01060 0.00419 0.00228 0.01216 0.00450 0.00913 0.00544 0.00195 0.00693

Since the first group computations stopped only after the first recursive modeling
procedure, the computational effort was only 1800 = the consumed modeling procedure 2
×  the number of populations 5 ×  the population size 15 ×  the number of generation 12.

Although the performances vary with the computations: 0.00345 (c1, c4, c9), 0.00437
(c3, c6), 0.00586 (c8), 0.00767 (c2, c5, c10), and 0.01083 (c7), we can see that the better
the performance in the training region, the better the performances in the validation and
the prediction region.

Eq. (17.15) shows that the dictating variables are 
1−t

x  and 
30−t

x . It is interesting to
note that the impact step γ of 1 and 30 (c1 and c9) resulted in the highest performances
in all data regions. These observations with respect to the impact step γ  were generall y
true for both the second group of computations (c11 ~ c20) and the third group of
computations (c21 ~ c30).

Effects of the Parallel Architecture

The effectiveness of the parallel architecture or the multiple populations can be seen by
comparing the performances between the first group computations (c1 ~ c10) and the
second group computations (c11 ~ c20). Again, only the best models from each
computations of the second group were taken for comparisons. Table 17.3 summarizes
the comparison.

Except the row for γ , each entry represents a relative value between the two groups.
Now, let NMSE (c##, D) represent the NMSE obtained in c## for the data region D. Then,
the entry in the row Ratio of NT crossing the column c11 vs. c1 is the NMSE (c11, T)
divided by NMSE (c1, T).

Except the impact steps of 2, 8, 15, 20 and 40, the ratios of NT, NV and NP are greater
than 1.0. To take the computational efforts (CE) into account, the ratios of NT, NV and
NP should be multiplied by Ratio of CE. They become greater than 1.0 except the impact

step of 15 and 40. This means that the NMSE values are larger in the second group
computations than those in the first group computations.



Table 17.3
Performance comparisons between the 1st and 2nd group computations, see Table 17.1. Effects of the parallel
computational architecture can be seen. CE (Computational Efforts) is the total number of symboli c forms
evaluated to make a model.

2nd Group 
�

vs.

1st Group 
�

c11

vs.

c1

c12

vs.

c2

c13

vs.

c3

c14

vs.

c4

c15

vs.

c5

c16

vs.

c6

c17

vs.

c7

c18

vs.

c8

c19

vs.

c9

c20

vs.

c10

γ 1 2 4 6 8 12 15 20 30 40

Ratio of CE 2 2 2 2 2 2.5 1 2.5 2 1

Ratio of NT 1.61 0.63 3.56 2.74 0.93 3.90 0.6 0.97 1.57 0.73

Ratio of NV 1.80 0.80 5.13 2.36 0.85 4.60 0.88 0.43 2.00 0.83

Ratio of NP 4.58 0.50 4.20 3.16 0.55 3.70 0.81 0.92 3.90 0.66

Effects of the Recursive Model Building

As discussed earlier, GRR allows multiple modeling procedures. The first modeling
procedure is just a standard GSR. But, from the second modeling procedure, the
modeling procedure can be considered as the recursive procedure. See Eq. (17.2) ~ Eq.
(17.4), and Figure 17.2. To see how effective the recursive modeling procedure is, the
model performances with and without recursion are compared in Table 17.4 between the
first group and the third group computations.

The large values of the ratios of NT, NV and NP in this table show that NMSE’s are
much smaller in the first group computations as compared to those in the third group
computations. Since no recursive modeling procedure is allowed in the third group
computations, these enhanced performances, i.e. smaller NMSE’s must come from the
recursive modeling procedures.

Table 17.4
Performance comparisons between the 1st and 3rd group computations, see Table 17.1. Effects of the recursive
model building can be clearly seen.

3rd Group 
�

vs.
1st Group 

�

c21
vs.
c1

c22
vs.
c2

c23
vs.
c3

c24
vs.
c4

c25
vs.
c5

c26
vs.
c6

c27
vs.
c7

c28
vs.
c8

c29
vs.
c9

c30
vs.
c10

γ 1 2 4 6 8 12 15 20 30 40
Ratio of CE 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Ratio of NT 4.95 3.77 3.91 4.95 13.9 24.5 1.58 2.91 4.95 13.9

Ratio of NV 3.28 2.98 4.49 3.24 11.3 29.7 1.26 1.59 3.34 9.90

Ratio of NP 7.00 2.75 3.54 6.55 4.43 12.1 1.56 2.53 6.08 5.55



When we take the ratios of the computational efforts into account, the ratios of NT,
NV and NP become even greater; they should be multiplied by the entries in the
corresponding columns crossing the row Ratio of CE. Also note that the recursive
modeling procedure is much more effective than the parallel computational architecture;
compare the foregoing two tables concerning them.

17.5.2 Real World Chaotic Time Series

17.5.2.1 Data and Computational Settings

The Complex Systems Summer School at the Santa Fe Institute planned a competition for
time series analysis and prediction in the summer of 1990. Among the vast library of time
series data, five representative data sets were selected and distributed through ftp for
competition participants who used their own methods to predict designated hidden region.
The data are available from ftp.santafe.edu/pub/Time-Series. [Weigend
1993] discusses the results and various methods used by successful participants of Santa
Fe Competition.

ASHRAE (American Society for Heating, Refrigerating, and Air-conditioning
Engineers) held a seminar on June 1993, Denver, Colorado to discuss and award the
results of ASHRAE Competition.

For the competition, a vast range of time series data for weather and actual energy
consumption such as electricity or hot water in a building is given to participants. See
ftp.cs.colorado.edu/pub/energy-shootout for more details. Table 17.5
li sts the data sources from Santa Fe and ASHRAE competitions.

 In table 17.5, the data for intensity fluctuation of the far infra red 
3

NH laser and for
the surface brightness of a white dwarf star, PG1195 were generated from physics system,
and they were analyzed to be rather deterministic or stationary. Other data are more
stochastic or non-stationary. At the stochastic extreme is the currency exchange rate.
[Weigend 1993] discusses the data characteristics in more detail.

For most time series data sets, the competitions required to use the runaway extension
of the forecast data. The runaway extension means that the long-term forecasts should be
based on the lag vectors available from the short-term forecasts by the same forecasters.

The performance measures from GRR are based on the update extension [Smith 1993]
of the forecast data, in which the future forecast extension is free to use the true time
series available up to the time that is T steps past from the data point to forecast.

Computational settings for this section are summarized in Table 17.6. Note that the
crossover operation was allowed at any points in a tree. For mutation, a terminal symbol
was simply replaced with another terminal symbol, and a function symbol was replaced
with another function symbol that requires same number of arguments.



Table 17.5
This study uses time series data from Santa Fe [Weigend 1993] and ASHRAE competitions, section 17.5.2.1

Sources Data Description
Solar flare flux Solar beam isolation flux data measured with respect to five

different solar positions were given in the competitionASHRAE
Competition WBEC Data for the whole energy-consumption data in a building (WBEC)

and for the weather data outside the building were given
Laser intensity Intensity fluctuation of the far infra red NH3 laser. The data were

analyzed to be deterministic since
Heart rate of a
human patient

Time series data for the heart rate, chest volume, blood oxygen
concentration and EEG of a patient. Only the heart rate data were
tackled in this study

Currency
exchange rate

Currency exchange rate between Swiss franc vs. US $. The data are
highly non-stationary or stochastic.

Particle position Time-dependent position of a quantum particle in 4D potential well

Santa Fe
Competition

Star Time series data observed for surface brightness of a white dwarf
star, PG1195. The data are also deterministic

Table 17.6
Computational settings for genetic programming paradigm and time series modeling. See section 17.4 for other
implementation issues of GRR. One run means either standard GSR or recursive GSR. If any termination
condition, section 17.4.5, has been met, the actual number of run becomes smaller than that given here.

Number of populations 5

Population size 30

Generation limit 9

Number of runs 5

Function set +,-, × ,/,sin,cos,exp,log,expt

Terminal set State-space coordinate variables, DTS,
random number terminalCrossover fraction 0.8

Depth of a tree Initial 6, after-crossover 18

Mutation fraction 0.1

Reproduction fraction 0.1

Migration probabili ty 0.02

Settings for
genetic programming
paradigm

Migrating individuals 1% of total individuals

Terminating NMSE 0.01

Delay time 1

Lag time 1

Embedding dimension 1 or 4

Number of data points 400

Data region T First 200 data

Data region V Next 100 data after region T

Settings for
time series modeling

Data region P Last 100 data after region V



17.5.2.2 Results and Discussion

Depending on the characteristics of the time series data set, the computational efforts and
the obtained performances were quite different. For example, the solar beam isolation
flux and the fluctuations in the laser intensity were relatively easy to model and predict.
That is, higher performance was possible with smaller computational efforts. The highly
stochastic or volatile time series were very diff icult.

Table 17.7 summarizes NMSE’s obtained by GRR with the computational settings
given in Table 17.6. The impact step was 1. For ASHRAE Competition, Multivariate
means the usual time series modeling and forecasting problem, Eq. (17.1) for each time
series, e.g. the solar beam isolation flux. This multivariate problem was not required in
the ASHRAE Competition.

The competition required only the univariate analysis; see section 17.5.2.1 for details.
n stands for the usual embedding dimension. The names of the time series data sets are
reduced ad hoc for formatting purpose. See section 17.5.2.1 for detail s on them. We can
see that the stochastic time series such as the human patient heart rate, the currency
exchange rate, etc are much more difficult to tackle.

For stochastic data, the large embedding resulted in poorer performance while the
performances generally improved for deterministic data. Simplistically assumed values of
n, τ and T might have caused much more uncertainties for stochastic time series. We
suspect that, with no correct information about n, τ and T available, a model based on
smaller embedding dimension could be better for highly non-stationary dynamics.

Table 17.7
Summary of GRR application to real world chaotic time series data sets.

Time Series  NT  NV  NP
Multivariate 0.005 0.001 0.002

Solar
Univariate 0.008 0.024 0.017

Multivariate 0.032 0.039 0.054

ASHRAE
Competition
(CV) WBEC

Univariate 0.004 0.003 0.018

n = 1 0.007 0.018 0.015
Laser

n = 4 0.0014 0.0027 0.0043
n = 1 0.0654 0.1895 0.1651

Heart
n = 4 0.1783 0.2587 0.3547
n = 1 1.542 1.666 1.247

Currency
n = 4 8.364 7.878 15.39
n = 1 0.0233 0.0325 0.0756

Particle
n = 4 0.6986 0.3544 0.1543
n = 1 0.0055 0.0075 0.0331

Santa Fe
Competition
(NMSE)

Star
n = 4 0.0016 0.0013 0.0017



Table 17.8
NMSE values with and without the derived terminal set, DTS. DTS has positive effects in particular on
stochastic time series such as the heart rate and the currency exchange rate.

NMSE (100) , Region P
Time Series

Without DTS With DTS
Solar 0.002 0.002

ASHRAE Competition
WBEC 0.021 0.018
Laser (n = 4) 0.0042 0.0043
Heart rate (n = 1) 610021.8 × 0.1651
Currency (n = 1) 35.887 1.247
Particle (n = 1) 12.543 0.0756

Santa Fe Competition

Star (n = 4) 0.0035 0.0017

Effects of the Derived Terminal Set (DTS)

To see the effects of DTS, GRR was applied to each of the time series used in section
17.5.1 and 17.5.2 with and without DTS. Table 17.8 shows selected results.

Observe that DTS has minimal effects for the deterministic time series. For the
stochastic time series, DTS has positi ve effects, improving the performance measures. It
may be temporarily safe to say that DTS does contribute to the model performances. The
reasons why DTS has positi ve effects on the stochastic time series are not clear yet.
Various kinds of DTS should be examined to have a conclusion.

17.5.3 Comparisons with Earlier Works

17.5.3.1 ASHRAE and Santa Fe Competitions

The model’s forecasting performance recordings for the two time series data sets from
each competition are compared with those of the best winners in the ASHRAE and Santa
Fe Competitions, and summarized in the following table. The performance measures for
comparisons were calculated for the same number of prediction data points.

Recall that GRR proposed here is based on the update extension while the very most
participants used the runaway extension methods. Direct comparisons based on the
runaway extension are topics for further study.

With the simplistic assumptions on the characteristics of time series and the small
quantity (200) of data used to build a model, the runaway extension method is not
applicable. As [Smith 1993] showed, the runaway extension is best successful when there
is a sufficient data to build a dense state-space [Kailath 1980]. Coarsely reconstructed
state-space, as was done in this study, results in the poor forecasts especiall y for
stochastic time series. Table 17.9 is only for numerical comparisons between the best
winners of the competitions and GRR.



Table 17.9
NMSE values for four time series data. Recall that the competitions required the runaway extension of the
forecast data while GRR in this study was based on the update extension. See [Smith 1993].

Time Series Best Winner This Study (GRR)
Solar Beam Isolation Flux 0.0240 0.002ASHRAE

Competition WBEC 0.14084 0.01804

Intensity of the laser light 0.023 0.00433Santa Fe

Competition Position of the quantum particle 0.086 0.0756

The performance measure for the first two time series was CV, and was NMSE for the
last two times series. Numericall y, it seems that GRR outperforms the best winners of the
two competitions. However, it might be misleading at this stage if we say that GRR is
superior to the methods used in the competitions, e. g. the highly sophisticated neural
networks developed by Eric A. Wan [Wan 1993], the best winner of Santa Fe competition.

17.5.3.2 Mackey-Glass Equation

[Casdagli 1989], [Oakeley 1994] and [Iba 1994] also used the time series generated from
Mackey-Glass equation, Eq. (17.15) to test their methods. The results by GRR were
compared with those earlier works. See Table 17.10. Except the number of data points,
computational settings were same as those used for section 17.5.2.

Since each of the earlier works used different performance measures, the performance
measure NMSE of this study were converted to the corresponding performance measures.
In Table 17.10, GRR-c is a variant of GRR. That is, the numerical coeff icients obtained
with respect to the region T are used to predict the time series. No adaptive update of the
numerical coeff icients is made.

Table 17.10
Comparisons of NMSE’ s between the works by Casdagli , Oakeley, and GRR. For the numerical values, See
Table 17.4, p. 386 of [Oakeley 1994]. GRR-c stands for the constant-coefficient version of GRR. We can see
that GRR-c and GRR worked better than earlier works. Comparing GRR-c and GRR reveals that the adaptive
update of the numerical coefficients in Eq. (17.7) and (17.9) does improve the forecast performances.

Earlier works This studyPerformance

Measures [Casdagli 1989] [Oakeley 1994]    GRR-c    GRR

NMSE(20) 0.0631 0.0311 0.0247 0.0187
NMSE(30) 0.1585 0.069 0.0085

NMSE(40) 0.316 0.158 0.181 0.0039

NMSE(50) 0.631 0.371 0.258 0.0025

NMSE(60) 0.990 0.6170 0.266 0.0046



See how much the performance was improved with GRR. Moreover, the
computational efforts in the earlier works were much more than GRR. The computational
efforts for GRR was only 5 (Number of populations) ×  2 (Number of Modeling
Procedure consumed; allowed was 5)×  30 (Population Size)×  9 (Generation Limit) =
2700, which is only fraction as compared with the earlier works. See Table 17.3,
[Oakeley 1994].

[Iba 1994] used MSE (Mean Squared Error) as the performance measure. ∆  is 17 for
Iba. Table 17.11 compares MSE’s with increasing computational efforts. Note that 6750
is the limit on the computational efforts set for GRR. Comparing MSE’s for the testing
data at 6750 (GRR-c) and 13890 [Iba 1994] reveals that GRR-c outperforms [Iba 1994]
0.01261/ 410033.1 −× = 122 times better. Moreover, if we consider the ratio of the
computational efforts, 13890/6750 = 2.06, the figure goes up to 122× 2.06 = 250.

17.6 Conclusion and Issues Remaining

This chapter examined a new method to model chaotic time series through the application
of evolutionary symbolic computation. And, if we use the update extension of the
forecast data, the method GRR performed very well especiall y for deterministic dynamics
or a time series that is deterministic.

The major originalit y of GRR lies in the recursive regression scheme through which
multiple basis functions are derived. Based on the assumption that the dynamics of a time
series comprise the stochastic part and the deterministic part, GRR has been quite
successfully applied to many real world chaotic time series data sets of which modeling
and forecasting were very diff icult using the standard GSR.

It is interesting to note that a method known as stochastic modeling [Tong 1990]
introduces a variety of noise terms for treating the stochastic dynamics of time series.
Then, the modeling procedure is a systematic approach to minimize the noise terms or
errors, they say, in a model. See [Tong 1990] for more detail s.

In the field of quantum mechanics, there is a theory or method called the perturbation
theory to get solutions for very complex system equation that usually does not allow for
an exact solution. The system for a time series might have such complex system equation.

Perturbation theory assumes that a solution to complex system equation is a sum of the
unperturbed and the perturbed contribution. See [Rae 1992] and [Nayeh 1993] for more
detail s. This is somewhat similar to our assumption here that a complex dynamics of real
world chaotic time series comprise the deterministic part and the stochastic part, Eq.
(17.2). It would be interesting if we try to interpret or improve GRR in the context of the
various perturbation techniques to get the unperturbed Hamiltonian of a complex system.



Table 17.11
Comparison of the constant coefficient version of the proposed method, GRR-c with works by [Iba 1994]. For
this table, the training region was the first 100 data of time series generated from Eq. (17.15) with 17=∆ .
The next 400 data were given for testing. Except the number of data, all other computational settings were the
same as those given in Table 17.6.

Mean Squared Error

This Study (GRR-c) [Iba 1994]
Computational

Efforts
Training Data Testing Data Training Data Testing Data

1350 310632.2 −× 310021.2 −×
2700 410935.2 −× 410698.3 −×
4050 410931.2 −× 410738.3 −×
5400 510932.9 −× 410262.2 −×
6750 510219.4 −× 410033.1 −×
13980 0.01215 0.01261

104400 6107.4 −× 61006.5 −×

For tuning-up of a regression model, the numerical coeff icients of the model were
simply updated with respect to a predetermined number of data set of which last datum is
γ , called the impact step, behind the datum to forecast. However, if there is plenty of
data such that a sufficiently dense state-space is possible, the numerical coeff icients
should be updated with respect to the nearest k  neighbors in the state-space [Casdagli
1993]. From the preliminary study, it was observed that the forecasting performance does
depend on the number of the nearest neighbors. The dependency becomes more severe
for stochastic time series than for deterministic time series.

Along with the numerical coeff icients, the basis functions should also be updated. If
suff icient computational resources are available, the basis functions could be updated
with respect to newly available time series data. For an on-line or real-time forecasting of
a time series, the update speed should be at least the one that can allow the new basis
functions to be used in time. The update time of 6 hours is nonsense if the forecasting
should be done in less than 1 hour or less.

Even if the basis functions are updated in a timely manner, it may stil l be a problem to
update the regression model. We should have systematic selection algorithms for basis
functions from the old and the newly updated basis functions.

GRR may be more powerful i f it is combined with some kinds of time series
characterization technologies. For example, detailed information about the lead time, the
embedding dimension, and the delay time for a given time series is extremely important
to have a successful model. Various chaos-qualifying technologies will also be very
helpful. Fractal dimension is a good guide to reconstruct a state-space.



This study used the raw time series data. It is meaningful if we manipulate or represent
the time series data differently. Normalization or appropriate data manipulation such as
the first difference transformation [Chatfield 1989] might be helpful. The very most
participants in the Santa Fe and ASHRAE competitions used the somehow manipulated
data rather than the raw data. Also, we suspect that any normalization techniques to set
limits on the minimum and maximum values of a model, e.g. between –1 and 1, should
also be explored for the runaway extension.

For demonstrative comparisons between many time series of different characteristics,
GRR was run in this study with only fixed computational parameters of genetic
programming such as the crossover probabilit y, the mutation probabilit y, the migration
probabilit y between multiple populations, Table 17.6. The parents were selected only in
proportion to the fitness values. Other selection poli cies were not examined. The initial
and the after-crossover depth of trees were also fixed. Only the Tschebyshev function was
used to make the derived terminal set. Detailed studies on effects of these parameters and
policies are necessary. In addition, full -scale computational experiments are necessary to
study the runaway extension of the forecast data with GRR.
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