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Abstract 

 

We present a new representation for a genetic 
algorithm to evolve molecular structures 
representing possible drugs that bind to a given 
protein target receptor.  Our representation is 
tree-structured with functional groups for leaves, 
and captures chemically relevant information 
efficiently.  We assume a given target protein 
structure with known essential residues, and  
derive the placement of the functional groups in 
each chromosome from both lengths and the 
position of a pharmacore in the receptor. Our 
fitness evaluation takes into consideration both 
proximities and polarities of the functional 
groups of the evolved drug structure and the 
residues. Our evolved structures were 
intriguingly similar to known active anti-viral 
drug structures. Our experiments indicate that a 
tree-structured molecular representation and a 
simple evolutionary computation can design 
acceptable molecular structures that are 
potentially useful for drug design endeavors.    

1 INTRODUCTION   

One major strategy in drug design is to find or build 
molecules that target proteins crucial to the proliferation 
of microbes, cancer cells, or viruses. For example, one 
might design photosensitive compounds to damage such 
targets (Goh et al. 1997, 1999). Another design strategy, 
used successfully to design protease inhibitors in HIV 
research, is to search for compounds that bind to active 
protein sites which sustain viral proliferation. Much of the 
challenge involves accurately predicting structures of 
potential inhibitors, especially if the structure of the 
protein target is already known. This paper addresses this 
challenge with genetic algorithms. We use evolutionary 
computation to seek new molecular structures as possible 
drugs for a given structurally determined protein target.  
That is, we evolve molecular structures with their 
appropriate functional groups in closest proximity to 

crucial residues, and thereby design molecules that fit the 
protein receptor perfectly. 

Other researchers (Venkatasubramanian et al., 1995,  
Glen et al., 1994, Globus et al. 1999) have used 
evolutionary techniques for designing pharmaceutical 
molecules.  However, the recent literature is rather sparse, 
perhaps due to difficulties with accurate molecular 
modeling.  Our approach simplifies this difficulty with by 
using a simple tree-structured representation, which 
brings several advantages.  A tree structure arranges 
crucial data pertaining to the molecular conformations 
and structures in a an orderly discrete non-linear  manner 
so as to allow  easier manipulation by evolutionary 
operators and by operators used in other artificial 
intelligence techniques. Given the experimental results of 
this paper, we argue that the tree structure is more 
efficient at handling such spatial data, which involved 
multidimensional information that would not be 
effectively represented by, for example, a linear 
chromosome.    Also, having trees of functional groups 
makes it possible to apply further artificial intelligence 
techniques, such as neural networks, in order to search for 
similar molecules with similar pharmacophoric properties 
in current chemical databases. Lastly, we suspect from the 
somewhat rapid convergence seen in our data that the use 
of functional groups in tree structure reduces the search 
space dramatically, since atoms can be covalently 
arranged together in a vast number of ways.   

Our experiments do not employ precise molecular 
modeling, in the strictest terms of physical chemistry.  
Rather, our objective was to see if tree structured 
representations for molecular structures might make 
genetic algorithms to provide a powerful tool for drug 
design. As we shall see later, they can. 



2 EXPERIMENTAL SETUP    

2.1 THE MODEL 

 In this drug design project, we assumed that the 
target protein receptor structure was already known, 
perhaps by X-ray crystallography or nuclear magnetic 
resonance (NMR).  Our system needed to find non-
peptide molecule(s) to fit easily into this given protein 
structure. 

Our specific target was the known antiviral binding 
site of the human rhinovirus strain 14.  This protein site is 
known as the VP1 barrel (see Fig.1), since its structure 
resembles a barrel.  We sought to find molecule(s) that 
could fit snuggly into this barrel, with the right functional 
groups of the new molecule in close proximity to each of 
the crucial amino-acid residues of the barrel. 

We downloaded the protein database file of the 
rhinovirus VP1 protein (protein id: 1RUC) from the 
RCSB (Research Collaboratory for Structural 
Bioinformatics) Protein Databank Website, 
http://www.rcsb.org/pdb/. The important residues used 
can be seen in the illustration in Fig. 1b (taken with 
permission from Branden and Tooze, 1991). The crystal 
structure provides the three-dimensional coordinates of 
the barrel, which is 25Å deep and 12Å wide with a 3.1 Å 
resolution, and for the interactive residues.  

 

 

Figure 1a: Protein Structure of the Viral Target. The VP1 
barrel (in shaded oval) encapsulates the drug. This protein 
(VP1) is found in the rhinovirus (Cold Virus) and is 
responsible for the virion affinity to the host cell via the 
latter’s own protein receptor (adhesion molecule ICAM-
D). (Illustration reproduced with permission from 
Branden and Tooze, 1991) 

 

 

 

 

Figure 1b: Anti-viral Drug Encapsulated by the Viral 
Target. The drug shown (in center) binds to sites in the 
VP1 barrel. Note that this example exhibits poor binding 
affinity. (Illustration reproduced with permission from 
Branden and Tooze, 1991). 

Looking at the chemical structure of the antiviral 
drug and the structure of the protein target, one would 
suspect that a portion of the antiviral compound must be 
present for the drug to have any activity. We may infer 
from bends in the barrel that any appropriate drug 
molecule must be flexible enough to bend in order to fit 
into the bent barrel. This flexible backbone is part of a 
pharmacophore. See Fig. 2 for a schematic 
representation. 

 

 

Figure 2: Schematic Representation of the Receptor 
Target (“Box” or “Barrel”). The residues of this protein 
target are shown in the rounded boxed, which contain 
information about the amino-acid, the sequence number 
and the co-ordinate. The tree structure representing the 
molecule we will evolve has leaves numbered in a 
canonical order, and contains a right and left tree. 

2.2 REPRESENTATION 

We represented our evolved molecule with two 
small bottlebrush shaped tree structures on each side of an 



ether O-atom (see Fig. 2).  Each labeled node in these 
trees may be filled by one of the following functional 
groups (see Fig. 3a): 0) Alkyl-1C (Alkyl chain with only 
one carbon atom), 1) Alkyl-3C (Alkyl chain with three 
carbon), 2) Alkyl-1C-Polar (with 1 carbon and a polar 
group), 3) Alkyl-3C-Polar (Alkyl with 3 carbon and a 
polar group), 4) Polar, 5) Aromatic (assume a benzene 
ring), 6) Aromatic-Polar (e.g. Hydroxyl Phenyl), 7) 
Empty (indicates no functional group at this location). We 
only allowed “Empty”  (No.7) nodes at leaves. In a 
second experiment, we expanded to include 
cyclopentanes and cyclopentadiene-like groups.   

Fig. 3 also illustrates the lengths of the functional 
groups, which will be essential to our computation of the 
coordinates for each of the functional groups in a 
molecule.   Since these trees have a simple, fixed 
topology, we represented them with a linear chromosome 
in which each three bit gene encoded a single node in a 
tree, with the nodes listed in breadth first order and the 
left tree first.  
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Figure 3: Functional Group Representations. 

We computed the co-ordinates for the position of 
each functional group (the molecule represented by that 
node of the tree) from the length of the groups’ bonds, as 
given in an elementary physical chemistry text (Levine, 
1988). For example, alkyl-1C has a C-C bond length of 
0.7Å, whereas a benzene (aromatic) ring has a length of 
approximately 1.4Å. For computational purposes, the 
bond lengths and the approximate directions of the bonds 
were calibrated with the coordinates of the compound in 
the crystal structure (D. A. Shepard et al, 1993). 

2.3 FITNESS EVALUATION 

Fitness evaluation was based on the proximity of 
residues (e.g. SER107) to the closest functional groups, 
and the chemical properties of these pairs. The distance 
needed to be at least 7.0Å for the molecule to gain any 
fitness and could not be closer than 2.0Å without being 
penalized. If the functional group closest to a particular 
residue of the receptor target was of different polarity, 

then a penalty was imposed. In addition, the proposed 
drug molecule had to be within the barrel, so a penalty 
was given for exceeding cavity limits.  We also 
considered polarity, and penalized matchings with 
chemically dissimilar polarities. For example, the residue 
SER107  (See Fig. 1) is a serine group, which is a polar 
(hydrophilic) group. The group closest to it must also be a 
polar group for the drug molecule to have a higher fitness 
level.  

To describe our fitness function more formally, let 
dd be the distance from a functional to its closest residue 
(in angstroms).  Let fd be (7.0 - dd)/7.0.  Let pp be a 
penalty value.  In particular, let pp = -|fd| if the polarity of 
the functional group and the corresponding residue are 
unequal, and let pp = 10(-|fd|) if the position of a 
functional group of the tree exceeds the boundaries.  The 
fitness of a functional group is defined to be: pp if the 
polarity of the function group is not the same as that of 
the residue, or if dd < 2.0; 0 if fd < 0; and fd if the 
polarity of the functional group is approximately the same 
as the polarity of the residue and fd > 0.  The total fitness 
of a molecule is the sum of the fitness of all the functional 
groups, and this value is to be minimized by the genetic 
algorithm. 

The distance of 2.0Å (in fd) is the approximate 
distance for the distance of minimum potential energy 
required for hydrogen bonding. The range of between 2.0 
Å and 7.0 Å is the approximate distance range required 
for both effective van der Waal and hydrogen boding 
attractions (Levin, 1988).   

2.4 IMPLEMENTATION DETAILS 

We used C++ language with object oriented design 
methodology, and the GNU/Visual C++ compiler in both 
the UNIX and MS-Windows environments. The chemical 
drawing package, ISIS/Draw version 2.01 (obtained from 
Molecular Design Laboratory, Inc., San Leandro, 
California, http://www.mdli.com) provided measuring 
rulers for molecules in angstroms, which we used to 
validate our fitness calculation methods—especially with 
regards to the length and width of a given molecule. 

Originally, we allowed our mutation rate be 10% 
using one point crossover with a crossover rate of 90%. 
We later decided that crossovers decrease convergence 
efficiency. Also, crossover would be theoretically difficult 
to implement in more complex molecular structure. 
Therefore, we used all “atomic” mutations, even though 
other forms of mutations are theoretically still possible.  
“Atomic” mutations keep track of the number of atoms in 
each node and randomly mutate the atoms. This also 
allowed mutations from double to single bonds and vice-
versa. 

As mentioned, our molecules were divided into two 
halves, represented by left and right trees. We tested trees 



of various heights and found the best results with a height 
of five for the right side and five on the left side. 

2.4 RESULTS AND DISCUSSION  

The best-evolved right tree of the height five is 
illustrated in Figure 4a. A possible molecular structure 
that could satisfy the requirements of Figure 4a is shown 
in Figure 4b. The structure in Figure 4b is geometrically 
intriguing. It suggests two layers, one containing an 
aromatic/phenolic group similar to that of a known active 
anti-viral molecule (Figure 4b) and an underlying layer 
that could form a ring-like structure with the upper 
phenol/aromatic group. In this sense, it structurally 
resembles the actual known drug. It is particularly 
intriguing that the molecular tree was apparently able to 
capture the spatial details of the molecule and of the 
protein cavity constraints.  Our genetic algorithm attempts 
to place functional groups as close to corresponding 
residues as possible, which tends to produce molecules 
that are large, but small enough to fit into the barrel. The 
“atomic” mutation enabled our algorithm to create many 
copies of similar structures with slight variations.  
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Figure 4a: Tree Representation of the Best 
Right Half of the Evolved Molecule After 
500 Mutations. 
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Figure 4b:  Possible Structure that Satisfies the Tree 
Structure Requirements of Fig. 4a, Compared to the 
Known Anti-viral Drug.  

The best tree on the left side is shown in Figure 5a. 
Notice the similarity of the evolved molecule seen Figure. 
5b to that of a known anti-viral drug, even though the 
information regarding actual structure of the known anti-
viral drug was never used as part of the algorithm. We 
may note that the functional groups at crucial locations in 
the actual anti-viral compound are similar in polarities to 
functional groups found in the corresponding positions of 
the evolved molecules. Furthermore, the sizes and shapes 
of the evolved molecules do have resemblance to the anti-
viral one.  

 

Figure 5a: Tree Representation of the Best Evolved of 
Left of Molecule after 500 Mutations. 

 

Next, we attempted to add cyclopentane-like groups 
as part of the functional group. The second best right side 
of the molecule is shown in Fig. 6.  Here again, it contains 
the benzene ring seen in the actual drug molecule (Fig. 6). 
As mentioned, the tree that describes the molecule in Fig 
6 (not shown) was not the best. The best tree was able to 
reproduce because a single mutation on that tree caused 
poor fitness on its children. Fortunately, the GA does not 
restrict replication to just molecular trees of highest 
fitness, but also allows individuals with high effective 
fitness—those whose children tend to be fit.  

 

 



 

  

Figure 5b: Possible Structure that Satisfies the Tree 
Structure Requirements of Fig. 5a, Compared to the 
Known Anti-viral drug.   

 

 

 

Figure 6: Possible Structure that Satisfies the Tree 
Structure Requirements  Evolved by Adding Cyclo-
Pentadiene-like Groups as Compared to Known Anti-viral 
Drug.  

 

 

 

Figure 7: Possible Structure that Satisfies the 
Tree Structure Requirements, Compared to 
Known Anti-viral Drug.  

Figure 7 shows what a molecule that could 
satisfy the requirement of the output of the molecular tree 

of the left should look like.  It is interesting to note that 
here again the length and shape of this part of the 
molecular do resembles that of the antiviral drug. The 
present of the azide (i.e. N=N) side chain does bear 
similarity to the N-O atoms of the actual drug.   
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Figure  8: Result Summary. This summarizes the results 
of the our experiments. It is striking that the evolved  
molecules are geometrically similar in many ways to a 
known drug compound, despite our several simplifying 
assumptions, and given the GA used no prior knowledge 
of the molecule. 

 

 

2.5         CONCLUSION 

While our results are intriguing, there are admittedly 
inherent weaknesses in our model. First, we have not used 
any energy minimization techniques and we have 
assumed that the branching of the trees consist of only 
three children, though it is clear that for our selection of 
functional groups the tree could be more complicated. 
Second, we have assumed the bond angles to be constant. 
Third, we have chosen the PV1 receptor as a case study 
since the known drug is simple. The reason for this is that 
this experiment was not meant to be an exact simulation 
in the strictest sense of physical chemistry, but rather an 
attempt to evaluate a new approach to using genetic 
algorithms in drug design.  

These simplified assumptions made it possible to 
test the validity of our approach without requiring 
extensive computing power or time.  Clearly, the 
computational requirements and the complexities of  tree 
structures can increase dramatically as the simulations 
become more exact. But this is inherent with all 
simulations of this scope and application, and is not a 
particular disadvantage of our tree structured approach.   



Nevertheless, clearly our theoretical framework 
supports for further and more exact simulations, including 
energy minimization and molecules that are more 
complex. The conformational search via genetic 
algorithms of Jones et al. (1996) would be a useful 
supplement to our approach. There is no reason to 
constrain molecular trees to structures similar to the ones 
used in this paper. Structure discovery techniques such as 
ADFs or cellular encoding, from genetic programming, 
might help here. Nor is there any reason to limit the 
functional groups to the ones mentioned above.  The 
flexibility, which allows representation of a wide variety 
of molecules, of the molecular tree and the convenient 
reduction of search space arise from the fact that the 
nodes contain functional groups, as opposed to atoms.  

 One difficulty with drug design is the complexity of 
geometric shape of drugs and compounds in general. We 
propose that molecular trees representations such as ours 
are more amendable to other AI search techniques such as 
neural networks, fuzzy logic and the creation of agents 
that could traverse the branches to analyze the molecular 
tree. We have preliminary data to confirm this suspicion. 

 It is also interesting to see how rapidly our 
population converges: after just 200 mutations. We 
suspect that this is the result of a streamlined search 
space, due to our using functional groups.   

The fact that the genetic algorithm was able to come 
up with structures similar to the actual drug is also quite 
remarkable, since the program had no information about 
the actual drug except for the calibrations of the bond 
length and the approximate directions of the bond angle. 
Apparently, the molecular trees were able to capture 
three-dimensional spatial details of the molecules, and the 
algorithm was able to contrast its geometric properties 
with the protein-receptor structure, despite our 
simplifying assumptions. This suggests that an algorithm 
such as ours could be useful when the crystal structure of 
a potential drug receptor has already been carefully 
studied, even though no binding compound has yet been 
found.   

An interesting feature of the resulting trees is that 
many similar trees that were variations of one another 
arose, though these were not globally optimal. Often, 
better trees died out because mutations would result in 
poor fitness, creating an “infertile” tree. The generations 
of variations of better trees will be useful if we link this 
program to a chemical database in order to implement 
drugs high-throughput drug screening.  

In conclusion, there are two ways that our drug-
design genetic algorithm with tree structures could be 
used for practical purposes in drug discovery. It could be 
used to search the database of known compounds for 
those with molecular structures that match the evolved 
tree structures, especially if the protein receptor target is 
already known. It could also provide a powerful 

exploratory tool for the medicinal synthetic chemist, who 
could attempt to synthesize the evolved molecular 
structures.  

Given that our current simplified model with a 
straightforward genetic algorithm has discovered 
molecules very similar to known antiviral drugs, we are 
eagerly pursuing improvements.  We look forward to 
using simulated evolution to combat some of the viruses 
which natural evolution has given us. 
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