Interpreted Applications within BOINC
Infrastructure

Daniel Lombrana Gonzélez!, Francisco Fernandez de Vegal!, L. Trujillo?, G.
Olague?, M. Cardenas®, L. Araujo?*, P. Castillo®, K. Sharman®, A. Silva’

! University of Extremadura daniellg@unex.es, fcofdez@unex.es
2 CICESE trujillo@cicese.mx, olague@cicese.mx
3 (Ceta-Ciemat miguel.cardenas@ciemat.es
4 UNED 1lurdes@lsi.uned.es
® University of Granada pedro@atc.ugr.es
6 Polytechnic University of Valencia ken@iti.upv.es
" CICA asilva@cica.es

Abstract. BOINC is one of the most employed middlewares in the scien-
tific community. However, the development of BOINC applications could
be difficult if the target application is an Interpreted Application such as
Matlab, R or Java. The BOINC team provides an intermediate solution,
the wrapper, which can run statically linked programs. Nevertheless when
the application has lots of dependencies, BOINC will not be able to deploy
it. In this paper, we propose to exploit the BOINC infrastructure with
Interpreted Applications by complementing the wrapper program with a
new application and extending the whole BOINC infrastructure by adding
a new virtualization layer, and best of all without modifying the source
code of the interpreted application. Three experiments using well-known
interpreted applications -Java, R and Matlab- are performed to demon-
strate the viability of running unmodified interpreted applications inside a
BOINC infrastructure.

Key words: BOINC, Interpreted Applications, Virtualization.

1 Introduction

Nowadays it is common to have powerful desktop computers at universities, in-
stitutions, etc. A basic desktop has a powerful multicore microprocessor, 1 GB
or more of RAM memory, large and fast hard disks, etc. However, those desktop
features are not completely harnessed, because most of those PCs are used for non
intensive CPU tasks such as browsing the web. Moreover, those PCs have large
idle periods, so it is reasonable to say that the computing power of those PCs is
wasted.

In order to exploit those PCs resources there are a technology which tries to
harness all the PC resources by installing a software. This technology is known
as Volunteer GRID Computing (VGC), and its main goal is to harness all the
commodity computer resources and provide them to scientists. VGC employs a
software named middleware which is in charge of harnessing the computing re-
sources such as CPU power or hard disk space by being installed on the PCs.

There are different approaches: (i) Condor [10], (ii) Xtremweb [6]), (iii)) BOINC
[2]. From all the above middlewares, BOINC is the most used and widespread one.
BOINC has a large pool of projects such as climate prediction simulations [1],
physics research [12], etc. Additionally, BOINC has a great community support.

BOINC is a framework that was born from the project SETITQHOME [4].
Thanks to the VGC technology, SETI has achieved a virtual super computer of
414.040 TeraFLOPS® by employing cheap computers: PCs. Thus, BOINC is a good
framework to run scientific computations. However, in order to use BOINC it is
necessary to port the source code to BOINC or use a small BOINC application
called wrapper to run statically linked legacy applications (applications that does
not use the BOINC API) without the necessity of the porting step. However, there
are interpreted applications (IAP) such as Matlab or R which are not statically
linked and more important widely used by scientists. Hence, there is a set of widely
used scientific TAP that cannot benefit from the BOINC technology.

In conclusion, BOINC is a great middleware to harness desktop computer re-
sources. Nevertheless, BOINC has to deal with the problems of running scientific
applications inside BOINC, having some times complex applications which cannot
be run inside BOINC. Therefore, what we propose is to run IAP by complement-
ing the wrapper functionality with other program. This new program called the
starter lets aware the user of the lacking IAP and/or set up everything to receive
and process the IAP jobs from its BOINC client. Finally, we extend the BOINC
structure by adding a new layer which simplifies the deployment of TAP within
BOINC.

The remainder of the paper includes an explanation about the BOINC mid-
dleware architecture in Section 2; the different ways of employing BOINC in a
scientific project in Section 3; the experiments and results in Section 4. We con-
clude and briefly present the future plans for the proposal in Section 5.

2 BOINC

BOINC is a middleware which harness the commodity computer resources for a
given project. BOINC has two main key features: (i) it is multiplatform (MacOSX,
MS. Windows and GNU/Linux) and (ii) open source. BOINC employs a Master-
Slave architecture where the slaves are the desktop PC clients and the server is in
charge of distributing the work between the clients. The next subsections explain
more deeply the BOINC architecture.

2.1 The Client

The client is a multiplatform application which runs on Windows, GNU/Linux and
MacOSX. The client is in charge of polling the BOINC project server and request
jobs to process them. Once, the server has jobs for the client, the client downloads
all the necessary files, stores them in a client folder, and starts to process them.
When the client has finished the computation, uploads the results (the output
files) to the server and request again new jobs.

8 Data obtained from the web http://boincstats.com

2.2 The Server

The server is the main place where the scientist creates a research project. The
server is in charge of:

— Hosting the scientific project experiments. A project is composed by a binary
(the algorithm) and some input files. BOINC builds different binaries for each
different architecture, hardware and software OS.

— Creation and distribution of jobs. The server uses the binary and input files to
create a Work Unit (WU). A WU describes how the experiment must be run
by the clients, specifying which is the binary, its input files, the command line
arguments for the binary and the output file names that will be generated by
the binary.

— Assimilation and validation of results. When the clients finish the computa-
tions, the output files are uploaded to the server. Then, the server launches
two processes. First, the validator program, which is in charge of assuring that
all the results are correct and the clients have not cheated. Once the validator
validates each result, the server launches the second program: the assimila-
tor. The assimilator is in charge of parsing the output files of the project to
perform tasks like: compute some statistics, export the results to a data base,
etc.

In summary, the server is in charge of building and distributing a WU which
is composed by the input files that a binary needs in order to compute a given
problem. Once the clients have performed all the computations and the results
(output files) are uploaded to the server; the server launches the last two main
processes to check the correctness of the results and do some data analysis (for
example some statistics).

3 Using the BOINC Framework

The previous section has explained the main structure of a standard BOINC
project (server and client). The structure is simple, but the process to build a
BOINC project could be difficult due to the necessity of building BOINC binaries
using its libraries.

A BOINC project can be built from four different points:

1. From scratch. In this case, the scientist or developer starts a BOINC project
from scratch. There are not source code at all, so the developer has only to take
into account all the BOINC requirements about libraries, and programming
language structures. BOINC is coded in C++, so the developer will create its
BOINC scientific project coding it in C4++. This case is the ideal one.

2. Adapting a C++ program. In this case, the developer or scientist has to change
all the Input/Output (I/O) methods that his application uses by the BOINC
I/0O routines. This change is necessary because the application is going to be
deployed under a parallel environment, so BOINC uses special I/O routines
which circumvents and solves all the derived problems from a parallel environ-
ment.

3. Porting a program to C++. In this case, the researcher has a program which
is coded in a different language to C+-+. In this scenario the scientist has to
port all the code to C++. Thus, the modifications are important, and in some
cases the researcher cannot afford the porting step due to time constraints or
complexity reasons.

4. Using the wrapper. The wrapper allows to run applications which don not use
the BOINC API, for example when the source code of the application is not
available. This last method allows to run applications from the previous point,
where the scientist has the source code but the porting step to BOINC is very
difficult. In summary, with this new method the researcher has not to port his
code to C++, but only if his application is statically linked.

However there are some scientists who employ programs like Matlab, R, etc. to
solve their problems, so all the source code of their applications are coded in
Matlab or R programming language. Additionally, those IAP usually have lots of
modules or libraries which expand its usability to different fields such as physics,
simulations, GRID, etc., increasing its complexity. The GRID modules are not
suitable for VGC, so the wrapper solution is still needed. Nevertheless, and due
to the complexity of the TAP, the wrapper in some cases will not be sufficient to
tackle the TAP problem.

Hence, what we propose is to run any IAP with BOINC using the wrapper
and the starter. Finally, we extend the possibilities of using BOINC by employing
the virtualization technology. The next two subsections explained more deeply the
wrapper, the starter and the wvirtualization extension.

3.1 The Wrapper

The wrapper is a small BOINC program. This program is written in C++ and ba-
sically wraps the “legacy application” (applications which does not use the BOINC
API) hidden in it from the BOINC structure. Thanks to the wrapper, the BOINC
client only sees one binary: the wrapper. The real binary is treated as a standard
input file.

The wrapper uses an input file called job.xml which represents a job description
file. This job file specifies a sequence of tasks where a descriptor for each task is
defined. The following variables are configured:

— Binary. The name of the “legacy binary”.

— Input/Output files. The names of the input/output files which are necessary
for the legacy application.

— Command line arguments. The command line arguments that should be passed
to the binary.

Thanks to the tasks section, it is possible to divide a big job into small pieces and
run preprocessing and/or postprocessing tasks with different legacy binaries.

Up to now we have presented how it is possible to run “legacy applications”
inside BOINC. However, if we want to run a Matlab or R script it is a bit more com-
plex, due to BOINC cannot package a whole Matlab environment within BOINC.

Moreover, BOINC has not the feature of detecting the PC client installed software.
Due to this problem we need a tool to check if the client has the possibility of run-
ning IAP jobs, so what we have created is a new program called starter which will
deal with this issue.

3.2 The Starter

The starter is a small program which sets up the environment to run the IAP, for
example a R script. The starter varies depending on the OS platform, so basically
you have to create a starter for each target platform. In the case of GNU/Linux
and thanks to its internal treatment of executables, the starter could be a script.
The starter can check if the client has all the necessary infrastructure to run IAP,

Fig. 1. The Wrapper and the Starter

BOINC Client» Wrapper —»

Interpreted
Application

like for example Matlab. This checking step can be done by consulting system
variables, or by searching on the installed applications. Moreover, if the needed
infrastructure does not need administrative privileges to install it, the starter pro-
gram can download all the necessary files, install them on a temporary folder, and
delete everything after the computation has finished, leaving the computer with-
out any trace. However, in most of the cases the client will need administrative
privileges (take into account institutional computers from Universities, Adminis-
trations, Companies, etc.) so if a BOINC project needs to run a Matlab script the
client has to install it before attaching his computer to the BOINC project. It is
also important to point out that the starter can be used to warn the client advising
that an installation step is necessary if the client wants to collaborate with the
project.

In summary, the starter is launched via de wrapper, and the starter finally
starts and deals with all the TAP (see Fig. 1) by warning the user or setting up
the client to accept jobs from an IAP.

4 Experiments and Results

We have set up three different BOINC projects in order to check if our approach of
running TAP such as R or Java within BOINC is possible. We used three different
applications, one using the R statistical software, other using a Java-based Evo-
lutionary Computation Research system and a Computer Vision problem which

employs Matlab. Moreover, the goal of the experiments is not to solve a given
problem (we are not interested in checking the quality of the obtained results) but
to check if it is feasible to run TAP within a BOINC infrastructure.

We have used for all the experiments GNU/Linux clients (except for the Mat-
lab), due to GNU/Linux provides more flexibility with the scripting languages.
Additionally, we have measure the performance improvement that it is possible
to achieve when a BOINC model is used comparing it with the traditional and
sequential mode of running only one machine. The standard equation to measure
the speed up is:

= e (1)

B
where A is the acceleration, Ty, is the consumed time by the sequential mode,
and Tg is the consumed time by the BOINC mode. Additionally, we also measure
the available computing power (CP) by using the method described by Anderson

and Fedack in [3]:

CP = Xarrival*Xlife*chpus*Xflops*Xeff*Xonfrac*Xactive*Xredundancy*Xshar§
(2
For all the experiments that we have performed, X,ecqundancy is equal to 1 because
we didn’t use the redundancy feature provided by BOINC. X4, is also equal
to 1 because none of the clients shared its resources with other BOINC projects.
Finally, Xarrivar and Xy;pe are two important variables due to they measure the
host churn (the volunteer computing project’s pool of hosts is dynamic). The Xy, e
variable is adapted in the three experiments, because we do not employ the same
amount of time as Anderson in [3] (hosts that have not communicated in at least
1 month), to hosts that haven’t communicated in at least 1 day. The rest of the
variables measure the hardware specifications, see [3] for more details.
The following subsections explains more deeply how the experiments were set
up and presents the obtained results.

4.1 ECJ a Java-based Evolutionary Computation Research System

ECJ is a Java-based evolutionary computation research system where it is possi-
ble to run different kinds of evolutionary strategies”. We have used the Genetic
Programming (GP) automated method (see [9]) which creates a working computer
program from a high-level problem statement of a problem. Genetic programming
starts from a high-level statement of “what needs to be done” and automatically
creates a computer program to solve the problem.

The problem that we are going to try to solve with GP is the Multiplexer of
20 bits. The problem consists in evolving a computer program which performs the
20-multiplexer function (see [8]). In general, the input to the boolean multiplexer
function consist of k& address bits a; and 2¢ data bits d;, which has the form
Q1" alaodg_l .- dydy with length equal to k + 2*. The search space for this
function is equal to 2’“+2k, hence the search space for k = 4 (20-multiplexer) is
equal to 21048576

% For more information see http://cs.gmu.edu/~eclab/projects/ecj/

ECJ employs JAVA to run the experiments, so the clients a priori need to
have a Java environment installed, as we have explained previously (see Section
3.2). However, Java provides a statically linked version where it is not necessary
to install it on all the system, but only uncompressing it on a given folder of the
machine. Thus, the clients do not need to pre-install a Java environment to run
ECJ with BOINC. Moreover, thanks to this feature, the BOINC client can install
the Java environment in one of the BOINC’s folders and run the experiments from
there without disturbing the client by warning him about an extra needed step in
order to collaborate with the BOINC project.

An important issue with the Java installation process is the step of accepting
the license. The first time you install a Java environment you have to accept
a license. As we are going to employ Java in our University we can accept the
license only once and then use it for all our computers. In summary, the BOINC
project is composed by the following files:

— ECJ. A compressed file which contains the ECJ environment.

— Java. A compressed file which contains the Java environment and the accepted
license.

— Starter. A BASH script which uncompress Java and ECJ, and then runs the
GP-ECJ experiments.

— Wrapper. The wrapper to run the starter script with its associated job.zml file
(see Section 3.1).

One of the main drawbacks of the wrapper is that the wrapper is unable to do
checkpointing. The BOINC team developers, recommends us to implement the
checkpointing facility in the “legacy application”. In this case, ECJ provides this
feature, so the starter script runs and sets up the ECJ environment to run the
GP 20-multiplexer problem. Moreover, thanks to the starter script it is possible to
handle the stop and restart of BOINC client as a normal BOINC project, taking
into account all the previous saved checkpointing states.

Once the server was set up, clients from different universities and institutions of
Spain collaborated with this project: CICA in Sevilla, University of Extremadura
(Céceres, Badajoz and Mérida), University of Granada, Polytechnic University
of Valencia, UNED in Madrid, and Ceta-Ciemat in Trujillo (see Fig. 2). This
distributed infrastructure was possible to use because, thanks to the Java statically
linked version and the starter script, the clients didn’t have to be disturbed with
the Java installation step.

As we have stated at the beginning of the section, the objective of this experi-
ment was not to solve the problem but to check if the Java-based application ECJ
was able to run within BOINC and produce some results. Using the above infras-
tructure, 42 runs of the experiment were performed during 7.75 days. A total of
41 machines were used to solve the problem. From the 41 PCs, 7 produced the 42
runs due to some machines were turned off for hours, others still computing, etc.
(typical VGC behavior). The obtained speed up was 1.95, see Tab. 1. The acceler-
ation was nice, although not impressive but it was obtained for free with a quite
small number of volunteers. Finally, the best found Fitness was Raw = 180224.0
Adjusted = 5.54862¢ — 06 Hits = 868352.0. It is important to remark that one

Fig. 2. Distributed Infrastructure

Madrid e [[1 [[|
e N
°
- /—\.Valend!
Badajoz @1 {1€rida
L . o Client
oSevilla ol & Server
~— Connection
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(a) Interconnected Cities (b) Clients per City

Table 1. Execution time for ECJ and ECJ-BOINC

Tseq TB Acc. CP
|2O bits, 42 runs, 50 Gen, 1000 Ind.|1305330s(669759s|1.95(23 GFLOPS

of the main benefits of this approach is that ECJ hasn’t been modified at all in
order to support the BOINC framework. Thus, the obtained benefit is big due to
the researcher obtains a parallelized ECJ environment, without touching a line of
ECJ source code.

4.2 R a Statistical tool

R is an open source statistical software!?. R does not provide a statically linked
version, so there are two options if we want to use it with BOINC: (i) compile it
building a statically version or (ii) install it on all clients before the BOINC client.
The faster and easiest way is to install it on all the clients, moreover when most
of the GNU/Linux distributions have R packaged. Thus, we set up a laboratory
with 20 GNU/Linux computers in the University of Extremadura, Mérida, Spain
where we performed a proof of concept.

In all the clients we installed the R environment, and after that the BOINC
client (see Fig.3). In this way, the BOINC client through the starter script will
be able to run any R application or script. The R script is a proof of concept, so
the results and measurements of the T., and Tp are negligible due to the time
it tooks to run the script is not noticeable. The BOINC project is composed with
the following items:

— Wrapper. The wrapper has its job.zml file that specifies which is the binary to
be started.

10 For more information see http://www.r-project.org/

— Starter. The starter basically sets up the R environment for running later the
R script.

— R script. This is the “real” legacy application. It’s the R problem to be solved
by the script.

The R script basically computes some float and integer operations and finally
writes an output file with the results. We set up a WU for 30 results, and all of
them were uploaded into the server, so the experiment was successful. In spite of
the successful of the proof of concept, R does not have a checkpointing facility
so running big jobs of R could never be finished if the client machine does not
be turned on at least the necessary time to complete one job. Thus, BOINC is
a good option to run R scripts under controlled environments like laboratories of
computers, where the researchers can control all the PCs for a given period of
time. However, if we are talking of pure VGC, the R scripts could not finish if
the home user powers off the computer or interrupts BOINC repeatedly in sort
time intervals. Due to the problem of checkpointing in R, it is not trivial to run

Fig. 3. R and BOINC installation

BOINC
Server

Client PC Client PC Client PC

it inside BOINC, so we propose the use of Virtual Machines (VMs). The VMs
allows us to create virtual hosts where any software can be loaded and run, and
best of all where it is possible to restart the whole system from a previous saved
state. The next subsection explains the benefits of employing VMs within BOINC
infrastructure.

4.3 Virtual Machines within BOINC Infrastructure

The Virtualization is a technology [5, 11] which allows to create virtual hosts where
an OS can be loaded and run, so any scientific application can be run within this
technology. The benefits of using this technology are the following ones:

— Resource Isolation. Thanks to virtualization each VM is isolated inside the
host machine. This feature is very useful from the standpoint of security, the
problems that can arise will affect only to the VM and not to the host machine.

— Guest OS instantiation. This feature allows the creation of OS images which
can be loaded into any machine that is compatible with the employed virtual-
ization technology.

— Snapshots or state serialization (also known as checkpointing). This feature
lets restart a complete system from a previous saved state.

Therefore, thanks to the snapshots feature, BOINC can have for any IAP, a check-
pointing facility. Moreover, by using the VMs, the scientists do not have to take
care of the hardware and OS target platform, because the virtualization creates
a special layer where the real hardware and OS are hidden. Furthermore, the re-
searchers do not have to modify any single source code line, because with the
virtualization they can create copies of their own scientific environments and run
them in any BOINC platform. In conclusion, BOINC with a virtualization tech-
nology lets create custom executable environments with VGC.

There are different products that provides a virtualization technology. We have
chosen VMware Player [11] because it is multiplatform, free, and runs in the same
platforms as BOINC does. This last point is important because one of the goals
of BOINC is to harness all the available resources.

In order to check the new approach one experiment was performed. We chose
a Computer Vision problem which uses Matlab'! and several tool boxes. The
computer vision problem is a real life and time consuming problem (18 hours in
average to obtain a solution), that has already been solved in a sequential fashion
(see [13] for more details).

As we have explained, the Matlab environment employs several toolboxes,
therefore deploying this environment within BOINC is very difficult. Moreover
if the wvirtualization technology is not used, the Matlab-BOINC project lacks a
checkpointing facility, so most of the WU will never get finished. Thus, the scien-
tists are only required to prepare an image of their system: in this case a Debian
GNU/Linux OS and the Matlab software. Then the BOINC administrator creates
the BOINC project using the image as other input file.

Two laboratories from the University of Extremadura, Spain at Centro Uni-
versitario de Mérida were used as the test bed. In total, 20 PCs were employed, 10
with MS. Windows OS and the rest with GNU/Linux. All the computers were set
up with BOINC and VMware (for further details see [7]). In summary, the BOINC
project was composed with the following items:

— VMuware Image. VMware employs images to run VMs, so the researcher has to
provide one of this images. The image is a virtual PC with its hardware and
OS, in other words, the scientific environment that the researcher needs.

— Starter. This script is needed to start the VMware Player software. Addition-
ally, it will be used to take snapshots of the running VM by sending a signal
to the VMware player. If the client powers off the PC or stops the BOINC
execution, the starter will take care of resuming the computation from the
last saved snapshot.

— Wrapper. The wrapper and its job.zml file as in all the previously explained
experiments.

1 For more information see http://www.mathworks.com/

While the experiment was running, the GNU/Linux laboratory was stopped be-
cause some administrative tasks were needed to be performed. This behavior is
the hoped behavior from a VGC technology. The other 10 Windows PCs produced
12 solutions during 48 hours. The consumed time by each solution was in average
of 18 hours. The total time consumed to produce the 12 solutions by a sequential
run was 215 hours, so the obtained speed up was of 4.48. The CP obtained was of
25.76 GFLOPS (see Tab. 2). In conclusion, the virtualization technology opens the

Table 2. Execution time for Sequential and VM-BOINC Matlab

Tseq | T |Acc. CP
‘75 Gen, 75 Ind.|215h{48h|4.48|25.67 GFLOPS

possibility of running complex TAP such as Matlab, R, Java, etc. within a BOINC
infrastructure. Moreover, the researcher benefits from this approach because his
applications does not need to be ported or modified in any way and harness the
parallel BOINC infrastructure. Additionally, the VM allows to never lose the on
going work because of the virtualization’s snapshot feature.

5 Conclusions

We have presented a new approach to run IAP such as Java, Matlab, R, etc. The
new approach harness the program called wrapper which enables to run “legacy
applications” (applications that do not use the BOINC API) by extending its
functionality with a new program called starter that is in charge of setting up the
environment to run the IAP. Finally we have proposed an extension by introduc-
ing the virtualization technology. We have proposed the use of VMs because the
wrapper and the starter cannot assure the execution of IAP when a checkpointing
facility is not embedded in the IAP. Thanks to the snapshots feature of the VMs
any TAP can be run within BOINC. Moreover, without modifying the source code
of the TAP.

We have tested our approach with three different experiments using different
IAPs: ECJ, R and a Matlab. The ECJ experiment showed how is possible to run
any Java software within BOINC and without the necessity of previously installing
Java. The R experiment was a proof of concept that showed how it is possible to
run R scripts in BOINC PCs by installing also the R environment in the client.
Moreover, we explained how this last approach is not sufficient due to R lacks from
a checkpointing facility. For this reason we extended BOINC with a virtualization
layer. The Matlab experiment showed how it is possible to run any TAP within
BOINC by installing a VM software in the client, demonstrating the benefits of
using VMs within BOINC.

As a future work, it will be interesting to add to BOINC the possibility of
installing TAP/VMs when they are necessary or at least warning the user about
the lack of the desired IAP. Some discussion have been done in this way by the

BOINC community and also related to the virtualization layer in the Pangalactic
forum of 2007.

6 Acknowledgments

This work was supported by Catedra CETA-CIEMAT Universidad de Extremadura,
Regional Gridex project PRIO6A223 Junta de Extremadura and National Nohnes
project TIN2007-68083-C02-01 Spanish Ministry of Science and Education.

References

1. M. Allen. “Do it yourself climate prediction”. Nature (1999).

2. D. Anderson. “Boinc: a system for public-resource computing and storage”. In “Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on”, pp.
4-10 (2004).

3. D. Anderson, G. Fedak. “The Computational and Storage Potential of Volunteer
Computing”. Proceedings of the IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGRID’06) (2006).

4. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer. “Seti@home: an
experiment in public-resource computing”. Commun. ACM, 45(11), 56-61 (2002).
ISSN 0001-0782. doi:http://doi.acm.org/10.1145/581571.581573.

5. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield. “Xen and the art of virtualization”. Proceedings of the nine-
teenth ACM symposium on Operating systems principles, pp. 164-177 (2003).

6. G. Fedak, C. Germain, V. Neri, F. Cappello. “XtremWeb: A Generic Global Com-
puting System”. Proceedings of the IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID’01) (2001).

7. D. L. Gonzélez, F. F. de Vega, L. Trujillo, G. Olague, B. Segal. “Customizable exe-
cution environments with virtual desktop grid computing”. Parallel and Distributed
Computing and Systems, PDCS (2007).

8. J. Koza. “A hierarchical approach to learning the Boolean multiplexer function”.
Rawlins [1863], pp. 171-192.

9. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA (1992). ISBN 0-262-11170-5.

10. J. B. M. Litzkow, T. Tannenbaum, M. Livny. “Checkpoint and migration of unix
processes in the condor distributed processing system”. Technical report, University
of Wisconsin (1997).

11. J. Nieh, O. C. Leonard. “Examining VMware”. j-DDJ, 25(8), 70, 72-74, 76 (2000).
ISSN 1044-789X.

12. G. Robert-Démolaize. Design and Performance Optimization of the LHC Collimation
System. Master’s thesis, CERN (2006).

13. L. Trujillo, G. Olague. “Synthesis of interest point detectors through genetic pro-
gramming.” In M. Cattolico, editor, “Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO 2006, Seattle, Washington, USA, July 8-12,
2006”, volume 1, pp. 887-894. ACM (2006).

