

Aalborg Universitet

Finding Similarity Functions for Classification with Genetic Programming

Preliminary Results

Guzman-Trampe, Juan; Cruz-Cortes, Nareli; Ortiz-Arroyo, Daniel

Published in:
Proceedings of EVOLVE 2012

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Guzman-Trampe, J., Cruz-Cortes, N., & Ortiz-Arroyo, D. (2012). Finding Similarity Functions for Classification
with Genetic Programming: Preliminary Results. In C. Coello-Coello, & O. Schuetze (Eds.), Proceedings of
EVOLVE 2012: A Bridge between Probability, Set Oriented, Numerics, and Evolutionary Computation {II}

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 09, 2024

https://vbn.aau.dk/en/publications/68cdef77-1106-4bc0-b09b-6c98b740a850

Finding Similarity Functions for Classi�cation with

Genetic Programming: Preliminary Results

Juan Evencio Guzman-Trampea, Nareli Cruz-Cortésa and Daniel Ortiz-Arroyob

aCentro de Investigación en Computación
del Instituto Politécnico Nacional (CIC-IPN), Mexico 1

gtrampea10@sagitario.cic.ipn.mx,nareli@cic.ipn.mx

bCISLab, Department of Electronic Systems
Aalborg University, Denmark

do@es.aau.dk

Abstract

In this paper we propose a Genetic Programming algorithm designed with a coevolutive scheme for

classi�cation problems. Our algorithm searches for similarity functions that are applied to compare

pairs of objects from a supervised sample. The output of these functions can be used in similarity-based

classi�ers.

1 Introduction and Related Work

Classi�cation is a machine learning problem that basically consists in determining the class of an object
given its features. In supervised classi�cation, the goal is to determine classes of objects from patterns
learned from a training labeled set. A classi�er trained using supervised learning, generalizes the learned
patterns and applies them to unseen unlabeled objects. Contrarily, in unsupervised learning, classi�ers
do not require a training set; objects are placed together with other objects with whom they share more
similarity. Many classi�cation methods have been proposed in the literature using a wide variety of
techniques such as Arti�cial Neural Networks, Bayesian Networks, decision trees, and K-Nearest Neighbor
(KNN) or by using a combination of some of these techniques [1].
Genetic Programming (GP), like Genetic Algorithms is inspired by Darwin's natural evolution theory. GP
codi�es population individuals that represent a solution to a problem (or a part of it), using complex
language representations.
In coevolutive models in GP, two or more populations evolve using cooperative or competitive schemes. In
cooperative schemes each population represents a part of the problem to be solved. Therefore, together
these populations solve problems using a divide and conquer approach. Contrarily, in competitive schemes,
individuals compete against each other, with the goal of obtaining the best �tness value, at the expense
of discarding other candidate solutions.
Distance functions are used in classi�cation to determine how close two patterns lie within a prede�ned
metric space. Similarity Functions are also used for the same purpose, but they have the advantage of
being easier to generate since they have to satisfy only partially the properties of distance functions.
In general classi�cation tasks can be broadly divided into three groups: preprocessing, model extraction,
and post-processing. GP has been applied in all these tasks [2].
One of the most important preprocessing tasks in classi�cation is feature selection. In feature selection, the
vector containing the original features F of an object is transformed into another vector F' with a reduced
number of features that either, maximizes or is at least as good as F with respect to some criterion. GP
has been applied in feature selection to reduce the dimensionality of the problem by selecting the features
that are most relevant to de�ne classes [3].

1The authors acknowledge the support of SIP-IPN through project 20120002

EVOLVE 2012
Mexico City, Mexico, August 07-09 2012
ISBN 978-2-87971-112-6 ISSN 2222 - 9434

In the model extraction task each individual solution generated by GP represents either a classi�er, or
a part of it. Using evolution the classi�ers that show the highest quality are selected. GP has been
used in this case to evolve for instance classi�cation rules, discriminant functions, or decision trees [4].
For example, in [5] is proposed a GP to generate a classi�er, where the individuals are mathematical
expressions that combine features and coe�cients. The coe�cients are integer values, and the features are
characters indicating their position in the pattern's description. A similar work can be found in [6] where
the aim is to predict whether a company increases its stock value compared with the previous year, the
individuals are logical rules, instead of the mathematical expressions.
Post-processing tasks comprise several techniques, including ensembles of classi�ers. In this approach, a
group of classi�ers is combined with the goal of producing together better results. GP has been utilized
in this case to either optimize the base classi�ers used in the ensemble or to combining di�erent classi�ers
in the most optimal way [7].
Classi�ers can be constructed using searching techniques to �nd functions that could be used to calculate
the degree of similarity among objects' features (a technique called partial similarity) or by searching for
similarity functions that could be used to compare whole objects (known as complete similarity).
This work uses GP together with a cooperative coevolutive scheme to search for partial similarity and
complete similarity functions. The functions found by our approach can be used as inputs to similarity-
based classi�cation algorithms such as K-NN, or others.
This document is organized as follows, in Section 2 we provide some de�nitions and describe the problem
statement. Section 3 presents our approach with some detail. Section 4 describes the experiments and
results obtained. Finally, in Section 5 we state our conclusions.

2 De�nitions and Problem Statement

A supervised classi�cation problem SCP can be de�ned as SCP = {O,R,C} where O is a set of training
patterns, and (|O| = n) is the number of elements in the traning set, R is the set of features that de�ne
the objects, each with a domain dk = {r1k, · · · , rnk}, and C is the set of tags representing the classes.
Let Oi and Oj be two objects in O. We are interested in �nding the partial similarity function for each
k-th feature

fk(Oi, Oj), ∀k ∈ |R|,

that best describes the similarity between the two objects i, j regarding feature r:

fk : dk × dk → <

Additionally, the complete similarity function:

F (Oi, Oj) = (f1(Oi, Oj), · · · , fk(Oi, Oj), · · · , fr(Oi, Oj))

denotes the similarity degree between two objects Oi and Oj. The similarity functions must ful�ll the
following characteristic:

F : <n ×<n → {Fmin, Fmax} where Fmin, Fmax ∈ <

F (Oi, Oj) =

{
Fmax If C(Oi) = C(Oj)
Fmin Otherwise

Where Fmin and Fmax are the lowest and the highest possible values of F respectively, and C(O) is the
class of the object. Fmax is obtained by comparing objects of the same class, and Fmin is obtained when
the objects belong to di�erent classes.

3 Proposed Approach

We use GP to �nd the similarity functions that best describe the relationships between features and objects
in a supervised sample. These functions can then be used as input to similarity-based classi�ers, such as
K-Nearest Neighbors (KNN).
To �nd the similarity functions we use a coevolution scheme splitting the problem into two parts. Firstly,
the partial similarity functions between pairs of features are searched for. Secondly, the complete similarity
functions are evolved and those individuals having the best �tness value are selected. This last step includes
also a way in which the partial functions must be combined.
To illustrate the procedure, consider two populations A and B that will coevolve. The population A will
search for the relationships between complete objects given the population B i.e. the complete similarity
functions will be generated. The second population B searches for the relationships between single features
i.e. the partial similarity functions will be generated.
In both populations the parent and survivor selection and variation operators (crossover and mutation)
are independently applied but they both are used to compute �tness values.
The overall procedure can be described as follows:

1. Execute the GP algorithm to learn the partial and complete similarity functions based on the training
sample.

2. For an unknown pattern, compute the similarity values using the similarity functions.

3. Apply a similarity-based classi�er algorithm.

3.1 Individuals Representation

The individuals in GP are represented with tree structures. Our scheme uses two populations, A and
B, where A will evolve trees representing the relationships between complete objects. The individuals in
population A are composed by operators (+, -, *, ÷) and terminals (the partial functions f1, ... , fr,
where r is the number of features de�ning the objects) additionally to the integer numbers into the range
[0,100]. The reason to select integer numbers is to limit the possibilities, and the range was obtained
experimentally.
Each individual in B is composed by r trees representing the features. These individuals are conformed
by operators (+, -, *, ÷) and terminals that correspond to the k-th feature values of one pair of objects
(Oi, Oj). This is denoted as Xm

k and XM
k where the superscript refers to the minimum (m), or to the

maximum (M) of both values. Additionally, the integer numbers in range [0,100] are also terminals. These
representations are illustrated in Figures 1 and 2.

3.2 Fitness Function

In a coevolutive scheme, the �tness value of individuals in population A depends on the individuals in
population B, and vice-versa. Using the individual representations of populations A and B, it is possible
to obtain similarity functions completely de�ned, if one individual from population A is combined with
one individual from population B. Thus, by combining an individual ai with every other individual from
B, we will obtain |B| completely de�ned similarity functions. These |B| similarity functions, are used to
calculate the �tness of the individual ai by counting the objects that are correctly classi�ed when applying

Figure 1: Example of an individual of the population A

Figure 2: Example of an individual of the population B

a similarity-based classi�er to the training set O. The classi�cation algorithm takes as input all the |B|
similarity values.
Assuming that we have the following training set of objects Oi:

O1 = {1, 1, 1, 3 : 1}
O2 = {1, 1, 2, 2 : 1}

...
O24 = {2, 2, 2, 3 : 3}

Then, an individual ai in population A (a complete function) could be formed with the operators and the
terminals {f1,f2,f3, f4} additionally to integers in the range [0,100]. For instance, two possible individuals
a1 and a2 could be generated as:

a1 =
f1 ∗ (f2 − f3)

f4 ∗ (f1 + 5)
(1)

and
a2 = f2 ∗ f4 + (88− f3) + f1 (2)

On the other hand, an individual bj in the population B is formed by four trees f1, f2, f3, and f4 where
each fk refers to the k-th feature. For instance, the tree f1 may contain the values that some object's
feature (like age for example) could take. An individual b1 is represented by:

b1

f1 = XM

1 −Xm
1

f2 = (XM
2)2 −Xm

2 + (XM
2 /Xm

2)
f3 = Xm

3 +XM
3

f4 = XM
4 ∗Xm

4

The �tness value of an individual a1, is calculated by combining it with each other individual in population
B to obtain |B| complete similarity functions. These similarity functions are then used to classify the
training set O. The �tness value is the number of correctly classi�ed objects.
An example of how one completely de�ned similarity function is obtained by combining a1 with the
individual b1 of B is shown next,

a1 =
(XM

1 −Xm
1) ∗ (((XM

2)2 −Xm
2 + (XM

2 /Xm
2))− (Xm

3 +XM
3))

(XM
4 ∗Xm

4) ∗ ((XM
1 −Xm

1) + 5)
(3)

4 Experiments

To validate our proposal, we performed a series of experiments. The test datasets were taken from the UCI
Machine learning Repository2. Table 1 contains a description of the Pima Indian Diabetes, Haberman's
Survivors, Monks Problem, Breast Cancer Wisconsin (Diagnostic), and Blood Transfusion Service Center
data sets.
In our experiments 80% of the data set was randomly selected as the training set, and the remaining 20%
utilized in the validation phase. The parameters values applied to the experiments are shown in Table 2:
Our experiments consisted in applying the proposed GP to �nd the similarity functions to the �ve test
datasets. The K-NN algorithm was utilized to perform the classi�cation to obtain the �tness values. The
obtained similarity functions were applied to the validation dataset. The percentage of correctly classi�ed
objects from 20 independent runs is presented in Table 3.
In addition to that, we applied an Euclidean distance to the K-NN algorithm to the same test datasets.
The results obtained are shown in Table 4. Thus, from these we can observe that our results are similar
to the Euclidean distance ones.

2http://archive.ics.uci.edu/ml/datasets.html

Dataset Objects Features Classes Attribute types
Pima Indian Diabetes 768 8 2 Integer and real
Haberman's Survivors 306 3 4 Integer numbers
Monks Problems 432 7 2 Categorical
Breast Cancer Wisconsin 569 30 2 Real numbers
Blood Transfusion Service Center 748 5 2 Real numbers

Table 1: Test data sets

Parent Selection Roulette Wheel
Crossover Rate 0.9
Mutation Rate 1/(Number of leafs in the tree)
Size of Population A 20
Size of Population B 30
Number of Generations 400

Table 2: Parameter values used in the experiments

Dataset Worst (%) Best (%) Average Std. Dev.
Pima Indian Diabetes 67.97 74.15 70.66 2.69
Haberman's Survivors 80.85 91.24 87.36 3.25
Monks Problem 70.75 74.54 72.59 1.8
Breast Cancer 72.21 75.8 75.10 0.48
Blood Transfusion Service Center 70.2 72.21 71.00 0.6

Table 3: Statistical results from 20 independent runs of the proposed method.

Dataset Worst (%) Best (%) Average Std. Dev.
Pima Indian Diabetes 67 67 67 1.29
Haberman's Survivors 73 75 74 1.08
Monks Problem 73 80 78 1.8
Breast Cancer 93 93 93 0
Blood Transfusion Service Center 72 72 72 0

Table 4: Results of the 20 runs of the euclidean classi�er.

5 Conclusions and Future Work

We proposed a GP algorithm that uses a coevolutive scheme to �nd partial and complete similarity func-
tions. The partial similarity functions �nd similarity values between pairs of object's features. The
complete similarity functions �nd similarity values between objects by combining the partial functions to
calculate the similarities of complete objects. Our results show that our approach is able to �nd these
complete similarity functions. These functions are used to compare objects' similarities for classi�cation.
Our experiments show moderately competitive results when compared to other similar approaches. How-
ever, these results are preliminary. It is necessary to conduct more experiments so that the parameters
of our model could be tuned optimally and �nd other �tness functions that we could use, together with
testing the similarity functions found by our approach with other similarity-based classi�ers.

References

[1] Miqueles Teresa, Bengoetxea, and Larrañaga Pedro. Evolutionary computation based on bayesian
classi�ers. International Journal On Applied Mathematics and Computer Science, 14(3):335�349, 2004.

[2] P.G. Espejo, S. Ventura, and F. Herrera. A survey on the application of genetic programming to
classi�cation. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 40(2):121 �144, March 2010.

[3] Guo H., Jack LB, and Nandi AK. Feature generation using genetic programming with application to
fault classi�cation. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35:89�99, 2005.

[4] Mitsuyoshi Shirasaka, Qiangfu Zhao, Omar Hammami, Kenichi Kuroda, and Kazuyuki Saito. Auto-
matic design of binary decision trees based on genetic programming. In Proc. The Second Asia-Paci�c
Conference on Simulated Evolution and Learning (SEAL'98, 1998.

[5] Kishore J.K., Patnaik L. M., Mani V., and Agrawal V. K. Application of genetic programming for
multicategory pattern classi�cation. IEEE Transactions On Evolutionary Computation, 4(3):242�258,
2000.

[6] Doherty Gregory. Fundamental analysis using genetic programming for classi�cation rule induction. In
John Koza, editor, Genetic Algorithms and Genetic Programming, pages 45�51. Stanford Bookstore,
2003.

[7] William B. Langdon, S. J. Barrett, and B. F. Buxton. Combining decision trees and neural networks
for drug discovery. In Genetic Programming, Proceedings of the 5th European Conference, EuroGP
2002, volume 2278 of LNCS, pages 60�70. Springer-Verlag, 2002.

