
Improving Software Remodularisation

Mathew James Hall

Submitted for the degree of Doctor of Philosophy

Department of Computer Science

March 2013

Supervisor: Dr Phil McMinn

University of Sheffield

Abstract

Maintenance is estimated to be the most expensive stage of the software
development lifecycle. While documentation is widely considered essential
to reduce the cost of maintaining software, it is commonly neglected. Auto-
mated reverse engineering tools present a potential solution to this problem
by allowing documentation, in the form of models, to be produced cheaply.

State machines, module dependency graphs (MDGs), and other software
models may be extracted automatically from software using reverse engi-
neering tools. However the models are typically large and complex due to
a lack of abstraction. Solutions to this problem use transformations (state
machines) or “remodularisation” (MDGs) to enrich the diagram with a hi-
erarchy to uncover the system’s structure.

This task is complicated by the subjectivity of the problem. Automated
techniques aim to optimise the structure, either through design quality met-
rics or by grouping elements by the limited number of available features.
Both of these approaches can lead to a mismatch between the algorithm’s
output and the developer’s intentions. This thesis addresses the problem
from two perspectives: firstly, the improvement of automated hierarchy
generation to the extent possible, and then augmentation using additional
expert knowledge in a refinement process.

Investigation begins on the application of remodularisation to the state
machine hierarchy generation problem, which is shown to be feasible, due
to the common underlying graph structure present in both MDGs and state
machines. Following this success, genetic programming is investigated as a
means to improve upon this result, which is found to produce hierarchies
that better optimise a quality metric at higher levels.

The disparity between metric-maximising performance and human-acceptable
performance is then examined, resulting in the SUMO algorithm, which in-
corporates domain knowledge to interactively refine a modularisation. The
thesis concludes with an empirical user study conducted with 35 partici-
pants, showing, while its performance is highly dependent on the individual
user, SUMO allows a modularisation of a 122 file component to be refined
in a short period of time (within an hour for most participants).

Acknowledgements

Gratitude is firstly owed to my supervisor, Dr Phil McMinn for his tireless
and continued support, without which I would not have been able to make
the achievements detailed in this thesis. I would also like to thank Dr Neil
Walkinshaw for his contributions to the joint work undertaken through-
out my PhD and for the invaluable advice he has given me throughout my
project. Thanks also go to Dr Graham Birtwistle for his advice and support
during both my time in Sheffield as both an undergraduate and postgrad-
uate. Gratitude is also owed to Dr Kirill Bogdanov for his work that led
to the start of this PhD and his input to my research at the early stages.
Additionally, I would like to thank Dr Steve Swift for his willingness to
share some of the case studies used in this work. I would also like to thank
the other members of the Verification and Testing research group for cre-
ating such an interesting, inspiring, and supportive environment in which
to conduct research. I would also like to thank Dr Henry Addico, Ciprian
Dragomir and Dr Ramsay Taylor for their support and their encouragement
to take a break every now and then.

Finally, my partner Kat, and my family are deserving of a million thanks for
their amazing support and tolerance throughout my postgraduate degree at
Sheffield.

My PhD was supported by the Engineering and Physical Sciences Research
Council under the REGI grant, number EP/F065825/1. I am eternally
grateful for this, and the otherwise inaccessible opportunities and avenues
it has enabled me to pursue.

Declaration

The work presented in this thesis is original work undertaken between Oc-
tober 2009 and December 2012 at the University of Sheffield. Pieces of this
work have been published elsewhere:

• M. Hall, P. McMinn, and N. Walkinshaw. 2010. Superstate identi-
fication for state machines using search-based clustering. In
Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2010, Portland, Oregon, USA, July 7-11, 2010). ACM,
1381–1388.

• M. Hall. 2011. Search based hierarchy generation for reverse
engineered state machines. In Proceedings of SIGSOFT/FSE’11
19th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (FSE-19) and ESEC’11: 13th European Software Engineer-
ing Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011.
ACM, 392–395.

• M. Hall, N. Walkinshaw, and P. McMinn. 2012. Supervised Soft-
ware Remodularisation. In Proceedings of the 28th International
Conference on Software Maintenance (ICSM 2012), Riva del Garda,
Trento, Italy, 472–481.

• M. Hall, and P. McMinn. 2012. An Analysis of the Performance
of the Bunch Modularisation Algorithm’s Hierarchy Genera-
tion Approach. In Fast Abstracts of the 4th Symposium on Search
Based Software Engineering (SSBSE 2012), Riva del Garda, Trento,
Italy, 19–24.

Contents

1 Introduction 1

1.1 Reverse Engineering . 1

1.1.1 Representing Software as a Graph 2

1.1.2 Complexity of Flat Graph-based Representations 3

1.1.3 Managing Complexity with Hierarchies 4

1.2 The Problem of this Thesis: Hierarchy Generation for Graph-based Soft-
ware Models . 6

1.3 Aims and Objectives . 7

1.4 Organisation and Contributions of the Thesis 7

2 Literature Review 11

2.1 Graph Representations of Software . 11

2.1.1 State Machines . 12

2.1.2 Hierarchical Extensions to State Machines 13

2.1.3 Module Dependency Graphs . 13

2.1.4 The Common Problem: Automating the Abstraction Process . . 16

2.2 Evaluating Hierarchies . 16

2.3 Metaheuristic Algorithms . 21

2.3.1 Hill Climbing . 22

2.3.2 Random Mutation Hill Climbing (or 1+1 EA) 22

2.3.3 Genetic Algorithms . 22

2.3.4 Genetic Programming . 24

2.3.5 Performance of Metaheuristic Algorithms 25

2.4 Automatic Hierarchy Construction for State Diagrams 26

2.4.1 Business Process Mining . 28

v

vi CONTENTS

2.5 Remodularisation . 28

2.5.1 ACDC: Pattern-based Remodularisation of MDGs 29

2.5.2 Clustering . 29

2.5.3 Software Clustering . 32

2.5.4 Concept Clustering . 35

2.5.5 Graph Clustering . 36

2.5.6 Search Based Remodularisation 37

2.5.7 Performance of Remodularisation Algorithms 43

2.6 Summary of Applicable Techniques . 45

2.6.1 Aim 1: Applying Remodularisation to State Machines 45

2.6.2 Aim 2: Addressing Qualitative Issues with Automated Remodu-
larisation . 46

2.7 Concluding Remarks . 47

3 Remodularisation of State Machines 48

3.1 Modularising State Machines with Bunch 49

3.1.1 Generating Bunch-compatible Input 50

3.1.2 Evaluation . 52

3.1.3 Case Studies . 52

3.1.4 Metrics . 54

3.1.5 Results . 54

3.1.6 Conclusions of the Empirical Study 58

3.2 Over-fitting in Bunch . 58

3.2.1 Method . 59

3.2.2 Results . 59

3.3 Balanced Hierarchy Limitation . 60

3.3.1 Unbalanced Hierarchies in Open Source Software 61

3.3.2 Results . 62

3.4 Unbalanced Hierarchies to Improve Bunch Results 62

3.4.1 Random Node Deletions . 63

3.4.2 Mean MQ . 63

3.4.3 Methodology . 64

3.4.4 Results . 64

CONTENTS vii

3.5 Conclusions . 66

4 Search-based Hierarchical Clustering 67

4.1 Avoiding Over-fitting in Hierarchy Construction 68

4.1.1 Searching Hierarchies . 69

4.2 Crunch . 71

4.2.1 Hierarchy Transformation Representations 72

4.2.2 Label-based Representations . 76

4.2.3 Summary of Representations . 78

4.2.4 Search Algorithms . 78

4.2.5 Summary . 79

4.3 Partitioning Performance of Crunch with MQ 80

4.3.1 Methodology . 80

4.3.2 Results . 84

4.3.3 Discussion . 87

4.3.4 Conclusions of the Partitioning Experiment 89

4.4 Hierarchical Performance of the Symbol Gene 89

4.4.1 Methodology . 89

4.4.2 Results . 92

4.4.3 Conclusions of the Hierarchical Study 97

4.5 Alternative Fitness Functions . 98

4.5.1 Methodology . 98

4.5.2 Fitness Functions . 98

4.5.3 Search Configuration . 101

4.5.4 Metrics . 101

4.5.5 Results . 101

4.5.6 Discussion . 104

4.5.7 Conclusions of the Empirical Study 106

4.6 Conclusions . 106

5 SUMO: Supervised Software Remodularisation 108

5.1 Refining Modularisations . 109

5.2 Interactively Refining Modularisations 110

viii CONTENTS

5.2.1 Motivating Example . 110

5.2.2 The SUMO Algorithm . 111

5.2.3 Modularisation as a Constraint Satisfaction Problem 114

5.3 Sizes of the R+ and R− Sets . 115

5.3.1 Worst-case . 115

5.3.2 Best-case . 116

5.3.3 General Case . 116

5.4 Empirical Evaluation of the SUMO Algorithm 117

5.4.1 Methodology . 117

5.4.2 Case Studies . 118

5.4.3 Simulated Authoritative Decompositions 119

5.4.4 Modularisation . 119

5.4.5 Simulating Interactive Refinement 119

5.4.6 Results . 120

5.4.7 Discussion . 126

5.4.8 Threats to Validity . 126

5.5 Conclusions . 127

6 Human Factors Affecting SUMO 128

6.1 Research Questions . 129

6.2 The SUMO Tool . 129

6.2.1 Seeding the Constraint Solver . 131

6.2.2 Committed Edge Visualisation 132

6.2.3 The Revised SUMO Algorithm 132

6.3 Methodology . 133

6.3.1 Stage 1: Tutorial . 134

6.3.2 Stage 2: Live Demonstration . 134

6.3.3 Stage 3: Example Task . 134

6.3.4 Stage 4: Main Task . 135

6.3.5 Pilot Study . 135

6.4 Empirical Study . 137

6.4.1 Results . 137

6.5 Discussion . 143

CONTENTS ix

6.5.1 Threats to Validity . 144

6.6 Conclusions . 144

7 Conclusions & Future Work 146

7.1 Summary of Achievements . 146

7.1.1 Remodularisation of State Machines 147

7.1.2 Searching Hierarchies . 148

7.1.3 Domain Knowledge for Refinement 148

7.1.4 Overall Conclusions . 149

7.2 Limitations and Future Work . 149

7.2.1 Crunch . 149

7.2.2 SUMO . 152

7.3 Final Remarks . 153

Bibliography 154

A Appendix 165

A.1 Help Sheet Used in the Experiment . 166

List of Tables

2.1 Similarities of the models studied in this thesis 16

3.1 Summary statistics for level 0 of the alarmclock case study 55

3.2 Summary statistics for level 0 of the tamagotchi case study 55

3.3 Summary statistics for level 1 of the tamagotchi case study 56

3.4 Case studies from the survey . 62

3.5 Mean depths of classes in the each case study 62

3.6 Mutants with higher Mean MQ values 65

4.1 Summary of the representations in Crunch 78

4.2 The case studies used in the experiments 81

4.3 Summary statistics for the flat experiments 85

4.4 Statistically significant higher median MQ values 86

4.5 Depth values produced by each search type 92

4.6 Top MQ; significant results where Crunch values are higher are indicated
in bold type . 93

4.7 Bottom MQ; significant results where Crunch values are higher are in-
dicated in bold type . 94

4.8 Sum MQ; significant results where Crunch values are higher are indicated
in bold type . 95

4.9 An overview of each case study. 99

4.10 Summary statistics for the fitness function experiment 102

5.1 Case studies used in the experiments . 118

5.2 Sizes of the mutant MDGs generated from each study and the number
of steps required to reach each percentile of closeness to the target MDG 121

x

List of Figures

1.1 An example of a large complex finite state machine 2

1.2 The MDG for the Linux kernel 3.2 . 3

1.3 A state machine (a) and its statechart equivalent (b) 5

1.4 The path of investigation taken in the thesis 8

2.1 A state machine that accepts strings ending in 0110 12

2.2 The MDG for Linux 3.2 (Figure 1.2 reproduced for convenience) 14

2.3 Overview of the Linux kernel’s directory structure 15

2.4 The process of a genetic algorithm . 23

2.5 A tree-based GP genotype corresponding stack-based GP representation 24

2.6 Examples of fitness landscapes. 26

2.7 an example of the use of k -means with a 2D data set, k = 3 30

2.8 Cluster assignments with (a): single, (b) complete linkage [125] 31

2.9 A flat label chromosome . 31

2.10 A hierarchical label gene . 32

2.11 Iterative hierarchy generation in Bunch; each part is a search, from the
bottom level in part (a) to the top level in part (f) 39

3.1 A simple state machine encoded in the Bunch MDG input format 50

3.2 Modularising a state machine with Bunch 50

3.3 The original and clustered state machine for a water pump controller . . 51

3.4 The alarmclock case study . 53

3.5 The tamagotchi case study . 53

3.6 Correctly clustered alarmclock case study, with an MQ of 1.54 55

3.7 One solution produced for the tamagotchi case study 56

3.8 Violin plot and density plot of normalised MQ values, N = 2744 60

xi

xii LIST OF FIGURES

3.9 (a) Unbalanced, (b) balanced hierarchy 61

3.10 Layers in an unbalanced hierarchy . 64

3.11 Scatter plot of mean MQ values for originals and mutants 65

4.1 Random subtree crossover producing invalid trees 70

4.2 Crunch architecture overview; arrows represent data flow 72

4.3 An excerpt of a linear GP clustering individual 73

4.4 The starting state of the tree prior to modification by the clustering
program . 73

4.5 Assignments of bits to instruction components for the Integer and Bit-
field genes . 74

4.6 A flat label chromosome . 76

4.7 A hierarchical label gene . 77

4.8 The tree for the chromosome in Figure 4.7 77

4.9 A hierarchical label gene which contains a cyclic dependency 78

4.10 The tree for the chromosome in Figure 4.9, with an orphaned branch . . 78

4.11 Box plot of the final MQ values for each search type 84

4.12 Violin plot of fitness values . 87

4.13 Layers in an unbalanced hierarchy . 91

4.14 Box plot of sum MQ values produced . 96

4.15 Box plot of MQ values produced by search type 103

4.16 Change in fitness over evaluations for MQ and Cyclomatic fitness functions104

5.1 The example MDG, clustered by Bunch 110

5.2 The process of evaluating SUMO on a case study. 117

5.3 Violin plot of iterations required for convergence for each case study . . 121

5.4 Improvement (percent) for 10 SUMO runs for each case study 123

5.5 Scatter plot of iterations taken to converge versus MoJoFM score 124

5.6 Scatter plot of relations taken to converge against minimum number of
required relations, given by Equation 5.7 125

6.1 The SUMO user interface . 130

6.2 Histogram of time taken to finish the main task 138

6.3 Histogram of iterations taken to finish the main task 138

6.4 Number of relations provided by participants 139

LIST OF FIGURES xiii

6.5 Stacked bar chart of number of relations provided by users 140

6.6 Rand similarity for each package and the final package over time 141

6.7 Improvement over time for each iteration 141

6.8 Scatter plot of time taken versus number of iterations 142

7.1 The path of investigation taken in the thesis 147

xiv LIST OF FIGURES

Chapter 1

Introduction

Software maintenance benefits from the presence of high quality up-to-date documen-
tation. In a survey of software engineers, Lethbridge et al. [64] found that while doc-
umentation was considered useful, it was also likely to be neglected and in some cases
untrustworthy. In “Software Aging”, Parnas [89] warns that documentation is manda-
tory to facilitate maintenance, attributing the all-too-common neglect of documentation
to the focus on short term goals. Documentation serves as supplementary information
that provides abstraction, a fundamental tool in software engineering for the manage-
ment of complexity.

§ 1.1 Reverse Engineering

In cases where software documentation is lacking or requires maintenance, it must be
“reverse engineered” from the original code (and documentation) of the system. Rather
than adding to the code and behaviour of the system, the behaviour is distilled from the
code to gain additional knowledge about the system. Chikofsky and Cross outlined the
possible desired outcomes of a reverse engineering exercise, which include management
of complexity, construction of alternate views and abstraction, as well as facilitation of
reuse, recovery of lost information and detection of side effects [20].

For large systems, the process can be costly as it requires the reverse engineer to
acquire an understanding of the code-base before documentation can be produced.
This difficulty has given rise to automated and semi-automated techniques designed to
make the reverse engineering process easier, and therefore cheaper.

Reverse engineering tools allow code and data to be analysed to gain insights into
the software. One of Chikofsky and Cross’s goals, construction of alternate views,
can be achieved by creating models that represent aspects of the software. Behaviour
inference, for example, can be used to automatically construct a behaviour model for
software from data gathered using dynamic analysis [123]. Various forms of models can
be extracted from the codebase, although this thesis applies only to two types of model
that represent the software as a graph: state machines and module dependency graphs.

1

2 CHAPTER 1. INTRODUCTION

9

12

24

16

45

96

49

30

40

97

13

40

47 41

100

39

21

46

35

1

13

28

15

39 102

5 4

29

16

17

24

53

9

8

48

46

25

6

59

17

18

35

37

1

5 29

99

17

31

7 34

25

50

45

2

31

42

68

20

7

39

9 1815

71

40

16

24

26

2

10

33

34

14

42

56

26

34

8

23

36

13

28

31 9

84

32

47

78

48

6

46

37

0

1

22

89

39

88

47

33

69

49 15 11 49

7

86

045

77

48

61

38

33

63

2318 39

47

49

25

2117

18

40

3

44 41

7

37

27

32

6

34710

65

32

22

82

3583

26

995

618

98

30

25

12

42

26

10

234

33 2

80

47

11

17

62

1645

0

19

43

5

11

41

87

13

225

27

4049

10

24

3

19

28

3634

41

3844

24 1

11

20

622

49

76

32

408

38 48 19

27

22

9

1

48

36

25

17

101

4

42

40 26103

43

2

21

81

48

73

3

57

12

0

37

48

2042 5 4 13

92

1

43

16

27

75

38 12

8

48

27

100

32

94

46

1019 33

11

4

18

85

34

51

0

32

36

1

44

3

6

25

10

4

6

67

16

12

3414

11

35

35

2

31

43

18

2

3941

25

27

0 27

35

38

70

19

535

31

13

10

90

12

52

39

8

40 28 38 12

9

10

20

3

16

14

35

41

49

39

22

58

42

46

26 38

42

5

2

54

14

91

36

30

15

55 49

93

2

41

12

23

31

6

25

35

8

1 25 14

47

8

11

40 17

6

42 19

45

8

14

5

10

20

25

28

16

647 45

3039

60 18

36

24

35

37

18

34

30

42

3

29

331125

5

3

44

49 72

17 36

40

5

22

34

74

15

38

79

46

39

6

5

31

34

4

33

43

2111

15

11

19

649

3

15

42

0

20

66

38

32 20

64

13 2327

13

20

16

30

41 33

439

7

11

3

Figure 1.1: An example of a large complex finite state machine

1.1.1 Representing Software as a Graph

Graphs provide a versatile structure which can be used to represent various aspects
of a system. In both of the model types studied in this thesis, the nodes in each
graph represent entities, and edges between them encode some form of relation. The
semantics of the relation, and the data represented by nodes varies between the two
models. In addition to both being graphs, both of these model types can be extracted
automatically through program analysis. The following subsections introduce state
machines and dependency graphs.

State Machines

State machines represent the behaviour of a system, at a level above the implementa-
tion details and are instances of labelled transition systems (LTS). LTSs are general
encodings of behaviour in the form of transitions between states [57]. State machines
have been used in various forms to encode specifications [44, 50] as well as in model
checking. State-based models are advantageous for program comprehension due to the
abstraction provided. Additionally, they can be derived from software automatically
(and therefore cheaply) [5, 25, 122, 123].

Figure 1.1 depicts a large state machine. Although this example may represent the
behaviour at a level above the source code, it is still large. This issue of size and lack
of abstraction forms the basis of the problem that this thesis investigates.

1.1. REVERSE ENGINEERING 3

Figure 1.2: The MDG for the Linux kernel 3.2

Module Dependency Graphs

Dependency graphs of software systems model the interaction of their components
(at a broader level of detail than behavioural models). They represent the overall
organisation of entities in the system. A system may have multiple dependency graphs,
constructed for various types of entities. For example files have dependencies [9], as do
variables [111], compound graphs that include various types of entities in one have also
been studied [83], although the focus of this thesis is on module dependency graphs,
constructed at the source file level.

Module dependency graphs (MDGs) are directed or undirected graphs, files in the
system are vertices in the graph. Edges are constructed for each dependency one file
has on another. Figure 1.2 shows the MDG of all C source files in version 3.2 of the
Linux kernel, constructed from the include directives contained within each file. The
complexity of such a large MDG makes it impossible to manage without additional
organisation; the example comprises 30, 443 C source and header files.

1.1.2 Complexity of Flat Graph-based Representations

Although these models provide a view of the system which abstracts away a large
amount of the implementation, the models are often large. With state machines reverse
engineered from software, the size is determined by the complexity of the software and

4 CHAPTER 1. INTRODUCTION

the granularity at which it is instrumented. The size of module dependency graphs are
determined by the size of the software project itself.

The low management of complexity of these representations becomes more problematic
as the system size increases. Similarly, the requirement for comprehension aids may
also increase with system size, leading to a point where even the abstraction offered
by these models is insufficient to achieve Chikofsky and Cross [20]’s goals of providing
alternate views, managing complexity or abstraction.

Moreover, overly complicated documentation which is hard to consult for information
is at risk of being ignored by developers. Lethbridge et al. [64] observed that developers
felt “finding useful content in documentation can be so challenging that people might
not try to do so”, which emphasises the importance of clear documentation.

This size problem has resulted in the use of extensions to the models to manage their
complexity. The following subsection focuses on hierarchical abstractions that have
been used for this purpose.

1.1.3 Managing Complexity with Hierarchies

One method used to manage complexity in large models is the addition of grouping
or hierarchies of entities. Hierarchies provide additional organisation and allow higher
levels of abstraction and can be applied to both state machines and dependency graphs.
Statecharts, for example define encapsulating “composite” states for state machines [44]
and the filesystem, or packages, may be used to group files in a dependency graph. The
following subsections give examples of these additions, and a more detailed assessment
of these model variants and techniques for producing them appears in Chapter 2.

Statecharts

Harel’s Statechart formalism [44], a prevalent type of state-based model, expresses
hierarchies of behaviour for state machines. Statecharts extend state machines with a
new type of state, a “superstate”, which is comprised of one or more states. Superstates
may themselves encapsulate other superstates, allowing arbitrary depths of nesting
of behaviour. Abstraction is provided by a superstate, which implements a general
behaviour, the specifics of which are encoded in the states it encapsulates.

In addition to a hierarchy of states, statecharts allow transitions from and to super-
states. These represent common transitions to or from all the states within a superstate.
Subsumed transitions allow the overall edge count to be reduced, which reduces the
visual complexity of the diagram. This is visible in the example in Figure 1.3. A large
number of the edges in part (a) of the diagram are duplicates of the “exit” transi-
tion. Part (b) shows the same diagram with the addition of two superstates and the
subsumption of the common transitions.

The example in Figure 1.3 depicts only one of many possible groupings of states into
two superstates; there is not one canonical statechart for a given state machine. The
grouping is not necessarily “mechanical”, and may include subjective judgements. Work

1.1. REVERSE ENGINEERING 5

1

2

space_pressed

6

timer_fired

50

exit

3

space_pressed

5

e_pressed

8

s_pressed

10

d_pressed

exit

4

space_pressed

w_pressed

exit

a_pressed

space_pressed

9

up_pressed

exit

space_pressed

exit

7

space_pressed

exit

space_pressed

exit

space_pressed

exitspace_pressed

exit

mouse_clicked

space_pressed

exit

(a) An example state machine with many
redundant edges.

running

exit

1

2

space_pressed

6

timer_fired

3

space_pressed

5

e_pressed

8

s_pressed

10

d_pressed

4

space_pressed

w_pressed a_pressed

space_pressed

9

up_pressed

space_pressed

50

exit

7

space_pressed

space_pressed

space_pressed

space_pressed

mouse_clicked

space_pressed

(b) A statechart of example (a).

Figure 1.3: A state machine (a) and its statechart equivalent (b)

exists which aims to automate this process to an extent using rule-based transforma-
tion operations; these approaches are discussed further in in the literature review in
Section 2.4.

Module Dependency Graphs

In MDGs, a hierarchy (or “modularisation”) can be introduced for the benefit of group-
ing common functionality into components. This partitioning is normally performed
as an organisational step by developers; some languages provide a means to expose a
hierarchy of groups in the form of nesting packages (Java [41, p. 163]) or namespaces
(C++ [110, p. 152]).

Using the same Linux kernel example from Section 1.1.1, the 30, 443 source files are or-
ganised into 2, 171 directories and subdirectories. These group components into larger
and larger groups. For example, the top level consists of directories for architecture-
specific code, which is divided into directories for each supported architecture.

As with statecharts, the package structure for a given MDG is a product of the main-
tainer’s subjective judgements, potentially obfuscated by neglect. This makes an au-

6 CHAPTER 1. INTRODUCTION

tomatic “remodularisation” process difficult, as one canonical hierarchy may not exist
for a dependency graph. This difficulty is illustrated in Wu et al.’s [126] discovery of
poor recovery of original structures obtained by several remodularisation algorithms.

Approaches to automating the remodularisation process have primarily sought to apply
machine learning techniques, particularly clustering [6, 9, 100, 111, 118, 125]. These
approaches, discussed in depth in Section 2.5, aim to use information extracted from
the software as “features” which are used to estimate how similar the elements in the
dependency graph are in order to produce a grouping.

The features are used to approximate human knowledge with the intention of produc-
ing a clustering which matches, or is highly similar to that produced by an expert.
Other approaches have used structural indicators based on software metrics, such as
coupling [127], to estimate the “design quality” of the result [81], based on the hypoth-
esis that a hierarchy maximising such a metric will be an acceptable solution to the
problem, even if it does not match the solution produced by an expert developer.

This section has outlined the various approaches to management of complexity for
the type graph-based software models discussed in the thesis. The following section
further defines the problem addressed in this work, drawing on the similarity of the
representations and the identical desired results of approaches to the problem.

§ 1.2 The Problem of this Thesis: Hierarchy
Generation for Graph-based Software Models

This thesis investigates the similar problems of state machine hierarchy generation
and software remodularisation. Despite the similarity and the equality of the underly-
ing graph representation of both state machines and MDGs, there is a stark contrast
between approaches to the two problems. In both cases, a major component is the
difficulty in the determining quality of a result, both from an evaluation perspective as
well as from a clustering perspective. The large search space of all possible hierarchies
for large graphs also requires additional consideration; there are in excess of one billion
possible partitions for a 15 node MDG [71].

The hierarchy generation problem presents two challenges. The first difficulty is in
producing an algorithm or technique that is able to produce hierarchies which are as
close as possible to those produced by developers. This relies on the selection of the
correct set of features, algorithm and assessment method for state machines. The
Bunch graph-based clustering algorithm [81] is investigated for this purpose, due to its
versatility. A detailed justification for this choice is given after the literature survey, in
Section 2.6.

The second challenge is the issue already faced by existing remodularisation and hier-
archy generation approaches. Selection of the best set of features and best clustering
algorithm is still unlikely to reliably reproduce the decomposition produced by an ex-
pert, due to the subjective nature of the task. The lack of available features beyond the
structure of the graph (typical for reverse engineered state machines) further compli-

1.3. AIMS AND OBJECTIVES 7

cates the matter. Methods that can enable this subjective information to be captured,
while allowing the non-subjective elements of the remodularisation task to be left to
an automated approach are also investigated in this thesis.

§ 1.3 Aims and Objectives

This thesis is concerned with automatic or semi-automatic remodularisation of graph-
based software models, with a focus on state machines and MDGs. The goal of this
process is to produce meaningful abstractions that manage the complexity of the model.
This goal is comprised of two aims:

1 To apply remodularisation to the hierarchy generation problem for state-based
software models; and

2 To analyse and address qualitative issues with the output of existing automated
remodularisation algorithms.

The aims of the thesis are achieved through the following objectives, which form the
structure on which the contributions made by the thesis are based:

1 Measure the application and analysis of an existing remodularisation technique
to state-based software models

2 Produce enhancements to the state of the art of remodularisation by extending
it to hierarchies

3 Develop and empirically evaluate an improved remodularisation approach through
a realistic experiment with human participants

§ 1.4 Organisation and Contributions of the Thesis

Figure 1.4 maps out the structure of the investigation portrayed in this work, starting
from the exploration of existing solutions to the problem, including demonstration of
the similarity of the individual problems of state machine hierarchy generation and
remodularisation in the literature review in Chapter 2. The first experiments in Chap-
ter 3 explore the application of the Bunch [81] algorithm to state machines, identifying
three problems which are then addressed in the subsequent research chapters. Issues
with the search approach taken in Bunch are addressed in Chapter 4, while Chapters 5
and 6 address the accuracy problem, using domain knowledge.

8 CHAPTER 1. INTRODUCTION

Problem: Hierarchical abstraction for state machines

Bunch: search-based remodularisation, applied to state machines

Accuracy Layered hierarchies Over-fitting

Crunch: genetic programming
for hierarchical clustering

SUMO: Human interactive refinement

Chapter 2

Chapter 3

Chapter 4

Chapters 5 & 6

Figure 1.4: The path of investigation taken in the thesis

Chapter 2: Literature Review This chapter reviews the literature relevant to the
problem. It begins by expanding upon the models used and the various extensions
which introduce hierarchies to them. The similarities of hierarchy generation for both
state machines and dependency graphs is demonstrated and the problem domain of the
thesis of clustering graphs is defined. Hierarchy generation techniques for both state
machines and MDGs are summarised, including the means used to assess them.

Chapter 3: Remodularisation of State Machines In this chapter, a proof-of-
concept is given for the remodularisation of state machines with the Bunch [78] re-
modularisation tool and an evaluation is used to demonstrate that Bunch is capable
of reproducing parts the developer-designed hierarchy for a state machine, although it
does not do so perfectly.

The performance of Bunch is then further explored from the hierarchy generation per-
spective. A survey of several software systems demonstrates that hierarchies are rarely
layered. This, combined with evidence found for over-fitting in Bunch leads to an open
problem: full, variable-depth, hierarchy generation for state machines using clustering.

One approach of rectifying the problem using random mutations of Bunch hierarchies
is also evaluated as a means to transform layered hierarchies into unlayered versions to
improve an objective metric.

The contributions made by the chapter are as follows:

1 An empirical study into the feasibility of applying the Bunch search-based remod-
ularisation tool to state machines, showing that Bunch is able to recover part of
the structure of a flattened statechart.

2 Analysis of the Bunch clustering tool’s layered approach to hierarchy generation,
demonstrating that it causes over-fitting.

1.4. ORGANISATION AND CONTRIBUTIONS OF THE THESIS 9

3 Investigation of the use of random mutation to produce non-layered hierarchies
from layered solutions produced by Bunch to improve their quality, assessed by
the mean of a quality metric.

Chapter 4: Search-based Hierarchical Clustering This chapter explores the
hierarchy generation problem for search-based remodularisation. It applies several rep-
resentations that enable global searching of all hierarchies to avoid the over-fitting
issue found in Bunch. These representations are based on a transformation encoding
as applied to search-based refactoring, stack-based genetic programming and a label
assignment approach similar to that used in the Bunch genetic algorithm.

Evaluation of these approaches show that they can produce partitionings, although
fitness values located are lower than those produced by Bunch. A further hierarchical
study with the transformation encoding shows that the global search can produce hi-
erarchies with a greater fitness at higher levels in the hierarchy than Bunch, however
Bunch better optimises fitness values at the lower levels.

Objective functions are then compared using this approach, finding that two remodu-
larisation fitness functions do not identify superstates that enable superstate transitions
to be used, and that an information-theoretic fitness function [69] produces the fewest
number of clusters and edges between clusters.

The following contributions are made:

1 An application of a genetic programming approach based on transformations
that is able to represent non-layered hierarchies and explore the whole space of
hierarchies in one search, unlike Bunch.

2 Evaluation of this approach for clustering MDGs and state machines, determining
that it produces higher fitness values at higher levels in the hierarchy than Bunch,
at a cost of overall fitness.

3 A study of the use of several metrics as fitness functions for hierarchical clustering,
determining that remodularisation fitness functions reduce the number of edges
leaving or entering superstates, but do not identify solutions that reduce the edge
count through superstate transitions.

Chapter 5: SUMO: Supervised Software Remodularisation This chapter de-
scribes the SUMO refinement algorithm, which improves on an existing modularisation
using user-supplied corrections. Equations for the amount of required domain knowl-
edge are derived, then simulated authoritative decompositions are used to evaluate the
performance of the SUMO algorithm, finding that improvement can be obtained in a
short number of iterations, before convergence occurs. The chapter makes the following
contributions:

1 A novel application of constraint-based interactive refinement to the remodulari-
sation problem, with equations derived for the upper bound of input required to
completely refine a modularisation.

10 CHAPTER 1. INTRODUCTION

2 An empirical analysis of the performance of this clustering technique, showing how
improvement is observed at almost each interactive iteration of the algorithm.

Chapter 6: Human Factors Affecting SUMO This chapter presents an interac-
tive GUI implementation of the SUMO algorithm, including enhancements made as a
result of a pilot study. The performance of this modified algorithm and the tool are
then evaluated in a user study, finding that all 35 of the participants were able to use
the SUMO tool in a practical scenario to complete the remodularisation of a 122 file
software component. The chapter makes the following contributions:

1 An implementation of this algorithm in an interactive tool, incorporating im-
provements to the SUMO to address issues identified by a pilot study.

2 Evaluation of the constraint-based remodularisation approach conducted with 35
participants, finding that the majority (23) managed to use the tool to refine a
modularisation of 122 files in under an hour.

Chapter 7: Conclusions & Future Work This chapter summarises the work in
the thesis and outlines potential avenues for further inquiry, including approaches to
further develop the Crunch and SUMO tools presented in this thesis.

The next chapter starts by discussing the problem in greater detail, including the
specifics of the models examined in this thesis and the difficulties faced by automated
hierarchy generation techniques. It then shows how similarities the MDG remodu-
larisation problem and the state machine hierarchy generation problem may enable
modularisation techniques to be applied to state machines. Metaheuristic algorithms
and genetic programming are also introduced, which are utilised in the Crunch tool
described and evaluated in Chapter 4.

Chapter 2

Literature Review

This chapter discusses the state machine hierarchy generation problem in greater detail
and summarises approaches representing the state of the art. It also introduces module
dependency graphs and the remodularisation problem and demonstrates how techniques
for remodularisation are applicable to state machines, united by the common graph
representation used.

The discussion hierarchy generation approaches used for both problems begins with
an overview of the various aspects of performance of these approaches that have been
evaluated in the literature. The remainder of the chapter focuses firstly on solutions to
the state machine hierarchy generation problem and then the remodularisation problem,
including an introduction to clustering and metaheuristic algorithms.

Finally, the chapter concludes by summarising the techniques used and details the
open research problems, before defining the elements to be investigated, starting from
the application of the Bunch [81] software remodularisation tool to the state machine
hierarchy generation problem.

§ 2.1 Graph Representations of Software

Software can be modelled using a variety of representations. Many graphical models use
a notion of connectivity between entities to represent components of the system. For
example, UML [85] defines activity diagrams which model the sequence of interactions
between components over time, state diagrams which represent behaviour, data flow di-
agrams describe how data moves through a system and inheritance diagrams summarise
the class hierarchy of the software. All of these diagrams are directed graphs.

This thesis focuses on two of these graph-based representations in particular: state-
based models and module dependency graphs. This section introduces these models,
and further defines the complexity problem that applies to them as their sizes increase.
It concludes with a summary of the similarities of the representations, and shows how
the problems of generating abstractions for each of these models are highly similar.

11

12 CHAPTER 2. LITERATURE REVIEW

2.1.1 State Machines

State machines represent software as a set of states, each of which has behaviour asso-
ciated with it. The system moves from its current state to another if there is a defined
“transition” between them, and an appropriate event occurs to exercise it. For exam-
ple, inserting a coin into a vending machine may take it from the “insert coin” state to
the “make selection” state.

The most basic form of state machine is encoded in a labelled transition system (LTS).
An LTS [57], is a tuple (Q,L, T) where Q is the (possibly infinite) set of states and L
is the finite alphabet of labels for the transitions. The set T encodes the transitions,
such that T : Q× L×Q — a transition t ∈ T (a, exit, b) corresponds to a transition
between state a and b with the label “exit”. An initial state may be specified, q0 ∈ Q ,
making the LTS a “rooted” transition system. LTSs may also encode non-determinism,
where multiple transitions exist from the same state with the same label.

s

1 t
0 u

1

0

v

10

f

0

1

0

1

Figure 2.1: A state machine that accepts strings ending in 0110

Finite state machines (FSMs) have a finite number of states and, like LTSs, may be
deterministic or non-deterministic. It is possible to transform an FSM into an LTS [92].
FSMs may be further extended to include an additional set of “final” (or “accept”)
states and an initial state.

Figure 2.1 shows an example state machine. In this example: Q = {s, t, u, v, f} ,
Σ = {0, 1} , q0 = s , F = {f} . Only inputs ending with 0110 result in the machine
remaining in the f state, the only state in the set of accept states F , thus the machine
only accepts strings ending with that suffix.

It is possible to generate a state machine through dynamic analysis of a target software
system [121]. A model learning algorithm can be applied to a set of traces generated
by instrumentation and running the target software. One approach to the problem is
state merging [33, 16, 87, 63], where a state machine containing all traces (known as a
prefix tree acceptor) is reduced by iteratively merging states which are determined to be
equal. This equality test relies on a source of information, which can include a heuristic
measure of equality based on common tails, or use a human oracle, for example. A
comparative study that further describes model learning algorithms was conducted by
Ali et al. [3].

The use of dynamic analysis means the initial source of information for the machines
is not abstracted at all. By tracing at the method call level, for example using As-
pectJ [59] or Pin [67], the resultant state machine will only model the sequence of

2.1. GRAPH REPRESENTATIONS OF SOFTWARE 13

method calls of the system. This low level of abstraction is a problem where the
machines are used for program comprehension [122]. One suggested solution to this
problem is the use of manually generated “trace abstractions” which map a method
call sequence to a higher level action. For example, in a drawing application multiple
calls to move cursor, draw point can be abstracted to the more general draw line

event. These abstractions rely on the presence of an oracle, however. Extended finite
state machines (EFSMs) [18], which incorporate guards on transitions have also been
produced using grammar inference [66] in order to capture information not present in
FSM models.

2.1.2 Hierarchical Extensions to State Machines

The limited notation of state machines has been extended in various ways to provide
more expressive power for state-based models. One common extension is the addition
of a hierarchy to the model [4, 44]. This allows the lower-level behaviour to be grouped
together and provides abstraction through encapsulation and information hiding. The
most prevalent of these state-based models is Harel’s Statecharts [44], a variant of
which forms part of the UML standard [85, p525]. Statecharts also extend state-based
models with events on transitions, guard conditions and parallel processes, although
these additions are beyond the scope of the thesis and are not discussed.

The use of encapsulating (or “composite”) states also allows transitions to be rewritten
where each state within the composite state has a transition with the same target and
label. In doing so, the visual complexity of the diagram can be reduced.

2.1.3 Module Dependency Graphs

Module dependency graphs model the network of dependencies between files or classes
in a software system. When viewed as a graph, the set of vertices V is the set of all
modules, and each dependency between two files is an edge in the graph. Dependency
graphs can be extracted from software using static analysis tools such as Dependency
Finder [109] or Source Navigator [106]. Figure 2.2 shows an example MDG for the
Linux kernel, constructed by parsing the include statements present in each source file.

The example demonstrates the necessity for organisation of MDGs. Although the ele-
ments in the graph are grouped together into “communities”, there is little abstraction
provided in this graph; it contains a total of 30, 443 nodes. It is, however, common for
files in software projects to be partitioned in a tree structure. Java and C++ both pro-
vide functionality to group classes together in packages and namespaces respectively,
and C allows source files to be placed in subdirectories in the filesystem.

14 CHAPTER 2. LITERATURE REVIEW

The partitioning of the source files is performed by the system’s developers and allows
the files to be organised to facilitate navigation of the project. To illustrate this,
Figure 2.3 shows the arrangement of all directories in the Linux kernel’s source tree.
This tree of 2, 171 directories groups all the source files in the previous MDG by related
concepts. For example, there is one high-level directory which contains drivers, and
another for processor-specific files. The partitioning of the source files can be applied
to a module dependency graph to provide hierarchical structure.

Figure 2.2: The MDG for Linux 3.2 (Figure 1.2 reproduced for convenience)

2.1. GRAPH REPRESENTATIONS OF SOFTWARE 15

Figure 2.3: Overview of the Linux kernel’s directory structure

16 CHAPTER 2. LITERATURE REVIEW

2.1.4 The Common Problem: Automating the Abstraction Process

Both dependency graphs and state machines are graph-based representations of soft-
ware, and hierarchies have been used in both cases to provide more abstraction. The
equivalence of their underlying graph representation and the problem of grouping re-
lated elements makes the task of producing a hierarchy for both types of model highly
similar. Table 2.1 shows the similarities between the two model types.

Labels
Model Nodes Edges Node Edge Extensions

State Machine states transitions Optional Yes Actions (Statecharts), Conditions (EFSM)
MDG files / classes dependencies Yes No Other information (Resource Dependency Graphs),

weights

Table 2.1: Similarities of the models studied in this thesis

The similarity stops at the underlying graph representation. Labels on edges or nodes
are not guaranteed to be available for both diagrams. For example, state labels will not
be produced automatically by grammar inference techniques although edge labels may
be generated from the function names that produced the event in the state machine.
Module dependency graphs, on the other hand, always have labelled nodes but do not
have edge labels.

In order to unify the approaches, a solution that operates only on the available data is
required. As neither edge labels or node labels are guaranteed, only the connectivity
on the graph can be considered for a solution that applies to both dependency graphs
and state machines.

Despite the similarity of the two models and the near-equivalence of the abstraction
problem, solutions to the problem differ significantly. For state-based models, the so-
lutions rely on the use of rule-based transformations which rewrite the graph where
conditions hold. Approaches for dependency graph hierarchy generation (or “remod-
ularisation”) have applied a wider variety of techniques, including similar rule-based
approaches as well as the machine learning technique of clustering.

The following section firstly describes the various goals, in the form of evaluation meth-
ods used, of approaches to the state machine hierarchy generation problem and remod-
ularisation problem.

§ 2.2 Evaluating Hierarchies

Automated generation of hierarchies has been undertaken using a variety of methods
and assessed through various criteria. Assessment typically involves the use of one or
more numerical metrics which are used to make inferences about the performance of
the method. The metrics used to assess the result can be broadly categorised into two
groups:

• Structural quality

• Authoritativeness

2.2. EVALUATING HIERARCHIES 17

Quality

The quality of a hierarchy has been assessed from a design perspective [9, 62]. These
measures are highly similar to widely-used software metrics, and estimate the quality
via the structure produced.

Software metrics focus on particular aspects of the system and provide a numeric
overview of those aspects. In addition to performing basic measurement, metrics can
be used to drive automated re-engineering processes to remedy identified problems [86].

The most simple metrics provide basic measurement of the software. For source code,
for example, the number of lines of code can be used to estimate the system’s size. The
number of classes or files in the system (the size of V for an MDG) provides another at-
a-glance view of the size of the system. Sizes of the elements in hierarchies has also been
used in evaluations conducted on automated hierarchy generation approaches [9, 126].

Coupling and cohesion metrics are widely-used to assess the design quality of a sys-
tem. These metrics represent the same coupling and cohesion discussed in Structured
Design [127]. Coupling is an estimate of how inter-dependent modules are, the fewer
inter-dependencies the better. Similarly, cohesion assesses how localised functionality
is to the module(s) that implement it. Thus, a system with a low inter-module coupling
and high intra-module cohesion is considered to be a well designed one by the principles
of Structured Design.

Coupling can be measured at several levels, for example Chidamber and Kemerer [19]
measured coupling between classes in their object-oriented metrics suite. Fenton and
Melton [35] described how coupling at various “levels” could be calculated, ranging
from no coupling, to content coupling (the former being the best and the latter the
worst). Coupling at these levels was calculated based on the connectivity of modules at
various levels (control flow, common variable access, variable dependencies) to estimate
the overall coupling of a piece of software.

As a structural quality metric, coupling and cohesion have been used to assess the
quality of MDG hierarchy generation (remodularisation) approaches [9]. The rationale
behind this application of coupling and cohesion is that an ideal remodularisation ap-
proach should produce a high quality structure, judged by these metrics. Coupling and
cohesion also form the basis of the quality measure used in the Bunch remodularisation
tool [78], which aims to reduce the number of edges (dependencies) between different
groups of files.

Cyclomatic Complexity (CC) [75] is often used to represent the complexity of software,
typically for estimating maintenance costs. CC has been applied beyond its original
domain of control flow graphs, being mapped to statecharts and state machines by
Genero et al. [39]. CC can be calculated for any directed graph G = (V,E) and is
given by |E| − |V |+ 2.

18 CHAPTER 2. LITERATURE REVIEW

This metric for statecharts was used by Kumar [62] to evaluate a state machine hier-
archy generation approach, where superstate transitions that reduced the number of
edges reduced CC. Additionally, Systä et al. described a reduction in the number of
edges as the goal of a hierarchy generation approach [108], although they acknowledged
that a solution optimising this value may not be an optimal solution when judged by
a human.

This potential mismatch between metric values and subjective opinion requires that
their interpretation must be treated with caution. Anquetil and Laval [7] found that
coupling and cohesion (measured at the class level) each decreased throughout several
refactorings of the Eclipse IDE project. A study by Counsell et al. [26], observed a small
difference between the cohesion ratings given for a piece of software between two cohorts
of developers, grouped by experience. CC has also been criticised, Shepperd [102]
summarises various empirical validations in which several identify it highly correlates
with code size.

Authoritativeness

While metrics allow the design quality of the produced result to be estimated, they offer
a one-sided view of the result. An alternative means of assessment uses a previously
existing decomposition to measure how closely the algorithm reproduced the decisions
made by the original developer. If the existing decomposition is assumed to be the
canonical “correct” hierarchy, then the amount of similarity in the results allows the
accuracy of the algorithm to be estimated. In the absence of an expert benchmark,
Mitchell and Mancoridis suggested using the aggregated assignments of repeated runs
of one clustering algorithm to emulate a benchmark [80].

This form of testing is widely used in clustering and has been directly applied in software
clustering. The problem each of these measures solves is the inability to determine
which clusters correspond between the expert hierarchy and the obtained hierarchy.
For remodularisation, where the number of clusters is not fixed, it is not possible to
reason about the accuracy on a cluster-by-cluster basis. For example, a cluster in the
correct modularisation may be split in the remodularised solution, with elements of
another cluster combined with one of the pieces. This makes judging the similarity
difficult as one of the cluster fragments may be better than the other.

The solution adopted by most of these similarity measures is to treat the assignments
made by the algorithm as pair-wise relations. Instead of scoring individual element
assignments, the score is calculated over the set of all pairs of elements; if the pair are
in the same cluster in the expert and remodularised solutions, then the algorithm has
correctly assigned them. Similarly, if they are in different clusters in both solutions,
the assignment was correct. Otherwise, the pair is together in one solution and apart
in the other, which is an incorrect assignment.

In addition to commonly used similarity measures, some (MeCl, EdgeSim, MoJo) have
been defined specifically for calculating similarity of cluster assignments. Summaries
of these metrics are given in the following subsections.

2.2. EVALUATING HIERARCHIES 19

Rand Index Rand Index [96] directly expresses similarity as a ratio of correct as-
signments to all assignments made:

Rand =
Correct

Correct+ Incorrect

This produces a number between 0 and 1 estimating how similar the two partitions are.
This places an equal weight on assignments in the same cluster and those in different
clusters — a pair correctly placed together counts as much as a pair placed in different
clusters.

Precision and Recall Precision/Recall are commonly used in information retrieval
experiments to quantify the percentage of relevant documents of those retrieved and
those in the data store respectively. Unlike the Rand measure, Precision and Recall do
differentiate between a correct positive and a correct negative:

P =
TP

TP + FP

R =
TP

TP + FN

This has been applied to remodularisation by considering pairs of elements [9], where
a positive result is a pair in the same cluster and a negative result is a pair where each
element is in a different cluster. Precision is then the percentage of pairs in the same
cluster which are also in the same cluster in the expert modularisation. Recall is the
percentage of pairs placed together which were clustered together by the algorithm.

For example, given two clusterings A and B :

A = {{1, 3}, {2, 4}}
B = {{1, 2, 3}, {4}}

Together(A) = {{1, 3}, {2, 4}}
Together(B) = {{1, 2}, {1, 3}, {2, 3}}

Apart(A) = {{1, 2}, {1, 4}, {3, 2}, {3, 4}}
Apart(B) = {{1, 4}, {2, 4}, {3, 4}}

The precision and recall of the clustering A for the expert modularisation B are:

Precision =
|Together(A) ∩ Together(B)|

|Together(A)|

=
|{1, 3}|

|{{1, 3}, {2, 4}}
=

1

2

Recall =
|Together(A) ∩ Together(B)|

|Together(B)|

=
|{1, 3}|

|{{1, 3}, {1, 2}, {2, 3}}
=

1

3

20 CHAPTER 2. LITERATURE REVIEW

Precision and recall model contrasting requirements — in the extreme cases, where the
algorithm clusters very few elements together, but does this correctly, the precision
will be high but the recall low. In the other extreme case, where the algorithm clusters
everything together, the recall will be high but the precision very low. Anquetil et
al. performed experiments using a variety of hierarchical clustering algorithms and
documented this behaviour. When the cut height was increased, producing larger and
more general clusters, the precision tapered off, while recall increased [9], which makes
interpretation of these measures difficult.

MoJo MoJo aims to estimate the cost of transforming one cluster into another in
terms of the number of required modifications [114].

MoJo calculates the number of move or join operations (hence the name). Move op-
erations consist of migrating one element from one cluster to another, which need not
necessarily exist, it is possible to move an element to a new cluster. Join operations
take two clusters and merge them together.

Each operation is assigned a weight of 1, the measure is then the lowest number of
these operations required to transform a clustering A into B . The MoJo distance is
computed using a heuristic which aims to grow clusters around the largest fragments
of the authoritative clusters that appear in the evaluated clustering.

MeCl MeCl [79] measures the distance between two partitions of a graph. Given two
clusterings A and B it divides clusters in A by intersecting each cluster with each in
B . These “chunks” are then merged back together to produce B . The weight of inter-
edges created by the merging of these blocks is computed and expressed as a fraction
of the total weight of all edges. This forms an estimate of how much restructuring was
required, Mitchell normalises this by subtracting it from 1 [78].

MeCl favours partitionings which “form cohesive sub-clusters” with respect to the ex-
pert partitioning. The measure does not penalise production of more specific clustering
than the expert decomposition, however. If the algorithm produces a clustering which
is equivalent to a subdivided version of the expert decomposition B , its score will be
100% as no new inter-edges will be produced when its fragments are merged to form
B .

EdgeSim EdgeSim [79] operates on edges (in the form of pairs of nodes) in the graph.
Unlike precision and recall, EdgeSim includes both intra and inter-edges. For the same
two clusterings A and B, assuming they are fully connected (each pair has an edge

2.3. METAHEURISTIC ALGORITHMS 21

between them) the EdgeSim value is defined as:

EdgeSim(A,B) =
weight((Together(A) ∩ Together(B)) ∪ (Apart(A) ∩Apart(B)))

weight(Together(A) ∪Apart(B))

EdgeSim(A,B) =
weight({{1, 3}} ∪ {{1, 4}, {3, 4}})

weight({{1, 3}, {2, 4}, {1, 2}, {1, 4}, {3, 2}, {3, 4}})
=

3

6
= 50%

The weight function returns 1 for all input unless the MDG is weighted. Weighted
MDGs can use the number of includes between two files as an estimate of the weight.

EdgeSim differs from the other metrics in that it operates on edges rather than all pairs,
and so evaluates the remodularisation algorithm on its performance of categorising
edges. This does however have an effect that two completely unconnected components
may be clustered together and still have a high EdgeSim score.

In an analysis of precision, recall, EdgeSim, MeCl and MoJo on 100 clustered versions of
10 case studies, Mitchell [78] noted that increases in one metric correlated to increases
in others for the same pair of clusterings. For one case study, MeCl was found to have
the lowest spread and standard deviation while MoJo varied the most.

§ 2.3 Metaheuristic Algorithms

Metaheuristic algorithms are used in situations where deterministic, exact solutions
do not exist or are too computationally expensive. They are particularly suited to
problems for which the following is true:

• generating candidate solutions is cheap; and

• quality of candidate solutions can be assessed.

These algorithms treat the problem as a search; the goal is to explore the space of all
possible solutions to locate the optimum solution. Various approaches to the problem
exist, all of which perform the same exploration of the space of all solutions, having dif-
ferent performance characteristics. This section introduces several of these algorithms.

The quality of candidate solutions is determined by an “objective function” which the
algorithm uses to prioritise its exploration of the search space. Metaheuristic algorithms
iteratively explore the search space until a termination condition is met, which may
be determined by the amount of computation used, the state of the search (if no
improvement is observed after a specified number of iterations) or user intervention.

Metaheuristic algorithms have been applied widely to clustering and remodularisation
problems. This section describes the basic principles of operation of several relevant
metaheuristic algorithms, as well as genetic programming (GP). Although GP is not
applied in the surveyed literature, GP is used extensively in the hierarchical remodu-
larisation work described in Chapter 4.

22 CHAPTER 2. LITERATURE REVIEW

2.3.1 Hill Climbing

Algorithm 1 Hill climbing algorithm
i← new Individual

repeat
for all n ∈ neighbours(i) do

if fitness(i) < fitness(n) then
i← n

end if
end for

until termination condition

Hill climbing algorithms traverse the search space by considering solutions adjacent
to a start point. Algorithm 1 describes the operation of a hill climbing algorithm.
The starting position is selected at random and its adjacent neighbours are evaluated
for increases in fitness. The termination condition is as described in the previous
subsection. The selection of the new individual if there is more than one which has a
higher fitness value than the current individual dictates the type of the algorithm. In
a “nearest ascent” hill climber, the first neighbour with an increased fitness is chosen.
This contrasts to “steepest ascent” algorithms which evaluate all neighbours and select
the individual with the highest fitness.

2.3.2 Random Mutation Hill Climbing (or 1+1 EA)

Random Mutation Hill Climbers (or 1+1 EAs) can be considered to be the “most
simple variant of an evolutionary algorithm” [32]. A single individual is repeatedly
mutated and succeeded by the descendant mutant if the mutant has a higher fitness.
The process repeats until a termination condition is reached [82, 32]. Algorithm 2
describes the RMHC implementation described by Mitchell et al. [82].

Algorithm 2 Random Mutation Hill Climber
i← new Individual

repeat
m← mutate(i)
if fitness(i) < fitness(m) then

i← m

end if
until termination condition

2.3.3 Genetic Algorithms

Genetic algorithms (GAs) operate over a number of solutions in a “population”. At
each iteration, the population is subjected to one or more “operators”, producing a
new population. This process repeats until a termination condition is reached, with

2.3. METAHEURISTIC ALGORITHMS 23

Random Population

Ranking

Selection

Crossover

Mutation

Termination

Initialisation

fitness valuesfiltered population

added offspring population

fittest individual

Figure 2.4: The process of a genetic algorithm

the fittest individual of the final population selected [51]. This process models a process
of Darwinian evolution, where the population adapts and evolves to increase the fitness
of the population over time.

The genetic operators modify or produce “chromosomes”, each of which represents a
candidate solution. Each chromosome is comprised of one or more genes. Chromosomes
typically require decoding before the fitness function can evaluate them. The represen-
tation which encodes genes can vary between implementation. One such representation
is the bit vector, which could be used to represent an integer to be optimised by the
search for example. The JGAP [76] package provides a framework for the implementa-
tion of genetic algorithms in the Java programming language.

Figure 2.4 shows the process of an example GA, showing the various operators which
may be used during a search. A population of random solutions is first produced which
then enter an initial ranking step, before going through the cycle depicted in the figure.
The order in which operators are applied can vary.

Each operator has one or parameters which affects the performance of the overall al-
gorithm. These are in addition to the global parameters of the initial population size
and stopping condition. The purpose and configurable behaviour of each operator is
summarised below:

Selection The selection operator filters the population. In Holland [51, p. 92]’s orig-
inal description of genetic algorithms, the selection operator is applied to determine
individuals to which the crossover operator will be applied. Individuals are proba-
bilistically selected based on their fitness. One example selection method is to apply
weights to each individual according to its fitness, then use a random number to select
an individual from the set. Individuals with higher weights are selected first in this
“roulette wheel” selector, but less fit individuals still have a (diminished but non-zero)
chance of reproducing.

24 CHAPTER 2. LITERATURE REVIEW

ADD

MUL

MUL

3 13

DIV

4 8

2

a

PUSH 3

PUSH 13

MUL

PUSH 4

PUSH 8

DIV

MUL

PUSH 2

ADD

b

Figure 2.5: A tree-based GP genotype corresponding stack-based GP representation

Crossover The crossover operator combines individuals to produce new offspring.
For chromosomes that are lists of genes, a simple crossover operator may take half of
each parent and splice them to produce new individuals. More sophisticated operators
exist, such as those in genetic programming where the chromosome is a tree [60].

Mutation The mutation operator introduces a random change to a chromosome. In
the bit-vector example, mutation could consist of flipping a random bit. Mutation can
be controlled by specifying the likelihood of a mutation.

The large number of parameters makes tuning these values essential, as well as care-
ful consideration of the types of operator used. For example, if a selection operator
routinely selects only the fittest individuals there is a chance that the algorithm may
become stale at a local optimum as each individual closely resembles each other. The
inverse scenario, with an excessive mutation probability, the algorithm is reduced to
a random search; the selection and crossover operators are useless if fitness values
randomly change for all individuals between generations.

2.3.4 Genetic Programming

Genetic Programming applies genetic algorithms to the program synthesis problem [60].
In GP, the individuals in the population are programs, which undergo the same process
of selection, crossover and mutation. The fitness function is specific to the problem
environment, for example, Koza [60] suggests that it may a reduction in the number
of errors, or correctly classified patterns in a pattern recognition scenario or other
non-functional features such as memory usage or computation time.

Koza [60] showed how hierarchical tree structures could be evolved in a genetic algo-
rithm by defining specific mutation and crossover operators for trees. These trees are
used to represent LISP style S-Expressions, encoding the sequence of operators and
their operands which comprise the program.

2.3. METAHEURISTIC ALGORITHMS 25

Linear genetic programming [17] (LGP) achieves the same result as genetic program-
ming, except instead of representing programs with trees, the chromosome encodes a
sequence of instructions from an imperative programming language. A stack-based
linear genetic programming technique also exists, where the individuals are evaluated
by executing them in a virtual machine [91]. The advantage of these linear approaches
are simplified implementation: existing list-based crossover operators can still be used.
Figure 2.5 shows a tree-based genetic program and the equivalent stack-based linear
program.

The linear approach also has applications where the grammar for a linear encoding
of individuals is less complex than a full tree-based grammar. For example, the Java
programming language has a complex grammar, but the bytecode produced by its
compiler has a significantly simpler structure. This difference has been exploited in the
use of genetic programming to produce general-purpose Java programs [88].

Gene Expression Programming (GEP) [36] is a similar technique to GP. It uses an
altered representation to encode trees. The grammar for the tree varies depending on
the problem. For example, in an application to the symbolic regression problem, GEP
was used to evolve mathematical expressions that best fitted a mathematical expression
to sample values from a target formula [36].

In GEP, the genotype (the gene representation) and the phenotype (the individual)
are separate. GEP uses a single gene to represent the hierarchy as an expression that
describes the tree. The genes are fixed-length lists of terminals and functions, which
form “K-expressions” and are parsed to produce a tree. A differentiating factor between
GEP and genetic programming is the notion of the “open reading frame” of the gene.
Not all of an expression needs to be parsed; if a complete tree is produced before the
end of the expression is met, the remainder is ignored. This is advantageous as it
allows genetic operators to remain as simple implementations, rather than specific to
the representation (such as tree crossover for tree-based GP).

2.3.5 Performance of Metaheuristic Algorithms

Search based algorithms are often deployed when it is infeasible to evaluate every
possible solution or the complexity of algorithms guaranteed to converge on the best
solution is too high. They are especially applicable where a good sub-optimal result
would still be an acceptable solution to the problem

Search-based algorithms are not guaranteed to converge on an optimal solution and one
of the main issues when using them is the handling of scenarios where the algorithm does
not improve the solution after a number of iterations even when the current solution is
sub-optimal.

This issue of the algorithm getting “trapped” in local optima can be attributed to
two factors, the fitness function and the search algorithm itself. The fitness function
dictates the “landscape” of the search space. When the landscape is a gentle curve
to the global maximum value (the best solution) the algorithm is likely to terminate.
When the landscape is uneven, the algorithm may get stuck on a peak, as neighbouring

26 CHAPTER 2. LITERATURE REVIEW

(a) An example fitness landscape likely to
cause issues with local optima

(b) A fitness landscape likely to result in
convergence on the global optimum

Figure 2.6: Examples of fitness landscapes.

solutions have lower fitness values. Figure 2.6 shows examples of a good and bad
fitness landscape. In some cases the fitness function can modified to better guide the
algorithm, whereas in others the parameters of the search algorithm (or the algorithm
itself) can be changed to make it less susceptible to getting trapped in local optima.

GAs are often considered to be more likely to escape local optima as there are multiple
individuals (in most cases), which are less likely to each get stuck at the same point.
In addition, the crossover and mutation operators reduce the likelihood each solution
will remain in a small subset of the search space, particularly mutation as it gives
the algorithm a chance to explore novel solutions which are not reachable through
recombination of existing individuals.

§ 2.4 Automatic Hierarchy Construction for State
Diagrams

Generating composite superstates for state machines requires determining which of the
states should be placed together and which should be placed apart. This has been
achieved using rule-based approaches, operating on the connectivity of the states [108,
23, 62]. While the semantics of statecharts and similar extensions to state-based models
provide other means of abstraction, such as guards and concurrent states, most work
focuses on composite state generation.

Systä et al. [108] described a set of transformations that can be applied to flat UML
state diagrams to produce hierarchical versions which provide more abstraction. The
transformations described handle two categories, process simplification and hierarchical
abstraction.

2.4. AUTOMATIC HIERARCHY CONSTRUCTION FOR STATE DIAGRAMS 27

The first process is a set of transformations which are applied wherever a predicate
holds. These transformations specify sequences which can be merged, for instance, if a
state only has one transition to another, with an action on it, that state can be replaced
by the subsequent state with the action specified on entry. These transformations are
specific to state diagrams which include “events”, such as UML state diagrams. The
type of transformation made is akin to Walkinshaw et al. [122]’s trace abstractions; a
group of states is rewritten as a single state, although they do not produce readable
names and depend on extra information such as actions, and trace abstractions are
written over transition labels rather than states.

The second transformation described by Systä introduces composite superstates to the
diagram. The algorithm is a search of all subsets which share a common transition
to another state, stopping when no such subset can be found. Each matching subset
is transformed into a superstate, with the largest subset matching the group being
transformed first.

The theoretically optimum solution for this problem is defined as the assignment of
groups which produces the smallest number of transitions in the diagram [108]. Pro-
ducing this solution requires the set of all subsets to be tested and the subsequent
remaining set of possible subsets required for each subset, and so on until no further
partitions can be produced. This problem is NP-complete [108], and is one of the moti-
vations for Mancoridis et al.’s use of a metaheurstic algorithm to the remodularisation
problem [71]. Systä et al. also acknowledge that the theoretically optimum solution,
whilst reducing the number of edges, may be sub-optimal from a human perspective.

Chu et al. [23] describe a similar technique to Systä, searching the set of states of a
non-deterministic state machine and producing composite states wherever a common
transition exists from each state in a subset of all states.

An extension to Systä et al.’s approach is proposed by Kumar, where concurrent states
are produced by computing a decomposition of the products of states. This approach
was evaluated in the same manner, although indirectly by calculating the structural
cyclomatic complexity [39] of the resultant state machine [62]. The same criticism made
by Systä et al. applies to this use of CC; a reduction in CC may not correspond to a
meaningful partitioning of the diagram.

In all these cases, the approach depends on an expensive search to locate candidate
superstates. This, along with the uncertainty regarding the correspondence of CC and
understandability makes the use of these approaches to large examples prohibitively
expensive. Thus, the remaining open challenges in the area of hierarchy construction
for state diagrams are:

• Scalability; and

• Quality of the results.

28 CHAPTER 2. LITERATURE REVIEW

2.4.1 Business Process Mining

Business processes are state-based models represented by a Petri net and can be mined
from logged transaction data [2, 117] in a similar way to state machines. These diagrams
model the sequence of a business process as a composition of several tasks, which form
nodes in a Petri net. Tasks may be grouped into sub-processes. As with statecharts,
it is possible for multiple tasks to be executed in parallel. Mined diagrams are likely
to include verbose details which may not be necessary and as a result work exists that
aims to simplify process diagrams produced from log data [30, 73]. This problem is
highly similar to the state machine hierarchy generation problem and is motivated by
similar circumstances.

The simplification of business processes reverse engineered from web site log data has
been achieved using a variety of clustering techniques, including the rule-based match-
ing of patterns such loops, as well as measures based on the pages which generated the
traces, the dependencies between tasks and the text which generated the traces [30].

Marchetto et al. [73] proposed an alternative approach to the problem, where tasks are
deleted from the process to reduce the number of tasks, and therefore the complexity.
The reduction in complexity is balanced against the number of traces through the
process which are made by the deletion. Thus, the algorithm aims to remove the least
important tasks. These transformations resemble Systä et al.’s approach to reducing
the complexity of state machines through merging of nodes according to rules [108].

Work in chapter 3 investigates the use of one of the remodularisation algorithms ap-
plied by DiFrancescomarino et al. [30], Bunch for composite state inference for state
machines. Bunch is discussed in detail in Section 2.5.

§ 2.5 Remodularisation

The hierarchy generation problem applied to module dependency graphs is known as
remodularisation. The objective of a remodularisation process is to produce a new set of
groups for the files in an MDG (its modularisation). A large body of remodularisation
work uses clustering techniques, which ignore the previous modularisation of the system
and focus on imposing an potentially completely novel modularisation for the system.
Tzerpos and Holt [112] provide a motivating scenario for remodularisation, wherein
subsystems were reverse engineered for a large legacy system with little documentation,
using a combination of facts extracted from the code and developer knowledge. This
construction of alternate views and introduction of abstraction is typical of a reverse
engineering scenario as described by Chikofsky and Cross [20].

An early survey of remodularisation approaches using clustering was produced by Wig-
gerts [125], and Anquetil and Lethbridge provide a similar survey of the application
of clustering to the problem [9]. A survey by Shtern and Tzerpos discusses more re-
cent developments in the remodularisation field [105]. Some of the following methods
use search-based approaches; a survey by Räihä [95] summarises their application to
software design problems, including remodularisation.

2.5. REMODULARISATION 29

This section describes and discusses key software remodularisation algorithms, begin-
ning with a description of the ACDC pattern based method. The remainder of the
algorithms use variants of clustering, which is described before these methods are dis-
cussed in the following sections.

2.5.1 ACDC: Pattern-based Remodularisation of MDGs

The ACDC remodularisation algorithm is designed for comprehension [115] and consists
of two stages: skeleton construction and orphan adoption. Similar to approaches for
state machine hierarchy generation, ACDC’s skeleton generation step identifies parts
of the dependency graph that match patterns.

ACDC builds up on the skeleton by adding the remaining elements, based on the
dependencies between them. The cluster with the highest number of dependencies on
each element “adopts” it [113]. This algorithm produces a full hierarchy, the sizes of
the subsystems of which can be controlled by user-specified limits.

MoJo similarities (in terms of proximity to the expert decomposition) produced by
ACDC for two case studies were 64.2% for TOBEY and 55.7% for Linux respec-
tively [115]. Analysis of the stability, the result of clustering randomly perturbed
versions of the case studies [116], found that ACDC produced similar MoJo values for
similar case studies [116] in 81.3% and 69.4% of cases respectively

ACDC’s reliance on patterns makes it inapplicable without modification, however it
only operates on the dependency graph. The elements contained in the skeleton are
used to produce names for the subsystems identified by the algorithm, however reverse
engineered state machines are unlikely to have this information.

The majority of other remodularisation approaches apply a clustering approach to the
problem. The remainder of this section details these clustering approaches, beginning
with a general description of clustering algorithms, focusing on hierarchical algorithms
in particular.

2.5.2 Clustering

Clustering is a machine learning task wherein groups are inferred for a data set auto-
matically that has been widely applied to the remodularisation problem. Clustering
algorithms aim to group elements of the data set together based on their apparent
similarity, as expressed by the “features” they exhibit. This section briefly outlines the
fundamentals of clustering; Berkhin’s survey contains a comprehensive description of
various algorithms as well as various distance metrics [14].

Figure 2.7 shows an example of the use of k -means clustering [58] on a set of data with
two features. In this instance, the number of clusters k was set to 3. This shows the
operation of a clustering algorithm in general; the objective is to select arrangements
that maximise the similarity between elements within the identified groups.

30 CHAPTER 2. LITERATURE REVIEW

−10 −5 0 5 10

−
4

−
3

−
2

−
1

0
1

2

CLUSPLOT(elements)

Component 1

C
om

po
ne

nt
 2

These two components explain 100 % of the point variability.

●

●

●

●

●

●

●

Figure 2.7: an example of the use of k -means with a 2D data set, k = 3

Clustering algorithms commonly compute groups based on similarity measures, which
are used to map points in the feature space to distances. Pair-wise similarity values
can then be used to guide the group production process for the data set. The mapping
to similarity values depends on the type of data used. Binary features, for example,
can be treated as coordinates directly, with the Euclidean distance used to estimate
the similarity of the data [118].

Algorithms that use similarity measures can be categorised based on the approach of
assigning groups used. Hierarchical algorithms cluster the data one pair at a time,
producing a full hierarchy for the data set [58]. Other types exist, such as density
based methods and partitioning methods, although only hierarchical algorithms have
been applied to the remodularisation problem, so this section focuses solely on these
approaches.

Hierarchical algorithms produce a full tree for the data, without requiring selection
of the number of clusters prior to running the algorithm. These methods may be
either agglomerative or divisive, where the clusters are iteratively constructed or divided
respectively [58].

The tree for each type of algorithm is constructed as it makes cuts (or joins). The order
of the operations determines the depth of the cluster in the tree. Hierarchical algorithms
perform their merge (or cut) operations in an order dictated by the similarity metric;
the most (or least) similar elements will be joined (or cut) first, and thus appear higher
(lower) in the tree.

2.5. REMODULARISATION 31

These algorithms also assign heights to the branches in the tree, derived from the
distance. A “cut” can be made after the clustering to produce a single partitioning,
the height of which determines the size of the clusters (a higher cut corresponds to
fewer, larger clusters). The selection of the cut-point is specific to the scenario and the
result (much like k in the previously discussed partitioning approaches).

1.5

2.0

2.5

3.0 ● ● ●

1.0 1.5 2.0 2.5
feature1

fe
at

ur
e2

Cluster

● 1

2

(a)

1.5

2.0

2.5

3.0 ● ●

1.0 1.5 2.0 2.5
feature1

fe
at

ur
e2

Cluster

● 1

2

(b)

Figure 2.8: Cluster assignments with (a): single, (b) complete linkage [125]

Hierarchical algorithms differ by the method used to estimate the distance between
clusters. This is referred to as “linkage”. Linkage metrics typically determine cluster
similarity between one or more of the pairs of elements in each cluster. The mini-
mum, maximum and average are known as single, complete and average linkage respec-
tively [14]. Figure 2.8 illustrates the impact of the choice of linkage on the result. The
point at (1.9, 3) is clustered differently with each linkage type.

Evolutionary Clustering

As alternatives to partitioning and hierarchical methods, evolutionary approaches have
been applied to the clustering problem. The distance measure can be encoded in the
fitness function, the genotype is the assignments of modules to clusters. This section
introduces the basic methodology of evolutionary clustering; a survey by Hruschka et
al. [52] discusses the various representations and algorithms described in the literature.

An evolutionary approach has been used for single level partitioning [61] of objects,
where the phenotype is a linear vector which encodes a cluster ID for each data element.
Figure 2.9 shows an example. In this case, there are 3 elements to be clustered, the
first two of which are assigned to cluster number 1 and the third assigned to cluster 3.

11 3

Figure 2.9: A flat label chromosome

32 CHAPTER 2. LITERATURE REVIEW

11 3 0 0 2 0 0 0

node assignments

cluster assignments

Figure 2.10: A hierarchical label gene

Hierarchical clustering has also been achieved using a genetic algorithm and a similar
representation [22, 21]. The flat chromosome is extended to include a table struc-
ture that maps clusters to parents, forming a tree. This tree can be either a binary
classification tree [22] or a full hierarchical dendrogram [21].

Figure 2.10 depicts an example of this hierarchical label representation. As random mu-
tation and crossover can produce invalid solutions, Chis [21] defined specific operators
to prevent them occurring. Crossover is defined as a swapping of hierarchy assign-
ments between parents. Mutation is applied to the node assignments to constrain node
assignments to terminal nodes in the hierarchy [21].

De Falco et al. [34] also describe an application of genetic programming to the clus-
tering problem by evolving predicates, generated from a grammar. Their approach
allows the number of clusters to be determined by the algorithm, differentiating it from
partitioning algorithms such as k -means which require a-priori selection of the number
of clusters. The approach produces a single level of clustering, in contrast to Chis’
hierarchical approach. In the fitness function, the aggregated internal similarity and
weighted external dissimilarity are used. The external dissimilarity is weighted to allow
the user to select the appropriate value depending on the scenario. Similarity values
correspond to distance measures discussed earlier in Section 2.5.2.

Constrained Clustering Algorithms

Wagstaff et al. introduced a constrained variant of the k -means clustering algo-
rithm [120], following with a constrained variant [119] of the COBWEB [37] conceptual
clustering algorithm. Assessment of each of these algorithms showed they outperformed
their un-constrained counterparts with small numbers of constraints and, in the case of
COP-KMEANS, performance of the combined constrained clustering exceeded the sum
of the performance of the individual clustering or constrained approaches. This demon-
strates the practicality of using additional domain knowledge to boost the performance
of clustering algorithms.

2.5.3 Software Clustering

Applications of clustering algorithms to the remodularisation problem are widely dis-
cussed [6, 8, 9, 84, 100, 118], with the majority focusing on the use of hierarchical
clustering algorithms. Wiggerts [125] provides an overview of the applicability of clus-
tering to the remodularisation problem and describes the different types of algorithms,

2.5. REMODULARISATION 33

the impact of linkage on the result and various methods of mapping features to dis-
tances. This section summarises and discusses several relevant techniques; a compre-
hensive survey and evaluation of hierarchical algorithms is provided by Maqbool and
Babri [72].

The application of hierarchical clustering to the remodularisation problem requires the
following:

Selection of the algorithm Most use hierarchical algorithms, although the linkage
types differs

Features The type of data which will be used to compute similarity values

Similarity measure The function that maps the feature values of two elements to a
distance value

Hutchens and Basili [53] originally described an application of hierarchical clustering
to the remodularisation problem, by using several types of linkage to modularise pro-
cedures bound by the variables they used. Distance values from these “data bindings”
were translated into a dissimilarity measure which aims to group procedures that use
similar variables together.

Assessment of their technique used a database of issues associated with components to
determine how well faults were localised to clusters. They concluded that “recomputed
bindings” produced the best result, which awards high similarities to pairs with the
highest proportion of common dependencies.

Arch [100] applies a similar approach using a heuristic which estimates the “design
coupling” between functions and types. Design coupling is based on the dependencies
of functions on types and represents the impact that changing a type would have on
its dependent functions. A “design link” exists between a function and each type it
uses; this link is used in the similarity measure. Arch remodularises functions into files
(and files containing them into modules). Schwanke remarked [100] that single linkage
produced the “most promising” results.

In addition to performing unsupervised modularisation, Arch provides supervised modes
where a developer confirms merges before they are carried out. If the expert determines
a merge should not be made, this negative feedback persists and the algorithm will not
attempt to merge the pair again. Arch can also refine an existing modularisation.
During this process an expert is consulted if merges result in changes to the previous
modularisation. The developer can also provide domain knowledge through the tuning
of parameters to the similarity measure.

Three architects reviewed the modularisation produced by Arch for its own code. Of
56 merge operations made, 40 were the same in the original modularisation. The panel
determined that 10 of the remaining changes which moved procedures between modules
were correct and 6 were incorrect [100].

The performance of different types of hierarchical clustering has also been measured
for a remodularisation scenario; Anquetil and Lethbridge evaluated different types of

34 CHAPTER 2. LITERATURE REVIEW

linkage (single, complete, weighted average, unweighted average) [9] for various features
(file includes, return calls, type references and word references in identifiers — extracted
using their concept identification method [8]). Each of the combinations of these facets
of the clustering algorithm (feature, linkage type, feature used, similarity measure) was
applied to four case studies: Linux, Mosaic, GCC and a telecommunications system.

The results were evaluated through both design quality and authoritative metrics at
each cut point, using measures discussed in Section 2.2. Design quality was assessed
through coupling and cohesion as well as the sizes of clusters in the result. The size mea-
sure split the clusters into three categories: the size of the largest cluster, the number
of singletons (containing only one element) and the remainder not in the previous two
groups. Authoritativeness was measured with precision and recall using the directory
structure as the expert decomposition.

The results from this study showed a wide variance in performance for each feature
between case studies. Zero values in feature vectors were found to be problematic,
as they influenced the distance measure and distance measures ignoring them were
found to produce better results [9], making elements that had very few features appear
more similar than they actually were. Of the features used, Anquetil and Lethbridge
remarked that the “words in identifiers” feature produced good results, despite it not
being a structural feature of the code.

A similar application of hierarchical clustering has been applied to the object identi-
fication problem for COBOL software [118]. Variables were remodularised to produce
candidate groupings which could be used as a basis for classes. The feature set was a
binary vector for each variable’s presence in each of a set of programs, with the hypoth-
esis that variables are related if they each appear in the same programs. The variables
were clustered using the AGNES [58, p199] hierarchical clustering algorithm and the
Euclidean distance for the similarity measurement.

Due to the sparse nature of the feature set, the distance between many variables was
calculated to be the same. van Deursen and Kuipers suggest that this results in the
clustering algorithm resorting to non-deterministic choice when computing clusters,
potentially resulting in a compounding effect on the error introduced. The use of other
metrics as suggested by suggested by Wiggerts [125] did not produce an improvement,
although removing programs which referenced all variables from the feature set was
found to produce a better clustering of the variables.

Naseem et al. [84] surveyed various similarity measures, including those originally sug-
gested by Wiggerts [125]. An extension of the Jaccard similarity measure was shown
to produce fewer conflicts of similarity where multiple elements have the same simi-
larity. These conflicts result in the algorithm resorting to non-deterministic choice of
elements to merge, a problem identified by van Deursen and Kuipers [118]. Although
this alternative measure decreased the number of arbitrary decisions, the authoritative-
ness values (measured using the MoJoFM metric) were found to be inferior to those
produced using the original Jaccard measure.

Another issue with clustering was raised by van Deursen and Kuipers when comparing it
to the use of concept analysis for object identification: when using hierarchical methods,

2.5. REMODULARISATION 35

the developer must select the cut height to transform the dendrogram into a set of
objects, which, for a large system is likely to be difficult [118]. For this reason, concept
analysis was recommended for the class identification problem [118].

MULICsoft [6] adopts a similar clustering approach to the problem, however it is not
based on the same hierarchical clustering method as the previously discussed methods.
MULICsoft clusters a weighted module dependency graph, where weights are obtained
through dynamic analysis; more calls from one file to another increase the weight. It
clusters elements together based on a threshold (φ) applied to a similarity metric, cal-
culated between each element to be clustered and the mode of each already-present
cluster. The mode of a cluster is given by finding the most common value for each
feature from the elements within it. Pairs of zero valued features are ignored in the cal-
culation of the similarity measure, as recommended by van Deursen and Kuipers [118].

φ is increased if none of the elements to be clustered is assigned after an iteration. A
user-specified maximum threshold parameter stops the algorithm when φ exceeds this
limit. φ is used to build layers: elements clustered earlier (with a lower φ) are more
similar and thus appear at higher levels. Singleton clusters are removed from the cluster
solution at each iteration. This prevents singletons appearing high in the hierarchy, as
instead they will be clustered at a lower level (when φ is sufficiently large).

MULICsoft was evaluated through comparison with other algorithms (ACDC, Bunch,
LIMBO) using various values for the step-wise increase in φ , different weighting schemes
for the feature matrix. This evaluation included comparison of the resultant decompo-
sition with an existing decomposition, using the MoJo similarity metric. MULICsoft
was observed to produce a superior MoJo value to the other algorithms for one case
study containing 1202 files. Of four algorithms applied to this case study, its best
result contained 191 clusters. ACDC produced a similar number, 205, while Bunch
was found to produce the fewest clusters (21).

2.5.4 Concept Clustering

In addition to hierarchical clustering, van Deursen and Kuipers also investigated the
use of concept analysis to modularise variables by programs [118]. Concept analysis
places each possible grouping of elements on a concept lattice. Each of the solutions on
this lattice has a common concept, in this context a feature (or an element’s presence
in a program) is a concept. The concepts form a partial ordering, from most general
to least general (exhibiting the fewest concepts to the most concepts).

On comparing concept clustering to traditional clustering, van Deursen and Kuipers
noted that clustering produces only one of many possible results (determined by the
sequence of merges and choice of cut point) while concept analysis produces only one
lattice for a given feature set. Concept analysis is also not constrained to assign each
element to only one class, making it more resilient where the data contains commonly
present features. This negates the necessity to remove these features, as conducted in
their hierarchical clustering experiment [118].

36 CHAPTER 2. LITERATURE REVIEW

Tonella also investigated the use of concept analysis for remodularisation [111]. In this
case, functions were clustered according to their use of structured types (structs in
C), dynamic memory heaps and global variables. This concept analysis approach was
assessed using structural metrics, specifically focusing on three aspects:

• Modularisation cost;

• Encapsulation violations; and

• Modularisation quality.

Modularisation cost modelled the amount of effort required to adapt to the new mod-
ularisation. This is estimated by calculating the distance between the remodularised
version and the original version. Encapsulation violation is similar to the use of a cou-
pling metric by Anquetil and Lethbridge [9]; cases where a function used data from
other modules estimate how well functions are grouped. Finally, the measure of mod-
ularisation is a count of the number of modules produced.

The concept clustering approach is able to produce a large number of candidate parti-
tions. As a result, Tonella ran the algorithm for a fixed amount of time, selecting the
best elements from those generated. The process was applied to 20 case studies; 10
open source systems and 10 industry systems. For one case study, the modularity was
increased with the encapsulation violation metric remaining unchanged and the cost
remaining low for some solutions, while others showed a reduction in encapsulation
violations and increase in modularity at a much higher modularisation cost.

2.5.5 Graph Clustering

Graph clustering is a mapping of the clustering problem to general graphs. Algorithms
such as Girvan-Newman clustering have been used in the analysis of social networks,
and have also been applied to software.

Network Clustering for Visualisation The Barrio [31] clustering tool uses the
Girvan-Newman graph clustering algorithm to identify modules based on the connec-
tivity of the MDG. Girvan-Newman treats the graph as a network, and clusters graphs
by iteratively removing the edge with the highest number of paths running through it.
Each deletion which isolates “communities” creates clusters, which are further divided
until a user-specified separation level is reached. Barrio visualises the resultant clusters
using the JUNG [54] graph visualisation toolkit.

Min-Cut for Component Extraction Marx et al. demonstrate the application
of the min-cut graph partitioning algorithm to software modularisation [74]. Taking a
user’s selected assignments into consideration, a system is bisected using an optimisa-
tion algorithm; either hill climbing, min-cut, an exhaustive search, or a combination
of the three. The user can then refine this by providing more information before the
algorithm is run again. A set of interfaces which “bridge” the gap between the two

2.5. REMODULARISATION 37

components is computed from the edges cut by the bisection operation. This allows
development of each component to continue in parallel, and also serves as the visu-
alisation for the partitioning: the user is shown a UML diagram which includes the
interfaces.

A small user study found the participants identified problems with their code after
performing the extraction — they remark that one participant “was able to identify a
component but was not completely satisfied because two obsolete classes interfered with
the extraction” [74]. Additionally, they found that the task allowed the participants to
reflect on the design of the system, suggesting the act of component extraction may be
suitable for detection of poor design choices.

Scalability of their approach was reportedly a problem: only min-cut of the three algo-
rithms used was feasible for a 3000 node project. The amount of data to be visualised
during the process also presents a challenge which Marx et al. proposed to solve using
zooming and filtering techniques.

Rigi Müller et al. implemented graph-based approaches in a semi-automatic hier-
archical modularisation environment, Rigi [83]. Rigi builds hierarchies from “building
blocks”. These building blocks are identified by a human, but Rigi provides various
tools to aid in the modularisation process. Operating on Resource Flow Graphs (RFGs),
that generalise dependency graphs to include any type of information for which there
are resource relations defined (i.e. there are producers and consumers), Rigi constructs
a composition dependency graph (CDG) which represents the full hierarchy of the sys-
tem where the terminal nodes are the elements of the RFG. There is no constraint on
the number of clusters an element can appear in, thus CDGs are not trees, but acyclic
directed graphs.

Rigi includes measures over elements of the RFG to aid in modularisation:

Interconnection Strength The number of edges between a pair of vertices in the
graph

Common Clients/Suppliers The set of all vertices with edges (dependencies) to/from
all vertices in a module

Centricity The sum of all weights of edges between a vertex v and any other element
which isn’t contained within v

Name Edge names matching a user-supplied regular expression

These all rely on the user supplying thresholds (or a regular expression). The Rigi user
interface allows the user to explore different parameters and composition operations.

2.5.6 Search Based Remodularisation

Search-based methods have been widely studied in the remodularisation field. The
motivation for treating the remodularisation problem as an optimisation task is due to

38 CHAPTER 2. LITERATURE REVIEW

the ease of generating candidate solutions and the ability to produce objective values for
these candidates (via metrics). The majority of the search-based approaches discussed
in this subsection apply metrics based on coupling and cohesion to the problem, aiming
to locate solutions with a high quality architecture (as assessed by these metrics).

Bunch

Bunch [81] is the most widely used and surveyed search-based remodularisation tech-
nique. It produces hierarchical decompositions, built up in layers, using either a hill
climber, simulated annealing, or genetic algorithm. Bunch only relies on the connec-
tivity in the MDG for the feature set, but also includes support for optional weights on
the edges in the dependency graph.

Bunch takes an agglomerative approach to the problem. First, the files or classes are
clustered into small modules. Subsequent searches merge the modules from the previous
search to produce a layered hierarchy.

For the genetic algorithm, the label-based representation described by Krovi [61] is
used, where a chromosome is a vector, where each element in the vector contains the
cluster for the module at that position is used. The specifics of this representation are
discussed in Section 2.5.2.

The fitness function used in Bunch aims to maximise the cohesion of clusters while min-
imising coupling between clusters. These objectives are encoded in the Modularisation
Quality (MQ) fitness function, which is expressed as a ratio of coupling to cohesion.
MQ is given by:

MQ =

k∑
i=1

CFi

CFi =
2µi

2µi +
k∑

j=1,j 6=i

(εi,j + εj,i)

Where µi is the number of edges within cluster i (“intra edges”), εi,j is the number of
edges between cluster i and cluster j (“inter edges”) and k is the number of clusters.

MQ is not unlike the similarity metric used in Arch [100]; MQ seeks to maximise the
proportion of edges within a cluster to those leaving or entering it. It differs from Arch
in that it operates directly on the MDG, while Arch operates on the design linkage
between functions and types. MQ contrasts from the distance measures typically used
in hierarchical clustering, however. By treating the remodularisation as a set of feature
vectors, algorithms group files by the similarities of their dependencies; for example, if
two files each depend on the same set of files, they are similar. MQ differs, by aiming
to cluster files as close to their dependencies as possible.

The use of a ratio makes the “cluster factor” (CF) more tolerant of inter edges for
larger clusters, however the maximum value for CF is 1.0. This limit incentivises the

2.5. REMODULARISATION 39

s1

s2 s3 s4 s5

s6

(a)

s1

s2

s3

s4 s5

s6

(b)

s1

s2

s3 & s4 s5s6

(c)

s1 & s6

(s3 & s4) & s2s5

(d)

(s1 & s6) & s5

(s3 & s4) & s2

(e)

((s1 & s6) & s5) & ((s3 & s4) & s2)

(f)

Figure 2.11: Iterative hierarchy generation in Bunch; each part is a search, from the
bottom level in part (a) to the top level in part (f)

creation of more clusters, however the CF term requires the number of clusters to be
balanced against the coupling between modules. As Bunch removes reflexive edges,
singleton clusters are always assigned a value of 0. This ensures the algorithm will
rarely produce singleton clusters.

The agglomerative process Bunch uses to produce hierarchies is portrayed in Fig-
ure 2.11. The search begins by clustering the MDG (part (a)). In each subsequent
search (parts (b) – (f)), the clusters from the previous search, and their inter-edges,
are clustered by Bunch again. Each search produces a new level in the hierarchy in
a bottom-up manner. Bunch stops when the search produces a single cluster by itself
(shown in part (f)).

Bunch also includes features to restrict the search to only components that require
remodularisation. Omnipresent modules can be identified based on an above-average
edge count and excluded from the search [81]. Libraries can also be detected in a similar
manner: nodes in the graph which do not depend on other nodes (but other nodes
depend on them). These options are user-driven in the sense that a user must judge
the quality of the results of the library and omnipresent module detection processes.
Support for user-driven clustering is also integrated into Bunch; a user can supply a
clustering which the algorithm will start from and specify elements of the clustering to
be locked.

The Bunch algorithm has been evaluated in an industrial context: Glorie et al. [40]
found that, on using Bunch in a real-world scenario, although Bunch did identify some
useful modularisations, the majority were poor. This impacted the utility of the mod-
ularisation provided by Bunch, rendering it unusable in this industrial setting. This
contrasts with the reported agreement with Bunch-generated clusterings by developers
of systems [77, 81].

40 CHAPTER 2. LITERATURE REVIEW

Bunch has been reported to consistently produce highly similar decompositions for
the same input MDG [81]. Mitchell and Mancoridis hypothesised that files that be-
tween modules may be indicative of poor design choices, an observation also made by
Schwanke [100] in the investigation of “maverick” procedures identified by the Arch
clustering tool.

Improvements on Bunch Performance

Harman et al. [46] demonstrated that a genetic algorithm using an alternative repre-
sentation which reduces the search space by limiting the number of ways to represent a
solution outperformed the label-based representation [61] used in Bunch, but performed
worse than a hill climbing algorithm.

Efforts to improve on Bunch have focused mainly on the use of alternative search
techniques to yield higher MQ values. Mahdavi et al. [70] used multiple hill climbs to
locate better starting configurations (building blocks) for the search.

Harman et al. [47] analysed the performance of the MQ fitness function used in Bunch
and compared it to the EVM fitness function. The two fitness functions were evaluated 6
software systems and 6 simulated case studies, three with several completely connected
components and three with random connectivity, with an average edge density equal
to that of the software systems.

Each of these case studies was clustered with an increasing amount of noise, gener-
ated by randomly modifying the MDG’s adjacency matrix. The perfect MDGs were
compared to their known-good decomposition, which was not available for the software
systems. In place of an expert decomposition, the clustering for the MDG with no in-
troduced noise was used. The similarity between pairs of authoritative decomposition
and clustered decomposition was compared, with the results showing that EVM was
more tolerant to noise.

The use of a multi-objective genetic algorithm approach has been found to produce
higher MQ values than the Bunch hill climbing algorithm for the same number of
fitness evaluations [94], albeit at an increased computational cost.

Search-based Refactoring

Refactoring is defined by Fowler as the process of modifying a piece of software to
improve its design without altering its behaviour [38]. For example, a large class that
is coupled with many other classes may be divided into several smaller classes to reduce
the coupling of the design. This problem is similar to remodularisation; the objectives
of increased design quality are the same. Refactoring differs from remodularisation
in that more than one type of entity can be manipulated (e.g. moving a method
implementation to a superclass), and that some solutions are not valid (they may fail
to compile).

Seng et al. [101] applied a genetic algorithm to the problem of identifying refactorings for
software. In their approach, they evolved sequences of refactoring operations, which

2.5. REMODULARISATION 41

are descriptions of transformations to be made to the design of the system, such as
moving a method from one class to another. The fitness of the results of this process
were evaluated using a weighted sum of several metrics, which included coupling and
cohesion [101].

Harman and Tratt expanded upon this approach with a multi-objective search [48].
Rather than applying a genetic algorithm, their approach adopted a hill climbing tech-
nique in order to identify a “Pareto-optimal” set of modularisations that best optimised
the coupling between object metric and the standard deviation of methods per class.
Their approach was motivated by the difficulty in selecting metrics for use in a weighted
single-value measurement.

These “indirect” approaches divide the genotype and phenotype. The phenotype, the
refactored system, is produced as a result of applying the genotype, a sequence of
refactoring operations, to the original system. This indirect approach is beneficial
as it allows a global search to be applied as mutation and crossover cannot produce
individuals that result in invalid solutions [48]. The equivalent direct approach, where
the genotype is a model of the system mandates that the crossover and mutation
operators preserve the semantics of the program.

Search-based remodularisation using the Minimum Description Length
Principle

Lutz [68] demonstrated an application of the minimum description length (MDL) prin-
ciple [97] to the remodularisation problem. A fitness function which uses the length of
the sequence of bits required to encode the tree estimates the quality of the candidate
solution. This fitness function was used with a genetic algorithm and a tree-based
representation to produce hierarchical decompositions for a software system.

Evaluation of this technique was conducted for a small operating system (MiniTunis)
and compared with the result from Bunch [69]. Lutz remarks that the MDL approach
produced good low-level clusters but the hierarchy contained excessive nesting of mod-
ules. Although Bunch was found to produce a less similar result, Lutz makes the
observation that the MDL complexity of the result from Bunch was lower than the
original decomposition, suggesting MQ and the MDL fitness function prioritise similar
features.

Software Renovation Framework

Di Penta et al. use remodularisation as a component in their “Software Renovation
Framework” (SRF) [90]. The SRF performs several stages of analysis and refactorings
to remove unused objects, detect and merge clones and remodularise libraries so they
can potentially be transformed into dynamic libraries. The clustering stage is used to
transform libraries into smaller libraries. The AGNES clustering algorithm is first used
to produce a sub-optimal arrangement. A genetic algorithm is then used to refine the
result so it optimises a weighted sum of the fraction of number of functions used from

42 CHAPTER 2. LITERATURE REVIEW

the library and the size of the new libraries. The refinement step is repeated until a
developer indicates the refactoring is satisfactory.

Interactive Multi-Objective Genetic Algorithm

Work using a multi-objective approach has also leveraged interactive input to further
improve the clustering process [12]. This approach is similar to the user driven merging
in the Arch tool [100], however while Arch confirms each merge of elements with a user,
the IGA approach solicits information in the form of constraints for a subset of the
assignments, which are incorporated into the fitness function.

Bavota et al. outline two alternative implementations, which differ in the selection of
the elements to solicit feedback for. The R-IGA approach makes a random selection,
while the IC-IGA algorithm solicits feedback for isolated clusters (or the smallest if
there are no isolated clusters). In both variants, the user gives feedback in the form
of assignments the elements to other clusters. Each of the variants parameterise the
amount of information solicited at each feedback step as well as the number of feedback
steps before finishing.

In the single objective implementation (IGA), the feedback is solicited for elements
selected from the best solution (highest fitness), based on either random (R-IGA) or the
size of the clusters (IC-IGA). The user-supplied information is applied as constraints
to the solution, and the modified version is used to seed a new population and the
process repeats. The fitness function incorporates the constraints by dividing MQ by
a weighted sum of all violated constraints:

F (s) =
MQ(s)

1 + k.
∑m

i=1 vcsi,s

Where MQ(s) is the MQ value of the solution, as defined by Mitchell and Man-
coridis [81], and vcsi,s is 1 if constraint i is violated in the solution s . The k term
allows the weight applied to constraint violation to be adjusted.

The multi-objective IGA implementation (IMGA) employs the NSGA-II multi-objective
genetic algorithm [29]. The IMGA algorithm has two variants, similar to the single ob-
jective algorithm: evolve a population of solutions and stop after a pre-determined
number of generations, select the solution with the highest MQ value, then select the
element(s) for which feedback will be solicited, repair the solution, generate a new
population from it and repeat the process.

Bavota et al. assess the performance of the interactive algorithms by comparing them
against their non-interactive equivalents. This comparison uses the MoJoFM [124]
distance measure against a known authoritative decomposition for two case studies.
Instead of using humans for the feedback, the authoritative decompositions were used.
The amount of feedback was set to 5 interaction steps (where the evolution is halted
and corrections solicited), each consisting of 3 pieces of feedback (so the interactive
algorithms use a total of 15 corrective interactions).

2.5. REMODULARISATION 43

The interactive variants of both types of algorithm found higher quality solutions than
the non-interactive versions. Additionally, the algorithms limited to a smaller number
of clusters (half the number of files) consistently performed worse than the less restricted
(number of clusters ≤ number of files) runs. Despite this, the more restricted searches
produced solutions with fewer singleton clusters, Bavota et al. cite an instance where
the less restricted GA search produces on average (mean) 149 clusters, on average
(mean) 72 of which were singletons.

The MQ values obtained by the remodularisation algorithms were higher than the MQ
value of the original expert decompositions in some cases. This corroborates Praditwong
et al.’s remarks on their multi-objective remodularisation algorithm:

It is also important to note that this work neither demonstrates nor implies
any necessary association between quality of systems and the modularisation
produced by the approach used in this paper [94].

This highlights both the importance of validating fitness functions and also the prob-
lem automated (or semi-automated) approaches face; subjectivity of the developer will
remain a problem unless it can be incorporated into the process (or the resultant solu-
tion).

This section has shown that a large body of work exists on the remodularisation subject.
The majority of these approaches apply a flexible clustering algorithm, and operate on
the limited feature set of the dependency graph. In some cases, additional information
is used, either from the system, such as Rigi’s use of additional types of information, or
a domain expert, in the case of Arch [100] and the interactive genetic algorithm used
by Bavota et al. [12].

The remainder of this chapter evaluates the work discussed with regard to the ap-
plication to the state machine hierarchy generation problem. Focus is placed on the
previously described flexible approaches that do not depend on information specific to
MDGs.

2.5.7 Performance of Remodularisation Algorithms

The objective quantification of the performance of clustering algorithms is made difficult
by the differences in criteria and in the data that algorithms use to produce their results.

Wu et al. [126] performed a comparison of 6 clustering algorithms over a set of 70 –
73 monthly revisions of 5 systems. Each revision of each case study was clustered by
each algorithm and the results were assessed in three ways:

Stability How similar the modularisations were between revisions

Authoritativeness How similar the modularisations were compared to the revision’s
modularisation (file system structure)

Cluster size The range of cluster sizes produced for each revision

44 CHAPTER 2. LITERATURE REVIEW

MoJo similarity values were calculated for each consecutive pair of decompositions for
each case study and for each algorithm. On comparing these values to the growth of the
system, Bunch was found to be the least stable, while ACDC and both single linkage
hierarchical clustering algorithms were found to be the most stable.

Authoritativeness was compared using the filesystem structure, which was modified by
moving all header files (.h) to the directory containing their corresponding implemen-
tation (.c files). MoJo similarities were calculated for each clustered revision between
the corresponding authoritative decomposition.

On comparing authoritativeness, Wu et al. [126] remarked that none of the surveyed
algorithms produced modularisations similar enough to the authoritative decomposi-
tions. However, the complete linkage algorithm with a 0.9 cut height produced the
highest overall authoritative similarity values.

Sizes of clusters produced were measured for each of the algorithms, then subjected
to a “NED (non-extreme distribution)” measure. The percentage of elements in non-
extreme clusters, defined as those with more than 5 and less than 100 elements of the
total number of elements were calculated. A score of 100% constitutes a modularisation
with no extreme modules. Bunch was found to produce the fewest number of extreme
clusters [126].

Other studies have focused on single level performance; a comparison of Bunch with the
ACDC clustering algorithm on simulated systems found that Bunch produced the most
authoritative decompositions for two of the three systems tested [104]. However, ACDC
was also found to produce more authoritative hierarchies than Bunch [103] although
Bunch produced partitionings which cut a higher number of edges correctly than those
produced by ACDC.

This evaluation used simulated authoritative decompositions [104]. The rationale for
this approach was that using a small number of case studies exposes the study to po-
tential bias introduced by the case studies. Rather than using a case study and its
authoritative decomposition, the LimSim approach used in Shtern and Tzerpos’ eval-
uation uses the case study as a seed from which many random systems are generated.
This is achieved by randomly modifying the MDG and its corresponding authoritative
decomposition [104].

Evaluations of the authoritativeness of all clusterings show repeat findings of the same
result; the algorithms perform well in some aspects, but poorly in others. Glorie et
al.’s findings [40] demonstrate this phenomenon in an industrial context. As none of
these clustering algorithms is clearly generally better than any other (when comparing
similarity to authoritative decompositions), the choice of an algorithm to apply to the
remodularisation problem is dictated by the flexibility and applicability (data required
by the algorithm and resultant data it produces). The following section takes this into
consideration and summarises the surveyed techniques and shows how, of the algorithms
surveyed, Bunch’s flexibility makes it the best starting point.

2.6. SUMMARY OF APPLICABLE TECHNIQUES 45

§ 2.6 Summary of Applicable Techniques

This thesis focuses first on the use of clustering techniques to remodularise state ma-
chines for the purposes of abstraction. The various applicable approaches discussed
in this literature review are summarised in this section from the perspective of their
suitability. This summary focuses entirely on direct possible applications for brevity,
and groups the techniques by the aims and objectives as defined in Section 1.3.

2.6.1 Aim 1: Applying Remodularisation to State Machines

This survey has shown that the remodularisation problem is highly related to the state
machine hierarchy generation problem. The difference in the approaches indicates that
there are a number of techniques that may be transferred and applied to the state
machine clustering problem.

The remodularisation algorithms surveyed can be divided into several distinct groups:

Clustering Items are grouped by a similarity measure

Pattern-based Items are placed using pre-defined architectural patterns

Concept-based Items are grouped by concepts using formal concept analysis

Of these approaches, clustering and pattern-based approaches produce hierarchies,
while concept analysis can be used to produce different partitionings that group el-
ements by common concepts. Thus, concept analysis algorithms are not considered as
a hierarchy is desired. Additionally, the use of patterns requires a set of known patterns
to apply. This technique is highly similar to the transformation approaches already ap-
plied in state machine complexity reduction which has problems with computational
complexity. Clustering, the only remaining technique is then chosen as the focus of the
thesis.

Of the remodularisation techniques surveyed, a large majority operate on some form of
graph derived from the system. In some cases this graph is extended to include multiple
types of information, such as the graph of functions and types used in Arch [100] or
the Resource Flow Graphs used in Rigi [83]. As these features do not exist in state
machines, these techniques cannot be applied, however, other approaches that use only
the graph may be applicable to the problem.

In order to apply a clustering technique to the problem, the following elements form
part of a solution and are avenues of investigation:

Algorithm The process by which elements will be grouped together, including the
type of linkage in hierarchical algorithms

Criterion The measure that will be used to assess candidate results, such as merges
in hierarchical algorithms and how it will be mapped to numeric values, e.g. the
similarity measure

46 CHAPTER 2. LITERATURE REVIEW

The intersection of the available information for these models is the graph structure
itself; edge and node labels are not present in MDGs and state machines respec-
tively. This scenario, where only the graph is available (and its adjacency matrix)
most closely resembles the modularisation of variables as described by van Deursen
and Kuipers’ [118]. Problems with the sparsity of the feature set and interpretation
of dendrograms as identified by van Deursen and Kuipers [118] are therefore likely to
persist if hierarchical clustering is applied to this problem.

In consideration of these problems with hierarchical clustering, other clustering ap-
proaches appear more suitable. The Bunch [81] clustering tool uses a hill climbing
algorithm to locate solutions that maximise the MQ fitness function. As MQ favours
solutions with fewer edges that enter or leave clusters, it has the potential to produce
clusters for state machines that are of high quality. Additionally, MQ is based on the
concepts of cohesion and coupling, values used by Anquetil and Lethbridge to assess the
results produced using hierarchical clustering algorithms [9]. Using Bunch allows these
criteria to be maximised directly, rather than indirectly through a similarity metric.

Furthermore, using a search-based approach allows the clustering criterion to be changed
by changing the fitness function, which allows the exploration of search-based solutions
to the rule-matching problem to be conducted using the same environment. This ex-
perimentation is performed in Chapter 4.

Chapter 3 further investigates the use of Bunch to the state machine clustering problem
and identifies issues with the approach it takes to hierarchy generation. Approaches
to clustering using linear representations, including the label approach of Chis [21]
and the “indirect” approach applied to the refactoring problem [101, 48] are explored
in Chapter 4. These approaches are applied using fitness functions derived from re-
modularisation and state machine hierarchy generation approaches in order to explore
various fitness functions, including a search based approach to the rule-matching su-
perstate transition generating techniques discussed in Section 2.4.

2.6.2 Aim 2: Addressing Qualitative Issues with Automated
Remodularisation

The second aim of this thesis focuses on the regular finding of inadequate results typical
in remodularisation. The use of expert knowledge is widely reported in remodularisa-
tion [12, 90, 81, 83, 100] approaches, as well as in clustering approaches [120].

These approaches aim to tailor the algorithm to their users in order to produce better
results. As found by Wu et al., automated remodularisation algorithms are not likely
to reproduce authoritative decompositions [126], and an easy interface to tailor the
algorithm’s results to the application is essential. As Glorie et al. [40] found that while
Bunch produced modularisations that were good in places, the lack of a means to refine
the result made it unworkable as a solution to the remodularisation problem.

Chapters 5 and 6 investigate a means to enable modularisations to be refined, indepen-
dent of the modularisation algorithm used in order to solve this problem of authorita-
tiveness.

2.7. CONCLUDING REMARKS 47

§ 2.7 Concluding Remarks

The same graph-based representations used by both module dependency graphs and
state machines makes the application of remodularisation to the state machine hierarchy
generation a viable option. Remodularisation techniques can use clustering algorithms
to group elements by an estimate of similarity, a measure which, in some cases such
as those using adjacency lists for the feature vector, applies directly to states in state
machines.

Remodularisation has seen widespread effort to improve results in terms of the struc-
tural quality and accuracy of the result. The former can be increased through the use
of better algorithms, such as selecting a better linkage criterion, however the latter
relies on ensuring the algorithm replicates choices made by a human.

Thus, the former task of increasing metrics is an optimisation problem; for a given
state machine, the goal is to select the arrangement of hierarchies such that the quality
metric is maximised. For large state machines, the space of hierarchies is large, which
motivates the use of a more efficient exploration of the search space with metaheuristic
algorithms. Chapters 3 and 4 explore this application of metaheuristic search to the
state machine clustering problem.

The second problem, of accuracy, has remained unsolved by automatic approaches.
While increasing metric values may produce better results, a human providing a sub-
jective judgement on the result is likely to make choices that a metric may be unable
to predict. This problem is rooted both in the choice of the metric, but the exposure to
subjectivity cannot be ruled out, thus this problem is likely to require human intuition.
Chapters 5 and 6 explore this component of the hierarchy generation problem using
a refinement approach, based on Wagstaff et al. [120]’s use of constraints to improve
clustering algorithms.

Chapter 3

Remodularisation of State
Machines for Abstraction

The previous chapter outlined existing approaches to state machine superstate gener-
ation and remodularisation. It detailed issues that exist with rule based approaches
and discussed the similarities of MDGs and state machines, showing how remodulari-
sation approaches that operate only on a graph may be applicable to the state machine
superstate identification problem.

This chapter tests this hypothesis through the application of the Bunch remodulari-
sation tool to produce a single level hierarchy for state machines. In contrast to the
existing composite state generation approaches, Bunch is a metaheuristic approach to
the clustering of a graph. Section 3.1 shows how it can be applied to the composite
state generation problem.

The performance of this application of Bunch is evaluated on two case studies by
comparing the output to expert decompositions. Results of these comparisons show
Bunch is able to completely recover the structure of one case study and partially recover
the structure of the other.

After establishing the feasibility of clustering state machines with Bunch, the approach
it uses for hierarchy generation is investigated in Section 3.2, where evidence that the
layered approach that it uses results in over-fitting is encountered. Section 3.3.1 surveys
the hierarchies of several open source software systems and determines that unbalanced
hierarchies do occur, and that Bunch’s limitation to layered hierarchies precludes it from
reproducing structures produced by the architects of some systems.

An approach to rectify this scenario using a post-processing step based on the mean
fitness value of elements of the hierarchy is then evaluated, determining it can increase
the mean fitness in approximately 30% of the produced solutions.

48

3.1. MODULARISING STATE MACHINES WITH BUNCH 49

This chapter makes the following contributions:

1 An empirical study into the feasibility of applying the Bunch search-based remod-
ularisation tool to state machines that shows Bunch is able to partially recover
elements of expert decompositions;

2 Analysis of Bunch’s layered approach to hierarchy generation, demonstrating that
fitness values of earlier levels impact the fitness of later levels; and

3 Investigation of the use of random mutation to mitigate over-fitting in Bunch by
producing unbalanced hierarchies.

§ 3.1 Modularising State Machines with Bunch

As discussed in Chapter 2, there is a large body of research directed at the remodulari-
sation of software. All surveyed approaches for state machines, however, use rule-based
matching over all subsets of the state machine [108, 23, 62] to identify groups of states
to place in a composite state.

As shown in Chu et al.’s case study, the abstraction provided relies on the state machine
exhibiting patterns that match them [23]. The SCHAEM technique [62], discussed in
Section 2.4 also has problems with computational complexity; each pair of states is
assessed for the superstate rule, meaning constructing hierarchies is costly, Systä et al.
showed that finding the optimal assignment of groups is NP-complete [108].

The computational complexity and dependency on rule matching limits the application
of these approaches. As reverse engineered state machines are likely to be large, a more
efficient approach is required. The Bunch [81] clustering tool applies a meta-heuristic
search to the highly similar MDG clustering problem. A search-based approach avoids
problems with the large search space at a loss of the guarantee of producing the global
optimum. It also gives Bunch more flexibility to examine some solutions that would
not be considered by rule-based approaches.

Bunch operates solely on the connectivity of the MDG, which makes it flexible for
application to other graph partitioning problems, such as assigning heaps to threads to
reduce the cost of garbage collection in a multi-threaded application [24].

Modularisation Quality, the fitness function used in Bunch to estimate the quality of
a candidate partitioning (discussed in Section 2.5.6), aims to reduce the number of
edges between clusters. The quality of the result relies on the relationship between this
edge-reducing heuristic and an expert’s notion of what constitutes a good organisation
of the state machine. The experiment described in this section aims to measure this
relationship.

50 CHAPTER 3. REMODULARISATION OF STATE MACHINES

This section investigates this application of Bunch and aims to identify any poten-
tial issues and to determine how suitably Bunch clusters state machines. The study
addresses the following research questions:

RQ 1 How closely is Bunch able to reproduce a known grouping for a state machine?

RQ 2 What is the relationship between MQ values and similarity to a known good
solution?

3.1.1 Generating Bunch-compatible Input

In order to cluster a state machine with Bunch, it must first be transformed into the
correct MDG format. Bunch uses a variant of the Pajek graph definition format [11],
where only edge definitions are required. An example is given in Figure 3.1. Bunch
includes support for weighted edges, although each edge is assigned a uniform weight
in these experiments.

state1 state2

state2 state3

state3 state1

state3 exit

Figure 3.1: A simple state machine encoded in the Bunch MDG input format

Although Bunch operates on a directed graph, it performs a step of removing reflexive
edges before it begins a clustering operation, as they are meaningless in the context of
a dependency graph. However, reflexive edges are common in state machines, where
an event occurs that does not cause the machine to change state.

The removal of these edges means that Bunch may be operating on a graph that is not
identical to the original state machine. This could negatively impact MQ values where
reflexive edges of states are not counted towards the number of internal transitions. For
the purposes of these experiments, the reflexive edges are ignored during clustering. A
post-processing transformation restores the lost edges, as well as edge labels, which
aren’t encoded in the Bunch input format. This step is purely cosmetic however, and
does not have impact on the clustering, but is necessary for presentation of the result.

Figure 3.2 summarises the process of clustering a state machine graphically, including
the restoration of data removed by Bunch.

Once the state machines are transformed into MDG files they can be loaded into Bunch
and clustered as if they were MDGs. Other Bunch features are therefore available, such

State Machine

Remove Edge Labels

Reconstruct labels and reflexive eges

Dependency Graph Cluster with Bunch Clustered MDG

Clustered State Machine

Figure 3.2: Modularising a state machine with Bunch

3.1. MODULARISING STATE MACHINES WITH BUNCH 51

(a) The original state machine.

(b) The machine clustered by Bunch, with
a division of the machine into superstates
corresponding to high and low water levels.

Figure 3.3: The original and clustered state machine for a water pump controller

as omnipresent module detection and library detection. The features are not used in
these experiments as they require domain knowledge to be used correctly and would
constitute a potential threat to validity through the introduction of bias.

Figure 3.3 depicts a state machine for a water pump controller [28] (part (a)) and
its corresponding clustering produced by Bunch (part (b)). The two superstates cor-
respond to the water level; they group states for low and high water together. This
structure was discovered by Bunch based solely on the connectivity of the graph, indi-
cating that the structure alone is capable of leading the search to good decompositions.

52 CHAPTER 3. REMODULARISATION OF STATE MACHINES

3.1.2 Evaluation

The evaluation is conducted by comparing the clustering produced by Bunch to a known
good clustering produced by a domain expert. This is an assessment of the “authorita-
tive” performance of Bunch, as described in Section 2.2 which uses a similarity measure
to evaluate the performance. Statecharts are used for the case studies, as they include
a developer-generated hierarchy which can be used for the assessment. The similarity
measures used are listed in Section 3.1.4.

State Machine Extraction

A state machine was first generated from the statechart of each case study. For state-
charts containing multiple concurrent superstates, the largest superstate was selected.
The statechart was then flattened by removing all superstates. Superstate transitions
were transformed into individual state transitions from every state in the superstate.
For example, if there is a superstate S containing a, b, c a transition S → z will be
encoded as a→ z, b→ z, c→ z . Transitions to a superstate were rewritten to point to
the default state for that superstate.

States were assigned unique names by prefixing them with all the names of the su-
perstates that contain them to avoid name collisions if two states shared the same
name.

Clustering

The extracted state machine’s transition graph was loaded into Bunch and clustered
as if it were an MDG following the process depicted in Figure 3.2. As Bunch is a
randomised algorithm, the clustering process is repeated 30 times for each case study.
This ensures the evaluation quantifies the typical performance and reduces the influence
of an unusually good or poor result on the results.

Bunch produces a hierarchy of modularisations, forming “levels”. The number of levels
is not selected a-priori, but determined by the number of recursive clustering Bunch
can perform until it produces a solution containing only one cluster. Each of the levels
produced by Bunch was evaluated individually in these experiments.

3.1.3 Case Studies

The experiment was conducted on two case studies, both small state machines extracted
from statecharts. The size of the case studies is a consequence of the lack of availability
of larger statecharts.

Figures 3.4 and 3.5 show the alarmclock and tamagotchi case studies used in the
experiment respectively.

The alarmclock example consists of 3 superstates; one for normal operations (display
of time, alarm time), one for setting the current time and one for setting the alarm

3.1. MODULARISING STATE MACHINES WITH BUNCH 53

Figure 3.4: The alarmclock case study

time. It is taken from a conceptual model of a statechart used in a study on the use
of finite automata to represent mental models [98]. The original statechart contained
three concurrent superstates, this case study is the largest of the three.

Figure 3.5: The tamagotchi case study

The tamagotchi case study is taken from a student project to produce a UML model of
a ‘tamagotchi’ electronic pet toy [13]. It is a larger example, consisting of 7 superstates,
including a main menu, a food menu, a status viewer and a catch-all superstate for all
actions associated with playing the game. Two of the states in the machine appear
outside of a superstate, for the purpose of the evaluation, each are placed in their own
superstate, as it is not possible to encode entities outside of a cluster in Bunch. The
impossibility of encoding a variable-depth hierarchy is analysed in Section 3.3.

54 CHAPTER 3. REMODULARISATION OF STATE MACHINES

3.1.4 Metrics

The following metrics were calculated for each level of individual result. The similarity
measures were calculated between the expert decomposition and the result and estimate
how close to the correct answer the Bunch result was.

MQ The fitness value of the clustering for that level

Depth Defined by Mitchell as the number of iterations of the hill climbing algorithm
taken to produce the result at that level [78]. This is one of the metrics reported
by the Bunch tool.

Evaluations The number of MQ evaluations taken for Bunch to produce the result.
Bunch reports the total MQ evaluations for the whole MDG (rather than each
level) so the value is the same for each level [78].

Runtime The amount of time required to cluster the MDG (in seconds). This is the
aggregate time taken for all levels, so like the evaluation count it is the same for
all levels.

Precision and Recall As defined by Anquetil et al. [9] and summarised in Section 2.2,
precision and recall estimate the performance, in terms of the number of incor-
rectly clustered elements (precision) and the number of correctly clustered ele-
ments overall.

EdgeSim A modularisation-specific measure [78] and is discussed in Section 2.2. Ed-
geSim counts the number of pairs of edges which are the same in each clustering.

MeCl MeCl [78] calculates the number of merges of fragments of one clustering re-
quired to produce the other. It is discussed in more detail in Section 2.2.

3.1.5 Results

The research questions for this evaluation are addressed using inferential statistics on
the measures described in the previous subsection. The following subsections summarise
the findings for each case study.

The alarmclock Case Study

Summary statistics for the alarmclock case study are given for level 0 in Table 3.1.
Bunch produced two levels in all cases, however only the results at level 0 were mean-
ingful. Each of the results at level 1 consisted of a single cluster containing all elements.

Of the results for level 0 (Table 3.1), 10 were “correct”, i.e. Bunch successfully produced
the same modularisation as that selected by the designer of the case study. Higher
values of MQ correlate with higher accuracy (Pearson r = 1, Spearman rs = 0.859),
suggesting that MQ is a good predictor of accuracy for this case study. A higher fitness

3.1. MODULARISING STATE MACHINES WITH BUNCH 55

Table 3.1: Summary statistics for level 0 of the alarmclock case study
MQ Depth MQ Evaluations Runtime Number of Clusters Precision Recall MeCl EdgeSim

Mean 1.44 4.67 158.00 1.60 2.33 66.67 100.00 96.00 83.33
Min 1.39 1.00 101.00 0.00 2.00 50.00 100.00 94.00 75.00
Max 1.54 9.00 204.00 8.00 3.00 100.00 100.00 100.00 100.00

St. Dev 0.07 2.38 23.57 1.45 0.48 23.97 0.00 2.88 11.99

Figure 3.6: Correctly clustered alarmclock case study, with an MQ of 1.54

result from Bunch is shown in Figure 3.6, where the Bunch clustering was the same as
the expert decomposition.

At level 0, two distinct classes of solutions were observed. In 10 of the 30 cases, the
expert decomposition was exactly reproduced. In the remaining 20 cases, the solutions
were poorer, with a precision of 100, recall of 50, EdgeSim of 94 and MeCl of 75.

The tamagotchi Case Study

Table 3.2: Summary statistics for level 0 of the tamagotchi case study
MQ Depth MQ Evaluations Runtime Number of Clusters Precision Recall MeCl EdgeSim

Mean 2.27 16.27 559.03 2.57 5.53 73.94 46.22 91.33 61.33
Min 2.26 10.00 354.00 1.00 5.00 72.73 40.00 89.00 56.66
Max 2.28 23.00 760.00 9.00 6.00 75.00 53.33 94.00 66.66

St. Dev 0.01 3.40 107.97 1.76 0.51 1.15 6.77 2.54 5.07

Results for the tamagotchi case study are shown in Tables 3.2 and 3.3. As with the
alarmclock case study, the final level generated by Bunch contains only one cluster
and is not subject to additional analysis. In all cases, Bunch located 3 levels in the
hierarchy.

The similarity to the authoritative decomposition for tamagotchi was lower than for
alarmclock; Bunch never entirely reproduced it. The correlation between MQ and
EdgeSim and MeCl values was again high at the highest level of detail (level 0): r = 1,
rs = 0.865 and was lower at the median level (level 1), r = 0.540, rs = 0.697 for
EdgeSim and r = −0.540, rs = −0.697 for MeCl. This high correlation was also
observed for the alarmclock case study, suggesting that the detail level is most suitable
for authoritative results. This also supports the hypothesis that MQ can guide the
search to authoritative decompositions (RQ2).

56 CHAPTER 3. REMODULARISATION OF STATE MACHINES

Table 3.3: Summary statistics for level 1 of the tamagotchi case study
MQ Depth MQ Evaluations Runtime Number of Clusters Precision Recall MeCl EdgeSim

Mean 1.33 3.47 559.03 2.57 2.17 40.03 96.67 91.33 68.89
Min 1.27 1.00 354.00 1.00 2.00 34.88 80.00 91.00 63.33
Max 1.39 10.00 760.00 9.00 3.00 60.00 100.00 93.00 70.00

St. Dev 0.05 2.32 107.97 1.76 0.38 9.16 7.58 0.76 2.53

Figure 3.7: One solution produced for the tamagotchi case study

Figure 3.7 depicts the closest solution produced by Bunch. The majority of the states
are clustered correctly, however the happiness and weight age states were placed in a
separate superstate to weight and saturation while the original decomposition placed
them together (this is depicted by the dashed line in the figure). The two states that did
not have any superstate (idle, showclock) were also placed differently. The playing

state was also clustered as part of a superstate containing the play state, which again
differs from the original.

The layered approach to hierarchy generation resulted in a detriment to Bunch’s per-
formance for this case study. A superstate in the expert decomposition was further
divided at the lower level but appeared correctly at the median level (indicated by the
dashed line in Figure 3.7). However, at the median level the other elements of the
clustering were worse overall (depicted in Table 3.3).

Discussion

The results from the experiments suggest that Bunch is able to recover elements of an
expert remodularisation. Although it never converged on the “correct” result for the
tamagotchi, it was still capable of recovering some elements of it.

As Bunch operates solely on the connectivity of the graph, the good results for alarmclock
are possibly due to its uniformity; there are a higher number of edges within super-
states, an arrangement which MQ favours. The less uniform and larger tamagotchi case

3.1. MODULARISING STATE MACHINES WITH BUNCH 57

study’s decomposition contains features that MQ favours less than other arrangements,
which possibly resulted in the poorer authoritativeness scores for this case study. The
removal of reflexive edges from the graph prior to clustering may have contributed to
the incorrect clustering of some elements. In addition, MQ awards no value to clusters
that contain no internal edges. This makes it unlikely to produce singleton clusters, and
in the tamagotchi case study, a singleton cluster in the expert decomposition contain-
ing the playing state was placed in another superstate with other elements (playing
in the example in Figure 3.7).

The correlation at the detail level between MQ and the EdgeSim and MeCl measures
does suggest that MQ models the design choices made by the developers who produced
the expert decompositions. Although the correlation was lower at the high level, this
result still suggests that Bunch and MQ are capable to an extent of approximating the
decisions made by the developers. However, this study has also identified issues with
its application to the problem. In addition to the singleton cluster problem, MQ is
designed to minimise edges between clusters, which is contrary to the application of
superstate transition rewriting, wherein multiple edges with the same label and target
leaving a cluster are merged [108].

Further to the issues with MQ, the hierarchy generation process used by Bunch caused
local improvement in authoritativeness to be conflated with an overall decrease in au-
thoritativeness for the menustate case study. This, coupled with the problems with
MQ suggests that, although Bunch can optimise elements of the decomposition, it does
not present a complete solution to the problem.

In addition to the issues with Bunch itself, this evaluation demonstrated the difficulty
in assessing the performance of Bunch, exacerbated by the limited availability of case
studies with a decomposition. The similarity values for the top level of each case study
were poor overall, however in both cases, the recall metric was 100% for all results.
This is because recall looks only at the number of correct classifications, ignoring the
number of clusters.

Threats to Validity

There are several potential issues which may be considered threats to validity:

There may be more than one authoritative decomposition. The conclusions are
drawn from the similarity values with the expert decompositions. Although pro-
duced by experts, it is possible that another decomposition would be equally
valid in the eyes of another expert. This problem is, however not unique to this
experiment and is a threat to validity in all modularisation research that uses
authoritative decompositions to evaluate performance.

The case studies are not likely to be representative of all state machines. The
case studies may impart bias, firstly through their authoritative decomposition as
previously discussed, but the small number and small sizes of the case studies do
not permit these results to be extrapolated to all state machines. These results
do not necessarily indicate typical Bunch performance, although they do offer

58 CHAPTER 3. REMODULARISATION OF STATE MACHINES

an insight into the relationship between MQ and the characteristics of a good
organisation as viewed by the developer.

3.1.6 Conclusions of the Empirical Study

This study firstly shows the applicability of the Bunch algorithm to modularisation of
state machines to produce superstates. The results do show that Bunch can recover
elements of the hierarchy, echoing findings for the use of Bunch for automated software
modularisation.

For this experiment, MQ appears to represent a reasonable approximation of what
constitutes a good organisation, however the subjectivity of “good” makes the results
of this experiment harder to interpret. It is therefore difficult to construct an objective
judgement, a difficulty which is unavoidable for this problem, evidenced by Glorie et
al.’s finding of poor performance of Bunch in an industrial setting [40].

Although feasibility was demonstrated by the experiment, issues were found with the
hierarchy generation component of Bunch. For the tamagotchi case study, for example,
one superstate in the hierarchy was further divided into two superstates. The next
level, while correctly merging these two fragments also merged the other clusters which
reduced the overall similarity of the result. Further difficulties were represented by the
non-layered authoritative decomposition for the tamagotchi case study, which Bunch
is unable to reproduce (this deficiency is further explored in Section 3.3.1).

This experiment has illustrated problems with Bunch’s ability to recover the hierarchy
for state machines and its hierarchy generation approach. The remainder of this chap-
ter, and Chapter 4 focus on the latter problem, while the former problem of accuracy
is investigated in Chapters 5 and 6.

§ 3.2 Over-fitting in Bunch

As identified in the previous experiment, the similarity of a Bunch result to an authori-
tative decomposition varies between levels in the hierarchy. The hill climbing approach
used in Bunch is only able to modularise the system at one level at a time; hierarchy
formation is attained by repeating the search on the modules identified by the previous
search (this was described in Section 2.5.6). As Bunch is not guaranteed to produce
the same result due to the stochastic nature of the hill climbing algorithm, repeated
hill climbs may result in compounding poor performance.

The experiment in this section aims to assess to what extent this repeated search ap-
proach introduces error into the search, with the hypothesis that as the search begins
at the lowest level, it may over-optimise the bottom of the hierarchy and restrict sub-
sequent searches to solutions that are poorer than those reachable from less fit lower
levels.

This section investigates the following research question: “Does the iterative hierarchy
generation approach result in over-fitting?”

3.2. OVER-FITTING IN BUNCH 59

3.2.1 Method

The hypothesis is tested by measuring the fitness of individuals at the two levels in the
hierarchy produced by the search. Fitness values are normalised according to the range
of values observed over 100 searches for each case study. The process is as follows:

1 Cluster each case study 100 times

2 Remove all results that did not include at least three layers in the hierarchy

3 Normalise the fitness values for each level

Stage 1. Clustering Bunch is used to cluster each case study a total of 100 times.
This yields 100 modularisations for the case study, each of which may have a different
fitness values at different levels as Bunch is search-based. A total of 30 case studies are
used in the experiment consisting of 13 MDGs extracted from various software systems
and 17 finite state machines, of which three are synthetic.

Stage 2. Discarding of Flat Results Bunch may not produce more than one level
of a hierarchy (ignoring the top level which always contains one cluster). These results
are discarded from the set as there is no hierarchy to assess for over-fitting. The top
level is ignored as it always contains only one cluster; the objective of this experiment
is to determine if over-fitting occurs between two levels where there is more than one
possible solution at each of these levels.

Stage 3. Normalising Fitness Values Fitness values at each level are normalised
by scaling them into the range [0 . . . 1] for each case study. This is achieved by collating
the 100 fitness values at each level of each case study using the equation:

Norm(x) =
x−Min

Max−Min

This scales the values to the range the observed values, such that the normalised value
is 0 when the MQ value was the lowest of the observed values and 1 when it was
highest.

3.2.2 Results

The process produced 2744 pairs of values of the 3000 clustering runs. This number
is smaller due to the discarding of hierarchies with fewer than 3 levels described in
Section 3.2.1.

Figure 3.8 depicts density and violin plots of the normalised MQ values (obtained as
described in Section 3.2.1).

The violin plot (part (a)) shows the spread of the normalised MQ values at each
level. The distributions are different for each level, with the proportion of greater MQ

60 CHAPTER 3. REMODULARISATION OF STATE MACHINES

0.0

0.2

0.4

0.6

0.8

1.0

Level 0 Level 1

N
or

m
al

is
ed

 M
Q

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Level 0

Le
ve

l 1
(b)

Figure 3.8: Violin plot and density plot of normalised MQ values, N = 2744

values being larger for level 0 than level 1. The level 0 performance alone shows that
Bunch is able to identify a high proportion of high fitness solutions, however the poorer
performance at level 1 suggests that the previous search predisposes it to produce less
fit values. If no bias existed, the distributions would be more similar.

This apparent dependency is visualised in the density plot in Figure 3.8 part (b). The
darkness of each point corresponds to the frequency of those normalised MQ values at
level 0 (x-axis) and level 1 (y-axis). An ideal result is a concentration of values at the
point (1.0, 1.0), however, there are concentrations around (0, 1.0) and (1.0, 0), as well
as other points scattered across the range. These concentrations support the hypothesis
of the research question, that layered hierarchy generation results in over-fitting.

The data shows a disparity between normalised fitness values at each layer and a depen-
dency on previous fitness values. This supports the hypothesis that the repeated hill
climbing approach used in Bunch may result in over-fitting. As Mitchell recommends
the median level [78, p. 120] for analysing the solution produced by Bunch, several
rounds of over-fitting may have occurred to produce the result, potentially lowering its
fitness.

This section demonstrated the impact of the agglomerative repeated searching process
on fitness of the hierarchies. The following section analyses the same method from the
perspective of the types of hierarchies it is able to produce.

§ 3.3 Balanced Hierarchy Limitation

Results of the study in Section 3.1 for the tamagotchi case study show that the limita-
tion of Bunch to producing only layered hierarchies precludes it from producing better
solutions, as it is not possible for some clusters to be merged while others left as-is
when producing the next level in the hierarchy.

3.3. BALANCED HIERARCHY LIMITATION 61

slabhighmemutilbootmem securityinode auditfile exitcpusetaudittimersmp gdbstubdebug core

(a)

slabutilhighmembootmem securityinodeauditfile exitcpusetaudittimersmpgdbstubdebug core

(b)

Figure 3.9: (a) Unbalanced, (b) balanced hierarchy

Figure 3.9 illustrates an unbalanced hierarchy (Part (a)) and the closest possible rep-
resentation reachable by Bunch (Part (b)). The unbalanced tree in Part (a) shows
two small modules at a lower level (gdbstub and debug core, audit and file) which
Bunch would not be able to produce.

One possible approximation is shown in Figure 3.9 Part (b), however this involves
placing other elements deeper into the hierarchy than they would normally appear
in a non-layered representation. Additionally, the module containing bootmem, util,
highmem and slab is further divided, as MQ will award no value to singleton clusters.

This section further investigates this limitation in terms of the authoritative decompo-
sitions Bunch is unable to produce, determining that existing software systems contain
structures Bunch cannot recover. It then concludes with an approach to improve mean
MQ values of Bunch results by converting them to un-layered hierarchies through a
random deletion operation.

3.3.1 Unbalanced Hierarchies in Open Source Software

As Bunch is constrained to only produce layered hierarchies, it may be unable to fully
recover the hierarchy as intended by a developer if the developer did not use a layered
structure. The result of the experiment in Section 3.1 shows that the similarity to the
expert developer’s solution could be improved if elements of the hierarchy could be
merged while others remained the same. The hypothesis that hierarchies in existing
software are not exclusively layered is tested by examining the hierarchies of five open
source software systems.

Case Studies

Each of the case studies used in this survey are Java projects, which includes one tool
and four libraries. The case studies were selected from the Ohloh 1 open source project
aggregator’s list of Java projects. Table 3.4 summarises the case studies used in this
experiment.

1http://ohloh.net

http://ohloh.net

62 CHAPTER 3. REMODULARISATION OF STATE MACHINES

Table 3.4: Case studies from the survey
Case Study Version Classes Description

Collections 3.2.1 245 Apache Commons implementations of
Java container classes

epubcheck 3.0-b4 75 Tool for validating epub ebook files
JDOM 1.0 57 XML parsing library

WiQuery 1.5-M1 204 Integrates the jQuery JavaScript li-
brary with the Apache Wicket web
framework

ZXing 2.1-SNAPSHOT 184 Library implementing scanners for var-
ious barcode formats

3.3.2 Results

Table 3.5 shows the mean depth of each class for each of the case studies. In cases
where this mean is an integer, each class appears at the same depth, corresponding
to a layered hierarchy. If the mean depth is not an integer, then the classes appear
at different levels in the hierarchy and can therefore not be represented as a layered
hierarchy, and therefore cannot be recovered entirely by Bunch.

Table 3.5: Mean depths of classes in the each case study

Case Study Mean

Collections 4.71
epubcheck 4.00

JDOM 2.63
WiQuery 5.16

ZXing 4.79

The values in Table 3.5 show that only one of the five case studies, epubcheck, has a
layered package structure. This confirms the hypothesis that the hierarchy generation
method used in Bunch would be unable to reproduce the package structures of all but
one of the systems surveyed. Although this survey was conducted over a small number
of software systems, it still indicates that there exist software systems where Bunch
would never recreate the authoritative decomposition, even if it maximised MQ.

§ 3.4 Creating Unbalanced Hierarchies to Improve
Bunch Results

The previous section demonstrated that Bunch is incapable of reproducing some hi-
erarchies that are observed in existing software. As described in the previous section,
some hierarchies can be mapped to a layered representation, but this inserts artificial

3.4. UNBALANCED HIERARCHIES TO IMPROVE BUNCH RESULTS 63

elements into the hierarchy. The result for the tamagotchi case study highlighted the
detrimental effect on similarity to an expert decomposition that can result from this
approach.

A means of removing these superfluous hierarchy elements is investigated in this section.
Random elements of the hierarchy are deleted to produce an unlayered version of the
hierarchy, which are assessed using the mean MQ value of all clusters in the tree. This
section concludes with an evaluation on the five previously introduced case studies
that demonstrates an improvement in mean MQ for at least 30% of the 100 mutants
produced for each case study.

3.4.1 Random Node Deletions

Assuming the layered hierarchy produced by Bunch contains additional elements which
place some parts of the MDG deeper than necessary, i.e. the hierarchy contains super-
fluous elements which add no value, it may be possible to produce an improvement by
locating and removing these elements.

The random deletion approach works as follows: A hierarchy, in the form of layers
produced from Bunch is first converted to produce a tree. An element from this tree
is then selected at random (excluding the head node). Each child cluster from this
element is then promoted to its parent. This produces a tree with one branch shorter
than the rest. The resultant tree is then compared to the original tree using mean MQ
(described later in Section 3.4.2), where an increase in mean MQ corresponds to an
improvement.

3.4.2 Mean MQ

An estimate of the fitness of the unbalanced hierarchy is made by calculating the
mean MQ of all clusters in the tree. This is based on the hypothesis that elements
in the hierarchy with low MQ values detract from the overall quality of the hierarchy,
increasing the number of clusters with little objective value. Thus, removing these
clusters will increase the overall mean MQ and therefore the quality of the hierarchy.

Mean MQ is calculated by firstly summing the “internal” MQ values for all elements
that contain at least one child cluster. Figure 3.10 shows an example hierarchy. In this
example, clusters 0, 1 and 2 are used for the mean MQ calculation, as they are the only
clusters that encapsulate other clusters.

The MQ values of each of these clusters is calculated using the normal MQ function.
Each cluster is treated as a separate MDG; edges that leave or enter the cluster from
clusters outside of it are ignored for the calculation. The sum of these internal MQ
values is then divided by the number of parent clusters to produce the mean MQ value.
In the example given in Figure 3.10, the mean MQ value for this hierarchy would be
the sum of the MQ values of clusters 0, 1 and 2, divided by 4.

64 CHAPTER 3. REMODULARISATION OF STATE MACHINES

Cluster 0

Cluster 1

Cluster 3 Cluster 4

Cluster 2

Cluster 5 Cluster 6

Class 1 Class 2 Class 3 Class 4 Class 5

Figure 3.10: Layers in an unbalanced hierarchy

The mean is used as MQ favours higher numbers of clusters; each cluster’s contribution
to a layer’s MQ is a number between 0 and 1. Higher numbers of clusters allow MQ to
be increased, mean MQ removes this incentive in order to estimate the quality of the
hierarchy.

3.4.3 Methodology

This study tests the effectiveness of the random deletion approach for maximising the
mean MQ metric.

Each of the subject systems used in Section 3.3 was clustered in Bunch 30 times.
The random deletion approach was applied 100 times to each case study to produce
15, 0000 mutants. The mean MQ values were calculated before and after the mutation
was applied and used to determine if the approach was able to increase mean MQ
values.

3.4.4 Results

The results from the random mutation experiment are summarised in Table 3.6. This
table gives the percentage of mutants which had an increase in mean MQ values, show-
ing that a minimum of 32% of the non-layered mutants had an increased mean MQ
score compared to their layered original versions. A scatter plot in Figure 3.11 shows
the original and mutant mean MQ values for each case study. The line, given by y = x
denotes improvements; instances where mean MQ was greater appear above the line.

This experiment has shown that a post-processing step may be used to produce an
improved mean MQ score for a hierarchy produced by Bunch. The validity of mean
MQ has not been tested, however. Thus, these results do not necessarily show that the
Bunch results have been objectively improved upon. These results do, however, show
how a transformation step may be used to modify the layered hierarchy produced by
Bunch to reduce the impact of its inability to represent all possible hierarchies.

3.4. UNBALANCED HIERARCHIES TO IMPROVE BUNCH RESULTS 65

Table 3.6: Mutants with higher Mean MQ values
Case Study Mean MQ Greater

collections 39.20%
epubcheck 32.20%
jdom 35.83%
wiquery 37.17%
zxing 37.97%

1.8

2.0

2.2

2.4

2.6

●
●

●

●●
●●●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●●●
●
●

●●

●

●

●
●

●
●●
●

●

●

●

●●
●●●
●●●

●●●
●

●

●

●●

●

●

●●●

●●
●
●

●●

●●

●

●

●

●●
●
●

●●●●

●

●●

●

●

●
●
●●

●

●●

●●●●

●

●

●

●
●
●●
●

●

●
●

●
●

●
●

●●●●

●●●

●

●
●

●

●●●

●

●
●●

●

●●

●●

●
●●

●

●

●

●

●●

●
●●
●

●

●●
●●

●

●●●
●
●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●
●●
●

●

●●
●

●

●●

●●●

●●

●

●

●

●

●

●

●●

●

●
●
●●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●●

●

●●●

●

●●●

●●●●

●

●
●
●

●●

●

●
●
●

●●
●●●
●

●

●
●

●●●

●

●
●
●
●●●

●

●●●●
●

●●

●

●●

●

●

●

●
●
●

●

●

●

●

●●

●●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●
●

●●●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●●
●●
●

●●

●
●●
●

●

●
●
●●
●●●
●
●

●

●
●●
●●●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●
●●

●

●●
●

●

●●

●

●
●

●

●●
●●
●

●

●

●

●
●●

●●

●●●●●

●

●
●

●

●●●

●●

●●●●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●●●
●
●
●●●
●
●●●●●●

●

●
●●●●

●●

●●

●

●

●

●

●

●●

●
●

●●

●

●●●

●●●

●●
●●
●
●

●

●
●
●
●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●
●
●

●●
●

●

●●●

●

●
●
●

●

●
●●
●
●

●
●

●
●
●●

●

●
●
●

●

●●●●

●●

●
●●
●●

●●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●●
●●●

●
●●

●●

●

●
●●●
●

●●

●●

●

●
●●
●

●

●●●●

●●

●
●

●●●●●●

●
●●●●
●
●

●

●

●

●

●●●●●

●
●

●

●●

●●●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●●
●●

●●●●
●
●

●

●●

●

●

●●

●

●●●●

●●

●●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●●●●

●●●

●
●●

●

●●●

●

●

●●

●●●

●

●●●

●●

●

●●
●
●
●

●

●

●●

●

●

●
●

●

●●●●

●●●

●

●

●

●

●●●●

●

●
●●

●●

●

●●

●●

●

●

●●

●
●
●

●

●
●
●●
●●

●●

●

●
●
●
●●●
●●●

●●

●

●●

●●
●●

●●

●

●●●

●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●●●●

●

●

●●
●

●

●
●

●●

●
●

●

●●●

●

●

●

●

●●

●●
●
●
●●●

●

●
●●

●

●●●●

●

●
●

●

●●

●●

●
●

●

●●

●

●

●●●

●
●

●

●●●

●●

●

●

●●●
●
●

●
●

●●

●●●

●

●

●

●

●

●●
●
●●
●●

●

●●

●●
●

●

●●●●●●

●
●

●

●●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●●
●●

●●

●
●●

●
●

●●●

●

●
●

●

●

●

●
●

●●

●●●

●

●

●

●
●

●●●●

●●●

●●

●

●●

●

●

●
●
●

●

●●●

●

●

●●●●

●●

●●

●
●●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●●

●●●●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●●●●●●

●●

●●

●

●

●●●

●
●

●

●
●
●

●●

●●

●
●●

●●●

●

●

●
●●

●●

●

●
●

●

●

●

●●

●

●●
●

●
●●

●

●
●
●
●●●

●

●●●●

●●

●●●●●

●

●●●●●

●

●●
●

●

●●
●

●

●
●

●
●
●

●

●●●●●

●●

●●●

●
●●
●
●●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●
●●●●●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●
●●
●

●

●●
●
●

●

●●●
●
●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●●
●●
●●●
●

●

●●●

●

●

●

●

●●

●

●●

●
●
●
●●

●

●●

●

●●●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●●

●●

●

●
●●
●●
●
●●

●

●●
●

●
●

●●

●

●●●

●●
●

●

●

●●●

●
●●

●

●●

●●

●

●●

●●

●
●
●

●

●●

●

●●●●

●●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●
●

●●

●

●

●●

●

●

●

●●
●
●

●●

●
●●
●
●●

●

●

●●

●

●●●

●

●

●●

●●●●●
●●

●●

●

●●

●

●

●
●

●●●●

●
●

●●
●
●●

●

●●●●●
●
●

●●

●●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●
●

●
●●●●●●

●

●

●
●
●●

●●●

●●●●●

●●●

●
●

●

●

●

●

●

●●●

●

●

●

●●
●

●●●

●

●

●●●

●

●●

●

●

●

●●●
●

●

●●

●

●

●●●●

●●

●

●

●

●
●●
●●●
●●

●●

●●
●

●●

●●

●●●

●

●

●●●
●●●
●

●

●
●●

●●

●

●

●●

●
●●

●●

●
●●

●●●

●●●●

●●

●●

●

●●
●

●●●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●●●●●
●

●●●

●

●

●●
●
●

●●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●●●●

●●●●

●●
●
●●

●

●

●

●

●

●

●●●

●●●

●

●
●●●●
●
●

●

●

●

●
●

●

●●
●●

●
●

●
●

●●

●
●

●

●

●

●●

●●●●

●

●

●●●●

●

●

●●●

●●

●●

●
●

●

●

●●

●●●

●

●●

●

●●●

●

●●

●
●

●

●●●
●
●●

●●●●●●

●

●
●

●●
●●●●
●
●●●
●
●

●●●

●
●●

●●

●
●
●●●

●

●●

●

●

●

●●●

●

●
●
●
●
●

●
●
●

●

●
●
●●
●
●

●

●●●

●

●
●

●

●
●

●●

●●
●

●●

●

●

●●

●

●●

●●●●

●

●

●
●

●

●●●●●

●

●●●●
●●●
●
●●●
●

●

●●

●

●

●

●

●

●●●●

●

●
●
●●●●●

●

●●●

●

●
●

●

●

●

●
●●●
●●

●

●●●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●
●
●
●●

●●

●
●

●

●

●

●
●●●
●
●●
●

●

●

●●●●

●

●

●

●●

●●
●

●

●
●●●

●

●●

●●

●●
●

●●●●

●

●●

●●
●●

●

●

●●●

●

●

●
●

●

●

●●

●
●

●
●

●●
●
●

●

●
●
●
●

●

●●●

●

●●●

●●

●●

●

●
●●●

●●
●

●●●

●

●●

●
●

●
●
●●●

●●

●●

●●●●

●●
●

●●

●●

●●

●

●
●

●

●

●

●●●●

●

●

●●●●●

●●●

●

●

●

●
●

●

●

●

●

●

●●
●●●
●

●●

●
●
●●

●

●
●●

●

●●
●

●

●
●●●●
●

●

●●

●

●

●

●●

●

●
●
●●
●

●

●
●
●

●

●

●●●

●●

●●

●●
●
●
●●

●

●●
●
●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●●●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●
●●
●
●
●

●

●●●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●
●●●

●

●

●●
●

●

●●
●●

●

●

●

●●

●
●●

●●●

●●

●

●

●
●
●
●
●
●

●

●

●●●●

●●

●
●

●

●

●
●●

●●

●●●●

●

●

●

●

●

●
●
●●

●

●

●

●●●

●●

●●
●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●
●

●
●
●

●●

●●

●●
●

●

●

●
●

●

●●●●●

●

●

●●●

●●

●

●

●

●●

●●●●●●●●
●

●

●

●●
●●
●
●

●

●
●
●●●
●●
●●●
●

●

●

●

●
●
●
●
●●

●

●

●●●

●
●

●

●

●
●●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●●●●●

●
●

●

●●

●

●
●●

●●●

●●●

●●

●

●●

●●●

●

●●●

●●●

●
●●●●
●

●

●●

●

●

●

●

●

●●

●

●
●●●●●●●

●

●
●
●

●

●

●

●●●●
●

●●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●●●●●

●●

●●

●●

●

●

●

●

●●●

●

●●●●●

●●●

●●

●
●

●
●
●

●

●●●●

●●●

●

●●●

●●●
●●●●●
●

●

●
●

●●

●

●

●
●

●

●
●●

●●

●
●
●
●

●

●
●
●●
●

●

●
●

●

●
●

●●

●

●

●
●

●●

●●

●

●

●●

●

●
●

●

●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●
●
●
●●
●●●
●●●

●

●●●

●

●

●●
●
●●

●

●●●

●

●●
●

●●

●
●●
●

●●

●

●

●
●●●

●

●
●
●
●

●

●●

●●●●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●

●●
●

●●

●
●
●

●
●

●●●
●●●

●

●

●

●

●●

●

●●●
●●●
●●
●

●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●
●●●

●

●
●●●
●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●●●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●●

●

●●

●●●

●●

●

●

●
●
●

●●●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●●●

1.8 2.0 2.2 2.4
Original Mean MQ

M
ut

an
t M

ea
n

M
Q Graph

● collections

epubcheck

jdom

wiquery

zxing

Figure 3.11: Scatter plot of mean MQ values for originals and mutants

66 CHAPTER 3. REMODULARISATION OF STATE MACHINES

§ 3.5 Conclusions

This chapter has demonstrated how Bunch can be applied to the state machine re-
modularisation problem. It has shown that the results obtained by Bunch are similar
to the decompositions produced by the experts for two case studies, although in the
larger example it did not completely recover the expert decomposition. The correlation
of MQ with similarity to the authoritative decomposition suggests that it may be a
useful measure to estimate the quality of decompositions for state machines. The issue
of accuracy is revisited in Chapters 5 and 6, where human knowledge is applied to
improve on the results yielded by Bunch.

Both state machines and MDGs exhibited the over-fitting problem caused by iterative
level-by-level searches. As a result, Bunch results may be less fit at any level beyond the
bottom level. For large systems, where many layers are produced, the recommended
median level may be lower in fitness than it would be otherwise as a result.

In addition to causing over-fitting, the layered approach was found to constrain Bunch
to producing only a subset of all possible hierarchies. A survey of five existing Java
systems found that developers do not regularly produce layered package hierarchies.
This has the effect that Bunch will not reproduce some solutions chosen by developers
and demonstrates that an “ideal” remodularisation algorithm should be capable of
producing a hierarchy with variable depths.

The application of a random deletion approach was demonstrated to produce unlayered
mutants of Bunch produced hierarchies in approximately 30% of cases, using mean
MQ as an estimate of the overall quality of the hierarchy as a whole. However, the
uncertainty around this metric and the low success rate, combined with Bunch’s over-
fitting issue motivate an alternate line of enquiry that does not rely on repeated hill
climbs.

This line of inquiry is continued in the following chapter, which investigates the use of
a search-based approach that is able to search the entire hierarchy at once to attempt
to avoid over-fitting and allow the generation of variable-depth hierarchies.

Chapter 4

Approaches to Search-based
Hierarchical Clustering

The previous chapter developed the hypothesis that clustering can be used for the
superstate identification problem. Results in Section 3.1 showed that Bunch is able
to reproduce elements of developer-produced organisations of the case studies used in
the experiment. However, the experiments in Sections 3.2 and 3.4 indicated that the
layered approach to hierarchy generation causes over-fitting and prevents Bunch from
reproducing some structures that are commonly found in existing software systems.

This chapter focuses on the latter issue, of hierarchy generation, in search-based clus-
tering of both state machines and module dependency graphs. It describes and eval-
uates a novel application of genetic programming and transformation representations
to clustering for state machines and MDGs. These approaches, in addition to a linear
hierarchical representation are implemented in a tool, Crunch. These representations
enable it to search for hierarchies represented by trees, as opposed to the agglomerative
layering approach adopted in Bunch.

This approach avoids over-fitting caused by multiple searches and can produce a wider
set of possible hierarchies including unlayered solutions. Crunch provides a flexible
framework in which to implement fitness functions for hierarchies, as well as alternative
representations of hierarchies in the search. The chapter begins with a discussion on
methods to represent hierarchies in metaheuristic algorithms and describes approaches
implemented in Crunch.

Following from this description of Crunch, it is evaluated in three experiments. The first
experiment measures the performance of the representations implemented in Crunch
and Bunch for partitioning 18 graphs. It determines that the representations that
encode hierarchies produce lower MQ values than those that only represent partitioning
and that Bunch’s hill climbing approach produces higher fitness values than both the
genetic algorithm and random mutation hill climbing search algorithms used by Crunch.

In the second experiment, the hierarchies produced by Bunch’s normal agglomerative
approach and MQ are compared to those produced using a hierarchical adaptation of

67

68 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

MQ with Crunch. This experiment finds that Crunch can produce higher MQ values at
higher levels in the hierarchy, in contrast to Bunch which produces higher MQ values
than Crunch at the bottom level of the hierarchies and higher overall total MQ values,
suggesting that the two tools optimise the hierarchy in different ways.

The chapter concludes with the introduction of several fitness functions for clustering
state machines, and compares the partitionings they produce when used with Crunch.
It identifies several critical features required of a fitness function, and demonstrates
that despite the apparent ability of MQ to recover developer-produced hierarchies, it
does not produce solutions that enable superstate transitions to be rewritten. Further
analysis of the structure of the hierarchies identifies difficulties with prioritisation of fea-
tures. These identified difficulties make the case for incorporation of human knowledge
into the clustering process, which is discussed in Chapter 5.

This chapter makes the following contributions:

1 Applications of label-based, genetic programming and a transformation-based
representations to the hierarchical clustering problem, which is able to avoid
over-fitting by searching for a hierarchy in one search.

2 Empirical evaluation of this technique in comparison to Bunch at one level and
several levels in a hierarchy, finding that Crunch is able to produce hierarchies
that have a higher MQ value at the top than Bunch, but a lower overall MQ
value.

3 An empirical study of the performance of several fitness functions for the super-
state identification problem, which finds that MQ and an information theoretic
fitness function [69] for remodularisation produce assignments which reduce the
number of edges between clusters, but does not identify solutions which can be
rewritten with superstate transitions.

The chapter begins with an overview of evolutionary approaches that require or allow
a hierarchy, in the form of a tree, to be represented in the search (or the genotype
of an evolutionary algorithm), which are built upon in the description of the Crunch
search-based hierarchical clustering framework in the subsequent chapter.

§ 4.1 Avoiding Over-fitting in Hierarchy Construction

Bunch encodes a clustering as an associative mapping of a cluster number to each
file [78]. The file’s position is used as an index into a vector which gives the cluster it
belongs to. This list-based representation is not able to encode full hierarchies, so Bunch
performs an agglomerative repeated clustering process to produce hierarchies level by
level. Repeated layered searches can result in over-fitting, as demonstrated in the
experiments in Section 3.2. Additionally, the method used to produce these hierarchies
does not allow clusters to persist between levels—they must always be clustered at each
subsequent level.

4.1. AVOIDING OVER-FITTING IN HIERARCHY CONSTRUCTION 69

While existing hierarchical clustering algorithms repeatedly cluster the clusters iden-
tified at other levels, they are deterministic (assuming no ties of similarity measures)
and perform merges of clusters one-by-one, producing a dendrogram. Bunch, in con-
trast, makes non-deterministic choices (due to the metaheuristic approach) and merges
multiple clusters at each iteration.

4.1.1 Searching Hierarchies

The problem of remodularisation is an archetypical application of a search-based solu-
tion to a software engineering problem: the search space is large, candidate solutions
are easily generated and evaluation of these candidate solutions is possible, using an
estimation of quality [45], such as MQ as used by Bunch [81]. Bunch adopts such an
approach, which makes it flexible and allows issues with the size of the input to be
avoided, for example through the use of a user-supplied time limit [78, p. 242].

This flexibility makes the search-based approach an ideal application to the problem.
Removing the repeated search for layers, the culprit of over-fitting in Bunch, in a
search-based solution would allow hierarchical clustering to be performed without the
limitations imposed by Bunch. One way of achieving this is to use the algorithm to
optimise the whole hierarchy in one, rather than piece-wise over several searches. An
approach achieving this goal requires two components:

• A representation expressive enough to represent whole hierarchies; and

• Fitness functions capable of evaluating hierarchies.

There are several approaches to the first component, including genetic programming
and genetic clustering methods. These techniques are elaborated in the following sec-
tions.

Genetic Programming

The objective of encoding a hierarchy to the search can be achieved through the repre-
sentation of the individual as a tree. Genetic programming techniques exist that evolve
expressions in the form of abstract syntax trees [27, 60]. In genetic algorithms, these
trees require specific operators to ensure conformance to the grammar of the expres-
sions to be evolved. Koza [60], for example, defined crossover as a random exchange
of subtrees between parents. This operator allows the conformance of offspring to the
grammar to be guaranteed if the parents conform to the grammar.

Clustering places constraints on the tree that do not apply to abstract syntax trees
used in GP [68]. Trees must only ever contain one instance of each node; trees that
duplicate or remove nodes are not valid hierarchies in the clustering problem. Were
random subtree crossover applied, the tree would need to be searched for these two
invalid conditions and then repaired if they were identified. Figure 4.1 illustrates this
problem; the two parents are crossed over at the highlighted points, producing the two

70 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

0

1

2

3 4

0

1

2 3

4

0

3

4

3 4

0

1

2 1

2

Figure 4.1: Random subtree crossover producing invalid trees

offspring below the dashed line, each of which has one duplicated element and and one
dropped element.

Linear genetic programming avoids the use of tree representations in genetic program-
ming [17, 91] by encoding the program as a list of operations, either in an imperative
programming language [17], or as instructions interpreted on a stack-based virtual ma-
chine [91]. A linear approach allows genetic operators to operate over lists, rather
than tree structures directly. These programs do not themselves represent trees as a
list, but they represent abstract syntax trees which can be either parsed (for impera-
tive programming languages) or converted to an infix tree using the “shunting yard”
algorithm.

Although linear approaches enable hierarchies to be represented by the genotype whilst
retaining standard crossover and mutation operators for linear sequences, they do not
solve the problem of producing invalid trees directly. Additionally, linear genetic pro-
grams represent several statements in the individual, rather than a hierarchical syntax
tree, although conditional operations have been implemented via jumping, for exam-
ple. An approach based on genetic programming is described in the implementation of
Crunch in Section 4.2.1.

Refactoring Representations

In search-based refactoring, the previous problem of preserving relationships in the
tree persists. Harman and Tratt broadly categorise refactoring approaches as direct
or indirect. Direct approaches use a combined genotype and phenotype, performing
a similar process to GP where the structure is directly manipulated. In these direct
representations that represent the tree in the genotype, care must be taken to ensure
that the search does not produce solutions that encode invalid individuals as described
in the previous subsection.

4.2. CRUNCH 71

The alternative “indirect” method has been applied [101, 48] in which the genotype
represents a series of transformations that modify the original system to produce the
phenotype. Linear chromosomes can be used in this approach, which allow crossover
and mutation to produce novel individuals without the need for any checking of the re-
sultant output, provided the semantics of the transformations ensure that any sequence
will produce a valid individual.

Hierarchical Evolutionary Clustering

Hierarchical genetic clustering has been achieved using an extension of the label-based
representation described by Krovi [61]. This extension allows arbitrary levels of nesting
to be encoded through the addition of a table of assignments of clusters to the chromo-
some [21]. This table, described in Section 2.5.2, includes a cell that may be referenced
by other clusters in the table. The table must be extended to the maximum number of
clusters that may be produced to form a full hierarchy for the input.

It is possible for this table to be placed in an invalid state. For example, a mutation may
set a cluster’s parent to itself or one of its children, forming a loop. In order to prevent
this, Chis [21] applied a reparation step, wherein an invalid assignment (such as a
loop) is broken by modifying all the children of the newly invalid mutant. Additionally,
elements were only assigned to clusters that did not have any child clusters. If such an
assignment arose, mutation was applied to remove it.

This approach requires that the mutation operator repair any invalid solutions it pro-
duces and also is reliant on the chromosome being extended to accommodate for po-
tential assignments to clusters that may never need to be made. It is therefore possible
that mutations applied to sections of the chromosome may produce individuals that
offer no change in fitness.

This evolutionary approach, the transformation approach and genetic programming
techniques are used in Crunch, a search-based hierarchical clustering tool that searches
for full hierarchies in one run of a search algorithm, rather than using an agglomera-
tive approach such as that used in Bunch. The next section details the architecture of
Crunch and discusses the details of the implementation of the various types of repre-
sentations it uses.

§ 4.2 Crunch

Crunch provides a flexible environment for the hierarchical search-based clustering of
the two graph-based software models studied in this thesis: MDGs and state machines.
Its design allows alternative fitness functions to be implemented and evaluated, using
both a genetic algorithm and random mutation hill climbing search algorithm to evolve
clusterings, using various linear representations.

Figure 4.2 shows the architecture of Crunch. The framework provides a means for im-
plementing linear representations of hierarchies. These representations are decoded by

72 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Search Algorithms

Genes

Translators

Fitness Functions

Figure 4.2: Crunch architecture overview; arrows represent data flow

a corresponding translator, before evaluation by the fitness function. Linear represen-
tation of the individual as a list of genes allows the edge cases associated with directly
manipulating trees to be avoided—genetic operators such as crossover and mutation
operate as normal on the list. Provided the phenotype is designed carefully (such that
it does not duplicate or delete elements, for example), the consistency of the resultant
trees in the phenotype can be guaranteed, allowing consistency checking to be skipped.

The gene representations implemented in Crunch can be divided into two categories:

GP Programs The individuals represent programs that are interpreted in a virtual
machine which generates a tree for evaluation

Labels Individuals directly assign nodes to clusters, including a flat implementation
defined by Krovi [61] and hierarchical version similar to Chis [21]

Crunch implements two forms of representation in a type of virtual machine. The first
represents transformations as a sequence of operations in an imperative programming
language. The other representation uses a stack to construct a tree. The following
subsections describe these two implementations.

4.2.1 Hierarchy Transformation Representations

The first of the genetic programming approaches models each individual as a sequence
of transformations that manipulate a tree. This approach is the same as that used
in search-based refactoring [101, 48]. In clustering there is no initial solution, as with
refactoring, so the phenotype starts as a clustering where each element is a terminal
node. The transformations encoded in the genotype are applied to this tree to produce
the phenotype evaluated by the fitness function.

Each individual in Crunch is a linear sequence of genes; in this case, each gene encodes
a transformation, in the form of an instruction executed in a virtual machine. This
approach carries over the benefits of simplified crossover and mutation from refactoring.
The semantics of the instructions in the virtual machine are designed such that a valid

4.2. CRUNCH 73

MOVE CLUSTER4 CLUSTER3

NOP CLUSTER1 CLUSTER6

NOP CLUSTER7 CLUSTER4

MOVE CLUSTER5 CLUSTER2

Figure 4.3: An excerpt of a linear GP clustering individual

Head

Cluster 1

Node 1

Cluster 2

Node 2

Cluster 3

Node 3

Cluster 4

Node 4

Cluster 5

Node 5

Figure 4.4: The starting state of the tree prior to modification by the clustering program

tree will always be produced, thus removing the need to repair or consistency check the
phenotype.

Figure 4.3 shows an example fragment of a cluster program, a chromosome consisting of
4 genes. In this example, the symbol representation is used (described in Section 4.2.1).
An example starting tree for a five element clustering problem is depicted in Figure 4.4.
Each element in the input is placed into its own cluster, with these clusters all being
made a child of the head node.

The Clustering Instruction Set

The language used in the virtual machine ensures all trees will be valid. Two operations
are defined in the language, which both accept two arguments. Each argument is a
number that represents a cluster in the tree, excluding the head node, or any of the
basic elements (the number of clusters in the tree is fixed).

Two operators are defined for the language, MOVE and NOP. Each of the operators take
two arguments, both integers, which identify clusters in the tree. The semantics of the
operation are as follows, where A and B represent the two operands to the instructions:

MOVE A B Cluster B becomes a child of cluster A

NOP A B No operation

Unlike the approach adopted by Seng et al. [101], the programs that encode these
transforms use a fixed length. This in turn requires that the representation be capable
of encoding no transformation, as the starting configuration may be a valid solution.

74 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

01 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1

Operator Operand A Operand B

Figure 4.5: Assignments of bits to instruction components for the Integer and Bitfield
genes

The NOP instruction allows this to be encoded. The parameters are retained in NOPs
to ensure a mutation that reverses a NOP to a MOVE only modifies a single part of the
program.

Crunch implements several different gene encodings that represent these instructions.
Each of these encodings stores the same information, however the implementation of
their mutation operators differ, which translate to different performance characteristics
(demonstrated in Section 4.3). Each of the implementations is described in the following
subsections. In all cases, the chromosome size (number of instructions in an individual)
is set to the number of nodes, in order to allow a program that moves every node in
the hierarchy to be represented.

Symbol Gene Representation The symbol representation encapsulates the three
components (operator, operand A, operand B) into one gene object. Both of the
operands are integers, limited to the number of nodes in the tree (given by the size
of the input graph).

The mutation operation for this representation only modifies one of the three values,
chosen at random. If the operand is selected for mutation, it is flipped: NOP becomes
MOVE and vice versa. Operand values are given by the following equation:

NewV alue = (OldV alue+OldV alue×Amount) mod TreeSize

The Amount variable is a parameter issued by the JGAP framework when a gene’s
mutation operator is invoked.

Integer Representation The Integer gene represents an instruction as a single 32-
bit unsigned integer. The operator (MOVE or NOP) is placed in the 31st and 32nd bit of a
32 bit integer, while the two operands occupy the remaining bits, each taking 15 bits.

Figure 4.5 describes the assignment of values to the bits in the gene. The modulus of
the tree size is taken of each of the operands when the gene is decoded by its translator
to ensure the modifications always apply to valid nodes in the tree.

Mutation of this gene uses the JGAP implementation for IntegerGene [76]:

NewV alue = OldV alue+ (MaxV alue−MinV alue)×Amount
Where amount is a floating point number between −1 and 1, supplied by the mutation
operator. The bounds on the integer are set at the maximum and minimum integer
values supported by Java respectively. This mutation operation does not take the
additional meaning of the specific bits into consideration, and thus multiple components
in the gene may be modified through one operation.

4.2. CRUNCH 75

Bitfield Representation In addition to the integer gene representation, Crunch
also provides a bit vector implementation, which uses the built-in JGAP [76] bit vector
gene with a size of 32. The assignment of values to bits is identical to the integer
representation, described in Section 4.2.1. The mutation operator for this gene is a
single flip of a randomly chosen bit. Unlike the integer representation, a single mutation
will only change one of the three components of the instruction.

Limitations of the Virtual Machine

The linear transformation sequence representation, while allowing trees to be evolved
is bounded in the number of clusters produced. This limitation is a consequence of the
operand mapping used; if the number of clusters were variable, the nodes referenced by
operands would differ between programs. The limitation to move-only operations also
restricts the programs to a subset of all hierarchies, such as those where three elements
should appear at the same level, the closest similar representation would still be able
to place the three together in one cluster, albeit including several superfluous clusters
beneath it.

A representation capable of producing arbitrary hierarchies requires the ability to add
clusters to the tree. The following subsection describes how a stack-based approach can
overcome this limitation. This approach contrasts to Chis’ approach of ensuring the
chromosome may represent all possible trees [21] through the use of a large, possibly
empty table of pointers.

Stack-based Clustering

In order to remove the restriction on the number of clusters to allow arbitrary trees to
be produced by Crunch, the problem of indexing clusters must be solved. The operands
used in the previous approach cannot be extended in cases where the number of clusters
does not remain constant.

The solution adopted in this representation is to encode the hierarchy as a sequence
of merges of two clusters. This is achieved using a stack and a genetic programming
approach.

The stack representation defines the following operations:

PUSH A Node A is placed on top of the stack.

CLUSTER A The top 2 elements of the stack are placed in a new cluster. The new cluster
is placed on top of the stack. If there are less than 2 elements on the stack, the
instruction is treated as PUSH A.

This implementation retains the execution of the program as a transformation. The
CLUSTER operator causes a new node to be inserted at the root of the tree, and the top
two elements of the stack to be placed beneath it. This ensures that a program that
does not push all of the original elements on the stack still produces a valid tree.

76 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

11 3

Figure 4.6: A flat label chromosome

A NOP instruction is not implemented in the stack, as it is possible to achieve the same
effect with a sequence of PUSH operations without corresponding CLUSTER operations.
If multiple PUSH operations appear for the same operand, only the first is actually
executed.

The stack representation is implemented as an encapsulation of both the operator (PUSH
or CLUSTER) and the integer operand. As with the other program representations,
the operand is limited to values between one and the number of nodes in the input
graph. The maximum size of a stack program is where there is at least one PUSH for
each element and there are sufficient CLUSTERs that the stack is empty at the end of
evaluation. In Crunch, the chromosome size is set to double the number of nodes in
the input to allow such a program to be encoded.

Summary of the Genetic Programming Approaches

The approaches described so far represent a transformation of a canonical starting
tree into the resultant hierarchy through sequences of instructions encoded by the
individual in the search. Various implementations of this approach were described for
the imperative approach, wherein clusters may be made children of another existing
cluster via the MOVE transformation. The limitations of the “virtual machine” defined
included a limitation on the number of hierarchies; the stack representation was shown
as an alternative that allows arbitrary numbers of clusters in the hierarchy and still
permits standard crossover and mutation operators to be applied.

The following subsection details an implementation of Chis [21]’s approach to evolu-
tionary clustering, based on a set of labels placed in a vector of integers.

4.2.2 Label-based Representations

Crunch also implements two representations that encode the tree in a more direct form,
using an associative assignment of elements to clusters, as described by Krovi [61].
Each of the representations use this label-based representation, one is flat and the
same representation used by Bunch [78] and the other extends this flat representation
to encode a hierarchy, using the representation adopted by Chis [21]. In contrast to
the GP based representations, these representations use the chromosome as a list of
integers to represent the clustering; the parent of a node is given by the value at its
position.

An example flat label representation of a small clustering of three elements is depicted
in Figure 4.6. Classes 1 and 2 are assigned to Cluster 1 and Class 3 is assigned to
Cluster 3.

4.2. CRUNCH 77

12 3 2 5 0 0 0 1

node assignments

cluster assignments

Figure 4.7: A hierarchical label gene

0

5

2

Class 1

1

Class 2

3

Class 3

Figure 4.8: The tree for the chromosome in Figure 4.7

The hierarchical extension of the flat gene increases the chromosome size to include a
region that describes parent assignments for clusters. This extension requires that the
chromosome be lengthened such that there is sufficient room for the table to encode
all possible hierarchies. There will be at most 2(n− 1) elements in such a tree, so the
total size of the chromosome is n+ 2(n− 1), where n is the number of elements to be
clustered.

Figure 4.7 depicts an example encoding of a tree, shown in Figure 4.8. Not depicted in
the figure, cluster 6 is assigned as a child of cluster 1. This representation contrasts to
Chis [21] in that there is no constraint on where a node may appear in the tree. Tree
repair remains necessary, and is described in the following subsection.

Tree Repair

Trees constructed by the genetic algorithm are not guaranteed to be valid. For instance,
a table may encode a cycle where a cluster is the parent of one of the nodes in its
descendants. This is avoided by breaking these cyclic dependencies when they are
encountered.

Orphans will be created when cycles in the tree are constructed, as illustrated in Fig-
ure 4.9. In this example, Cluster 1 is assigned as a child of Cluster 2, which is a child
of Cluster 6. Cluster 6 is then a child of Cluster 1, resulting in the cyclic tree structure
illustrated in Figure 4.10. This scenario can be avoided by removing any children that
result in a cyclic graph. The removed children become orphans, which are added back
to the root of the tree. This re-addition of orphans avoids the need for specific crossover
and mutation operators, as used by Chis [21].

78 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

12 3 2 6 0 0 0 1

node assignments

cluster assignments

Figure 4.9: A hierarchical label gene which contains a cyclic dependency

0

3

Class 3

4 5

6

2

Class 1

1

Class 2

Figure 4.10: The tree for the chromosome in Figure 4.9, with an orphaned branch

4.2.3 Summary of Representations

Table 4.1 provides an overview of the gene representations described in the previous
sections. In the Chromosome Size column, the variable n is the number of elements to
be clustered, i.e. the number of states in the state machine or files in the MDG.

Table 4.1: Summary of the representations in Crunch
GENE TYPE Gene represents Hierarchical? All Hierarchies? Chromosome Size

Symbol
Instructions in a VM

Yes No (fixed num-
ber of clusters and
Move only)

n
Integer Yes n
Bitfield Yes n
Stack Instructions in a stack machine Yes Yes 2n
Label Parent of element in associative array No No n

Hierarchical Label Parent of element in associative array Yes Yes n+ 2(n− 1)

4.2.4 Search Algorithms

Crunch implements both a genetic algorithm and random mutation hill climber. The
chromosome representation and genetic algorithm components are built on the JGAP [76]
Java genetic algorithm package. In both searches, the individual is a sequence of genes,
with the length set according to the size of the input and the requirements of the
particular gene, as summarised in Table 4.1.

4.2. CRUNCH 79

Genetic Algorithm

Crunch uses the default genetic algorithm pipeline implemented JGAP [76] for the
genetic algorithm search component. The default configuration is used, which includes
a random single-point crossover operator, random point mutation operator and elitist
ranked selector. A description of each operator is given in the following sections.

Crossover Operator

The crossover operator produces two offspring from two parents by swapping their
sublists at a randomly selected point. Parents are selected at random.

Crossover is implemented using the default JGAP CrossoverOperator 1. Parents are
selected at random, and the operator produces offspring by exchanging their genes at
randomly determined point.

The crossover rate is set to 35% by default. This rate is multiplied by the current
population size to determine how many operations to perform at each iteration.

Mutation Operators

Each gene type defines a mutation operation; these conform to the IGene interface from
JGAP [76] and are detailed in Section 4.2.1.

JGAP’s mutation operator is applied to the population after crossover. It selects an
individual gene from a chromosome at random and inserts a mutated copy of the
chromosome containing it into the population.

The mutation rate is set to 12 by default, which represents a 1 in 12 probability that
any gene in any of the chromosomes in the population is mutated. This results in
chromosomes×population

12 mutations occurring at each iteration.

Random Mutation Hill Climber

The RMHC implementation is given by Mitchell et al. [82] and previously described
in Section 2.3.2. This algorithm uses the function given in Algorithm 3 to produce a
mutated individual. The applyMutation function referenced in this algorithm corre-
sponds to the implementations for each of the gene types as described in Section 4.2.2.

4.2.5 Summary

This section introduced Crunch, a flexible architecture for clustering that uses various
linear representations of trees to search the space of hierarchies. These linear repre-
sentations are free of the limitation on layers imposed by the representation used by
Bunch (with the exception of the flat label representation) and allow the space of all

1http://jgap.sourceforge.net/javadoc/3.6/org/jgap/impl/CrossoverOperator.html

http://jgap.sourceforge.net/javadoc/3.6/org/jgap/impl/CrossoverOperator.html

80 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Algorithm 3 RMHC mutation operator

function Mutate(Individual)
point← random(0, Individual.size)
amount← random()
sign← 1
if random(0, 1) >= 0.5 then sign← −1
end if
Individual[point].applyMutation(random(), sign ∗ amount)

end function

reachable hierarchies to be searched in one run of the search. The following sections
evaluate parts of the components of Crunch, starting with the performance of these
different representations, the hierarchical performance of the Symbol gene, and finally
an analysis of various fitness functions.

§ 4.3 Partitioning Performance of Crunch with MQ

Investigation begins with measurement of the performance, in terms of MQ values,
produced by Crunch when it is configured to only optimise a single level of the hierar-
chy. Although some of the configurations in this evaluation represent hierarchies with
more than one level, only the first level of the tree is used for fitness evaluation and
performance assessment. In addition to comparison of the various search types and
representations, results from Bunch are used as a further comparison method.

The research questions of this study are as follows:

RQ 1 What is the impact of using a hierarchical search on a single-level partitioning
problem?

RQ 2 Which representation produces the best results?

RQ 3 Do any of the Crunch configurations exceed the performance of Bunch?

4.3.1 Methodology

In these experiments, 18 case studies are used, consisting of 9 state machines and
9 dependency graphs. Both state machines and MDGs are used in order to further
test the hypothesis that remodularisation and state machine hierarchy generation are
similar.

Fitness values produced by Crunch are compared to those produced by Bunch. Crunch
was configured to stop the search after a limited number of fitness function evaluations
were used; this limit was set at the mean number of MQ evaluations used by Bunch to
cluster each case study over 30 repetitions.

4.3. PARTITIONING PERFORMANCE OF CRUNCH WITH MQ 81

Table 4.2: The case studies used in the experiments
Case Study Description Edges Nodes Evaluations

Module dependency graphs

ttysnoop-0.12c∗ TTY monitoring program 50 28 1240.57
compiler Smaller compiler program developed at University of Toronto 32 33 2923.00
mtunis Simple operating system written in the Turing language [47] 57 20 1305.27
ispell Spell checking utility [47] 103 24 2548.77
rcs Revision control system [47] 163 29 4926.17
bison GNU version of the yacc parser generator [47] 179 37 9128.03
dot Graphviz graph drawing tool 255 42 13166.70
grappa Genome rearrangement analysis program [47] 295 86 67789.60
aalib-1.3∗ Library for conversion of images to text-based ASCII art 313 109 59071.73

State machines

liftController Lift Controller [56] 24 5 77.83
congestion TCP Congestion Control 25 5 63.40
bgp The BGP routing protocol from RFC1771 64 6 109.87
atm3 Automated teller machine [56] 28 10 267.47
cvs Version control system [65] 26 16 732.03
roomcontroller State machine for a light control system [107] 34 18 1198.67
ssh Secure shell protocol [93] 32 20 1133.07
collections† org.apache.commons.collections.HashBag 38 26 2924.80
colt† cern.colt.map.OpenLongObjectHashMap 63 53 22477.80

Reverse engineered MDGs and state machines are denoted by ∗ and † respectively

The process of evaluating Crunch as follows for each case study:

1 Run Bunch on the case study 30 times and measure the number of MQ evaluations
taken

2 Run Crunch on the case study 30 times, with the same MQ fitness function from
Bunch, with an evaluation limit from Step 1

3 Compare the fitness values to assess performance

Case Studies

The 18 case studies used in the experiments are given in Table 4.2, sorted by size. The
Evaluations column gives the mean number of fitness evaluations used by Bunch, which
is used as the evaluation limit when running Crunch, discussed in Section 4.3.1.

Some dependency graphs were reverse engineered from software. In these cases they
are marked by a ∗ symbol. These case studies were taken from the examples of output
produced by the cinclude2dot script2. This script extracts dependencies wherever
one C file includes another. The remainder of the module dependency graphs are taken
from existing search-based clustering work.

State machines used in this evaluation are taken either from the StaMinA state machine
repository3 or automatically generated, denoted with a † in the ‘State machines’ section
of the table. The automatic generation approach is discussed in Section 4.3.1.

2http://www.chaosreigns.com/code/cinclude2dot/
3http://www.cs.le.ac.uk/people/nwalkinshaw/stamina/

http://www.ietf.org/rfc/rfc1771.txt
http://www.chaosreigns.com/code/cinclude2dot/
http://www.cs.le.ac.uk/people/nwalkinshaw/stamina/

82 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Generating State Machines

The state machines indicated as generated from “random usage” have been constructed
using a sequence of random method calls on the class. The data used in these calls
(where appropriate) is randomly generated.

Algorithm 4 Randomly call operations on storage class

minSize← 5
incrementSize← 15
backingData← new storage class

dataSize← minSize + random() ∗ incrementSize
for i = 1 → dataSize do

randomValue← random()
backingData.store(randomValue)

end for
underTest← new storage class

traceLength← random() ∗ backingData.count
for i = 1 → traceLength do

call random operation(underTest, backingData)
end for

Algorithm 5 random operation(underTest, backingData)

dataItem ← randomElement(backingData)
randomMethod ← randomElement(methods under analysis)
call underTest.randomMethod(dataItem)
return

The listings in Algorithm 4 and 5 describe the process of constructing a collection of
random data and using it as a source of arguments for repeated execution of random
methods of an instance of the class. The minSize and incrementSize values are
parameters to the algorithm, which were fixed at 5 and 15 respectively for each of the
reverse engineered case studies.

Algorithm 4 was run a total of 100 times using AspectJ [59] to trace the methods
executed as a result of each call. This produced a corpus of 100 traces of method call
sequences, which was then transformed into a state machine using the k -tails grammar
inference algorithm [16]. This performs merging of equivalent states to simplify the
machine, as described in Section 2.1.1.

For the collections case study, the org.apache.commons.collections.HashBag

class from the Apache Commons Collections library was subjected to the random exe-
cution approach. The HashBag class represents a collection which stores a value with
a number which counts the number of occurrences of the value. The random data
supplied to the class was a set of random keys and values placed in a hash table. These
random values were used as parameters to the add, remove and count methods of the
class.

4.3. PARTITIONING PERFORMANCE OF CRUNCH WITH MQ 83

The colt case study was reverse engineered from the Colt OpenLongObjectHashMap
class (cern.colt.map.OpenLongObjectHashMap). This class represents a table which
maps numbers to Object values. A hash table was used to store the random data,
which consists of Java long keys and randomly generated String values. The add,
remove, get and keyOf methods were called with this data.

Step 1: Clustering with Bunch

The first step of the experiment is to use Bunch to cluster each case study. This
produces Bunch-derived decompositions of the systems and the number of evaluations
of the MQ fitness function evaluations it took produce them. As it includes a random
element, the Bunch clustering step is repeated 30 times for each study to ensure the
values obtained do not impart bias in the comparison stage.

Step 2: Clustering with Crunch

Each of the case studies is then clustered using Crunch, using each of the gene types
and both search types. For each gene type and search combination, Crunch is run
using the a fitness evaluation limit given mean by the number of MQ evaluations taken
by Bunch for the case study. As Crunch also involves randomised algorithms, each
search is repeated 30 times to avoid the potential bias introduced if atypical results
are produced by one search.

The fitness function used is the same MQ fitness function used by Bunch, made possible
by an adapter that translates Crunch individuals to their equivalent Bunch represen-
tation.

Crunch is set to use the default parameters for both search algorithms as described
in Section 4.2.4. The population size is fixed at 50 for the genetic algorithm search
method (this was not tuned).

Step 3: Comparison of Performance

The clustering process in step 2 produces 30 clustered MDGs for each of the tech-
niques used: Bunch and the 12 combinations of search types and representation used
in Crunch. MQ values from each of these results are used for the purpose of compari-
son. In both cases the chromosome size is given by the function of the size of the input,
which varies between the representations used; Table 4.1 summarises the sizes required
by each representation.

84 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

GA RMHC

0

5

10

●

●
●
●
●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●●
●

●

●●
●

●●

●●

●

●

●●
●

●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●
●
●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●
●●

●●●
●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●●●
●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●
●●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●●

●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

BITFIELD FLAT HCLUST INTEGER STACK SYMBOL BITFIELD FLAT HCLUST INTEGER STACK SYMBOL
Gene Type

F
itn

es
s

Figure 4.11: Box plot of the final MQ values for each search type

4.3.2 Results

RQ 1: Impact of using a hierarchical search on a single-level partitioning
problem

A box plot of the final MQ values produced by Crunch for all case studies and all
gene types is shown in Figure 4.11. The flat representation produced the greatest
minimum and maximum values in both searches. Kruskal-Wallis tests of the fitness
values grouped by gene type for each each search type produced chi-squared values of
783.133 and 1030.277 for the GA and RMHC searchers respectively. With 5 degrees of
freedom, these translate to p-values below 0.001, indicating that there is a statistically
significant difference between the MQ values produced by each representation.

Under the assumption that the distributions of each data set are the same type, two-
sided Wilcoxon ranked sum tests were conducted between MQ values for the flat, non-
hierarchical gene and the other hierarchical representations. The null hypothesis for
this research question is that the MQ values from the hierarchical and flat genes are
the same. In all but three cases, the median MQ value produced by the flat represen-
tation exceeded the median MQ values produced by the hierarchical representations.
The three incidences of higher medians all occurred for the ttysnoop case study for
the genetic algorithm searcher, with the hierarchical label representation (HCLUST),
Integer and Symbol gene linear GP representations Wilcoxon p-values were < 0.05
in these cases. In the majority of cases, however it is possible to conclude that the
hierarchical representation does result in lower median MQ values.

For this research question, the conclusion is that in the majority of cases, the hierar-
chical search will produce lower medians than a single-level partitioning search.

4.3. PARTITIONING PERFORMANCE OF CRUNCH WITH MQ 85

RQ 2: Relative Representation Performance

As shown in Figure 4.11, of the linear genetic programming implementations, the bit-
field and integer genes produced the lowest MQ values overall. Table 4.3 provides a
summary of the MQ values produced by each representation and search.

Table 4.3: Summary statistics for the flat experiments
Search Type Gene Type Min Max Mean St. Dev Median

Bunch HC BUNCH 0.900 13.447 4.679 3.339 3.688

GA

BITFIELD 0.798 5.125 2.252 0.754 2.126
FLAT 1.079 11.927 4.163 2.865 3.407
HCLUST 1.000 9.750 3.622 2.046 3.202
INTEGER 1.000 11.436 3.823 2.500 3.137
STACK 0.778 4.907 1.688 0.663 1.666
SYMBOL 1.000 10.369 3.543 2.175 2.947

RMHC

BITFIELD 0.474 9.119 2.798 1.643 2.333
FLAT 1.000 13.420 4.581 3.161 3.538
HCLUST 1.000 12.967 4.357 2.999 3.471
INTEGER 1.000 11.417 3.668 2.394 2.861
STACK 0.279 4.667 1.357 0.531 1.183
SYMBOL 0.834 11.792 3.601 2.468 2.846

The hierarchical label gene (labelled HCLUST in the table) shows similar performance
values to the flat label based gene, however the median, mean and maximum values
are all lower. Both the Integer and Symbol linear GP genes produced similar fitness
values, with the Integer representation producing greater mean and median values for
both search algorithms. The Stack and Bitfield representations both produced the
lowest fitness values of the set, seen in the box plot in Figure 4.11.

The performance of the random mutation hill climber, in terms of both median, max-
imum and mean values was higher than that of the GA for both of the label based
genes. This result resembles the findings by Mitchell on the performance of genetic al-
gorithms versus hill climbing for clustering [78], in which hill climbing was determined
to produce superior fitness values, compared to a genetic algorithm.

The finding for this research question is that the performance of different genes has an
impact on the fitness values attainable, with the Integer and Symbol GP genes being
the best of the GP approaches in terms of median values.

RQ 3: Crunch Performance versus Bunch

Each of the median MQ values for Crunch search type and representation were com-
pared with Bunch across each case study. At a significance level of α = 0.05, sta-
tistically significant increases in median MQ were observed for the case studies and
representation combinations shown in Table 4.4. Each of these cases where this result
occurred are the smaller case studies of the data set and all are state machines.

86 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Table 4.4: Statistically significant higher median MQ values

Search Type Case Study Gene Type Crunch Median Bunch Median p-value

GA

bgp BITFIELD 1.750 1.095 <0.001
bgp FLAT 1.750 1.095 <0.001
bgp HCLUST 1.708 1.095 <0.001
bgp INTEGER 1.750 1.095 <0.001
bgp STACK 1.708 1.095 <0.001
bgp SYMBOL 1.750 1.095 <0.001
congestion BITFIELD 1.750 1.000 <0.001
congestion FLAT 1.750 1.000 <0.001
congestion HCLUST 1.750 1.000 <0.001
congestion INTEGER 1.750 1.000 <0.001
congestion STACK 1.750 1.000 <0.001
congestion SYMBOL 1.750 1.000 <0.001
liftController BITFIELD 1.079 1.000 <0.001
liftController FLAT 1.079 1.000 <0.001
liftController HCLUST 1.079 1.000 <0.001
liftController INTEGER 1.079 1.000 <0.001
liftController SYMBOL 1.079 1.000 <0.001

RMHC

bgp BITFIELD 1.645 1.095 <0.001
bgp FLAT 1.862 1.095 <0.001
bgp HCLUST 1.750 1.095 <0.001
bgp INTEGER 1.750 1.095 <0.001
bgp STACK 1.683 1.095 <0.001
bgp SYMBOL 1.683 1.095 <0.001
congestion BITFIELD 1.583 1.000 <0.001
congestion FLAT 1.750 1.000 <0.001
congestion HCLUST 1.750 1.000 <0.001
congestion INTEGER 1.750 1.000 <0.001
congestion STACK 1.583 1.000 <0.001
congestion SYMBOL 1.583 1.000 <0.001
cvs FLAT 4.417 3.881 <0.001
cvs HCLUST 4.167 3.881 0.018
liftController FLAT 1.127 1.000 <0.001
liftController HCLUST 1.103 1.000 <0.001

Figure 4.12 depicts a violin plot of the MQ values produced by each gene type for each
gene type for both Crunch search types. It shows that the distribution of values with
the bitfield gene more closely resembles the other genes, with a higher maximum value,
for the random mutation hill climber compared to the genetic algorithm. This increase
in performance is not observed in the case of the stack representation, suggesting that
while the RMHC algorithm appears to produce better results overall, the representation
is still the most significant factor.

4.3. PARTITIONING PERFORMANCE OF CRUNCH WITH MQ 87

Bunch HC GA RMHC

0

5

10

BUNCH BITFIELD FLAT HCLUST INTEGER STACK SYMBOL BITFIELD FLAT HCLUST INTEGER STACK SYMBOL
Gene Type

F
itn

es
s

Figure 4.12: Violin plot of fitness values

The results for this research question have determined that Bunch is superior to Crunch
for single-level partitioning for all small state machine case studies.

4.3.3 Discussion

The results show that the use of the hierarchical representation does impact the perfor-
mance of Crunch when configured to perform a partitioning task. This is demonstrated
in the data for RQ1, in which the flat label gene was only outperformed in 3 instances,
and confirms that searching a larger space has a higher cost, in terms of the reachable
fitness values.

Mutation operations on the bitfield gene only flip one bit at a time, resulting in very
low overall changes in value. As the RMHC searcher, which searches entirely through
mutation, yielded higher values, it can be concluded that mutation is essential for good
results with Crunch, and that the “power” of individual mutations for the Bitfield gene
is too low (only small changes can be introduced by it).

Results for the stack gene were also poor, with it having the lowest minimum and
median MQ values of all the representations studied. The higher median for the genetic
algorithm suggests that incremental improvement is facilitated by the genetic algorithm
more so than the mutation imparted during the RHMC search. Dependencies on side
effects may be the culprit of the poor performance of this representation as the order
in which operations are carried out determines the hierarchy produced.

MQ values were similarly distributed in the flat and hierarchical label based genes. The
reduction in maximum MQ values with the hierarchical gene could be attributed to the

88 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

increased search space; the chromosome must almost triple in size to accommodate the
hierarchical label section. In turn, this expands the search space considerably. However,
the equivalent stack implementation and this gene’s close performance to the flat label
gene suggests that this expansion of the search space is negligible.

Comparison of the performance against Bunch shows that in some rare cases Crunch
was capable of producing higher MQ values even using the hierarchical representations.
This occurred in all but the smallest case studies however, with the fewest number of
iterations. In particular, the number of evaluations is sufficiently low that in the case of
the genetic algorithm, very few iterations will have taken place. In their survey of the
use of statistical analysis of results of randomised algorithms, Arcuri and Briand [10]
note that an existing comparison using such a low evaluation limit may in effect be
equivalent to a random search. As such, it is not possible to use this apparent positive
result to conclude that Crunch exceeds the performance of Bunch in the general case.
However, it does provide insights into the application of Bunch to small case studies
and suggests Crunch may be able to locate superior assignments to Bunch due to its
ability to explore hierarchies, even when optimising at one level.

The overall finding of this experiment, that Bunch is superior to Crunch at one level,
is possibly due to the larger search space Crunch must traverse as it produces full
hierarchies regardless of the level(s) the fitness function evaluates. This shows that
Crunch is unsuitable in scenarios where only one level of hierarchy is required, especially
for larger case studies. This limitation is by design however, it deliberately eschews
single level performance in order to avoid the problems with hierarchy generation in
Bunch identified in Chapter 3.

Threats to Validity

The use of randomised algorithms exposes the results of this experiment to several
threats to validity:

Results may be unrepresentative The use of multiple repetitions of each of the
search algorithms mitigates the chance that the results obtained are not typical
of the algorithms surveyed in the experiments. Non-parametric Wilcoxon tests
ensure that comparison of the medians is carried out only when doing so is sta-
tistically sound.

Low numbers of evaluations may not be exercising the genetic algorithm As
the number of evaluations is fixed by Bunch’s hill climber, and the population
size is fixed at 50, it is possible for low evaluation budgets to be expended very
early, possibly prior to one iteration of the GA. Thus, the results for these case
studies do not characterise Crunch’s performance in general, however the purpose
of this experiment is to evaluate Crunch as an alternative to Bunch and thus the
evaluation limit is necessary to allow that comparison to be made.

Higher MQ values may not equal better solutions The high MQ values identi-
fied, higher than Bunch in the cases described in Section 4.3.2, may not correspond

4.4. HIERARCHICAL PERFORMANCE OF THE SYMBOL GENE 89

to actual improvements in the quality but be due to Crunch exploiting MQ to ar-
tificially increase it. However, this criticism is not unique to Crunch and extends
to any optimisation of a metric.

4.3.4 Conclusions of the Partitioning Experiment

This experiment has demonstrated how the various components that Crunch is com-
prised of allow hierarchies to be searched to optimise the same single level MQ fitness
function used in Bunch. It demonstrated that some of the genetic programming rep-
resentations, specifically the Integer and Symbol genes perform similarly to the more
direct hierarchical label based representation. Finally, the performance of both the
bitfield representation and stack representations was shown to be considerably lower
than the other representations used.

The next section extends upon this study to hierarchical results, using a similar exper-
imental design.

§ 4.4 Hierarchical Performance of the Symbol Gene

This experiment follows a similar methodology to the previous experiment to investigate
the performance of hierarchy generation in both Crunch and Bunch. In these experi-
ments, only the Symbol genetic programming representation is used. MQ remains as
an assessment criterion, however the assessment is conducted at multiple levels, rather
than the one level used in the previous study.

The research question investigated by this experiment is:

RQ What is the difference in the hierarchies produced by the Symbol linear GP com-
pared to Bunch?

4.4.1 Methodology

The design of this experiment is highly similar to the previous experiment, described in
Section 4.3.1. The same set of case studies is clustered in Bunch, again using the number
of MQ evaluations as the fitness evaluation limit in the Crunch searches. Evaluation
is conducted in the same manner, using the MQ metric, although the assessment is
conducted at multiple levels in the hierarchy.

The steps of the experiment are as follows:

1 Cluster the case studies with Bunch to produce hierarchies and MQ evaluation
counts

2 Cluster the case studies with Crunch to produce hierarchies, using Bunch’s MQ
evaluation number as a fitness evaluation limit

3 Compare the hierarchies produced by the two tools

90 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Stage 1: Clustering with Bunch

Each of the case studies is clustered in Bunch, in the same way as performed in the
previous experiment. The case studies used in this experiment, detailed in Section 4.3.1,
are those used in the previous experiment.

In this step, Bunch is used to produce a total of 30 hierarchies, in order to ensure the
results are representative.

Stage 2: Clustering with Crunch

Crunch is then used to cluster each case study a total of 30 times to ensure the resul-
tant hierarchies are representative. Both the random mutation hill climber and genetic
algorithm searchers are used. In contrast to the previous experiment, the Bunch single
level MQ fitness function is directly applied in Crunch. As Crunch generates hierar-
chies, and not partitions, it requires a fitness function to evaluate the whole hierarchy,
rather than the single level evaluation provided by MQ. In order to compare the MQ
maximisation performance of the two tools, Crunch was configured to use an adaptation
of MQ. This hierarchical MQ (HMQ) function is described in the following subsection.

Fitness Function: A Hierarchical Adaptation of MQ

To estimate the overall quality of a hierarchy, HMQ sums the MQ values of each layer
in the hierarchy. HMQ is then given by:

HMQ = penalty ×
k∑

i=1

MQi

Where k is the number of levels in the hierarchy and MQi is the MQ value of level
i . The penalty term, further elaborated in the next subsection, is only set for Crunch
results; for Bunch results it is set to 1.

Layered Hierarchies

While Crunch produces an unbalanced tree of clusters, Bunch produced a balanced,
layered hierarchy. This is problematic as Bunch fitness functions operate on these
layers, rather than individual clusters in the hierarchy. Calculation of MQ at layers
rather than for individual clusters means that MQ evaluates a whole partitioning of
the graph, meaning deeper elements in the clustering, where not all nodes are present
cannot be evaluated without modification of MQ or the hierarchy. Figure 4.13 illustrates
this problem: cluster 5 is the only cluster at its level in the hierarchy, and it does not
partition the whole graph.

One solution to the problem is summing the cluster factors for all trees in the tree,
although this would not result in a direct comparison of two MQ-optimising algorithms.
The alternative, which is implemented in Crunch, is to treat the cluster tree as a

4.4. HIERARCHICAL PERFORMANCE OF THE SYMBOL GENE 91

Head

Cluster 1 Cluster 2 Cluster 3

Cluster 4

Cluster 5

Node 1 Node 2 Node 3 Node 4 Node 5

Level 2

Level 1

Level 0

Figure 4.13: Layers in an unbalanced hierarchy

dendrogram, with each node extended to the bottom level. By doing so, each level in
the hierarchy can be treated as a cut-point, which produces a partitioning of all nodes.

These cut-points are illustrated in Figure 4.13. Cuts are made from the first level
that causes at least two nodes to be clustered together. In this example, Cluster 4
is the deepest in the hierarchy which has more than one node beneath it, so the cuts
start from this point. In cases where clusters do not appear at lower levels, they are
extended from the previous level. Although Clusters 1 and 2 only appear at level 1,
their assignments are carried down to level 0, for example. Each layer is a group of
clusters all with the same depth.

Transformation to a layered hierarchy allows layered fitness functions (such as MQ)
to be used while still retaining some benefits of the use of a hierarchical search: it is
possible for Crunch to represent individuals where only one cluster is divided at a lower
level while others remain the same. Bunch is unable to produce such a hierarchy, a
limitation found to negatively impact its performance in Section 3.1.

Although this treatment of the hierarchy as a dendrogram allows MQ to be used without
modification in Crunch, the transformation to layered hierarchies potentially creates
an exploitable weakness in the fitness function. As increasing the depth of one hierar-
chy results in more levels, it is possible to exploit this property to increase HMQ by
maximising the number of clusters; as MQ is always likely to be non-zero (unless there
are no intra-edges in any of the clusters at a level), the search may in effect multiply
the MQ value of one layer by extending a long branch to produce more layers than
necessary.

The penalty term in the HMQ definition in Section 4.4.1 is designed to limit the possible
negative impact of this vulnerability by reducing the fitness values of individuals that

92 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

exceed a user-specified limit on the depth of the hierarchy. This penalty is given by:

penalty =

{
1 depth ≤ penaltyAmount
1/(depth−(penaltyAmount−2))2 otherwise

In this case, and for these experiments, penaltyAmount was set to 5.

Stage 3: Comparison Criteria

The quality of each hierarchy produced by both tools was assessed by calculating the
MQ values at various levels, as well as determining the depth of it in order to charac-
terise the result. As Bunch and Crunch produce hierarchies in different ways, the levels
at which they are compared are defined as follows:

Top MQ The MQ value of the top-most layer of the hierarchy that contains the
fewest number of clusters, excluding the head of the tree which contains one cluster.
In cases where Bunch produces only one level (containing a single cluster), that level
is used for the top level MQ calculation.

Bottom MQ The MQ value of the lowest layer in the hierarchy. In the case of
Crunch results, this is the lowest level of the hierarchy where a cluster contains more
than one element. Bunch may produce a single level of hierarchy in some cases; in these
cases the bottom and top MQ values are the same.

Sum MQ The MQ value of each layer in the hierarchy is calculated and summed.
This metric is the same as the HMQ metric described, in Section 4.4.1, without the
penalty applied.

Depth The total number of levels in the hierarchy, including the root of the tree.

4.4.2 Results

Table 4.5: Depth values produced by each search type

Search Type Mean St Dev. Min Max Median

BUNCH 3.143 1.043 1.000 6.000 3.000
GA 4.965 0.184 4.000 5.000 5.000
RMHC 5.006 0.262 4.000 7.000 5.000

Table 4.5 shows the depth of the hierarchies produced by each search type. The differ-
ence between the Bunch results characterises the difference between the two approaches;
while Bunch has a higher variation in depth, the Crunch results are highly concentrated

4.4. HIERARCHICAL PERFORMANCE OF THE SYMBOL GENE 93

around the depth limit imposed by the fitness function. In all cases, Crunch produced
at least 3 levels of hierarchy, while Bunch produces as few as one, where the solution
is one layer containing a single cluster. The values in this table suggests that the two
tools optimise the hierarchy in different ways.

Table 4.6: Top MQ; significant results where Crunch values are higher are indicated
in bold type

Case Study
Mean Top MQ p-values

RMHC GA Bunch
Bunch/ Bunch/ RMHC/
RMHC GA GA

Module dependency graphs

ttysnoop-0.12c 1.734 1.350 1.990 0.371 0.371 <0.001
compiler 3.949 3.340 1.700 <0.001 <0.001 0.002
mtunis 1.505 1.376 1.551 0.115 <0.001 0.024
ispell 1.872 1.695 1.652 0.005 0.538 0.039
rcs 2.139 1.942 1.750 <0.001 0.054 0.028
bison 2.988 2.970 1.174 <0.001 <0.001 0.924
dot 2.452 2.391 1.187 <0.001 <0.001 0.994
grappa 7.129 5.557 1.411 <0.001 <0.001 <0.001
aalib-1.3 4.906 4.057 1.192 <0.001 <0.001 <0.001

State machines

liftController 0.955 0.958 1.000 0.001 <0.001 0.783
congestion 1.166 1.265 0.983 <0.001 <0.001 0.086
bgp 1.519 1.449 1.095 <0.001 <0.001 0.281
atm3 1.691 1.500 3.081 <0.001 <0.001 0.018
cvs 2.913 2.468 1.422 <0.001 <0.001 <0.001
roomcontroller 2.687 2.580 1.728 <0.001 <0.001 0.169
ssh 2.062 1.807 1.321 <0.001 <0.001 0.003
collections 3.461 2.942 1.297 <0.001 <0.001 <0.001
colt 7.833 5.963 1.345 <0.001 <0.001 <0.001

Table 4.6 summarises the MQ values of the top-most level in the hierarchy produced by
each search type. Wilcoxon rank sum test p-values are reported in the p-value column;
significant results (at α = 0.05) are shown in bold type where the Crunch MQ value
exceeded that of Bunch. In the majority of cases Crunch produced greater MQ values
at this level than the corresponding Bunch modularisations, with the exception of the
ttysnoop, mtunis and atm3 case studies.

The MQ values for each of the lowest layers in the hierarchy are given in Table 4.7. It
is at this level where Bunch has the greatest freedom to explore solutions and produces
the smallest clusters and highest MQ values. While Crunch produced greater values at
the top level, Bunch produced greater MQ values at this level in all cases except for
the congestion and bgp case studies.

94 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Table 4.7: Bottom MQ; significant results where Crunch values are higher are indicated
in bold type

Case Study
Mean Bottom MQ p-values

RMHC GA Bunch
Bunch/ Bunch/ RMHC/
RMHC GA GA

Module dependency graphs

ttysnoop-0.12c 0.509 0.568 2.747 <0.001 <0.001 0.539
compiler 2.385 2.039 6.783 <0.001 <0.001 0.022
mtunis 1.228 1.288 2.990 <0.001 <0.001 0.842
ispell 1.540 1.031 3.289 <0.001 <0.001 <0.001
rcs 1.700 1.359 3.502 <0.001 <0.001 0.002
bison 2.257 1.809 4.825 <0.001 <0.001 0.005
dot 2.071 1.380 4.149 <0.001 <0.001 <0.001
grappa 4.682 3.378 13.370 <0.001 <0.001 <0.001
aalib-1.3 3.262 2.848 7.504 <0.001 <0.001 0.008

State machines

liftController 0.866 0.872 1.000 <0.001 <0.001 0.931
congestion 1.544 1.418 0.983 <0.001 <0.001 0.023
bgp 1.486 1.471 1.095 <0.001 <0.001 0.929
atm3 0.894 0.949 3.081 <0.001 <0.001 0.666
cvs 2.022 2.205 3.881 <0.001 <0.001 0.134
roomcontroller 1.720 1.942 4.065 <0.001 <0.001 0.013
ssh 0.603 0.983 3.086 <0.001 <0.001 <0.001
collections 1.748 1.829 5.809 <0.001 <0.001 0.615
colt 4.229 4.058 12.069 <0.001 <0.001 0.318

The sum MQ results are shown in Table 4.8. These values estimate the overall quality
of the hierarchy in terms of the optimisation produced. Values in this table show firstly
that Bunch produced higher summed MQ values for all of the module dependency
graphs. In the smaller state machine examples, Crunch produced higher values, while
Bunch produced the greatest sum MQ values for the larger three state machines.

In all of the statistically significant pairs of GA and RMHC results for state machines,
the RMHC algorithm produced higher mean sum MQ values than the GA. This trend
is not observed in the MDGs, however. Fewer cases produced statistically significant
differences in the RMHC and GA sum MQ values, although the GA produced greater
mean values than the RMHC search for the larger dependency graphs.

Figure 4.14 shows the sum MQ values graphically in a box plot. The principal finding
for this research question is that the hierarchies are structured differently by the two
tools. Crunch appears to optimise MQ at the top of the hierarchy and tends towards the
depth limit imposed by the fitness function for all case studies, while Bunch optimises
the overall and bottom fitness values with depths varying between case studies.

4.4. HIERARCHICAL PERFORMANCE OF THE SYMBOL GENE 95

Table 4.8: Sum MQ; significant results where Crunch values are higher are indicated
in bold type

Case Study
Mean Sum MQ p-values

RMHC GA Bunch
Bunch/ Bunch/ RMHC/
RMHC GA GA

Module dependency graphs

ttysnoop-0.12c 4.485 3.921 4.274 0.059 0.050 0.001
compiler 9.711 9.821 11.741 <0.001 <0.001 0.684
mtunis 5.683 4.971 6.192 0.008 <0.001 <0.001
ispell 5.391 5.930 6.345 <0.001 0.002 <0.001
rcs 6.240 6.563 7.183 <0.001 0.006 0.080
bison 8.139 9.012 9.576 <0.001 0.059 0.005
dot 6.636 7.924 8.038 <0.001 0.819 <0.001
grappa 16.900 16.889 23.345 <0.001 <0.001 0.994
aalib-1.3 12.553 12.098 17.116 <0.001 <0.001 0.130

State machines

liftController 3.504 3.520 1.467 <0.001 <0.001 0.970
congestion 4.720 4.822 1.522 <0.001 <0.001 0.739
bgp 5.393 5.411 2.470 <0.001 <0.001 0.641
atm3 4.843 4.417 3.500 <0.001 <0.001 <0.001
cvs 8.602 7.830 6.916 <0.001 <0.001 <0.001
roomcontroller 7.976 7.408 7.175 <0.001 0.144 0.001
ssh 5.519 4.673 6.146 <0.001 <0.001 <0.001
collections 9.016 8.315 12.274 <0.001 <0.001 <0.001
colt 18.609 16.892 26.222 <0.001 <0.001 <0.001

Discussion

The results at the top level show different fitness values between Crunch and Bunch,
suggesting that the two tools do produce different structures in their solutions. This
finding is corroborated by the reversal of superiority at the lower and overall levels, at
which Bunch exceeded fitness values produced by Crunch in addition to the varying
depth values produced by the two tools.

The poor performance at lower levels in Crunch could possibly be due to the depth
limit imposed in the fitness function, which restricts the number of solutions it can use
to represent a hierarchy. For example, it is possible to represent one cluster containing
three nodes as a single cluster with three children, or a nested structure. Differences in
the type of the hierarchy and the amount of nesting between Crunch and Bunch make
the comparison of the two results difficult.

Depth values produced by Crunch were high; in almost all cases, it produced solutions
with depths close to the imposed limit. Only in cases where Bunch produced fewer
levels than Crunch did Crunch produce higher HMQ values. This suggests that the

96 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

MDG State.Machine

0

5

10

15

20

25

●

●●●

●●●

●

●

●

●
●

●

●●

●●

●

●●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●●

●●●

●

●

●

●●

●

●●●

●
●

●

●

●

●

ttysnoop−0.12c

com
piler

m
tunis

ispell

rcs
bison

dot
grappa

aalib−1.3

liftController

congestion

bgp
atm

3
cvs

room
controller

ssh
collections

colt

Case Study

S
um

 M
Q

Search Type

BUNCH

GA

RMHC

Figure 4.14: Box plot of sum MQ values produced

search may have been exploiting the duplication gained during the transformation to a
layered hierarchy for assessment, and that the penalty term in HMQ does not success-
fully manage the depth of the hierarchies produced by Crunch. It also supports the
hypothesis that direct comparison of the Bunch and Crunch hierarchies is not possible.
The differences between the depths possibly indicates that the two tools are searching
different parts of the search space.

Bunch produced the greatest MQ values at the bottom of the hierarchy, where it be-
gins its optimisation. Crunch, however, does not have any such prioritisation, and its
higher performance at the top levels suggests that it is easier for the search to produce
arrangements that optimise the clusters higher up the tree than lower in the tree. The
transformation procedure performed to enable the use of MQ with Crunch results may
also have contributed to the poor performance, as layers of Crunch results are likely
to contain clusters that contain very few elements. As MQ is defined as a ratio of
intra-edges to inter-edges, these clusters may have had zero intra-edges and thus zero
contribution to the MQ score at that level.

This study suggests that the more expressive representation used by Crunch incurs a
cost of reduced MQ values, when compared to Bunch, using the HMQ fitness function.
As MQ results for this fitness function were high at higher levels in the hierarchy,
Crunch may require weighting by level or size for it to produce hierarchies more similar
to Bunch. The comparison method at various layers is similar to the approach used by

4.4. HIERARCHICAL PERFORMANCE OF THE SYMBOL GENE 97

Anquetil and Lethbridge [9] in their experiments on hierarchical clustering. As they
remarked, selection of a cut-point is difficult; this is exacerbated by the difference in the
hierarchies produced by each algorithm, and makes determination of a clearly superior
algorithm in terms of hierarchical quality difficult.

Although the summed MQ values allow inferences about the ability of both searches
to maximise MQ to be made, they do not assess the issue of quality. The appropriate
amount of nesting is not known for any of the results, so it is not possible to assert that
either tool produced better hierarchies overall. However, with respect to the research
question of this study, the conclusion is that Crunch produces a higher top MQ value
with a high depth, while Bunch maximises both the MQ of the bottom level and overall
with fewer layers in the hierarchy.

Threats to Validity

The threats to validity for the results are as follows:

Results are from randomised algorithms and may not be representative This
threat is mitigated by the 30 repetitions used for each of the search types. The
likelihood the results are coincidence is low, as reported by the low p-values from
the Wilcoxon rank sum test conducted for each pair of results. This test was used
as it makes no assumption of the normality of the samples.

Bunch and Crunch levels may not correspond to one another As Crunch and
Bunch formulate their hierarchies in different manners, the extraction of various
layers exposes another threat to validity. This threat is intrinsic to MQ and can
therefore not be removed from this experiment.

The MQ metric may not assess quality As with all metrics which serve to act as
a surrogate of a subjective human, the use of MQ to assess the quality of the result
means it is not possible to assert that the results are objectively more qualitative,
only that the MQ values are better or worse. The purpose of this study was to
compare MQ values, however, rather than the subjective quality of the results.

4.4.3 Conclusions of the Hierarchical Study

This experiment demonstrated that Crunch produces hierarchies that are largely dif-
ferent to Bunch. The higher MQ values at the top level, contrasting to the higher
MQ values at the bottom level, suggests that Bunch may be more suitable if smaller
modules at a lower level of abstraction is desired. The evaluation also indicated the
difficulty in comparing the performance of the two hierarchical tools, irrespective of the
structural differences that may or may not be apparent.

The difficulty in comparison provides evidence to suggest that HMQ and Crunch rep-
resent different priorities of optimisation compared to the agglomerative hill climbing
approach used in Bunch. The next section describes an investigation into the struc-
tural differences of partitionings produced by different fitness functions implemented

98 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

in Crunch in order to further explore the nature of MQ to address the final threat to
validity identified in the previous experiment.

§ 4.5 Alternative Fitness Functions

The previous chapter identified several issues with results from Bunch, those related
to its hierarchy generation approach and those related to the structural quality of its
output. The previous sections of this chapter explored the former problem through the
use of Crunch with MQ. This section explores different fitness functions as a means
to improve the quality of the result of a clustering operation for state machines when
using the Crunch tool.

In this section, several alternative fitness functions are described and evaluated by
using them to cluster two state machines with Crunch. The results are assessed from
a structural standpoint, as well as through several fitness functions, some taken from
existing approaches and others are original. These experiments are an extension of
work presented by the author at ESEC/FSE 2011 [42].

These experiments address the research question “What types of structures are pro-
duced by Crunch using different fitness functions?”.

4.5.1 Methodology

The objective of this assessment is to measure the relative performance of several fitness
functions when used to cluster state machines in Crunch.

Two case studies, the largest state machines used in the previous studies, were clustered
using both Crunch searchers (GA and RMHC) using each fitness function. The resul-
tant MDGs were then assessed using several metrics to characterise the partitionings
produced by each search.

Case Studies

Table 4.9 summarises the size of the case studies. The case studies were selected as they
are the largest state machines used in the previous study; size was used as a selection
criterion as larger graphs were more likely to exercise the hierarchy evaluation imple-
mented in the hierarchical decomposition fitness function (described in Section 4.5.2).
These state machines were also selected as they are reverse engineered from software,
using the method described in Section 4.3.1, which makes them more realistic for the
evaluation.

4.5.2 Fitness Functions

This evaluation surveys several fitness functions, each of which operate solely on the
connectivity of the graph, and the partitions produced by the search algorithm. Each

4.5. ALTERNATIVE FITNESS FUNCTIONS 99

Table 4.9: An overview of each case study.
Case Study Transitions States

Collections 38 26
Colt 63 53

of these fitness functions assess only the immediate level of the hierarchy, treating it
as a partition, with the exception of the HMD fitness function which is a hierarchical
measure.

XOR

Chu et al. [23] proposed an XOR-based heuristic to identify subsets of a state ma-
chine to be clustered in a superstate. This fitness function adapts their metric to the
search-based approach used in Crunch. It does so by rewarding solutions that exhibit
clusterings that comply to this XOR constraint. The more clusters doing so, the higher
the fitness value. This is given by: ∑

C∈P

∑
x∈C

|εx|
|εC |

where P = {C1, C2, . . . Cn} is a partition of the set of nodes. For a graph G = (V,E),
a node x ∈ V in the cluster Ci has inter-edges εx = {e|(x, v) ∈ E ∧ v 6∈ Ci} . The
inter-edges of a cluster Ci is the union of all inter-edges ex of each node within it:
εCi = ∪

x∈Ci

εx . Clusters containing 0 or 1 nodes are given a fitness value of 0.

Cyclomatic

A cyclomatic complexity (CC) fitness function; given by:

1

max(E −N + 2, Double.MIN VALUE)

This can be seen to approximate Kumar’s method [62] of evaluating statechart inference
from state machines. A transformation is applied that removes transitions occurring
from every state in a superstate, replacing them with a single transition from the
superstate. The superstates themselves are ignored in this calculation, such that N
never changes, although E decreases when this rewriting occurs. The reciprocal is
taken such that reducing CC increases the fitness of the result.

Edge Reduction

This fitness function operates on a similar principle to the cyclomatic fitness function
but instead directly represents the fitness by the number of edges which can be removed
by introducing superstate transitions to the hierarchy. This models the approach to
composite state generation described by Systä et al. [108] in a search-based context.

100 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

HMD

An implementation of Lutz’s HMD [69] fitness function. Based on the minimum de-
scription length principle from Information Theory. It estimates the number of bits
required to express a given clustered state machine using a formula; the less complex
the hierarchical machine, the lower the number of bits required to express it.

One component of the encoding is the set of transitions. The number of bits required
to represent transitions is reduced when the start and end states appear closer in the
hierarchy. This is balanced against the number of clusters, each of which increases the
total number of bits required to represent the hierarchy.

The reciprocal of the number of bits required to estimate the hierarchy is taken, such
that solutions requiring fewer bits receive higher fitness values [69].

Edge Similarity

This fitness function maps each state to a coordinate based on its connectivity to other
states, similar to van Deursen and Kuipers’ use of the vector space model for software
clustering [118]. The coordinates of a state s are given as a vector of 1s and 0s which
denote the existence or non-existence of a transition from s to each t ∈ N .

The similarity of two states s and t is defined as the euclidean distance between them.
This is given by:

dist =

√√√√ n∑
i=0

(u[i]− v[i])2

where u and v represent the coordinates of states s and t respectively.

The similarity between two modules is defined as follows:

moduleF itness =

{ 1
1+internal if external = 0

external
external+internal otherwise

(4.1)

Where external is the sum the distance between each state within the cluster and all
states outside it and internal is the summed distance between each of the states within
the cluster. The mapping to an ordinal scale used based on the mapping of coupling
levels to ordinals used by Fenton and Melton [35].

The calculation is performed for each module at the top level of the hierarchy and
summed to produce the final fitness measure for the modularisation.

This fitness function aims to increase the distance of elements in the cluster with those
outside it, but also rewards assignments with a low internal distance. Solutions that
have a higher separation of external nodes are more permissive of internal dissimilarity.

4.5. ALTERNATIVE FITNESS FUNCTIONS 101

MQ

The original TurboMQ fitness function implemented in Bunch. This fitness function
allows the comparison of the performance of other functions against MQ without con-
sidering the search method of each tool. This function calculates fitness only at the top
level of the hierarchy.

4.5.3 Search Configuration

Both the genetic algorithm and random mutation hill climbing searchers from Crunch
were used. The parameters to the GA were kept at the JGAP default, with a population
size of 50. Both search algorithms were assigned a fitness evaluation budget of 50, 000.
As Crunch uses randomised algorithms, 30 repetitions were conducted for each fitness
function, search type and case study, resulting in a total of 6 ∗ 2 ∗ 2 = 720 clusterings.

4.5.4 Metrics

Assessment of the results is conducted at the top level of the tree, as all but one of the
fitness functions use only this level for fitness evaluation. This level contains the largest
clusters in the tree, and is obtained by selecting the head node of the tree’s immediate
children. The following metrics for each of the top-level partitionings are used:

MQ The MQ value at the top level of the hierarchy

Number of inter-edges The number of transitions that leave or enter another cluster

Edge Reduction The number of edges that can be reduced according to the compos-
ite state rule used by Systä et al. [108] and Kumar [62]

Number of clusters The number of top-level clusters in the output

4.5.5 Results

Table 4.10 summarises each of the metric values for each of the sets of 30 clustered
MDGs. The rows headed “RMHC” and “GA” are results from the random mutation
hill climber and genetic algorithm respectively.

The results firstly show that several of the fitness functions failed to produce a reduction
in the number of inter-edges; mean values for the Cyclomatic, Edge count reduction and
Edge Similarity fitness functions were all close to the number of edges in the machine for
both case studies (there was one reflexive edge in each of the state machines that could
not be clustered to turn it into an inter-edge). The XOR fitness function performed
similarly, although it produced fewer inter-edges than these fitness functions on average.
Both HMD and Bunch MQ produced a higher decrease in the number of inter-edges.

Comparing the numbers of clusters, Edge Similarity produced the largest mean number
of clusters, the largest of all the fitness functions for both cases, in addition to producing

102 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

Table 4.10: Summary statistics for the fitness function experiment

Fitness Function MQ Num. Clusters Inter-Edges Edge Reduction
Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD

C
o
ll

ec
ti

o
n

s G
A

BunchMQ 4.676 3.417 5.429 0.539 13.400 11.000 17.000 1.404 23.200 20 27 1.919 0.000 0.000 0.000 0.000
Cyclomatic 0.616 0.286 1.341 0.270 15.967 13.000 19.000 1.691 34.233 32 36 1.040 5.133 4.000 6.000 0.900
EdgeReduction 0.632 0.286 1.291 0.284 16.267 12.000 19.000 2.067 34.467 33 36 0.860 5.167 2.000 6.000 1.177
EdgeSimilarity 0.290 0.200 0.750 0.134 24.967 24.000 26.000 0.320 36.900 36 37 0.305 0.000 0.000 0.000 0.000
HMD 2.153 1.059 3.262 0.509 8.967 6.000 14.000 1.564 22.733 9 30 4.291 0.067 0.000 2.000 0.365
XOR 1.220 0.382 2.082 0.436 12.933 9.000 17.000 2.067 33.100 29 35 1.539 0.667 0.000 3.000 1.061

R
M

H
C

BunchMQ 4.579 2.750 5.529 0.622 13.267 8.000 16.000 1.893 23.367 15 28 2.710 0.000 0.000 0.000 0.000
Cyclomatic 0.605 0.167 1.167 0.293 16.567 13.000 21.000 2.012 34.200 30 37 1.789 3.467 0.000 6.000 1.995
EdgeReduction 0.630 0.250 1.345 0.268 15.733 11.000 18.000 1.530 34.133 27 37 1.889 3.267 0.000 6.000 2.067
EdgeSimilarity 0.401 0.111 1.417 0.275 22.333 20.000 25.000 1.398 36.400 34 37 0.814 0.067 0.000 2.000 0.365
HMD 2.553 1.183 4.207 0.654 6.200 3.000 10.000 1.424 16.833 6 23 3.563 0.000 0.000 0.000 0.000
XOR 1.160 0.200 2.308 0.540 13.833 10.000 19.000 1.931 33.867 29 37 1.995 0.433 0.000 3.000 0.898

C
o
lt

G
A

BunchMQ 8.809 7.067 10.333 0.729 28.500 25.000 34.000 2.570 38.700 34 43 2.184 0.000 0.000 0.000 0.000
Cyclomatic 0.488 0.125 1.778 0.401 32.633 28.000 38.000 2.773 60.267 57 62 1.112 2.433 1.000 3.000 0.626
EdgeReduction 0.555 0.125 1.347 0.354 31.900 24.000 38.000 3.166 59.833 55 62 1.464 2.267 1.000 3.000 0.640
EdgeSimilarity 0.550 0.333 1.333 0.215 50.133 48.000 52.000 0.937 61.833 60 62 0.461 0.000 0.000 0.000 0.000
HMD 4.084 2.411 6.006 0.736 18.033 13.000 24.000 2.428 40.067 34 49 3.331 0.000 0.000 0.000 0.000
XOR 1.776 0.417 3.976 0.981 27.667 24.000 35.000 3.122 57.667 54 61 1.936 0.267 0.000 2.000 0.521

R
M

H
C

BunchMQ 9.525 8.202 11.111 0.751 27.100 22.000 33.000 2.383 37.467 32 43 2.270 0.000 0.000 0.000 0.000
Cyclomatic 0.521 0.182 1.293 0.313 32.867 24.000 38.000 3.309 60.267 57 62 1.258 1.333 0.000 3.000 0.884
EdgeReduction 0.611 0.100 1.243 0.294 31.700 27.000 38.000 3.007 59.633 56 62 1.351 1.367 0.000 3.000 0.928
EdgeSimilarity 0.493 0.250 1.000 0.156 45.733 43.000 48.000 1.552 61.833 61 62 0.379 0.000 0.000 0.000 0.000
HMD 3.700 1.710 6.211 1.034 8.300 5.000 11.000 1.466 20.200 9 28 4.302 0.000 0.000 0.000 0.000
XOR 2.100 0.833 4.167 0.833 28.133 22.000 34.000 3.126 57.167 53 61 1.859 0.167 0.000 1.000 0.379

the largest mean number of inter-edges. The HMD fitness function produced the lowest
mean number of clusters in all cases.

Edge reduction means for the majority of the fitness functions were zero, although in
some cases the XOR metric produced arrangements that allowed superstate transitions
to reduce the number of edges in the machine. The greatest reduction of edges was pro-
duced by the two fitness functions that use it as an optimisation criterion: Cyclomatic
and Edge Count Reduction.

The MQ values produced by each fitness function show that, while MQ optimises it
best (a result to be expected), Both HMD and XOR appear to produce increases in
MQ, when compared to the remaining fitness functions. Figure 4.15 shows a box plot
of the MQ values each search and fitness function produced for both case studies. The
whiskers extend to the highest and lowest values within 1.5 times the inter-quartile
range, outliers are drawn as points.

With respect to the research question, the experiment has determined that HMD pro-
duces larger clusters and also appears to correlate with MQ more-so than the superstate
transition-based fitness functions, although HMD and MQ did not enable any super-
state transitions to be rewritten in most cases.

4.5. ALTERNATIVE FITNESS FUNCTIONS 103

collections colt

0

2

4

6

8

10

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

● ●●

●

●●

●

●●

●
●

●
●

●

BunchM
Q

Cyclom
atic

EdgeReduction

EdgeSim
ilarity

HM
D

XOR
BunchM

Q

Cyclom
atic

EdgeReduction

EdgeSim
ilarity

HM
D

XOR

Fitness Function

M
Q

 V
al

ue Search Type

GA

RMHC

Figure 4.15: Box plot of MQ values produced by search type

104 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

4.5.6 Discussion

Both the Cyclomatic Complexity fitness function and Edge Reduction metrics produce
highly similar results. Pairwise Wilcoxon tests produced p-values for each of the met-
rics suggest that the null hypothesis, that the two values are drawn from the same
population, cannot be rejected as they were all considerably greater than the 0.05 sig-
nificance level. This suggests that cyclomatic complexity can be replaced with a single
edge reduction without any change in the performance of the result.

The poor performance of the Edge Similarity, Cyclomatic Complexity and Edge Re-
duction fitness functions in MQ is possibly due to their poor performance at reducing
the number of inter-edges. Although these fitness functions produced arrangements
that allowed transitions to be rewritten as composite transitions, they did so at a cost
of increased numbers of inter-edges.

0.090

0.095

0.100

0.105

0.110

2

3

4

5

C
yclom

atic
M

Q

0 100 200 300 400 500 600
Generation

F
itn

es
s

va
lu

e

Figure 4.16: Change in fitness over evaluations for MQ and Cyclomatic fitness func-
tions

Figure 4.16 shows a line plot of the maximum fitness value of the populations for two
genetic algorithm searches for the collections case study, for the MQ and Cyclomatic
Complexity fitness functions. This figure illustrates a possible problem with the edge
reduction based metrics; the fitness landscape is likely to be of “stepped” construction.
Both Cyclomatic Complexity and the Edge Reduction metrics do not offer a means to

4.5. ALTERNATIVE FITNESS FUNCTIONS 105

represent a partial improvement, which reduces the tolerance of the fitness functions
to local optima. This demonstrates that an ideal fitness function for clustering must
encode a partial improvement in its fitness function.

The performance of HMD appears to replicate Lutz’s findings, in that the HMD fit-
ness function was able to produce higher MQ values than the other fitness functions
(excluding MQ itself) [69]. HMD also produced the fewest clusters of all the fitness
functions; this is likely due to the hierarchical optimisation it performs. As the other
fitness functions only optimise at the level assessed by the metrics, the large clusters
observed for HMD may be due to the optimisation occurring at lower levels.

The XOR fitness function also produced higher MQ values than the remaining three
fitness functions (edge similarity, Cyclomatic Complexity and edge reduction), in addi-
tion to locating several solutions that allowed composite transitions to replace a small
number of edges.

It is not possible to conclude which of the two search techniques best optimises the MQ
metric, as evidenced by the box plot in Figure 4.15. Although in some cases RMHC
produces greater maximum values, there is not a clearly superior technique in any of
the cases.

Although the quality cannot be measured through these results, the data still shows
that the superstate identification problem described by Systä et al. [108] may be solved
using a search-based approach. However, comparing the MQ values against the number
of edge reductions suggests that the quality may suffer where the number of superstate
transitions is maximised.

Threats to Validity

There are several factors which may pose as threats to the validity of the findings in
this study:

Results may be due to chance The use of 30 repetitions for each search type, and
the use of the non-parametric pairwise Wilcoxon tests with Holm-Bonferroni p-
value adjustment ensure that the comparisons made in this experiment are un-
likely to be due to chance.

Metrics do not assess quality Quality is subjective, and as such it is not possible
to interpret these metrics as indicators of quality, beyond the objective crite-
rion of superstate transition identification and the evidence in the literature that
MQ correlates with quality. However, the objective of this experiment was to
characterise the type of hierarchy produced by these fitness functions and not to
determine which was more qualitative.

HMD is hierarchical while the other fitness functions are not This fitness func-
tion optimises a hierarchy, rather than only the level investigated by these metrics.
As a result, the larger clusters it produced may be due to the lower-level struc-
tures it has produced. While this impacts the interpretation of quality of the

106 CHAPTER 4. SEARCH-BASED HIERARCHICAL CLUSTERING

result, it does not forbid analysis of the structures produced by the fitness func-
tion, although the comparison cannot be considered to operate at the same level
for HMD as the other fitness functions.

4.5.7 Conclusions of the Empirical Study

This study has demonstrated how several metrics described in the literature can be
applied as fitness functions in search based clustering. The evaluation of these measures
showed that the modularisation metrics (MQ and HMD) did not produce hierarchies
that enabled superstate transitions to be produced. In contrast, the fitness functions
that aim to optimise the clusters to enable superstate transitions to replace several
transitions did so at a cost of MQ values and high numbers of inter-edges.

Difficulties in selecting an adequate measure were demonstrated by the apparent conflict
of these two concerns. This suggests that the problem of state machine clustering
cannot be reduced to a single objective function value. In addition, this comparison
was only performed at one level of a hierarchy. The comparison results in the previous
experiment demonstrated the difficulty of evaluating such hierarchies, which further
complicates the derivation of a metric for state machine clustering.

Although the study did not produce a single objectively superior metric of those eval-
uated, it offers the insight that in order to solve the superstate identification problem
with the goal of reducing edges via superstate transitions, the fitness function must
encode partial quality. This was evidenced by the lack of continuous improvement
observed for the Edge Reduction and Cyclomatic Complexity metrics.

§ 4.6 Conclusions

This chapter introduced Crunch, a novel search-based clustering tool that avoids the
problems in the Bunch approach to hierarchy generation identified in Chapter 3 using a
genetic programming approach. This approach allows whole hierarchies to be searched
at once, rather than level-by level, thus avoiding over-fitting and the constraint to
layered hierarchies.

Crunch was evaluated in three aspects in this chapter. Firstly, in Section 4.3, compar-
ison at the single level showed that the hierarchy representation produces lower fitness
values than Bunch when evaluated only at one level. This demonstrated that Crunch’s
approach to searching whole hierarchies negatively impacts its ability to optimise a
single-level hierarchy. The various representations and search types described in this
chapter were also compared, showing that of the genetic programming implementations,
the symbol gene produced the fittest solutions.

The second evaluation measured the performance of Crunch and Bunch for the hier-
archy generation task in Section 4.4.2. Assessment of the MQ values at various levels
showed that Crunch can produce higher fitness values at the top levels of the hierarchy,
at a cost of lower fitness values further down the hierarchy, when compared to Bunch.

4.6. CONCLUSIONS 107

On comparing several fitness functions, the HMD [69] fitness function reduced the
number of inter-edges and clusters the most, although it did not identify as many
candidate superstate transitions. The results from this experiment firstly capture the
difficulty in defining fitness functions and assessment criteria for clustering. While MQ
has been found to be a good estimator of modularisation quality, like all metrics it
serves as a “rule of thumb” and care must be taken to not lend too much authority
to it. The reported negative industry experience with the use of Bunch [40] gives
credence to this observation. Additionally, the evaluation shows that assessment relies
on many variables, suggesting that production of a single fitness function to solve the
problem is impractical, especially when the subjectivity of interpretation of the metrics
is considered; a reduction in inter-edges or clusters is not objectively good or bad,
judgement by a domain is necessary.

Mechanised remodularisation algorithms are therefore not a panacea. Although efforts
may be directed at improving metrics to increase authoritativeness, the subjectivity of
the modularisation problem cannot be ignored, as it is an inescapable part challenge,
besides identification of structure according to design quality. With these facets con-
sidered, it is then reasonable to attempt to remove subjectivity from the challenge by
introducing a human into the remodularisation process. The following chapters exam-
ine this, using an interactive approach to defer the subjective judgement to a human
expert, while leaving the non-subjective component to automated approaches.

Chapter 5

SUMO: Supervised Software
Remodularisation

As shown in Chapters 3 and 4, automated remodularisation can be used to cluster state
machines, however the results may not always match a domain expert’s intuitions. This
mismatch can arise if the developer makes subjective decisions based on additional
knowledge, beyond the information present in the structure of the graph. In this
circumstance, the remodularisation algorithm, operating on a partial set of the required
knowledge may not be able to produce as good a result. This chapter addresses this
problem using an interactive approach of soliciting additional domain knowledge from
an expert in order to produce a clustering which incorporates this domain knowledge
to better match the expert’s intuitions.

The SUMO approach described in this chapter is motivated by the body of work that
uses domain knowledge to improve remodularisation [12, 74, 90, 100] as well as cluster-
ing [120]. These approaches, discussed in detail in Sections 2.5.3 and 2.5.2, use human
intuition to assist the algorithm in order to increase the quality of the result. This chap-
ter applies a refinement process that uses constraints to correct erroneous elements of a
modularisation identified by an expert in a similar manner to the constrained clustering
approach used by Wagstaff et al. [120].

Expert time is costly, so the refinement process must be as efficient as possible, in terms
of the improvement produced as a result the expert’s supplied information. This chapter
introduces SUMO, an algorithm that uses pair-wise constraints as domain knowledge
to achieve this. The amount of domain knowledge needed to produce a full refinement
is quantified both in theoretical terms and though an evaluation of the algorithm, using
150 simulated authoritative decompositions generated from five software systems. The
evaluation shows that while a large amount of information is required to completely re-
fine a Bunch-produced modularisation, incremental improvement can be gained within
a short number of iterations using the SUMO refinement technique.

108

5.1. REFINING MODULARISATIONS 109

This chapter makes the following contributions:

1 The SUMO constraint-based refinement algorithm that allows a domain expert
to interactively refine a modularisation, including equations for the minimum
amount of information required to produce an unambiguous result.

2 An empirical evaluation of SUMO that uses simulated authoritative decompo-
sitions from five diverse software systems as the source of domain knowledge,
which finds that SUMO is able to produce regular partial improvements to the
modularisation in all cases.

§ 5.1 Refining Modularisations

The previous chapters showed that automated remodularisation techniques can be ap-
plied to produce hierarchies for state machines. However, the focus of these chapters
was on the applicability of the approach (in Chapter 3) and the performance of the
Crunch clustering tool in terms of MQ values, and the structures it produces (in Chap-
ter 4). Beyond the initial investigation into the use of Bunch on state machines, the
issue of the accuracy has not been addressed thus far.

Although Chapter 4 showed that Crunch can produce higher MQ values at the top
level of a hierarchy than Bunch, it did not show that these higher MQ values were
more qualitative. This criticism also stands for Bunch; MQ requires validation in order
to determine how suitably it approximates the quality of a modularisation. However,
both Bunch and Crunch operate on a fraction of the information available for the
system that is represented in the graphs they operate on.

Part of the remodularisation problem is in the handling of subjective decisions that
form part of the evaluation of a result. Automated approaches can only do their best
to approximate these subjective decisions based on the available indicators, however. In
a survey of six automated remodularisation algorithms, Wu et al. [126] found that sim-
ilarity to the known-good modularisations for several versions of five software systems
was low.

Glorie et al. [40] reported that the application of Bunch to an industrial problem was
unsuccessful. Although Bunch provides several features that allow the user to direct
it, the difficulty in judging the result, and comparison of different results produced by
Bunch made the process more challenging. Domain experts in their study found that
solutions produced using Bunch were “non-acceptable”. Although Bunch provides a
means to start the modularisation process from a solution, Glorie et al. [40] found that
the practical application of this seeding of the search was difficult as Bunch may modify
some of the user-supplied modules. Following from this, an automated technique must
allow the user to supply their domain knowledge in the simplest way possible.

These problems suggest that a means to interactively incorporate domain knowledge
may be used to improve on existing remodularisation techniques. Wagstaff et al. [120],
applied a constraint solver to the k -means clustering algorithm to improve the quality

110 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

of the clusterings produced by it. SUMO applies a similar approach, although it is a
post-hoc refinement step, rather than an interactive clustering algorithm. The following
section describes the SUMO algorithm. This use of a refinement step allows the choice
of the remodularisation algorithm to be made based on the scenario, before refinement
is used to hone it into an acceptable result.

§ 5.2 Interactively Refining Modularisations

SUMO uses pair-wise constraints to refine a modularisation. These constraints are so-
licited as corrections to a hypothesis modularisation, supplied by a user. The objective
of the user is to supply a sufficient set of pairwise constraints to transform the exist-
ing solution into the desired modularisation. As the user is surveying pairs of items,
the refinement occurs piece-wise, such partial refinement therefore is possible using the
algorithm.

The following section describes the SUMO algorithm, and shows how a constraint solver
can be used to produce modularisations that conform to the user’s supplied domain
knowledge. A running example is used to illustrate the various features of the SUMO
algorithm and is detailed in the following subsection.

5.2.1 Motivating Example

In this example, a module dependency graph of a small toy system will be used. The toy
system contains 9 classes, three of which are associated with a Model View Controller
architecture, and the remainder are associated with I/O and handling of XML data.
Figure 5.1 shows the dependency graph of the system, as clustered by Bunch.

XMLParser

FileReader

Controller

ModelView

XMLWriter

FileWriter

Reader Writer

Figure 5.1: The example MDG, clustered by Bunch

5.2. INTERACTIVELY REFINING MODULARISATIONS 111

In this example, suppose that the required set of packages is as follows:

Model Model

View View

Controller Controller

I/O FileReader, FileWriter, Reader, Writer

XML XMLParser, XMLWriter

In a remodularisation scenario, this set of packages would not be available, and a
tool such as Bunch would be relied upon to produce the solution. There is a difference
between these solutions however. While Bunch grouped elements based entirely on their
dependencies, the expert decomposition incorporates additional domain knowledge that
is not encoded in the structure of the graph alone.

This is the motivating scenario for the use of refinement as implemented in the SUMO
algorithm. Although this toy system is sufficiently small to enable remodularisation to
be performed manually, a realistic remodularisation scenario may entail significantly
more classes, for instance the system studied by Glorie et al. contained approximately
30, 000 source files [40]. The small example is used to illustrate elements of the SUMO
algorithm, however it may be applied to larger systems, and as will be shown in the eval-
uation in Section 5.4 it is possible to use SUMO to produce incremental improvements
to larger case studies through its interactive approach to the problem.

5.2.2 The SUMO Algorithm

The objective of a refinement process for remodularisation is to transform the existing
modularisation, the hypothesis, to produce a result that is better in the sense that it
more closely matches a user’s intuitions. In order to achieve this, SUMO encodes these
intuitions as pair-wise constraints between elements, which may be classes or states
in MDG or state machines respectively. Wagstaff et al.’s must-link and cannot-link
relation types [120] are used, termed positive and negative in SUMO.

SUMO allows the modularisation to be reasoned about in terms of these relations. This
allows the user to focus on parts of the modularisation, rather than reorganising it
entirely in one step. In the motivating example described in Section 5.2.1, a developer,
on assessing the output of Bunch, may identify a correction that could be applied.
For example, the FileWriter and FileReader classes should be placed together and
the Model, View and Controller classes should appear separately. SUMO allows this
information to be incorporated interactively to allow the modularisation to be refined
as it is explored.

SUMO operates on the set of domain knowledge provided by the user, stored as un-
ordered pairs of elements in the R+ and R− sets respectively. Let C be the set of all
n entities in the modularisation (classes or states) {c1 . . . cn} . M is the set of modules,
{1 . . .m} where m is the number of modules and m ≤ n . A solution is a mapping
a : C →M that assigns a module to each of the elements in the input.

112 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

For example, to encode the positive relation between FileWriter and FileReader classes,
that they should be together, the pair {FileWriter, F ileReader} would be placed in
the R+ set. Each pair of the Model, View and Controller classes would be placed in
the R− set to encode that they should not be together. The advantage of SUMO is
that these constraints can be supplied interactively, as necessary by the expert.

Algorithm 6 The SUMO algorithm

R+ ← ∅
R− ← ∅
a← inputModularisation
repeat

showHypothesis(a) . Elaborated in Section 5.2.2
R+′ ← R+

R−′ ← R−

(R+, R−)← addConstraints(R+, R−) . Elaborated in Section 5.2.2
if constraintsV iolated(a) then . Elaborated in Section 5.2.2

R+ ← R+′

R− ← R−′

showConstraintV iolatedError()
end if
a← getHypothesis(R+, R−) . Elaborated in Section 5.2.2

until userIsSatisfied
return a

Algorithm 6 summarises the SUMO algorithm. The process begins with an existing
modularisation, which may be from a remodularisation tool such as Bunch (as used
in the motivating example) or an existing package hierarchy. The expert repeats a
process of analysing the algorithm’s hypothesis and supplying corrections in the form
of constraints where necessary, until a termination condition is reached. The steps are
elaborated below.

showHypothesis

This function presents a hypothesis solution a to the user. The user uses their intuition
to identify elements of the modularisation that conform to their domain knowledge, or
violate it. The user also has the opportunity to examine the state of the solution at
each step so progress can be visualised.

addConstraints

At this step, the feedback identified by the user is imported into SUMO’s R+ and R−

sets in the form of pair-wise constraints. If the user has identified that two elements
should be clustered together or apart, the pair of elements is placed into R+ and R−

respectively. This reduces the clustering problem from a subset identification problem
to individual judgement of pairs of elements. If the user supplies new constraints that

5.2. INTERACTIVELY REFINING MODULARISATIONS 113

violate previous constraints, the copies of the R+ and R− sets are restored to allow
the process to continue without this inconsistency.

The pairs of information are not necessarily selected individually the user. In the
motivating example, to encode that the Model, View and Controller classes should all
be separate requires that a negative relation be added for all pairs containing each of
these elements. A method to perform this step automatically at the user’s direction
to reduce the effort of encoding such solutions is implemented in the later version of
SUMO built into a GUI, described in Section 6.2.

constraintsViolated

A set of corrections may violate constraints already provided. For example, if a
user identifies that pairs of elements a , b and b , c should be together, i.e. R+ =
{{a, b}, {b, c}} . In this case it is possible to deduce that all three elements should be
together. If the expert later determines that b and c should be separate, the pair is
added to R− . However, in this example scenario, given the set of constraints already
supplied, it is not possible to assign b and c to another module; there is a conflict and
the set of constraints is not solvable.

If such a configuration where the user contradicts previous corrections emerges, an error
message is presented and the most recently added corrections are dropped. This is not
the only way such a conflict could be handled, however. For example, the user could
instead be shown the set of conflicting constraints and invited to choose the one which
is most appropriate.

getHypothesis

A new solution is generated which conforms to the new, expanded set of constraints
in the R+ and R− sets. This solution is generated using the CHOCO [55] constraint
solver, which searches for a set of assignments a which conforms to each of the supplied
constraints. The mapping of the problem to a constraint satisfaction problem is further
described in Section 5.2.3.

Termination

The algorithm completes when the user indicates that the modularisation has been
suitably refined, i.e. when they provide no more corrections. This encompasses various
criteria, including the quality of the result: the budget (in terms of time the user has
to perform the refinement) may also be a constraint. As the user is responsible for
termination, the process can end before the set of constraints unambiguously produces
the same solution. The bounds of the sizes of the sets R+ and R− are explored later in
Section 5.3. The following section explains how the set of constraints can be translated
into a constraint satisfaction for use with a constraint solver.

114 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

5.2.3 Modularisation as a Constraint Satisfaction Problem

The problem is mapped to a constraint satisfaction problem (CSP) 〈X,D,C〉 [99, p.
137] as follows:

The set of variables X represents each class, such that |X| = n for n classes.

The domain D is the “module number” of the class, D = {m : m ∈ N, 1 ≤ m ≤ n} .
The problem is then to produce the mapping a : X → D , where the module of a class
c ∈ X is given by a(c). The mapping of a hypothesis solution a is the same as in
Algorithm 6, it assigns each class to a module.

The set of constraints C consisting of: a pair of variables v1, v2 ∈ X and a relation,
one of {=, 6=} .
As an example, let

C = {XMLParser, Parser,XMLWriter}
R+ = {{XMLParser, Parser}}
R− = {{XMLParser,XMLWriter}}

The mapping to a CSP results in:

X = {XMLParser, Parser,XMLWriter}
D = {1, 2, 3}
C = {〈(XMLParser, Parser),=〉, 〈(XMLParser,XMLWriter), 6=〉}

Before any relations are applied, the constraint solver has to identify a solution to the
following set of assignments:

XMLParser = [1,2,3]

Parser = [1,2,3]

XMLWriter = [1,2,3]

Having been supplied the example assignments, the constraints can only be met if both
XMLParser and Parser are not equal to XMLWriter , i.e. the solution will be
{XMLParser, Parser}, {XMLWriter} , one of the possible encodings of this solution
is XMLParser = 1, Parser = 1, XMLWriter = 2.

The remainder of the chapter evaluates the SUMO algorithm, starting with quantifica-
tion of the sizes of the R+ and R− sets.

5.3. SIZES OF THE R+ AND R− SETS 115

§ 5.3 Sizes of the R+ and R− Sets

The performance of the algorithm is first quantified in theoretical terms. With the
definitions given in Section 5.2.2, the total set of all positive relations for a given
modularisation a is the set of all unordered pairs of classes in C that are placed in the
same module:

R+ = {{ci, cj} : ci, cj ∈ C, a(ci) = a(cj), ci 6= cj} (5.1)

Similarly, the set of negative constraints R− is defined as:

R− = {{ci, cj} : ci, cj ∈ C, a(ci) 6= a(cj), ci 6= cj} (5.2)

The total set of domain knowledge is then the set of all pair constraints that have been
supplied, positive and negative: R+ ∪R− . This serves as an estimate of the amount of
effort invested into the refinement process; the larger the union of these sets, the more
knowledge has been transcribed to constraints of pairs.

The following subsections quantify the maximum and minimum size of the set R for the
most and least general modularisations of a modularisation to be refined respectively.
These informal proofs assume that all assignments in the function a are made accord-
ing to relations supplied by a user i.e. a does not encode “guesses” by the solver. The
impact of this assumption is that the starting condition is irrelevant: if only supplied
constraints are used there are no possible solutions until R contains sufficient infor-
mation. Following from this quantification of the upper and lower bounds on required
relations, a general value for the size of R is then derived for arbitrary numbers of
classes n and modules m .

5.3.1 Worst-case

The worst-case informal proof presented in this section was contributed by Neil Walkin-
shaw in the conference paper written as a result of the research presented in this chap-
ter [43].

In the worst-case scenario, the target modularisation places each element in its own
cluster, i.e. the assignment mapping is the identity function, a(i) = i . In this scenario,
there are no transitive properties to exploit; negative information cannot be used to
infer relations like positive information can.

The set R of relations will therefore consist entirely of negative relations:

R+ = ∅
R = R+ ∪R−
|R| = |R−|

By definition 5.2, R− is the set of all unordered pairs of modules such that a(ci) 6= a(cj).
As in this scenario this inequality is always satisfied (a(i) 6= j : ∀j ∈ M \ {i}), the
size of R− is given by the number of distinct pairs of elements of the set C , i.e.
|R−| = |R| = n(n−1)

2 .

116 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

5.3.2 Best-case

In the best case scenario, there is only one module, the relations are all positive, and
therefore transitive. This equation and the subsequent general-case equation are origi-
nal and were derived by the author.

Let G = (V,E) be an undirected acyclic graph. The set of vertices V is given by
V = C and the number of classes n , is n = |C| . The set of edges is given by E = R .

Let R− = ∅ ⇒ E = R+ ∪ ∅ . As R− = ∅ , the solution is reached when all classes are
grouped in the same module, i.e. a(c1) = a(c2) : ∀c1, c2 ∈ C .

This solution requires R+ to contain a relation for each class, such that there exists
a path in G between any v1, v2 ∈ V . |E| (and therefore |R+|) is then the minimum
number of edges required to connect G such that G is a tree. For this to be the case
|E| = |V | − 1, therefore |R| = |R+| = n− 1.

5.3.3 General Case

Through the definition in the previous proof, each distinct module is a connected com-
ponent in the graph. |R+| is therefore n − m where m is the number of modules,
as increasing m by 1 consists of deleting 1 edge from the graph to split a connected
component in two.

One negative relation must exist between each component, so there must be at least
m(m−1)

2 negative relations (assuming the minimum set of positive relations is given).

The number of relations required can then be generalised:

|R+| = n−m (5.3)

|R−| =
m(m− 1)

2
(5.4)

|R| = |R+|+ |R−| (5.5)

= n−m+
m(m− 1)

2
(5.6)

=
m(m− 3)

2
+ n (5.7)

The performance of SUMO is therefore dependent on the size of the MDG n and the
number of modules in the target mapping m . As m is the most significant term in the
expression for |R| , the less general the target modularisation (higher values of m), the
more relations that will be required. A more general result will require fewer constraints
due to the transitive property of the positive relation type.

5.4. EMPIRICAL EVALUATION OF THE SUMO ALGORITHM 117

1: MDG and modularisation extraction 2: Mutation (LimSim)
3: Clustering

4: Refinement

JAR File Dependency Finder
MDG

Modularisation JRET
Mutant MDGs

Mutant Modularisations

Bunch

Select Counterexamples

Bunch Modularisations

SUMO Converged?

Results

Responses
No

Yes

Figure 5.2: The process of evaluating SUMO on a case study.

§ 5.4 Empirical Evaluation of the SUMO Refinement
Algorithm

Although the performance may be quantified in theoretical terms, these properties do
not offer an insight into the practical issues of the algorithm. One factor not represented
by these equations is the behaviour of the constraint solver when the set of relations
R is incomplete, leading to the constraint solver making “guesses”. These equations
also assume that the user supplies the minimum information required (particularly for
the best-case). It is possible that a user may supply more relations than necessary,
for example providing relations that can already be deduced through the transitive
properties of existing relations.

To model these aspects to better estimate the performance of SUMO, they are incor-
porated into empirical evaluation. Remodularisations produced by Bunch are refined
using the original modularisation from a software system as the source of domain knowl-
edge, with the mount of input from the original modularisation to refine the result
measures. The evaluation was carried out on 150 simulated case studies, seeded from
five Java software systems 30 simulated case studies are generated from each.

The research questions this evaluation aims to answer are as follows:

RQ1 How much manual effort is required for the SUMO algorithm to fully refine a
modularisation, starting from Bunch?

RQ2 What is the relationship between the effort invested and quality obtained?

RQ3 What factors determine the amount of effort required for the algorithm to con-
verge?

5.4.1 Methodology

In order to evaluate the effort required to use a refinement process, domain knowledge
is required. To run a refinement process automatically, the domain knowledge must
be available a-priori. This is made possible using existing expert decompositions from
existing software systems.

The process is outlined in Figure 5.2. Authoritative decompositions are first extracted
from each case study, which are then used to generate 30 “simulated authoritative de-
compositions”. These decompositions are then used as the source of domain knowledge

118 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

Table 5.1: Case studies used in the experiments

Name Description Version Size (SLoC) Component Used MDG Size (Nodes) Number of Clusters

Collections Apache Commons Collections
library, consisting of classes
that implement various data
structures

3.2.1 151,727 commons-collections-3.2.1.jar 245 12

epubcheck Java tool that validates ebooks
in the epub file format.

3.0-b4 17,477 epubcheck-3.0b4.jar 75 13

JDOM Java XML parsing library 1.0 10,972 jdom-1.0.jar 57 7
Wiquery Library to integrate the

jQuery JavaScript library
with the Wicket Java web
framework

1.5-M1 79,267 wiquery-1.5-M1.jar 204 37

ZXing Java barcode scanning library. 2.1-SNAPSHOT 161,063 core.jar 184 29

that is given to the refinement algorithm which refines a modularisation produced by a
clustering algorithm (this evaluation uses Bunch [81], although other algorithms may
be used). These steps are detailed in the following sections.

5.4.2 Case Studies

Table 5.1 summarises the case studies. Although the size of the MDG is given, the sim-
ulated authoritative decomposition process described in Section 5.4.3 results in MDGs
of varying sizes.

This evaluation focuses on the use of software dependency graphs, all of which were
extracted from open source Java systems.

Requisite data must first be extracted from each case study: the dependency graph
and its corresponding authoritative decomposition. The dependency graph is obtained
with Dependency Finder [109]. The output must then be transformed to a graph format
compatible with the modularisation algorithm that will be used to generate the starting
points (discussed later in Section 5.4.4).

The existing package hierarchy of the classes in the system represents the authoritative
decomposition, which is used as the target decomposition the SUMO algorithm must re-
produce using the domain knowledge contained within it. To measure the upper bound
of the effort required, the highest level of detail is selected such that the number of mod-
ules m is maximised, i.e. the bottom level of the hierarchy is used where packages are
smallest. This represents the scenario where the user is aiming for the highest fidelity
in the refined output, which will require the largest amount of information to produce.
For these case studies, which are all Java systems, the package assignments can be ob-
tained by splitting the fully qualified class name and taking the penultimate element.
For example, from the fully qualified class name org.jdom.output.DOMOutputter, the
DOMOutputter class will be placed in the output module,

This step then produces two artefacts: a dependency graph, which will undergo cluster-
ing and the lowest level package hierarchy, which will be used as the source of domain
knowledge.

5.4. EMPIRICAL EVALUATION OF THE SUMO ALGORITHM 119

5.4.3 Simulated Authoritative Decompositions

A number of simulated software systems are generated from each case study, using the
LimSim methodology [104]. This aims to avoid problems with a small number of case
studies biasing the results of the experiment.

In the LimSim approach, random module dependency graphs and corresponding sim-
ulated expert systems are generated using the JRET [1] reverse engineering library.
JRET randomly modifies the decomposition and makes corresponding changes to the
dependency graph such that is similar but not identical to the original case study. This
results in 30 simulated case studies, consisting of a dependency graph and authoritative
decomposition.

5.4.4 Modularisation

The simulated systems are then clustered using the Bunch search-based clustering
tool [81]. Although Bunch is used in these experiments, other algorithms could be
used. Bunch was selected based on its versatility and its inclusion an API for program-
matically running clustering operations. In addition, it has been widely studied in the
literature including in an industrial context [40]. As Bunch is a stochastic algorithm,
it is run more than once on each of the simulated case studies to avoid the bias intro-
duced by selecting only one modularisation. Repeating the Bunch clustering process
also allows for comparison of the performance of the refinement algorithm for varying
qualities of the modularisation generated by Bunch.

A set of modularisations is produced by Bunch, one for each of the 30 repeated runs
for each case study. As there are 30 simulated case studies for each real case study, this
step results in a total of 900 modularisations, 30 for each of the 30 simulated module
dependency graphs.

5.4.5 Simulating Interactive Refinement

This process uses the modularisation produced by Bunch in the previous step as the
starting point for refinement. The simulated authoritative decomposition is used as the
source of domain knowledge. The refinement process is detailed in Algorithm 7 and
elaborated below.

Elements of the modularisation that are correct, i.e. the same in the generated mod-
ularisation and the expert modularisation are first locked. The sets of all relations in
the Bunch result and the authoritative decompositions are computed and the intersec-
tion of these sets is then supplied to the constraint solver before the refinement phase
begins. This models a scenario where the user has first indicated which components of
the modularisation are correct before the refinement phase starts.

Once the refinement algorithm has been initialised with the correct components, the
refinement process starts. The difference between the hypothesis and the expert modu-
larisation is computed, then a subset of relations is supplied to the refinement algorithm,

120 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

Algorithm 7 Determine number of iterations required to refine a modularisation

expertRels← getRelations(expertMod)
startingRels← getRelations(startingMod)
correctRels← expertRels ∩ startingRels

. Apply all correct domain knowledge before measurement starts:
for rel ∈ correctRels do

SUMO.addRelation(rel)
end for

. Start refining:
count← 0
MoJoLog← []
repeat

hypothesisMod← getHypothesis()
MoJoLog[count]←MoJoDistance(hypothesisMod, expertMod)
corrections← (expertRels ∩ getRelations(hypothesisMod)){

numCorrections← Poission(λ = 5)
for i = 1 → numCorrections do

addRelation(randomElement(corrections))
end for
count← count + 1

until hypothesisMod = expertMod

return count

determined by a Poisson distribution with a mean of 5. The Poisson distribution is
selected as it is anticipated that around 5 corrections would be supplied on average,
with the long tail accounting for scenarios where, for example, the user identifies a
whole cluster as being correct (discussed in Section 5.2.2).

In addition, the MoJoFM [124] distance between the hypothesis modularisation and
the expert modularisation is computed and logged.

The process terminates when the hypothesis and expert modularisations are the same
— i.e. when the refinement process is complete. The number of iterations taken is
recorded and used to estimate the cost of the refinement.

5.4.6 Results

RQ1: Effort to Converge

The first research question assesses performance of the SUMO algorithm in terms of
the required effort to totally refine the result. This effort is measured in terms of the
number of iterations of the algorithm, and the number of corrective relations supplied.

Table 5.2 summarises the results, including the sizes of the simulated case studies and
the number of iterations taken to produce a 25, 50, 75 and 100 percent improvement in

5.4. EMPIRICAL EVALUATION OF THE SUMO ALGORITHM 121

the modularisation, calculated by the change in MoJo distance between the hypothesis
solution and the expert decomposition.

Table 5.2: Sizes of the mutant MDGs generated from each study and the number of
steps required to reach each percentile of closeness to the target MDG

Case Study Mutant MDG Size: Reference Start Iterations to Percentile:
modularisation: MoJo 25% 50% 75% 100%

Min Max Mean St.Dev No Modules Mean Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev

collections 453 523 492.57 14.96 12 73.38 14.56 2.47 21.99 3.58 31.47 4.46 43.23 6.29
epubcheck 138 191 159.13 12.92 13 35.43 8.05 2.03 13.58 3.22 21.50 5.26 31.30 6.57
jdom 124 183 146.57 12.68 7 9.91 4.02 1.72 6.24 2.18 8.31 2.90 9.67 3.24
wiquery 314 401 365.63 17.16 37 60.69 17.73 4.02 32.36 5.66 50.91 9.89 111.88 13.12
zxing 262 327 294.30 18.04 29 44.92 18.83 5.20 29.67 6.39 41.96 7.94 89.99 12.84

Total refinement of the modularisation requires a varying number of relations, as shown
in the “Iterations to 100%” improvement column of Table 5.2. Figure 5.3 portrays this
graphically in a violin plot. The figure shows a clear difference in the number of
iterations to convergence between each case study.

0

50

100

150

Collections epubcheck JDOM WiQuery ZXing
Case.Study

Ite
ra

tio
ns

Figure 5.3: Violin plot of iterations required for convergence for each case study

Performance covers a wide range across all the case studies, with WiQuery requiring
the greatest mean number of iterations of 111.88. In contrast, JDOM reached total
refinement after fewer iterations, with a man of 9.67. The findings for this research

122 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

question show a large spread in the number of iterations of SUMO required to refine
each of the case studies.

RQ2: Relationship Between Improvement and Effort

Although the number of iterations required to produce a complete refinement using
SUMO is high in some cases, the profile of the improvement at each iteration offers an
insight into the quality of the solution as SUMO improves it. Figure 5.4 shows a sample
of 10 repetitions of the SUMO algorithm for each case study. It plots the improvement,
in terms of the MoJo value over the iteration number. MoJo values are normalised to
percentages, given by percentage = max−value

max .

The graphs in Figure 5.4 show improvement is experienced in the result almost immedi-
ately after domain knowledge is supplied to the algorithm. The majority show sigmoid
curves to a varying degree — there is a point after which the improvement diminishes
as extra information is added. This is particularly prominent in the ZXing and Wi-
Query case studies: around 80% of the improvement is observed after 50 iterations,
the remaining 20% taking the same amount of time.

In each of the graphs, the improvement is observed to decrease at some steps. This
may arise when the constraint solver selects a different solution between iterations. In
cases where new constraints can already be inferred from those already provided, the
same set of solutions will be available, of which the solver will select the most general.
If there are more than one of these solutions, it is not guaranteed that the same will
be returned each time the solver runs.

As the clusters are refined piece-wise using random constraints, the sequence of mod-
ifications may lead to solutions where the MoJo distance between the authoritative
decomposition is higher. A correction may result in a large cluster being broken apart,
for example. The improvement is not likely to occur over one or two iterations, as the
corrections supplied appear randomly. Thus, a correction may reduce the MoJo score
until other corrections related to it are provided later in the refinement process.

The outcome of this research question is that improvement in SUMO appears to follow
a sigmoid curve, where the improvement depends on both the effort and the progress
towards the result — improvement “tapers off” as convergence is approached.

5.4. EMPIRICAL EVALUATION OF THE SUMO ALGORITHM 123

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Collections

Iteration

Im
pr

ov
em

en
t (

%
)

0 10 20 30 40 50

0
20

40
60

80
10

0

epubcheck

Iteration
Im

pr
ov

em
en

t (
%

)

0 5 10 15 20

0
20

40
60

80
10

0

JDOM

Iteration

Im
pr

ov
em

en
t (

%
)

0 50 100 150

0
20

40
60

80
10

0

WiQuery

Iteration

Im
pr

ov
em

en
t (

%
)

0 20 40 60 80 100 120

0
20

40
60

80
10

0

ZXing

Iteration

Im
pr

ov
em

en
t (

%
)

Figure 5.4: Improvement (percent) for 10 SUMO runs for each case study

124 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

RQ3: Factors Affecting Convergence Time

Figure 5.5 shows the quality of the modularisation versus the number of iterations taken
to converge. As discussed in Section 5.4.6, the convergence time varies significantly
among case studies. There is a correlation between initial MoJo quality and the number
of iterations, which is less significant than the main determining factors: number of
modules and MDG size.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

● ●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

● ●

●

●

●●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●

● ●

● ● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●● ●● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

● ●

●

●

●●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

● ●

●

●

●
●

●

●●●

●
●

●

●

●●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

0

50

100

150

0 25 50 75 100
Initial MOJO Value (lower is better)

Ite
ra

tio
ns

 to
 C

on
ve

rg
e

Case.Study

● Collections

epubcheck

JDOM

WiQuery

ZXing

Figure 5.5: Scatter plot of iterations taken to converge versus MoJoFM score

The number of modules in the target has the highest correlation (r = 0.958). This
is due to the amount of information required to separate nodes from one module, and
is corroborated by Equation 5.7. Larger numbers of modules therefore require larger
number of relations; in this case this causes the largest impact in terms of effort required.
The time taken to converge is therefore dependent on the number of modules in the
expert modularisation, the number of nodes and quality of the Bunch result, in that
order.

Figure 5.6 shows the number of relations required plotted against the minimum number
of relations for total refinement predicted using the equation. Results below the line,
given by y = x are cases where the number of relations taken is lower than the minimum
number necessary to unambiguously reproduce the target modularisation.

5.4. EMPIRICAL EVALUATION OF THE SUMO ALGORITHM 125

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●●●●

●

●●

●
●

●

●●

●
●

●●●

●

●

●

●
●
●
●

●
●

●

●●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●

●●●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●
●●●

●●●
●
●●

●

●

●●
●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●
●●

●

●
●
●●
●

●

●

●
●●

●
●
●
●
●

●

●

●●

●

●

●
●●●●
●
●
●

●
●●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●●●

●

●

●
●●

●●

●
●

●
●

●
●

●●

●●

●

●

●

●●

●

●●
●
●

●●

●●

●

●●●●

●

●

●

●●

●

●●●

●●

●●

●

●

●

●

●
●

●

●

●
●
●

●●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●●
●
●

●●
●

●

●●

●

●

●

●
●
●●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●

●

●●●

●

●●
●

●●●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●●
●
●

●●

●

●

●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●

●
●
●

●
●●

●

●

●●●

●

●

●
●
●

●

●●●
●
●●
●●
●

●

●●●

●

●
●
●
●

●

●
●
●

●
●●●
●
●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●●

●
●
●

●●

●

●

●●
●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●
●
●●

●

●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●●●●
●

●
●●

●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●

●

●
●

●
●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●
●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●
●

●●
●●
●

●

●●

●●

●
●● ●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●●

●

●

●
●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●
●
●

●

●

●●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●
●●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●
●

●●
●

●

●

●

●
●

●
●●●

●

●
●

●

●●
●
●

●

●
●●
●

●●
●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●●
●
●

●

●

●

●●●
●

●

●
●

●
●

●

●

●
●

●

●●

●
●●

●

●

●●
●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●●●●
●

●
●

●
●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●
●

●

●

●●

●●

●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●
●

●

●
●

●●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●●

●

●●

●

●●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●
●●
●
●
●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●
●

●
●

●
●

●

●●
●
●

●

● ●

●

●
●●

●

●●

●

●●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●●

●

●●●

●
●

●

●●
●
●
●

●

●

●●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●●●

●

●

●

●

●●
●
●●

●
●
●●

●
●

●

●
●
●
●●
●

●

●
●●●●●●

●

●
●

●

●●

●●

●
●●
●

●

●
●●

●

●

●
●●
●

●

●

●

●
●●

●
●●
●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●
●
●●●
●
●●

●

●●●

●●●●●

●

●●●
●

●●●●

●

●
●

●
●

●●●●

●

●

●
●●●●

●●

●

●

●

●●

●

●

●

●
●
●●●●●
●
●
●
●
●

●

●●

●

●●
●
●

●
●
●●

●

●●●

●

●

●

●●●
●
●

●
●
●

●

●

●●

●
●●
●
●
●●●
●
●

●

●
●
●
●

●●●●●
●
●●●
●

●

●

●●●●
●
●●
●
●

●

●

●
●

●

●●
●
●●●●●

●

●●●●

●●

●●

●●

●
●
●

●

●

●

●●●●

●
●
●

●

●

●

●
●
●
●●
●

●●

●

●
●
●

●●
●
●
●●

●

●

●

●●
●

●●

●●
●●
●
●

●
●
●●●●●●●●●
●

●

●

●
●
●●
●

●●●●

●

●●

●

●●

●
●
●●
●●

●

●
●●
●
●
●

●

●●

●

●
●●

●
●
●
●
●
●●●
●●●
●●●

●

●

●

●
●
●●●●

●

●
●
●

●

●●
●

●●●

●●

●
●

●●

●●

●
●

●

●●●●

●●●

●●
●
●

●●
●
● ●●

●●
●●●●●●●●
●
●

●

●

●

●

●
●
●

●

●
●

●

●
●
●
●
●

●●●●

●

●

●
●●●
●
●

●●●●●

●

●●●●●●
●
●

●

●
●
●

●

●
●

●
●●

●

●●

●
●
●

●

●

●

●●

●
●
●●●

●

●

●
●

●
●
●

●

●
●

●●
●

●

●

●

●

●●●
●
●●

●

●

●

●

●
●
●●
●

●

●
●●

●●●
●

●

●

●

●●
●
●●
●
●

●
●

●

●●
●●
●

●

●●●●●●
●
●●

●
●●

●●

●●

●

●
●

●

●
●
●●●

●

●●●●

●

●●

●

●●●●●

●
●
●●
●
●●●

●
●
●
●●
●

●

●

●
●
●

●

●

●●
●
●

●
●
●

●

● ●

●●

●●
●
●

●●●

●
●
●

●
●

●

●
●
●

●
●●●

●

●●●

●

●
●

●●

●

●●
●
●

●

●●

●●●

●
●

●

●●●●●●●

●

●●
●
●●●

●

●●

●●

●
●
●

●

●

●●●
●
●
●
●
●
●

●

●
●
●●
●
●
●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●
●

●

●
●●

●
●
●

●
●

●
●●●

●

●
●

●
●
●●
●●●
●

●

●
●

●
●

●

●

●

●
●

●●

●
●●
●
●

●

●
●
●
●●

●

●

●

●

●

●●●●

●
●
●●●●

●
●

●
●

●
●●

●
●
●●●

●●

●

●
●

●

●●
●●
●

●

●

●

●

●
●

●
●
●
●

●
●●

●
●●
●

●
●
●

●

●●

●

●●●
●●●

●

●
●
●●
●
●

●

●

●

●

●●
●

●

●
●

●●

●

●
●
●●●
●

●
●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

0

200

400

600

800

250 500 750 1000
Minimum Number of Relations

S
U

M
O

 R
el

at
io

ns

Case Study

●

●

●

●

●

collections

epubcheck

jdom

wiquery

zxing

Figure 5.6: Scatter plot of relations taken to converge against minimum number of
required relations, given by Equation 5.7

These results are attributable to two factors: the seeding stage of the evaluation (and
therefore the quality of the Bunch input), and the constraint solver making a non-
deterministic choice of the correct result from several solutions. The former is a more
likely explanation of this phenomenon. In cases where MoJo values were lower (better),
fewer corrections are required, as the correct relations are supplied prior to refinement,
as described in Section 5.4.5. It is, however, not possible to distinguish between these
two possibilities in the results.

In several instances for two case studies, epubcheck and zxing, SUMO exceeded the
value estimated by Equation 5.7. These cases are evidence that more relations than
required were supplied before SUMO converged. This can arise where relations are
supplied that were already deducible; as the equation assumes no such deducibility, the
random model may sometimes violate this assumption.

The conclusion for this research question is that convergence time depends on a number
of factors, with the number of modules having the greatest affect, followed by case study
size and finally the quality of the Bunch result.

126 CHAPTER 5. SUMO: SUPERVISED SOFTWARE REMODULARISATION

5.4.7 Discussion

Although the evaluation shows that SUMO requires a large investment in terms of
the number of iterations required to reach convergence, the results for the second re-
search question show that improvement is gained at regular intervals throughout the
refinement process. As SUMO is an interactive algorithm, it is possible for it to be
terminated at any point, rather than being run to completion. The profile of the im-
provement shown in Figure 5.4 suggests that a large portion of the improvement occurs
earlier in the refinement process. Combined with the interactive approach adopted
in SUMO, this incremental improvement characteristic makes it highly applicable in
scenarios where an observable improvement is required but the availability of domain
expert time is limited.

The amount of information was determined to depend most on the number of modules
in the input, followed by the number of modules. Thus, a more detailed result requires
more relations to produce it. This is due to the transitivity of a positive relation;
relations added for a member of a group of positively linked elements. Subsequent
relations added to one element of such a large group apply to each element, allowing
large portions of the search space to be ruled out with a smaller incremental investment.

5.4.8 Threats to Validity

There are several factors which constitute threats to validity for these experiments:

The constraint solver may impart bias. There are many possible solutions which
conform to the set of constraints, particularly at the start of the process when there
are few constraints. The solution selected by the solver impacts the direction of the
search, as the subsequent set of constraints depends on the hypothesis solution. The
constraint solver’s strategy for selection from this set makes the results dependent on
it; it is therefore not possible to state that this performance would be typical of all
constraint solvers used.

The use of Bunch-generated starting points could bias the results. As Bunch
is a stochastic algorithm, the quality of its output may non-deterministically vary. The
risk of this causing bias is mitigated by using 30 Bunch-produced modularisations for
each MDG.

The simulated responses may not be characteristic of a human user. The
number of constraints, modelled with a Poisson distribution may in practice not match
the performance of a human user. Moreover, the types of constraints, and the specific
constraints (made through random choice in these experiments) may not be consistent
with the choices made by a human. A human user is likely to use their intuition to make
better choices, so this evaluation may not suitably estimate the actual performance of
the tool in a realistic use case.

5.5. CONCLUSIONS 127

The subject systems, synthesised MDGs and decompositions may not be
representative of software systems. The evaluation was conducted on five soft-
ware systems, the majority of which were libraries. It is not possible to extrapolate
from such a small sample to make general assertions about the performance of SUMO.
The use of the LimSim’s mutation approach is used to generate a larger population of
case studies, however the random mutations applied may risk removing elements of the
original systems which may make them harder to modularise.

These threats to validity do not permit conclusions to be drawn about the general
performance, the findings for each of the research questions, exploring facets of SUMO’s
performance, can be justified however, through the diverse case studies used and the
further diversification gained through the use of the LimSim methodology.

§ 5.5 Conclusions

This chapter introduced the SUMO constraint-based remodularisation algorithm that
allows the gap between automatically generated modularisations that maximise metrics
and human intuition to be bridged using an interactive approach. The performance
of the approach was quantified in theoretical terms as well as more practical terms
using simulated authoritative decompositions, showing that although the cost of total
refinement is high, refinement can be obtained within several iterations of the algorithm.

The evaluation of the SUMO algorithm has demonstrated a practical means to im-
prove upon the clusterings produced by other remodularisation tools. The refinement
approach was demonstrated to work on top of results produced by Bunch, but the
flexibility of the use of SUMO as a refinement step makes it applicable to other remod-
ularisation approaches, including Crunch, or other hierarchical clustering algorithms.

Alternative methods of supplying constraints may be beneficial to allow scenarios where
a large amount of positive information has been added, as discussed in Section 5.4.7.
By reducing the cost of supplying such constraints, such as the use of a lock command,
the effort required may be further reduced. An implementation of such a measure is
demonstrated in the GUI version of the SUMO tool, which is evaluated in a user study
in the following chapter.

General inferences about the performance of SUMO cannot be made from the study
in this chapter, however. The random constraints supplied in the evaluation may
not model a typical user. Despite this, the evaluation has demonstrated that SUMO
potentially offers a viable means to improve upon an existing modularisation. The
following chapter expands upon this study by quantifying the practical performance of
SUMO in a realistic scenario with human users.

Chapter 6

Human Factors Affecting
Supervised Remodularisation

The previous chapter described and evaluated the SUMO algorithm, showing how do-
main knowledge could be exploited to produce refined modularisations to more closely
match an expert’s intuitions. Evaluation of the approach determined that the improve-
ment obtained is incremental, although not monotonic, using a simplistic model of the
feedback given by a user. Convergence was shown to require a large number of iter-
ations, although this incremental performance showed that SUMO may be applicable
in scenarios where running it to completion would be unfeasible due to the volume of
required domain knowledge.

This chapter details enhancements to the SUMO algorithm that have been made to
adapt it for use in an interactive graphical tool that allows a user to interactively
refine a modularisation. A pilot study, conducted at the University of Sheffield, is
described which identified these enhancements and tested the methodology described
in this chapter. This methodology, together with the revised tool are then applied in
an empirical evaluation. This study was conducted at the University of Leicester and
further investigates the performance of SUMO for the remodularisation of a component
from the open source Google Guava library, determining that all of the 35 participants
were able to use it to refine a Bunch-generated modularisation within 80 minutes, even
without prior experience with the case study.

This chapter makes the following contributions:

1 A graphical implementation of the SUMO algorithm and the addition of a con-
straint solver “seeding” strategy to improve the quality of the intermediate results
it produces

2 A user study, conducted with 35 participants that replicates a typical remodular-
isation procedure, that determines improvement was achieved for all participants
for a 122 class remodularisation task with a mean completion time of one hour.

128

6.1. RESEARCH QUESTIONS 129

This chapter is structured around a study that aims to validate the findings of the
empirical evaluation conducted in the previous chapter when the SUMO tool is used
by human users. The research aims of the study are first described in the form of
research questions, before the revisions to the SUMO tool and algorithm are described.
The methodology applied in both the pilot study and the empirical study is then
described, highlighting the changes made as a result of experienced gained in the pilot
study. Finally, the results are presented and their implications discussed with respect
to the three research questions.

§ 6.1 Research Questions

The objective of this study is to quantify the performance of the SUMO algorithm in
a realistic setting, using real users. The research questions remain the same as those
for the previous study conducted in Chapter 5. Although the research questions are
the same, necessary changes to the methodology as a result of the use of human users
changes the data available to address them. These changes are described in Section 6.3.

The research questions addressed by this study are as follows:

RQ1 How much manual effort is required for the SUMO algorithm to produce a refined
modularisation, starting from Bunch?

RQ2 What is the relationship between the effort invested and quality obtained?

RQ3 What factors most affect the convergence time?

§ 6.2 The SUMO Tool

Figure 6.1 shows the interface developed for the SUMO tool. Modules are represented
by large coloured polygons which encapsulate labelled boxes which represent elements
(classes or states, for example). The user adds domain knowledge through the creation
of edges between modules, which are shown in red or green, which represent negative
and positive relations respectively. New modularisations are only computed when the
user requests them, via the “Next” button in order to allow the user to construct
a hypothesis, or modify or delete edges, before the configuration of the modules is
recomputed.

The graph layout is built on the Prefuse [49] visualisation framework and dynamically
adjusts to the configuration of the relations. Prefuse was selected as it provides a flexible
framework for visualisation beyond the graph representation used in this version of the
SUMO tool. Each edge type carries a different weight, which causes the arrangement to
adjust as the user supplies more information. Positive edges have the strongest weight,
causing elements to be drawn together when the user adds the relation.

Documentation can be viewed during a remodularisation task in the lower right panel.
Hovering the mouse cursor over one of the elements in the main visualisation panel

130 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

Figure 6.1: The SUMO user interface

causes its documentation to load in this area. This allows the documentation to aid the
user to make decisions during refinement, enabling reverse engineering of the system to
be integrated into the process. The panel used can show any HTML documentation that
can be generated for the system. In these experiments, the Javadoc class documentation
is used.

Locking

SUMO allows a cluster to be locked to prevent further modification by the constraint
solver. This lock command can be used by the user to indicate that a module is
correct and cannot be further refined. The lock operation automatically inserts positive
relations between all pairs of classes in the module, and negative information between
each class within and each class outside the module. This enables the user a large
number of candidate solutions to be ruled out with a very low investment of effort,
versus the manual addition of all the constraints automatically applied.

Undo

In addition to the lock command, the tool also allows the user to return to a previous
modularisation, abandoning any changes since it was presented. This allows backtrack-
ing when mistakes have been made and can also be used to resolve conflicts instead of
locating and deleting the erroneous relation. The current SUMO implementation does
not indicate which relation causes the conflict, requiring the user to manually identify
the fault.

6.2. THE SUMO TOOL 131

6.2.1 Seeding the Constraint Solver

A common issue identified by participants of the pilot study (detailed in Section 6.3.5)
was the poor quality of the modularisations produced by the solver when an improved
modularisation was requested (via the “Next” button in the interface). This arose
where the solver returned an overly general result when the user had not provided
any counter-examples. For example, adding a large number of positive edges and
clicking the next button produced a solution containing one monolithic cluster as no
counter-examples were provided. Although this solution matched the constraints, it
was counter-intuitive.

In order to remove this source of confusion, the constraint solver can be seeded with
the previous modularisation. The previously described version of the SUMO algorithm
leaves assignment of classes to modules entirely to the constraint solver which results
in this misbehaviour. Pre-seeding the state of the solver causes it to search from the
previous solution, rather than a single-cluster solution, resulting in new solutions that
are closer to old solutions that still conform to the set of supplied constraints.

Algorithm 8 Constraint solver initialisation and use

global attempts← {}, seeds← {}
global MAX ATTEMPTS← 100
function getHypothesis(relations, previousModularisation)

. Generate seeds:
for module ∈ previousModularisation do

num← random()
for class ∈ module do

seeds[class]← num

end for
end for
add all relations to the solver
return solver.solve()
if problem is not solvable then

return error
end if

end function
function getInitialAssignment(class)

if attempts[class] < MAX ATTEMPTS then
attempts[class]← attempts[class] + 1

return seeds[class]
else . Stop after the limit is exceeded for this variable

return random()
end if

end function

132 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

The seeding process consists of modifying the initial configuration of the problem before
the constraint solver runs. Each variable, which assigns the module to the class as
described in Section 5.2.3, is assigned from a pool of numbers mapping to modules from
the previous solution. For example, if the two classes a and b were in the same module,
the starting configuration of the solver would be a, b = N , where N is a randomly
selected number which represents the module. This is implemented as a modified value
selector for the CHOCO [55] constraint solver and is described in Algorithm 8. The
implementation of this seeding strategy makes a small adjustment to the getHypothesis
function (described previously in Section 5.2.2).

This pre-seeding is restricted to 100 assignments for each class; after this limit is
exceeded, a random result is returned instead. This limit represents a trade-off between
the quality of the solution produced and the response time between the user requesting
an updated modularisation and the SUMO algorithm returning one.

6.2.2 Committed Edge Visualisation

The implementation only allows edges that are not incorporated into the hypothesis
solution to be modified, such that using the “Next” operation locks the relations, unless
the undo button is pressed. In the pilot study, there was no distinction made between
these “committed” edges and mutable edges. Without a means to see which edges were
still mutable, two problem scenarios arose.

The first of these problems was that the information discarded by the undo operation
was not visualised before it was carried out. This made predicting the behaviour of
the undo command difficult for the users in the pilot study. Secondly, in cases where
conflicts arose, it was difficult to determine which edges to start checking for conflicts.
These two factors made conflict resolution a highly costly activity.

In response to this, conflict resolution was made easier by reflecting the mutability of
edges in the colour saturation of the edges. Edges that cannot be modified are faded
out, while the uncommitted edges remain the normal red or green colours. This enables
the current “working set” of edges to be seen much more clearly.

6.2.3 The Revised SUMO Algorithm

Algorithm 9 summarises the process of refinement using the SUMO tool and shows how
the revised getHypothesis functionality integrates with the GUI, as well as how the
undo and committed edge visualisation is implemented.

6.3. METHODOLOGY 133

Algorithm 9 Implementation of the SUMO Tool

function SUMO(previousModularisation)
while last action was not finish do

if last action was undo then
restore previousModularisation and relations from history

else if last action was next then
. Translate UI relations to pairwise constraints:

relations← fetchRelations()
newModularisation← getHypothesis(relations, previousModularisation)
if newModularisation = error then

show error dialog
else

previousModularisation← newModularisation

show previousModularisation

for relation ∈ relations do
. Show committed edges in a different shade:

relation.fadeOut()
end for

end if
end if

end while
end function

§ 6.3 Methodology

The experiment consists of two distinct stages: instructor-led training, followed by
interaction with the tool to complete two modularisation tasks; one tutorial and then
the case study of the experiment. The latter stage was conducted under exam conditions
with each participant using identical hardware running a locked-down environment
which only provided access to the SUMO tool. These measures were taken to ensure
ensure the experience for each user was as similar as possible.

This section firstly describes the prototype used for both the pilot study and the main
experiment; the details and outcomes of each study are discussed in the subsequent
sections.

The experiment followed the following sequence:

Stage 1: Tutorial (10 minutes) A non-interactive presentation providing an overview
of the tool and its features

Stage 2: Live Demonstration (10 minutes) A session of interaction with the tool
was shown in real-time with commentary

Stage 3: Example Task (approx. 15 minutes) Participants performed a remod-
ularisation task on an example MDG

134 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

Stage 4: Main Task (up to 80 minutes) Participants used SUMO to remodularise
the case study

Each step of the experiment is detailed in the following sections.

6.3.1 Stage 1: Tutorial

The non-interactive tutorial consisted of a 10 minute presentation with slides describing
the motivations of the experiment. This included a short description of the remodular-
isation problem, followed by an overview of the features implemented in the tool. The
participants were also instructed that the button to end the task should be used when
they were “happy with the package structure”. This wording was selected to avoid
priming the participants. Tutorial sheets were circulated that provided an overview of
the function of each component of the tool—it is attached in Section A.

6.3.2 Stage 2: Live Demonstration

Following the introductory presentation, the participants were shown the SUMO tool
running live. An instructor interacted with the tool, vocalising the process and elabo-
rating the functionality used in the tool. This demonstration included the use of the
tool to remodularise parts of a toy problem in order to demonstrate the various fea-
tures available. The example consisted of elements drawn from three distinct categories:
company names, place names, and forenames:

Module 1 Tom, Phil, Robert

Module 2 Lisa, Harry, Paul

Module 3 Jennifer, Maria, David

Module 4 IBM, Intel, Microsoft, Anna

Module 5 Apple, Sheffield, Leicester

Module 6 London, Google

The example was kept as abstract from software as possible to avoid predisposing the
participants to using a particular judgement of similarity beyond their own intuition.

6.3.3 Stage 3: Example Task

Following a short break, the participants started using the SUMO tool on a short
example task. This task was designed to familiarise them with the tool and as such the
MDG was easy to modularise by design. The criterion for similarity was not described
to the participants, in order to avoid predisposing them to one solution or another.
Exam conditions were instated before this task began. In cases where participants
asked questions during the assessed task, answers relating to the problem were not
given — only questions about the tool’s behaviour or its functionality were answered.

6.3. METHODOLOGY 135

The example task contained 17 “classes”, each of which was taken from one of three
distinct categories: sports, colours, and numbers. The initial assignments of classes to
groups for the example task were as follows:

Module 1 Red, Blue Green

Module 2 One, Two, Three, Four, Five

Module 3 Yellow

Module 4 Football, Orange, Purple, Golf

Module 5 Rugby, Pink, Boxing

Module 6 Cricket

Module 1 was designed to encourage users to exercise the lock option, as it is already
complete. The starting configuration of this example was designed to demonstrate that
the modularisation may contain varying degrees of accuracy, and to emphasise that
singleton modules (containing only one class) were possible.

6.3.4 Stage 4: Main Task

In the previous study, five case studies were used, from which 30 simulated systems were
produced, each clustered 30 times with Bunch. This number of case studies cannot be
assessed with a small pool of participants, thus requiring a considerably smaller pool
of case studies. Environmental factors must be controlled to the extent possible;

The participants then performed the main task in the same way as the previous example
task. The case study used differed between the pilot study and the main experiment.
This part of the experiment was conducted under exam conditions. In cases where
participants asked questions, only those asking for clarification about the behaviour of
the tool were answered; queries specific to the case study were not answered.

The following subsection describes a pilot study that was conducted at the Department
of Computer Science at the University of Sheffield that was used to test the methodology
used in the main experiment.

6.3.5 Pilot Study

This pilot study followed the methodology described in the previous subsections the
same process, minus the live demonstration phase and the help-sheet. The pilot study
was also conducted on a smaller case study, JDOM, which is described in Section 6.3.5.
The version of the tool used for the pilot study used a previous implementation of the
SUMO algorithm that did not use the seeding strategy or committed edge visualisation
described in Section 6.2.

The pilot study was conducted with 22 participants, 8 of which were from industry. Of
the other participants, 4 were undergraduates, 7 were PhD students, two were research
associates and one was a lecturer. The non-industrial participants were all recruited
from the Department of Computer Science at the University of Sheffield.

136 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

Tutorial

The tutorial phase of the pilot study omitted the live demonstration of the use of
the tool, moving straight to the example task from the initial presentation. This re-
sulted in a high number of questions during this step, prompting the addition of a live
demonstration to the main study, as well as an information sheet.

Case Study

For the pilot study, version 1.0 of the JDOM XML parsing library was used. Only
classes in the org.jdom package and below were used, excluding inner classes. After
filtering on the namespace and inner classes, the case study consisted of 57 classes.
Only class names were made available to the participants of the study to remove cues
that may have primed the participants.

The documentation was extracted from JDOM’s Javadoc class documentation, which
was sanitised by replacing all qualified references to classes (those including package
names) with only the class name.

Rather than using a particular clustering algorithm as a starting point, the participants
were given the same random modularisation to refine. This avoided the bias introduced
by the clustering algorithm — as seen by the results in the previous chapter, the
performance of the clustering algorithm has an impact on the number of relations. The
same starting modularisation was provided to each of the participants, generated using
the JRET library and consisted of five groups of classes.

Outcomes of the Pilot Study

The majority of participants appeared to avoid the use of the “Next” button which ad-
vanced to the next SUMO-generated solution. Several of the participants had queries
about when to use the button, others opted to only provide positive information, result-
ing an unsatisfactory solution (where all elements were clustered into one large unit).
In several cases, users chose to provide as many edges as possible between presses of
the “Next” button.

One participant commented that they would prefer to build their own modules, rather
than manipulating an existing modularisation using constraints. Another suggested
that the starting configuration should be one monolithic module, which would be di-
vided by the relations supplied by the user.

In several cases, users had trouble distinguishing between information that was already
committed to the constraint solver versus added since the last run of the solver. This
ultimately led to difficulty determining which relations needed to be removed to rectify
a conflict of constraints.

The problems identified in the pilot study led to the addition of the live demonstration
phase in the main empirical study, as well as the use of a printed handout which
summarised the functionality of each of the elements of the SUMO interface. This

6.4. EMPIRICAL STUDY 137

help sheet is attached in the appendix in Section A. The following section describes,
and discusses the results of an empirical study that incorporates the changes made in
response to this pilot study.

§ 6.4 Empirical Study

This experiment followed the methodology described in Section 6.3, including the use
of a live demonstration stage. The experiment was conducted at the Department of
Computer Science and Maths at the University of Leicester.

35 participants were recruited for the experiment, 4 of which were academics (Lecturer
or Research Associates), two were PhD students, one was a fourth year undergradu-
ate and the remainder were Masters students studying Software Engineering. One of
the participants reported that they had “used Guava before”. These participants are
individuals with computer science backgrounds. All but one had not used the Guava
library before and thus had no previous domain knowledge before starting the task.

Case Study

The Collections component of the Google Guava Java library 1 was selected for the
case study. The Collections component of the library includes implementations for
various data structures not present in the standard Java Collections Framework. It
provides a comprehensive set of class documentation. The Collections component itself
is a package in Guava (its classes are contained within com.google.common.collect).
Version r-06 was used for the case study, and contains 122 classes.

The task for the empirical study was to remodularise the Guava Collections compo-
nent. Similarly to the experiments run in Chapter 5, the Bunch [78] remodularisation
algorithm was used to produce the starting modularisation to be refined by the partici-
pants. In contrast to the automated experiments from the previous chapter, the median
level of hierarchy was used from the Bunch results, rather than the lowest level. This
change was made to ensure the experiments assessed the practicality of the SUMO
tool in a scenario as close to a real-world setting as possible. The median was selected
on Mitchell’s recommendation [78, p.99], which was justified by the balance between
cluster size and the number of clusters produced.

6.4.1 Results

The results from the main task of the empirical study are outlined in the following
sections, grouped by the relevant research question.

1http://code.google.com/p/guava-libraries/

http://code.google.com/p/guava-libraries/

138 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

RQ1: Effort Required for Remodularisation

Figure 6.2 shows a histogram of the amount of time taken to complete the main task,
from viewing the first modularisation to when the final modularisation was presented.
The majority of the participants completed the task within an hour; the mean time to
complete the task was 54 minutes and 18 seconds, with a standard deviation of 704
seconds.

0

2

4

6

00:30 00:40 00:50 01:00 01:10 01:20
Time Taken

N
um

be
r

of
 P

ar
tic

ip
an

ts

Figure 6.2: Histogram of time taken to finish the main task

0

2

4

6

8

10

0 20 40 60 80
Number of Iterations

N
um

be
r

of
 P

ar
tic

ip
an

ts

Figure 6.3: Histogram of iterations taken to finish the main task

6.4. EMPIRICAL STUDY 139

0

2

4

6

8

10

100 1000 10000
Number of relations in final set

N
um

be
r

of
 p

ar
tic

ip
an

ts

Figure 6.4: Number of relations provided by participants

The distribution of the number of iterations taken to reach convergence is different to
the time taken. Shown in Figure 6.3, the median number of iterations was 30, mean
30.857 and standard deviation 16.714.

The information required by the SUMO algorithm to converge is shown in histograms
in Figure 6.4. The majority of participants provided fewer than 150 relations, while
several provided a considerably larger amount. The median number of relations pro-
vided by all users was 114, while the mean was 1037, skewed by the five participants
who provided a larger number of relations, resulting in the large standard deviation of
2399. These five participants did not manually provide this high number of relations,
however, they were added by the lock functionality of the tool.

A stacked bar chart of the sizes of the final relation sets for the users who did not use
the lock function is given in Figure 6.5. Only the relations for the users who did not
use the lock operation are shown in this figure, as all the relations provided by users
who utilised the lock operation were synthetic and do not represent the manual effort
invested. In this figure, the number of negative relations supplied is much lower than
the number of positive relations for all participants. Of the 30 participants who did
not use the lock operation, 17 provided at least one negative relation, the remainder
only supplied positive information to correct the modularisation.

In the context of the research question, the finding is that the effort in terms of time,
iterations and relations varied between the users significantly. Only a small subset
(five) of the participants used the “lock” functionality of the tool.

140 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

0

50

100

150

1 2 3 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 24 25 26 27 28 29 31 32 34 35
User

C
ou

nt

Type

No

Yes

Figure 6.5: Stacked bar chart of number of relations provided by users

RQ2: Relationship Between Effort and Quality

Figure 6.6 shows a line chart of the Rand measure between the final modularisation
and the modularisation at each point the user requested a new solution from SUMO.

The chart shows a large difference in the final modularisations produced by each user
and the initial configuration. This firstly represents a disagreement between each user
and Bunch, which serves as justification for the use of interactive refinement. Secondly,
the disagreement with Bunch is different between users: in some cases the modularisa-
tion is highly similar while it is lower for others. This demonstrates the necessity for
the refinement step and shows that the remodularisation problem is subjective.

The improvement, calculated by max−value
max per iteration (shown graphically in Fig-

ures 6.6 and 6.7) shows a general trend of an overall increase in quality over time,
however the trajectory followed differs greatly between individual users. This contrasts
to the results from the experiments in Chapter 5, where a sigmoid curve was visible
for most of the case studies. A pattern of low or no improvement for the first several
minutes of the task was observed, however; this pattern was also observed in the pre-
vious study in Chapter 5. After this initial period, the improvements gained generally
increase as time increases.

The conclusion for this research question is thus the same as that for this research
question in the study in Chapter 5: intermediate improvement occurs regularly, how-
ever the improvement is less predictable and lacks the clear sigmoid shape that was
previously observed.

6.4. EMPIRICAL STUDY 141

0.5

0.6

0.7

0.8

0.9

1.0

● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●●
● ● ●

● ● ●

● ● ● ●

● ●
● ● ● ●● ● ●

●●●

● ●

●

●

●
●

●

●

● ●

●

●
● ● ●

● ● ● ●● ● ● ● ● ● ●
●

● ●● ●● ●

● ● ● ●
● ●● ●

● ●

●

●

● ● ● ●

●

●
●

● ●

●

●

●
●

●
●

●
●

● ●
●

●

●
●●

●

● ●
●

● ●

●

●

● ● ●
● ● ●●●●● ●

●
●●●

●
●●

●
●●

●

●

●
●
●
●
●

●

●

●

●

●
● ● ●

●

● ●

●
●

● ●

●
● ● ● ● ● ●

●●
●●

●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

● ●●

● ●
● ●

● ●●
●

● ●
●

● ● ●

●
● ● ●

●
●

● ●
● ●

● ● ●● ● ●● ●●●● ●
●

●
●

●
●● ● ●

●

●
●●

●

●
●

●●●●

●●
●●●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ●
● ●

● ●●●
● ●

●

●
●

●

●

●
●

● ●

●●

●

● ●

●

● ●● ● ● ●
●

● ● ● ●
● ●●

●●
●

●

●
●

●●● ●
●
● ● ●

● ●
●

●● ●
●

● ●●

●

● ● ● ●●
●

● ●● ● ● ●●
●

● ●

● ●
●● ●

●

●

●● ●
●

●●
● ●

●

●
●●

●
● ●

●
●

●●●●

●

●

●●

●●

●

●● ●

● ● ● ● ●
●

● ● ● ●
●● ●

●

● ● ● ● ● ●
●

●

●● ●
●

● ●●
●

●
●

● ●
● ●

●

●
●

●
● ● ● ● ●

● ● ●
●

●
● ●

● ●

●
●

●

● ● ● ●

●

●

●

● ● ●

●

● ● ●

● ● ●

●

●

●
●

● ●
●

●

●
● ●

● ● ●

● ●
●

●● ●
●
●

●
●
●●

●

●
●

●

●

● ●●●
●● ●

●

●
●

● ● ● ●

●

● ●
●

●

●●

●
●

● ● ●

●

●●

●

●

● ●
●

●
●

●●

●

●

● ●

●

●

●

●
●

●

●

●
●

● ●
●●

● ●●

●

●

●●●
●

●

●

●

●

●
●●

●
●

●●●
●●●

●

●

●
●

●

●

● ● ●●●●

●
●

●

●

●

●

● ●

● ● ●

● ●
●●

●

●

● ●● ●●
●

●
●● ●

●
●●

●

●

●

●●
●

●
●

●
● ● ●

●

● ● ●
●
●
●
●● ● ●

●

●

●

●
● ●

●
● ● ●

●● ●●
●

●

●

●

●
●

●
●
●

●●
●

●
●

●

●

● ● ●● ●● ● ● ● ●●●● ●● ● ● ●
● ●

●

●

● ●●●
●●● ● ●● ●● ●

● ●
●●

● ●

●

● ●
●

● ●

●
●
●

●

●●

●

●●

●
●

●

●

●

● ● ● ● ●

●
●

● ●● ●

●●●

● ●●
● ●● ● ● ● ● ● ●

●

●
● ● ● ●● ●

●

●

●●●●●● ●

● ● ● ●

●
●

●●
● ●● ●●

● ●

●
●

●
● ●

●

● ●

●

●

●●

●●
●
●

●●● ●

● ●●●
● ●● ● ●●●●

●
●●●●●●

●

●● ●●● ●●
●

●

●●●●●● ●●
●
●

●● ●● ●● ●

● ●● ●
●

●●
●●

●
●

●

●
●

●●

●

●●

●

●●
●

●●
●●●

●
●

●●

●

●●
●
●●●

●●
●

●●

●

●

●

● ●●●●
●

●

●
●●

●
●
● ●●● ●

●
●●

●
●

●

● ●●
●

● ●
●

● ●

●
●

●
●

●

● ●

●
● ●●

● ● ●

●●

●
●
●

●●
●

●

●

●

●●

●

●
●
●

●
●
●

●

●

● ● ● ●

●●
● ● ● ● ●

●
● ● ● ● ●

●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●

● ●

●
●

●
● ●

● ●

●● ● ●
●

●
●

●
●

● ●
●

● ● ● ●
●

●●●

●
●● ●

●● ● ●

●

●● ●

●

●

●

00:00 00:15 00:30 00:45 01:00 01:15
Time

R
an

d
In

de
x

Figure 6.6: Rand similarity for each package and the final package over time

0

20

40

60

80

100

● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ●●

● ●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ● ●● ● ● ● ● ● ●

●

● ●● ●

●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

● ● ●

● ●

●
●
●●

● ●

●
●●●

●
●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

● ●

● ●

● ●

●
● ● ● ● ● ●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●●

●

● ●

●

● ●

●

●

● ● ● ●

●

● ●

● ●

●
●

●● ● ●● ●●●● ●
●

●

●
●

●● ● ● ●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

● ●

● ●

●

● ●

● ●

●

●

●

● ●

● ● ● ●

● ● ●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●● ●

●●

●

●

●

●

● ●● ●
●

● ●

● ● ● ●
●

●●
●

●
●

●

● ●

●
●
● ● ●

●
●

●

● ●
●

●●
●

●
● ●

●

●

● ● ● ●● ●

● ●

● ● ● ●

●

●

● ●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●

● ● ● ● ●

●

● ● ●●

●● ●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ●●

●

●

●

● ●

● ●

●

●

●

●

● ● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ●

●

● ● ●

● ● ●

●

●

●

●

● ●

●
●

●
● ●

● ● ●

● ●

●

●●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ●

●
● ● ● ●

●

●●

●

●

● ●
●

●

●

●

●

●

●

● ●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
● ●●●●

●

●

●

●

●

●

● ●

● ● ●

● ●

●

●

●

●

● ●●
●

●

●
●

●●
●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●
●

●
●
●

●
●

●

●

●

●

●

● ● ●● ●● ● ● ● ●●

●● ●● ● ● ●

● ●

●

●

● ●●●

●●● ●

●● ●● ●

● ●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●●

●

●●●

● ●●

● ●● ● ● ● ● ● ●

●

●

● ● ●●● ●

●

●

●●●●●●

●

● ● ● ●

●

●

●●

● ●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

● ●

●●● ●●

● ●●●●

● ●●●

●●●

●

●

●

●●● ●●

●

●

●

●

●

●●

● ●

●

●●

●● ●●

●

● ●

● ●● ●

●

●
●

●●●

●

●

●

●

●●

●

●●

●

●
●●

●

●
●
●●

●
●

●

●
●
●
●

●

●

●

●

●
●●

●●

●

●

●

●
●
●

●

●

●
●

●
●

●●●

●
●
●●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

● ●

●●
●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●
●●

●
●

●
●

●● ● ●
●

●●
●

●

●

●

00:00 00:15 00:30 00:45 01:00 01:15
Time

Im
pr

ov
em

en
t

Figure 6.7: Improvement over time for each iteration

142 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

RQ3: Factors Affecting Convergence Time

The number of packages requested from SUMO before convergence is plotted against
the time taken for each user in Figure 6.8. It shows little correlation between the number
of packages requested and convergence time; some participants using considerably more
iterations took the same time as other participants who used fewer iterations. This lack
of correlation suggests that the number of iterations of the SUMO algorithm taken is
not a good predictor of time taken (or vice-versa).

20

40

60

80

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

00:40 00:50 01:00 01:10 01:20
Time Taken

N
um

be
r

of
 P

ac
ka

ge
 S

et
s

Figure 6.8: Scatter plot of time taken versus number of iterations

The time series data shown in Figures 6.6 and 6.7 show that the starting points, which
were all identical, have different similarities for different users. This difference is evi-
dence that the users each individually produced different solutions after using SUMO.

One of the participants indicated that they had used Google Guava before in the
survey. This participant took 58 minutes and 40 seconds to complete the task, using
35 iterations of the SUMO process. This places the participant close to the average
(both by median and mean) for both time taken and iterations.

The outcome for this research question is therefore less conclusive; the individual ap-
pears to be the most significant determinant of convergence time, which is corroborated
by the evidence that each user was producing a different modularisation.

6.5. DISCUSSION 143

§ 6.5 Discussion

The experimental results show that the SUMO tool is capable of enabling 35 partici-
pants to remodularise an unfamiliar piece of software consisting of 122 classes within
an hour for the majority of participants.

The profile of improvement did not exhibit the cohesive patterns observed in the pre-
vious study, however there is an observable trend at the start of the process of several
minutes of little improvement, after which the majority of participants started to pro-
duce improved modularisations with the tool. This pattern was observed in the previous
study to an extent, suggesting that there is a minimum number of relations required
before the regular improvement is observed.

This initial period could be attributed to the participants familiarising themselves with
the system. Beyond this point, the modularisations for each user begin to improve,
with reductions in quality reversing quickly for most users. This improvement profile
suggests that SUMO can be used to produce improvements in scenarios where a small
investment of expert can be made that at least exceeds this initial low improvement
period.

The number of negative relations supplied by each user varied, although the majority
of the relations were positive, i.e. the users mostly identified elements where Bunch
separated two elements that should have appeared together. High proportions of posi-
tive relationships represent the most “power”, through their transitive property, which
suggests that the constraint solving approach was able to exploit this property in a large
number of cases. The use of the lock operation by the participants also suggests that
automating the addition of constraints at the user’s direction is a beneficial addition.

The data collected in this experiment shows strong evidence that the user is the
strongest source of variance for the modularisation task. This can be explained in
part by the subjectivity of the “correct” modularisation. Although each user is start-
ing from the same point, the target varies between the individual, thus the paths taken
to reach it will differ. This possibly explains why the profile of improvement is more
varied than in the automated experiments in Chapter 5, in which the target modu-
larisation was a highly similar decomposition (produced by LimSim from the package
structure).

Overall, this study has empirically demonstrated of the efficacy of the SUMO approach
and its implementation in the interactive tool. All participants were able to use it to
produce an improved modularisation for a piece of software they were unfamiliar with.
An important observation is that the participants were not domain experts—34 of the
35 users had no experience with the case study, but the SUMO tool still enabled them
to tailor the existing modularisation to the domain knowledge they acquired from the
system during the task. This suggests that the user of the SUMO tool may be able to
complete a task by acquiring knowledge on an as-needed basis, which further reduces
the potential cost and extends the applicability of the approach as component in a
reverse engineering exercise.

144 CHAPTER 6. HUMAN FACTORS AFFECTING SUMO

6.5.1 Threats to Validity

As the study uses humans, there are a variety of threats to validity to consider:

User interface design may bias the results As the time taken to use the tool is
dependent on knowing how to use it, a user’s proficiency may have an impact on
the amount of taken. The users all started from the same level of expertise with
the tool (i.e. none) meaning there is no threat that a user may be more acquainted
with the tool than another. It is not possible, however, to assert that the user
interface is perfect — the results of the experiment are inextricably tied to the
full “stack” of SUMO and the UI used and cannot be used to make a general
assertion about the performance of human use of SUMO with any arbitrary user
interface.

The individual user may bias the results This threat is mitigated by the number
of participants and the wide demographic. To ensure the use of colour to represent
relations in the visualisation did not impact users with impaired colour vision,
the tool allowed the palette to be switched to ensure users would be equally able
to use the tool to the best of their ability.

The final result may not be the user’s desired solution The experiment assumed
the user would only finish the task when they were satisfied with the result. How-
ever, fatigue or other factors may have resulted in them ending the task prema-
turely. The participants were invited to take a short break between the tutorial
and the main task to minimise the risk of fatigue. As the previous experiments
showed, SUMO will produce improvements in the modularisation provided the
input information is correct. The time series plots in Figure 6.6 and 6.7 show
that an overall improvement is experienced, thus, if the hypothesis that each
participant provided information to the best of their ability (and did not elect
to deliberately supply incorrect relations) holds, the algorithm produced a result
which is superior to the original configuration in all cases, however the final con-
figuration may not represent the global optimum that each user would produce
with the tool.

§ 6.6 Conclusions

This chapter introduced a graphical implementation of the SUMO algorithm and pre-
sented an approach to improving its performance through the use of a seeding technique
for the constraint solver. This modification was made in response to comments received
during a pilot study which found that the unmodified version would produce unexpected
solutions to the set of relations supplied by the user.

The empirical study demonstrates the necessity of the incorporation of domain knowl-
edge into the modularisation process, evidenced by the different solutions produced by
the users in the empirical study; each participant produced a different refinement of
the original Bunch-produced modularisation. The practicality of the SUMO approach

6.6. CONCLUSIONS 145

is demonstrated through the use of a realistic case study, consisting of 122 classes. The
majority of the participants completed the task in around an hour, having supplied
fewer than 150 relations to produce a result tailored to their intuitions. This, coupled
with the partial improvement observed in the interim steps, demonstrates SUMO’s
capability to enrich automated remodularisation techniques, even in scenarios where
running the algorithm to convergence is unfeasible.

The following chapter concludes the thesis, showing how the work in this chapter in-
tegrates with the work in Chapters 3 and 4 to represent an enhancement to existing
modularisation approaches and outlining future avenues of exploration that extend from
it.

Chapter 7

Conclusions & Future Work

§ 7.1 Summary of Achievements

The original objectives of this thesis were:

1 To apply remodularisation to the hierarchy generation problem for state-based
software model; and

2 To analyse and address qualitative issues with the output of existing automated
remodularisation algorithms.

These aims were decomposed into three objectives:

1 Measure the application and analysis of an existing remodularisation technique
to state-based software models

2 Produce enhancements to the state of the art of remodularisation by extending
it to hierarchies

3 Develop and empirically evaluate an improved remodularisation approach through
a realistic experiment with human participants

Figure 7.1 portrays the path of investigation followed by the thesis, directed by these two
aims. Chapter 2 explored the problem domain, and Chapter 3 expanded and addressed
Objective 1 it by examining the use of remodularisation to identify superstates for
state machines. Three key problems were identified, the first two of which pertained
to hierarchy generation and were further addressed in the work towards Objective 2 in
Chapter 4. Chapters 5 and 6 addressed the final objective and concluded with a means
to improve upon remodularisation algorithms using domain knowledge. Each of the
contributions is elaborated in the following sections and further subsections.

146

7.1. SUMMARY OF ACHIEVEMENTS 147

Problem: Hierarchical abstraction for state machines

Bunch: search-based remodularisation, applied to state machines

Accuracy Layered hierarchies Over-fitting

Crunch: genetic programming
for hierarchical clustering

SUMO: Human interactive refinement

Chapter 2

Chapter 3

Chapter 4

Chapters 5 & 6

Figure 7.1: The path of investigation taken in the thesis

7.1.1 Remodularisation of State Machines

Chapter 3 showed that it was possible to apply the Bunch remodularisation algorithm
to state-based models to produce superstates that resemble those produced by experts.
The quality of the output produced by this technique was compared to known-good
modularisations using established metrics, determining that, for the more complicated
tamagotchi case study, Bunch did not entirely reproduce the original structure of
the statechart. Although resultant modularisations were not completely correct, some
included a large number of correct features.

The Bunch algorithm’s performance was then explored, with a focus on its hierarchy
generation approach. Investigation of several case studies showed that while unbalanced
hierarchies are prevalent in existing systems, Bunch cannot produce them as builds a
hierarchy in layers. Over-fitting caused by the layered approach to hierarchy formation
was also identified.

Finally, a means of producing non-layered hierarchies was discussed, showing that the
mean fitness of the clusters can be improved using a random deletion approach.

Chapter 3 demonstrated the feasibility of the use of Bunch for remodularisation of state
machines, and identified three key problems:

Over-fitting in hierarchies The approach to hierarchy generation uses repeated searches,
which allows the algorithm more freedom to explore solutions at the lower level
than the higher levels

Non-layered hierarchies The layering approach to the search restricts the solutions
to only those which merge clusters at each level, producing layered hierarchies;
unlayered hierarchies were shown to be present in several open source projects

Accuracy The hierarchy for the larger of the two case studies was never successfully
completely recovered by Bunch in the experiments.

148 CHAPTER 7. CONCLUSIONS & FUTURE WORK

7.1.2 Searching Hierarchies

In light of the first two problems identified in Chapter 3, an alternative search-based
approach to remodularisation was introduced in Chapter 4. This approach uses repre-
sentations that encode transformations of a hierarchy and label-based representations
to optimise hierarchies at all levels in one search. Crunch was observed to produce
higher fitnesses at higher levels of the hierarchy, at an expense of overall fitness over
the whole hierarchy, using a novel adaptation of the MQ fitness function used in Bunch
to evaluate hierarchies.

Various fitness functions were evaluated in Crunch with two state machine case stud-
ies. The types of structure produced by each fitness function were analysed, showing
that two fitness functions from modularisation approaches did not produce solutions
that allowed superstate edges to be produced. In contrast, the fitness functions that
produced these superstate transitions also produced a greater number of clusters.

This latter evaluation highlighted a problem with automatic remodularisation approach
that is widely acknowledged [12, 40, 81], that the quality of the output is difficult to
assess, and is likely to be error-prone in circumstances where information beyond the
structure of the graph is used by an expert to evaluate the quality of the result.

7.1.3 Domain Knowledge for Refinement

Chapter 5 showed that a refinement step could be used to address potential deficien-
cies of remodularisation algorithms by soliciting domain knowledge. In cases where
clustering produced by a remodularisation algorithm is poor, an expert can bridge the
gap to interactively produce an acceptable result using the SUMO algorithm, which
encodes their domain knowledge as constraints. The number of constraints required is
minimised through the use of a constraint solver.

The number of relations required for an arbitrary number of modules and classes was
first derived theoretically. The typical number of relations required in a realistic sce-
nario was then obtained through experimentation; the empirical evaluation used simu-
lated authoritative decompositions [104] and measured the amount of effort (in terms
of iterations) required to completely refine a modularisation, finding the number of re-
quired relations to be high. Crucially, the evaluation showed that SUMO produces mea-
sured improvement at almost each iteration, thus partial improvement can be gained
if running the algorithm to convergence is infeasible.

Chapter 6 expanded on the evaluation of SUMO by evaluating its use with human sub-
jects. This required an implementation of the algorithm with an interactive interface.
A pilot study was conducted, the findings of which led to changes in the algorithm
and the tool to increase its usability. The most significant of these changes was the
pre-seeding of the constraint solver with the previous modularisation.

The findings from the empirical study in Chapter 6 showed firstly that the remodular-
isation problem does involve subjectivity; participants did not produce the same result
even though the case study was identical for all participants. In terms of performance,

7.2. LIMITATIONS AND FUTURE WORK 149

the study showed the feasibility of the use of the SUMO tool for remodularisation tasks,
but found that the sigmoid curve observed in the study in Chapter 5 did not appear,
nor did any other particular pattern beyond an apparent familiarisation period and a
general trend of improvement over time. This demonstrated that the performance of
the SUMO algorithm is highly dependent on the individual user.

7.1.4 Overall Conclusions

This thesis has demonstrated the similarity of module dependency graphs and state
machines allow the Bunch remodularisation algorithm to be used to solve the state
machine hierarchy generation problem to an extent. The user study performed in
Chapter 6 has demonstrated that modularisation is a subjective process, showing that
a fully automated approach is not a realistic goal.

The subjectivity of modularisation is problematic for automatic remodularisation algo-
rithms as it proves that human intuition is necessary to ensure results are satisfactory
to a user. While modularisation algorithms may continue to be improved through the
use of better metrics and more accurate clustering techniques, the subjectivity issue will
continue to be a problem. This issue is also acknowledged by Bavota et al., who have
taken a similar approach to putting the developer “in the loop” with a remodularisation
algorithm [12].

While domain knowledge is necessary, it is also important that the amount required is
minimised as much as possible, as remodularisation has been automated to reduce the
cost of reorganising a system. SUMO does this by ensuring that the user’s information
is applied as far as possible (through the transitive properties of the relation types and
their application in a constraint solver). However, SUMO still requires a domain expert
and a considerable investment in effort if it is to produce the best result possible.

This work represents an incremental improvement towards the practical combination
of remodularisation to allow the improvement of both MDGs and state machines as
software models in reverse engineering scenarios.

§ 7.2 Limitations and Future Work

This section outlines work that could further explore the remodularisation problem. It
focuses on work which could follow from the two main topics investigated in this the-
sis; genetic hierarchical clustering (Crunch), and interactive modularisation refinement
(SUMO).

7.2.1 Crunch

The work on Crunch in Chapter 4 demonstrated a potential for better quality hierar-
chies at a cost of overall fitness of the hierarchy, when compared to results from Bunch.
These differences are possibly due to the effect of the use of the genetic programming
technique used.

150 CHAPTER 7. CONCLUSIONS & FUTURE WORK

Alternative Representations and Extended Transformation Operators

Crunch is most critically bounded by the search space. While Bunch uses an agglom-
erative approach, where the search space is reduced at each increasing layer (until only
one cluster is produced), Crunch does not use this approach and instead searches the
space of all possible hierarchies. In addition to the search space size, the representations
Crunch uses do not correspond to one-to-one mappings of individuals to solutions.

As it is possible to encode the same solution in multiple ways, this constitutes an
artificial increase in the search space. Future work could include application of Har-
man et al. [46]’s alternative representation which does not have this problem. Another
alternative would be the application of Seng et al.’s variable length chromosome ap-
proach [101] which does not require the individual to encode operations that have no
effect that could cause a reduce in fitness when crossed over.

The design of the instruction set itself has a high impact on the resultant search space.
Thus, further work on designing an instruction set or representation which has a low
amount of duplication (causing artificial search space expansion) and is more resilient
to problems of locality (the extreme example of which is the stack representation).

The two transformation operators implemented in Crunch cause it to produce a limited
subset of all hierarchies. Work in refactoring exists that defines a greater set of transfor-
mations [101], some of which may be adaptable to the hierarchical clustering problem,
such as the pulling up or down of attributes, which could correspond to elements in the
clustering in this domain.

Mutation Operators for GP Clustering

As shown in the experiments, the stack-based implementation yielded poorer fitness
values than the other representations, despite the stack-based implementation’s ability
to express more varied trees than the others. The extent to which this is dependent
on the crossover could be investigated through the implementation of a tree-based
clustering approach as used in Lutz [68]’s work on remodularisation. This could also
allow performance of the other virtual machine clustering techniques.

Multiobjective Approaches

The experiments on the hierarchical performance of Crunch and Bunch showed that
Bunch was able to better optimise the total MQ values of the hierarchy with its hill
climbing approach than the global searches used by Crunch. Comparison of the depths
of the hierarchies showed a large variation in the types of the hierarchies produced by
the two tools, suggesting that they may be exploring different areas of the search space.

Objectively making a selection, even armed with these overall fitness values, is not
possible however. The amount of layering is dependent on the case study in question;
5 levels may be reasonable in some cases, although it is perhaps reasonable to state

7.2. LIMITATIONS AND FUTURE WORK 151

that 5 levels of hierarchy is inappropriate for a 6 state state machine. The choice of
the criteria is dependent on expert knowledge unavailable to the search.

Multiobjective solutions to problems have been applied as a means to improve perfor-
mance [94] as well as an approach to producing the best set of solutions that represents
varying trade-offs of quality in various criteria, from which an expert can make a se-
lection based on their judgement [48]. Such a multiobjective approach could remove
the need to penalise Crunch for using an excessive amount of nesting (dictated by the
penalty applied to it), by using the depth of the hierarchy as one of the objectives used
in the search.

Interactive Evolution

Bavota et al. [12]’s recent success expands on a multiobjective approach with the incor-
poration of developer knowledge. The increased performance of this approach suggests
that it is beneficial to provide a means for a user to guide the algorithm to a solution.
Although Bunch [81] includes support for the incorporation of a user’s ideas into the
process, it does not allow the interactive process enabled by the IGA and the SUMO
approaches.

Arch [100] exposes parameters of its algorithm to allow an expert to tune it to its
application. A similar approach could be deployed in Crunch; by exposing the fitness
function, or parameters to it, a user could encode features which they require that the
fitness function did not already optimise for.

A key component of Bavota et al.’s approach is the use of the user-modified version
of the individual to seed the population. Bunch itself also supports the seeding of the
search with an existing starting configuration [81, 40]. This seeding approach could
be implemented in Crunch by setting the initial configuration of the tree prior to
transformation to the solution identified by the user. The “cost” of the refactoring, as
used by Tonella in the evaluation of a concept-based approach to remodularisation [111]
could be integrated into the fitness function to allow the user to express preference for
changes are as similar to the original as possible.

Comparison of Performance

As Crunch is most similar to a hierarchical clustering algorithm, it could be compared
with the performance of other hierarchical algorithms. This comparison could follow
the same model of Anquetil et al. [9]’s analysis of hierarchical clustering algorithms by
measuring the similarity of the algorithms at various cut heights.

In addition to analysis of the performance of Crunch through comparison with other
algorithms, the results produced by Crunch could be evaluated using domain experts
to determine how authoritative the modularisations it produces are.

152 CHAPTER 7. CONCLUSIONS & FUTURE WORK

Further Exploration of Fitness Functions

Experimentation with various fitness functions showed that Crunch provides a flexible
environment for experimentation with hierarchical quality measures. However, the
evaluation of a set of these measures in Section 4.5 proved difficult to interpret. Further
evaluation of the hierarchies produced could be performed, replicating the experiments
conducted in Chapter 3. However, the case studies used in this small case study are
perhaps too small to warrant clustering at multiple layers—larger case studies would
be required for such an experiment.

7.2.2 SUMO

The SUMO refinement algorithm provides a useful starting platform for introducing
domain knowledge to the remodularisation process. Although it has been assessed
in theoretical and empirical terms, the results show avenue for improvement. The
fundamental performance measure of SUMO is the number of relations required, which
in its evaluation has been found to be high for complete refinement. SUMO also only
constructs a single partitioning of the graph, while other remodularisation approaches
have aimed to produce hierarchies.

Although the SUMO tool has undergone evaluation and was improved through the
pilot study, further enhancements to its function could be made. Firstly, the conflict
resolution approach implemented of asking the user to correct their input (or use the
undo command) could be expanded to determine which of the equalities the CSP solver
found to be inconsistent to improve the usability of the tool.

Further work relates to methods to reduce of the amount of domain knowledge required
for convergence. This could be potentially achieved through a variety of methods,
detailed in the following subsections.

Solicitation of Constraints

The current implementation of SUMO gives the user freedom to supply any constraints
they wish. This contrasts with Bavota et al. [12]’s interactive genetic algorithm, where
the algorithm selects pairs of information that the user provides information for, based
on their size or at random. This approach could be used to avoid the user supplying
redundant information, for example, connecting all nodes in a cluster together.

This change from the direct incorporation of constraints to a constraint acquisition
problem may allow algorithms such as CONACQ [15] to be applied. CONACQ differs
from SUMO in that it aims to acquire the set of constraints through the use of mem-
bership queries. CONACQ works by asking the user to categorise several examples as
either positive or negative. From these classifications, CONACQ determines the set of
constraints over them based on the input. The number of queries required is reduced
by careful selection of examples for classification.

7.3. FINAL REMARKS 153

Non-binary Relations

SUMO uses binary constraints for the feedback mechanism, however participants in the
pilot study (discussed in Section 6.3.5) remarked that the relation type was difficult to
determine: classes appearing to be tangentially related presented a problem, as neither
of the options of “together” or “not together” were appropriate.

Using fuzzy logic instead of these Boolean constraints could alleviate this problem. The
user would be able to encode their certainty that two elements should be together. This
could also be combined with a machine learning algorithm, or another remodularisation
algorithm, to provide an estimate of similarity based on the user’s perception, rather
than the apparent similarities present in the data set.

Numeric values for the constraints, rather than Boolean values, could also be used to
form distance values, similar to those used in hierarchical clustering. This could permit
SUMO to construct hierarchies, although this would potentially increase the quantity
of information required from the user, for example, Likert values would be required in
place of the current yes/no binary relation type.

Collaborative Remodularisation

The experiments conducted with SUMO show that it is a costly process, however a
necessary one, given the disagreement between the participants’ produced modularisa-
tion and that produced by Bunch. The individual cost of the SUMO algorithm could
be reduced by allowing multiple users to supply their domain knowledge. This change
would allow larger systems to be remodularised without the requirement for the user
to reverse engineer parts of the system they may be unfamiliar with. Conflicts between
users could be managed using the previously suggested fuzzy logic implementation.

§ 7.3 Final Remarks

This thesis has investigated the remodularisation approach from several sides. In addi-
tion to contributing solutions and assessment of those solutions, it also identifies several
difficulties inherent to the challenge presented by remodularisation.

Remodularisation is difficult for a number of reasons, confounded by the difficulty in
efficiently searching all solutions. This thesis focused on algorithms that are flexible
and scalable in the sense that they can be run for a budgeted amount of time to produce
an increase in quality if sub-optimality is acceptable. SUMO in particular represents
a practical approach, as it allows the user to interactively explore the system and
modularise it, as demonstrated in the user study in Chapter 6.

This work represents a step towards an interactive solution, however there are still
further avenues to explore to further reduce the burden on the human.

Bibliography

[1] JRET: Java Reverse Engineering Toolkit. https://wiki.cse.yorku.ca/

project/cluster/jret.

[2] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from work-
flow logs. In H.-J. Schek, F. Saltor, I. Ramos, and G. Alonso, editors, Advances
in Database Technology - EDBT’98, 6th International Conference on Extending
Database Technology, Valencia, Spain, March 23-27, 1998, Proceedings, volume
1377 of Lecture Notes in Computer Science, pages 469–483. Springer, 1998.

[3] S. Ali, K. Bogdanov, and N. Walkinshaw. A comparative study of methods
for dynamic reverse-engineering of state models. Technical Report CS-07-16,
Department of Computer Science, University of Sheffield, 2007.

[4] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state ma-
chines. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Automata,
Languages and Programming, 26th International Colloquium, ICALP’99, Prague,
Czech Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes in
Computer Science, pages 169–178. Springer, 1999.

[5] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In J. Launch-
bury and J. C. Mitchell, editors, Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Port-
land, OR, USA, January 16-18, 2002, pages 4–16. ACM, 2002.

[6] B. Andreopoulos, A. An, V. Tzerpos, and X. Wang. Multiple layer clustering
of large software systems. In 12th Working Conference on Reverse Engineering
(WCRE 2005), 7-11 November 2005, Pittsburgh, PA, USA, pages 79–88. IEEE
Computer Society, 2005.

[7] N. Anquetil and J. Laval. Legacy software restructuring: Analyzing a concrete
case. In T. Mens, Y. Kanellopoulos, and A. Winter, editors, 15th European
Conference on Software Maintenance and Reengineering, CSMR 2011, 1-4 March
2011, Oldenburg, Germany, pages 279–286. IEEE Computer Society, 2011.

[8] N. Anquetil and T. Lethbridge. Extracting concepts from file names: A new
file clustering criterion. In K. Torii, K. Futatsugi, and R. A. Kemmerer, edi-
tors, Forging New Links, Proceedings of the 1998 International Conference on

154

https://wiki.cse.yorku.ca/project/cluster/jret
https://wiki.cse.yorku.ca/project/cluster/jret

BIBLIOGRAPHY 155

Software Engineering, ICSE 98, Kyoto, Japan, April 19-25, 1998, pages 84–93.
IEEE Computer Society, 1998.

[9] N. Anquetil and T. Lethbridge. Experiments with clustering as a software remod-
ularization method. In Proceedings of the Sixth Working Conference on Reverse
Engineering (WCRE), pages 235–255. IEEE Computer Society, 1999.

[10] A. Arcuri and L. C. Briand. A practical guide for using statistical tests to as-
sess randomized algorithms in software engineering. In R. N. Taylor, H. Gall, and
N. Medvidovic, editors, Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011,
pages 1–10. ACM, 2011.

[11] V. Batagelj and A. Mrvar. Pajek-program for large network analysis. Connec-
tions, 21(2):47–57, 1998.

[12] G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and R. Oliveto. Putting
the Developer in-the-Loop: An Interactive GA for Software Re-modularization.
In G. Fraser and J. T. de Souza, editors, Search Based Software Engineering -
4th International Symposium, SSBSE 2012, Riva del Garda, Italy, September 28-
30, 2012. Proceedings, volume 7515 of Lecture Notes in Computer Science, pages
75–89. Springer, 2012.

[13] C. Becker, S. Glomb, and M. Graf. UML Notation and Ilogix Rhapsody Tool.
Seminar on Tool-supported modeling of Tamagotchi, University of Kaiserslautern,
1998.

[14] P. Berkhin. A survey of clustering data mining techniques. Grouping Multidi-
mensional Data, pages 25—71, Jan 2006.

[15] C. Bessière, R. Coletta, B. O’Sullivan, and M. Paulin. Query-driven constraint
acquisition. In M. M. Veloso, editor, IJCAI 2007, Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, pages 50–55, 2007.

[16] A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Machines
from Samples of Their Behavior. IEEE Transactions on Computers, C-21(6):592–
597, 1972.

[17] M. Brameier and W. Banzhaf. A comparison of linear genetic programming and
neural networks in medical data mining. IEEE Transactions on Evolutionary
Computation, 5(1):17–26, 2001.

[18] K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generation
using the extended finite state machine model. In A. E. Dunlop, editor, DAC
’93 Proceedings of the 30th international Design Automation Conference, pages
86–91. ACM, 1993.

[19] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

156 BIBLIOGRAPHY

[20] E. J. Chikofsky and J. H. Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

[21] M. Chis. Evolutionary Hierarchical Clustering Techniques. Acta Universitatis
Apulensis, 2(4):57–64, 2002.

[22] M. Chis. Hierarchical Clustering Using Evolutionary Algorithms. In G. Felici and
C. Vercellis, editors, Mathematical Methods for Knowledge Discovery and Data
Mining, pages 146–156. IGI Global, 2008.

[23] H. Chu, Q. Li, S. Hu, and P. Chen. An Approach for Reversely Generating Hierar-
chical UML Statechart Diagrams. In L. Wang, L. Jiao, G. Shi, X. Li, and J. Liu,
editors, Fuzzy Systems and Knowledge Discovery, Third International Confer-
ence, FSKD 2006, Xi’an, China, September 24-28, 2006, Proceedings, volume
4223 of Lecture Notes in Computer Science, pages 434–437. Springer, 2006.

[24] M. B. Cohen, S. B. Kooi, and W. Srisa-an. Clustering the heap in multi-threaded
applications for improved garbage collection. In M. Cattolico, editor, Genetic
and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle,
Washington, USA, July 8-12, 2006, pages 1901–1908. ACM, 2006.

[25] J. E. Cook and A. L. Wolf. Discovering models of software processes from event-
based data. ACM Transactions on Software Engineering Methodology, 7(3):215–
249, 1998.

[26] S. Counsell, S. Swift, A. Tucker, and E. Mendes. Object-oriented cohesion sub-
jectivity amongst experienced and novice developers: an empirical study. ACM
SIGSOFT Software Engineering Notes, 31(5):1–10, Sept. 2006.

[27] N. L. Cramer. A representation for the adaptive generation of simple sequential
programs. In J. J. Grefenstette, editor, Proceedings of the 1st International Con-
ference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, pages 183–187.
Lawrence Erlbaum Associates, 1985.

[28] C. Damas, B. Lambeau, P. Dupont, and A. v. Lamsweerde. Generating Anno-
tated Behavior Models from End-User Scenarios. IEEE Transactions on Software
Engineering, 31:1056–1073, 2005.

[29] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Computation,
6(2):182–197, 2002.

[30] C. Di Francescomarino, A. Marchetto, and P. Tonella. Cluster-based modular-
ization of processes recovered from web applications. Journal of Software Main-
tenance and Evolution: Research and Practice, Sept. 2010.

[31] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow. Cluster anal-
ysis of java dependency graphs. In R. Koschke, C. D. Hundhausen, and A. Telea,
editors, Proceedings of the ACM 2008 Symposium on Software Visualization, Am-
mersee, Germany, September 16-17, 2008, pages 91–94. ACM, 2008.

BIBLIOGRAPHY 157

[32] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+ 1) evolutionary
algorithm. Theoretical Computer Science, 276(1):51–81, 2002.

[33] P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde. The qsm algorithm
and its application to software behavior model induction. Applied Artificial In-
telligence, 22(1&2):77–115, Jan 2008.

[34] I. D. Falco, E. Tarantino, A. D. Cioppa, and F. Gagliardi. A novel grammar-
based genetic programming approach to clustering. In H. Haddad, L. M. Liebrock,
A. Omicini, and R. L. Wainwright, editors, Proceedings of the 2005 ACM Sympo-
sium on Applied Computing (SAC), Santa Fe, New Mexico, USA, March 13-17,
2005, pages 928–932. ACM, 2005.

[35] N. E. Fenton and A. Melton. Deriving structurally based software measures.
Journal of Systems and Software, 12(3):177–187, 1990.

[36] C. Ferreira. Gene expression programming: a new adaptive algorithm for solving
problems. Complex Systems, 13(2):87–129, 2001.

[37] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2(2):139–172, 1987.

[38] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[39] M. Genero, D. Miranda, and M. Piattini. Defining metrics for uml statechart
diagrams in a methodological way. In M. A. Jeusfeld and O. Pastor, editors, ER
(Workshops), volume 2814 of Lecture Notes in Computer Science, pages 118–128.
Springer, 2003.

[40] M. Glorie, A. Zaidman, L. Hofland, and A. van Deursen. Splitting a large software
archive for easing future software evolution - an industrial experience report using
formal concept analysis. In 12th European Conference on Software Maintenance
and Reengineering, CSMR 2008, April 1-4, 2008, Athens, Greece, pages 153–162.
IEEE, 2008.

[41] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language
Specification: Java SE 7 Edition. Oracle, July 2012.

[42] M. Hall. Search based hierarchy generation for reverse engineered state machines.
In T. Gyimóthy and A. Zeller, editors, SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13rd European Software Engineering Conference (ESEC-13), Szeged, Hungary,
September 5-9, 2011, pages 392–395. ACM, 2011.

[43] M. Hall, N. Walkinshaw, and P. McMinn. Supervised software modularisation.
In 28th IEEE International Conference on Software Maintenance, ICSM 2012,
Trento, Italy, September 23-28, 2012, pages 472–481. IEEE Computer Society,
2012.

158 BIBLIOGRAPHY

[44] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[45] M. Harman. The current state and future of search based software engineering.
In L. C. Briand and A. L. Wolf, editors, International Conference on Software
Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE
2007, May 23-25, 2007, Minneapolis, MN, USA, pages 342–357, 2007.

[46] M. Harman, R. M. Hierons, and M. Proctor. A new representation and crossover
operator for search-based optimization of software modularization. In W. B.
Langdon, E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrish-
nan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,
J. F. Miller, E. K. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, New York, USA, 9-13
July 2002, pages 1351–1358. Morgan Kaufmann, 2002.

[47] M. Harman, S. Swift, and K. Mahdavi. An empirical study of the robustness
of two module clustering fitness functions. In H.-G. Beyer and U.-M. O’Reilly,
editors, Genetic and Evolutionary Computation Conference, GECCO 2005, Pro-
ceedings, Washington DC, USA, June 25-29, 2005, pages 1029–1036. ACM, 2005.

[48] M. Harman and L. Tratt. Pareto optimal search based refactoring at the design
level. In H. Lipson, editor, Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 2007, London, England, UK, July 7-11, 2007, pages
1106–1113. ACM, 2007.

[49] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive informa-
tion visualization. In G. C. van der Veer and C. Gale, editors, Proceedings of the
2005 Conference on Human Factors in Computing Systems, CHI 2005, Portland,
Oregon, USA, April 2-7, 2005, pages 421–430. ACM, 2005.

[50] M. Holcombe. X-machines as a basis for dynamic system specification. Software
Engineering Journal, 3(2):69–76, 1988.

[51] J. Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

[52] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F. de Car-
valho. A Survey of Evolutionary Algorithms for Clustering. IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 39(2):133–155, Mar. 2009.

[53] D. H. Hutchens and V. R. Basili. System structure analysis: Clustering with data
bindings. IEEE Transactions on Software Engineering, 11(8):749–757, 1985.

[54] JUNG Contributors. JUNG - Java Universal Network/Graph Framework. http:
//jung.sourceforge.net/index.html.

[55] N. Jussien, G. Rochart, and X. Lorca. The choco constraint programming solver.
In CPAIOR08 workshop on Open-Source Software for Integer and Contraint Pro-
gramming (OSSICP08), 2008.

http://jung.sourceforge.net/index.html
http://jung.sourceforge.net/index.html

BIBLIOGRAPHY 159

[56] A. Kalaji, R. Hierons, and S. Swift. An Integrated Search-Based Approach for
Automatic Testing from Extended Finite State Machine (EFSM) Models. Infor-
mation and Software Technology, 53(12):1297–1318, 2011.

[57] J.-P. Katoen. Labelled transition systems. In M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, and A. Pretschner, editors, Model-Based Testing of Reactive Systems,
volume 3472 of Lecture Notes in Computer Science, pages 615–616. Springer,
2004.

[58] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley Series in Probability and Statistics. Wiley, 1990.

[59] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of aspectj. In J. L. Knudsen, editor, ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Budapest, Hungary, June 18-22, 2001,
Proceedings, volume 2072 of Lecture Notes in Computer Science, pages 327–353.
Springer, 2001.

[60] J. R. Koza. Genetic programming as a means for programming computers by
natural selection. Statistics and Computing, 4(2):87–112, June 1994.

[61] R. Krovi. Genetic algorithms for clustering: a preliminary investigation. In
Proceedings of the Twenty-Fifth Hawaii International Conference on System Sci-
ences, volume 4, pages 540–544, 1992.

[62] A. Kumar. SCHAEM: A Method to Extract Statechart Representation of
FSMs. In Proceedings of the IEEE International Advance Computing Confer-
ence (IACC), pages 1556–1561. IEEE International, Mar. 2009.

[63] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the abbadingo one
dfa learning competition and a new evidence-driven state merging algorithm. In
V. Honavar and G. Slutzki, editors, Grammatical Inference, 4th International
Colloquium, ICGI-98, Ames, Iowa, USA, July 12-14, 1998, Proceedings, volume
1433 of Lecture Notes in Computer Science, pages 1–12. Springer, 1998.

[64] T. Lethbridge, J. Singer, and A. Forward. How software engineers use documen-
tation: The state of the practice. IEEE Software, 20(6):35–39, 2003.

[65] D. Lo and S.-C. Khoo. Quark: Empirical assessment of automaton-based spec-
ification miners. In 13th Working Conference on Reverse Engineering (WCRE
2006), 23-27 October 2006, Benevento, Italy, pages 51–60. IEEE Computer So-
ciety, 2006.

[66] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behav-
ioral models. In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, 30th Interna-
tional Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, pages 501–510. ACM, 2008.

[67] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace,
V. J. Reddi, and K. M. Hazelwood. Pin: building customized program analysis

160 BIBLIOGRAPHY

tools with dynamic instrumentation. In V. Sarkar and M. W. Hall, editors,
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pages 190–200.
ACM, 2005.

[68] R. Lutz. Evolving good hierarchical decompositions of complex systems. Journal
of Systems Architecture, 47(7):613—634, Jan 2001.

[69] R. Lutz. Recovering High-Level Structure of Software Systems Using a Minimum
Description Length Principle. Artificial Intelligence and Cognitive Science, pages
63–80, 2002.

[70] K. Mahdavi, M. Harman, and R. M. Hierons. A multiple hill climbing approach
to software module clustering. In 19th International Conference on Software
Maintenance (ICSM 2003), The Architecture of Existing Systems, 22-26 Septem-
ber 2003, Amsterdam, The Netherlands, pages 315–324. IEEE Computer Society,
2003.

[71] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner. Using
automatic clustering to produce high-level system organizations of source code.
In 6th International Workshop on Program Comprehension (IWPC ’98), June
24-26, 1998, Ischia, Italy, pages 45–. IEEE Computer Society, 1998.

[72] O. Maqbool and H. A. Babri. Hierarchical clustering for software architecture
recovery. IEEE Transactions on Software Engineering, 33(11):759–780, 2007.

[73] A. Marchetto, C. D. Francescomarino, and P. Tonella. Optimizing the trade-
off between complexity and conformance in process reduction. In M. B. Cohen
and M. Ó. Cinnéide, editors, SSBSE, volume 6956 of Lecture Notes in Computer
Science, pages 158–172. Springer, 2011.

[74] A. Marx, F. Beck, and S. Diehl. Computer-aided extraction of software compo-
nents. In G. Antoniol, M. Pinzger, and E. J. Chikofsky, editors, 17th Working
Conference on Reverse Engineering, WCRE 2010, 13-16 October 2010, Beverly,
MA, USA, pages 183–192. IEEE Computer Society, 2010.

[75] T. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308—320, Jan 1976.

[76] K. Meffert et al. JGAP - Java Genetic Algorithms and Genetic Programming
Package. http://jgap.sf.net.

[77] B. Mitchell and S. Mancoridis. On the evaluation of the Bunch search-based
software modularization algorithm. Soft Computing, 12(1):77–93, 2008.

[78] B. S. Mitchell. A Heuristic Search Approach to Solving the Software Clustering
Problem. PhD thesis, Drexel University, 2002.

[79] B. S. Mitchell and S. Mancoridis. Comparing the decompositions produced by
software clustering algorithms using similarity measurements. In Proceedings of

http://jgap.sf.net

BIBLIOGRAPHY 161

the IEEE International Conference on Software Maintenance, pages 744–753,
2001.

[80] B. S. Mitchell and S. Mancoridis. Craft: A framework for evaluating software
clustering results in the absence of benchmark decompositions. In Proceedings
of the Eighth Working Conference on Reverse Engineering (WCRE’01), WCRE
’01, pages 93–, Washington, DC, USA, 2001. IEEE Computer Society.

[81] B. S. Mitchell and S. Mancoridis. On the Automatic Modularization of Software
Systems Using the Bunch Tool. IEEE Transactions on Software Engineering,
32(3):193–208, 2006.

[82] M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm out-
perform hill climbing? Advances in neural information processing systems, pages
51–51, 1994.

[83] H. Müller, M. Orgun, S. Tilley, and J. Uhl. A reverse-engineering approach to
subsystem structure identification. Journal of Software Maintenance: Research
and Practice, 5(4):181–204, dec 1993.

[84] R. Naseem, O. Maqbool, and S. Muhammad. Improved similarity measures for
software clustering. In T. Mens, Y. Kanellopoulos, and A. Winter, editors, 15th
European Conference on Software Maintenance and Reengineering, CSMR 2011,
1-4 March 2011, Oldenburg, Germany, pages 45–54. IEEE Computer Society,
2011.

[85] Object Management Group. Unified Modeling Language Specification (version
2.1), 2007.

[86] M. K. O’Keeffe and M. Ó. Cinnéide. Search-based refactoring for software main-
tenance. Journal of Systems and Software, 81(4):502–516, Apr. 2008.

[87] J. Oncina and P. Garcia. Identifying Regular Languages In Polynomial Time.
Advances in Structural and Syntactic Pattern Recognition, 5:99–108, 1992.

[88] M. Orlov and M. Sipper. Flight of the FINCH Through the Java Wilderness.
IEEE Transactions on Evolutionary Computation, 15(2):166–182, 2011.

[89] D. L. Parnas. Software aging. In B. Fadini, L. J. Osterweil, and A. van Lam-
sweerde, editors, Proceedings of the 16th International Conference on Software
Engineering, Sorrento, Italy, May 16-21, 1994, pages 279–287. IEEE Computer
Society / ACM Press, 1994.

[90] M. D. Penta, M. Neteler, G. Antoniol, and E. Merlo. A language-independent
software renovation framework. Journal of Systems and Software, 77(3):225–240,
2005.

[91] T. Perkis. Stack-Based Genetic Programming. In Proceedings of the First IEEE
Conference on Evolutionary Computation, 1994, pages 148–153, 1994.

[92] G. D. Plotkin. A Structural Approach to Operational Semantics, Jan 1981.

162 BIBLIOGRAPHY

[93] E. Poll and A. Schubert. Verifying an implementation of SSH. In WITS 2007:
17th Annual Workshop on Information Technologies & Systems, pages 164–177,
2007.

[94] K. Praditwong, M. Harman, and X. Yao. Software Module Clustering as a
Multi-Objective Search Problem. IEEE Transactions on Software Engineering,
37(2):264–282, 2011.

[95] O. Räihä. A survey on search-based software design. Computer Science Review,
4(4):203–249, 2010.

[96] W. Rand. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical association, Jan 1971.

[97] J. Rissanen. Modeling by shortest data description. Automatica, 14, Jan 1978.

[98] M. E. Romera. Using Finite Automata to Represent Mental Models. Master’s
thesis, San Jose State University, 2000.

[99] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall Series in Artificial Intelligence. Prentice Hall/Pearson Education, 2003.

[100] R. W. Schwanke. An intelligent tool for re-engineering software modularity. In
L. Belady, D. R. Barstow, and K. Torii, editors, Proceedings of the 13th Interna-
tional Conference on Software Engineering, Austin, TX, USA, May 13-17, 1991,
pages 83–92. IEEE Computer Society / ACM Press, 1991.

[101] O. Seng, J. Stammel, and D. Burkhart. Search-based determination of refactor-
ings for improving the class structure of object-oriented systems. In M. Cattolico,
editor, Genetic and Evolutionary Computation Conference, GECCO 2006, Pro-
ceedings, Seattle, Washington, USA, July 8-12, 2006, pages 1909–1916. ACM,
2006.

[102] M. Shepperd. A critique of cyclomatic complexity as a software metric. Software
Engineering Journal, 3(2):30–36, 1988.

[103] M. Shtern and V. Tzerpos. A framework for the comparison of nested software
decompositions. In 11th Working Conference on Reverse Engineering (WCRE
2004), 8-12 November 2004, Delft, The Netherlands, pages 284–292. IEEE Com-
puter Society, 2004.

[104] M. Shtern and V. Tzerpos. Evaluating software clustering using multiple simu-
lated authoritative decompositions. In IEEE 27th International Conference on
Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September 25-30,
2011, pages 353–361. IEEE, 2011.

[105] M. Shtern and V. Tzerpos. Clustering methodologies for software engineering.
Advances in Software Engineering, 2012.

[106] SourceNav NG Development Group. Source Nagivator NG. http://sourcenav.
berlios.de, 2012.

http://sourcenav.berlios.de
http://sourcenav.berlios.de

BIBLIOGRAPHY 163

[107] J. Sun and J. Dong. Design Synthesis from Interaction and State-based Specifi-
cations. IEEE Transactions on Software Engineering, 32(6):349–364, 2006.

[108] T. Systa, K. Koskimies, and E. Makinen. Automated compression of state ma-
chines using UML statechart diagram notation. Information and Software Tech-
nology, 44(10):565–578, 2002.

[109] J. Tessier. Dependency finder. http://depfind.sourceforge.net, 2012.

[110] The C++ Standards Committee. Working draft, Standard for Programming Lan-
guage C++. ISO/IEC, 2012.

[111] P. Tonella. Concept analysis for module restructuring. IEEE Transactions on
Software Engineering, 27(4):351–363, 2001.

[112] V. Tzerpos and R. C. Holt. A hybrid process for recovering software architec-
ture. In M. A. Bauer, K. Bennet, W. M. Gentleman, J. H. Johnson, K. A.
Lyons, and J. Slonim, editors, Proceedings of the 1996 conference of the Centre
for Advanced Studies on Collaborative Research, November 12-14, 1996, Toronto,
Ontario, Canada, page 38. IBM, 1996.

[113] V. Tzerpos and R. C. Holt. The Orphan Adoption problem in architecture mainte-
nance. In Proceedings of the Fourth Working Conference on Reverse Engineering,
1997., pages 76–, 1997.

[114] V. Tzerpos and R. C. Holt. MoJo: a distance metric for software clusterings.
Proceedings of the 6th Working Conference on Reverse Engineering, pages 187–
193, 1999.

[115] V. Tzerpos and R. C. Holt. ACDC: An Algorithm for Comprehension-Driven
Clustering. In Proceedings of the Seventh Working Conference on Reverse Engi-
neering, pages 258–267. IEEE Computer Society, 2000.

[116] V. Tzerpos and R. C. Holt. On the stability of software clustering algorithms.
In 8th International Workshop on Program Comprehension (IWPC 2000), 10-11
June 2000, Limerick, Ireland, pages 211–. IEEE Computer Society, 2000.

[117] W. van der Aalst, H. A. Reijers, and A. Weijters. Business process mining: An
industrial application. Information Systems, 2007.

[118] A. van Deursen and T. Kuipers. Identifying objects using cluster and concept
analysis. In B. W. Boehm, D. Garlan, and J. Kramer, editors, Proceedings of the
1999 International Conference on Software Engineering, ICSE’ 99, Los Angeles,
CA, USA, May 16-22, 1999, pages 246–255. ACM, 1999.

[119] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In P. Lan-
gley, editor, Proceedings of the Seventeenth International Conference on Machine
Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July
2, 2000, pages 1103–1110. Morgan Kaufmann, 2000.

http://depfind.sourceforge.net

164 BIBLIOGRAPHY

[120] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering
with background knowledge. In C. E. Brodley and A. P. Danyluk, editors, Pro-
ceedings of the Eighteenth International Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001, pages
577–584. Morgan Kaufmann, 2001.

[121] N. Walkinshaw and K. Bogdanov. Applying Grammar Inference Principles to
Dynamic Analysis. In Proceedings of the 3rd International Workshop on Program
Comprehension through Dynamic Analysis, pages 18–23, 2007.

[122] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin. Reverse engi-
neering state machines by interactive grammar inference. In M. D. Penta and
J. I. Maletic, editors, 14th Working Conference on Reverse Engineering (WCRE
2007), 28-31 October 2007, Vancouver, BC, Canada, pages 209–218. IEEE Com-
puter Society, 2007.

[123] N. Walkinshaw, J. Derrick, and Q. Guo. Iterative refinement of reverse-engineered
models by model-based testing. In A. Cavalcanti and D. Dams, editors, FM
2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands,
November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer
Science, pages 305–320. Springer, 2009.

[124] Z. Wen and V. Tzerpos. An effectiveness measure for software clustering al-
gorithms. In 12th International Workshop on Program Comprehension (IWPC
2004), 24-26 June 2004, Bari, Italy, pages 194–203. IEEE Computer Society,
2004.

[125] T. A. Wiggerts. Using clustering algorithms in legacy systems remodularization.
In Proceedings of the Fourth Working Conference on Reverse Engineering, 1997,
pages 33–43, 1997.

[126] J. Wu, A. E. Hassan, and R. C. Holt. Comparison of clustering algorithms in
the context of software evolution. In 21st IEEE International Conference on
Software Maintenance (ICSM 2005), 25-30 September 2005, Budapest, Hungary,
pages 525–535. IEEE Computer Society, 2005.

[127] E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a Disci-
pline of Computer Program and Systems Design. Prentice-Hall, Inc., Feb. 1979.

Appendix A

165

Figure 1: The goal of the exrcise is to use the tool to improve the set of packages (5) for the classes (4).
The documentation (2) will help you make your choices.

Moving around (1) and (3)

• Drag the left mouse button on a white region
in the Workspace (1) to move around

• Drag the right mouse button, or use the scroll
wheel to zoom in or out

• The Navigator (3) can also be used to pan the
workspace

Adding Information (4)

To add information between classes:

Click the first item This will select it and turn it yel-
low. Then:

Left click Creates a green edge. The elements will
always be together whenever Next is pressed.

Right click Creates a red edge. The elements will
never be together from the next time you click
Next.

Making changes

You can change coloured links by right clicking on
them and selecting an item from the menu that ap-
pears. You can’t change the greyed out edges this
way — the Undo button must be used instead.

Locking packages

To tell the tool to not make any changes to a package,
right click it then select the “Lock module” option.
You can only undo this operation using the Undo (7)
button.

Refining the packages (6)

Pressing the Next button (6) will make a new set of
packages that match the information you supply. This
finalises the links between the classes, they can’t be
changed in future steps without using the Undo
button.

Undo (7)

The Undo button (7) returns you to the previous so-
lution. Any edges which are not greyed out will be
lost. This might be useful if the solution you get when
pressing Next isn’t what you want, or if you want to
go back to remove some already saved (shown in grey)
links.

Finishing (8)

Once you’re happy with the set of packages and can’t
see any more changes that should be made, press Fin-
ish. You’ll then add some extra information to your
packages: a short description and your confidence in
how good the module is, where 5 is best and 1 is the
worst.

166 APPENDIX A. APPENDIX

§A.1 Help Sheet Used in the Experiment

	Introduction
	Reverse Engineering
	Representing Software as a Graph
	Complexity of Flat Graph-based Representations
	Managing Complexity with Hierarchies

	The Problem of this Thesis: Hierarchy Generation for Graph-based Software Models
	Aims and Objectives
	Organisation and Contributions of the Thesis

	Literature Review
	Graph Representations of Software
	State Machines
	Hierarchical Extensions to State Machines
	Module Dependency Graphs
	The Common Problem: Automating the Abstraction Process

	Evaluating Hierarchies
	Metaheuristic Algorithms
	Hill Climbing
	Random Mutation Hill Climbing (or 1+1 EA)
	Genetic Algorithms
	Genetic Programming
	Performance of Metaheuristic Algorithms

	Automatic Hierarchy Construction for State Diagrams
	Business Process Mining

	Remodularisation
	ACDC: Pattern-based Remodularisation of MDGs
	Clustering
	Software Clustering
	Concept Clustering
	Graph Clustering
	Search Based Remodularisation
	Performance of Remodularisation Algorithms

	Summary of Applicable Techniques
	Aim 1: Applying Remodularisation to State Machines
	Aim 2: Addressing Qualitative Issues with Automated Remodularisation

	Concluding Remarks

	Remodularisation of State Machines
	Modularising State Machines with Bunch
	Generating Bunch-compatible Input
	Evaluation
	Case Studies
	Metrics
	Results
	Conclusions of the Empirical Study

	Over-fitting in Bunch
	Method
	Results

	Balanced Hierarchy Limitation
	Unbalanced Hierarchies in Open Source Software
	Results

	Unbalanced Hierarchies to Improve Bunch Results
	Random Node Deletions
	Mean MQ
	Methodology
	Results

	Conclusions

	Search-based Hierarchical Clustering
	Avoiding Over-fitting in Hierarchy Construction
	Searching Hierarchies

	Crunch
	Hierarchy Transformation Representations
	Label-based Representations
	Summary of Representations
	Search Algorithms
	Summary

	Partitioning Performance of Crunch with MQ
	Methodology
	Results
	Discussion
	Conclusions of the Partitioning Experiment

	Hierarchical Performance of the Symbol Gene
	Methodology
	Results
	Conclusions of the Hierarchical Study

	Alternative Fitness Functions
	Methodology
	Fitness Functions
	Search Configuration
	Metrics
	Results
	Discussion
	Conclusions of the Empirical Study

	Conclusions

	SUMO: Supervised Software Remodularisation
	Refining Modularisations
	Interactively Refining Modularisations
	Motivating Example
	The SUMO Algorithm
	Modularisation as a Constraint Satisfaction Problem

	Sizes of the R+ and R- Sets
	Worst-case
	Best-case
	General Case

	Empirical Evaluation of the SUMO Algorithm
	Methodology
	Case Studies
	Simulated Authoritative Decompositions
	Modularisation
	Simulating Interactive Refinement
	Results
	Discussion
	Threats to Validity

	Conclusions

	Human Factors Affecting SUMO
	Research Questions
	The SUMO Tool
	Seeding the Constraint Solver
	Committed Edge Visualisation
	The Revised SUMO Algorithm

	Methodology
	Stage 1: Tutorial
	Stage 2: Live Demonstration
	Stage 3: Example Task
	Stage 4: Main Task
	Pilot Study

	Empirical Study
	Results

	Discussion
	Threats to Validity

	Conclusions

	Conclusions & Future Work
	Summary of Achievements
	Remodularisation of State Machines
	Searching Hierarchies
	Domain Knowledge for Refinement
	Overall Conclusions

	Limitations and Future Work
	Crunch
	SUMO

	Final Remarks

	Bibliography
	Appendix
	Help Sheet Used in the Experiment

