
 Developmental Evaluation in Genetic
 Programming: A TAG-Based Framework

Tuan-Hao Hoang1, Daryl Essam1, McKay RI (Bob)2, Nguyen Xuan Hoai3
1 School of ITEE, University of New South Wales,

 Australian Defence Force Academy, Canberra, Australia.
Email: Hao: t.hao@adfa.edu.au

 Daryl: daryl@cs.adfa.edu.au
2 School of Computer Science & Engineering, College of

 Engineering, Seoul National University, Korea
Email: rim@cse.snu.ac.kr

3 Vietnamese Military Technical Academy, Hanoi, Vietnam.
Email: nxhoai@gmail.com

Abstract. We build on our previous feasibility studies [16, 17], which
demonstrated the impact of evaluation during development in the DEVTAG
system, and here present a full-fledged developmental system DTAG3P, with
developmental evaluation, based on Tree-Adjoining Grammars (TAG). While
DEVTAG used only a trivial developmental process, DTAG3P uses L-systems
to encode TAG derivation trees, the L-systems permitting a full developmental
process. DEVTAG was previously shown to dramatically out-perform standard
Genetic Programming (GP) on some structured families of problems; here, we
examine DTAG3P’s performance on one of these families, and find a further
major increment in performance over DEVTAG. DTAG3P achieves this despite
dispensing with two extra control parameters which it was necessary to
introduce into DEVTAG.

1 Introduction

Genetic Programming (GP) was developed by Koza [2] in 1992. Based on
observations of biological systems, it uses an abstraction of Darwin’s natural selection
mechanisms to evolve populations of solutions to problems. However unlike
biological systems, it is not very good at finding structured solutions, rarely finding
any hierarchical or modular structure, and exhibiting relatively poor re-use. By
contrast, hierarchical and repeated structures are widespread in biological systems,
with the homeobox gene complex being perhaps the best-known example outside the
biological community [19]. A general method to generate hierarchical, modular
structures would potentially improve both the scalability and the adaptability of GP
solutions, with consequent widening of the application of GP techniques.

There has been a wide range of approaches to solving this problem. For example,
Angeline [10] developed a technique called Module Acquisition, which is based on
the creation and administration of a library of modules for the automatic generation of
subroutines. Other studies have investigated Automatically Defined Functions (ADF)
[3], which is probably the most popular modularization method used in GP. Rosca
investigated an Adaptive Representation [4], which is based on the discovery of

useful building blocks of code. This approach greatly improved search efficiency on
the problems considered. However, all these techniques are imposed on the system by
programmer intervention, rather than arising as a natural consequence of the
evolutionary behaviour of the system; moreover, none has so far demonstrated the
scale of modularization and hierarchical organization apparent in biological systems.

A number of authors have built evolutionary developmental systems using
Lindenmayer (L) Systems. Jacob [14] investigated Genetic L-System Programming
using context-free L-systems (OL) with stacking capability and an evolutionary
algorithm to learn L-systems for the creation and development of artificial flowers.
Haddow et al [15] used L systems for digital circuit design, while Hornby et al [11-
13] used them to evolve generative design specification that could create more
complex modules from simpler ones.

Nevertheless, modular structure has not been clearly demonstrated in existing
developmental GP systems. We have argued in [16-17] that this is a consequence of
the single-evaluation used in these systems; that modularity provides no advantage for
an individual which is only evaluated once, hence evolution finds it difficult to select
for. However if an individual is evaluated at different stages of development, then
modularity can provide an advantage to the individual, not just the population, and
hence can be readily selected for. We argued that this is why modularity is so
ubiquitous in natural systems in which the individuals are evaluated multiple times on
problems of increasing difficulty throughout the developmental process, as occurs in
higher animals (more speculatively, it might also explain why modularity is much less
marked in the genotypes of lower organisms, and especially of prokaryotes).

As a pilot, in order to test the above hypothesis, in [16-17], we implemented
incremental evaluation in a new grammar-guided genetic programming system called
DEVTAG. The preliminary results on our chosen symbolic regression problems were
promising. However DEVTAG undergoes a trivial developmental process, analogous
to the development of undifferentiated colony species such as sponges (more
precisely, as implemented, there is no development at all, though the system is
logically equivalent to one with a simple developmental process). Its developmental
process consists simply of revealing more of the genotype of the individual at each
stage of development – conceptually, this corresponds to the simple developmental
processes of lower organisms, without the feedback loops and complexities of higher
organisms. Moreover, it is necessary to specify two extra parameters beyond those
normally required for a GP system, namely the initial incremental evaluation depth,
and the increment from level to level. Naturally, there is a cost in setting these pre-
fixed parameters, even if we know the form of the desired solutions, although
reasonable values are relatively easy to estimate. This paper represents the second
phase of our project: having confirmed through our pilot study the benefits of
developmental evaluation, we now introduce a new sophisticated developmental
process using a new representation, Developmental Tree Adjoining Grammar Guided
GP (DTAG3P), which uses L-systems to encode tree adjoining grammar guided
(TAG) derivation trees. We applied our new Grammar Guided GP (GGGP) system on
the previously-studied symbolic regression family of target functions and compared
the results with those in [16-17] of DEVTAG, TAG3P, and GP.

The paper is therefore organised as follows. The next section briefly describes
TAGs and TAG based Genetic Programming (TAG3P). Section 3 briefly reviews our

previous incremental evaluation based on TAG3P, and the resultant DEVTAG system.
Section 4 introduces L-systems, and our developmental approach to TAG based L-
system and Developmental Tree Adjoining Grammar Guided Genetic Programming
(DTAG3P). Experimental setups are described in section 5. Section 6 provides the
results and discussions. Conclusions and future work are laid out in the last section.

2 Tree Adjoining Grammar, TAG Based Genetic Programming

The following section gives a brief, somewhat intuitive introduction to TAG; a fuller
description of TAG may be found in [1].

2.1 Tree Adjoining Grammars (TAGs)

TAGs are tree-generating and analysis systems, first proposed by Joshi [5-6] for
Natural Language Processing (NLP) purposes.

TAG aims to more directly represent the structure of natural languages than is
possible in Chomsky languages, especially the process by which natural language
sentences can be built up from a relatively small set of basic linguistic units using
insertable sub-structures. Thus ‘The cat sat on the mat’ becomes ‘The black cat sat
lazily on the mat’ by the subsequent insertion of the elements ‘black’, and ‘lazily’. For
more detail see [18]. A tree-adjoining grammar comprises of terminal symbols, non-
terminal symbols, a start symbol, initial trees called α trees and auxiliary trees indicated
β trees. Figure 4 show the trees used in this paper. All individuals are composed of
instances of these trees – a diverse group of operators has been provided so that a
variety of solutions might be explored.

The key operation used with TAG is adjunction. Adjunction builds a new tree γ from
an auxiliary tree β and a tree α by inserting β into α at a specified place. Adjunction is
illustrated in Figure 1. This process may be formalized as described in [18].

Fig. 1. An example of the Adjunction operator

2.2 TAG Based Genetic Programming

Tree Adjoining Grammar Guided Genetic Programming (TAG3P) [1] is a GGGP
system, a typical only in the use of TAG derivation trees, rather than CFG derivation
trees, as the evolutionary representation. However this small difference leads to a
crucial new feasibility property: any rooted sub-tree of a TAG derivation tree is also a
valid TAG tree. As a result, one can stop at any time in growing a derivation tree, and
still have a valid tree. For example, if a derivation tree consisted of β1 adjoined to α
(both from figure 4), we could either stop at α before considering β1, generating the
derived tree X, or consider the entire tree and generate X+X.

3 Incremental Evaluation Based On TAG3P

Our developmental system (DEVTAG) in [16-17] uses incremental evaluation based
on TAG3P to evaluate fitness. The problem chosen for investigating our system is the
symbolic regression problem [7] with its increasing difficulty of polynomial degree as
target functions. We expect to be able to exploit this increasing difficulty using our new
representation and GP system. Our description below is adapted from [16].

To fulfill the requirement of tackling increasingly difficult problems throughout
development, the individual is separated into layers corresponding to the stages of the
developmental process of L-systems. For the simplest problems, only shallow depths
of the individual are used (corresponding to young biological organisms coping with
limited environmental challenges). Increasingly, more of the individual is used to
handle more complex problems (corresponding to an individual handling more
challenging environments as it grows and ages). The ability to do this is a consequence
of the feasibility property of the TAG3P representation. For the particular problem
family considered in [16-17], the program tree might be divided as follows:

Stage 1 for function F1 = X
Stage 2 for function F2 = X2+X
…
Stage 9 for function F9 = X9+X8+X7+X6+X5+X4+X3+X2+X.
We note that Fi+1=Fi*X +X (with i=1,2,..8); that is, the family of problems can be

solved incrementally. We used tournament selection, which only requires a fitness
ordering of individuals. For DEVTAG, we use a special multi-stage comparison to
generate this ordering. Corresponding to the insight that later-stage fitness is only
important if the individual survives earlier stages, we compare individuals on simpler
problems first; only if they are roughly equivalent on the simpler problems do we
evaluate them on more complex ones.

We denote the fitness of an individual I evaluated at stage j by F(I,j). For two
individuals (I1, I2), the comparison process (for minimisation) is:
i := 1;
WHILE |F(I1, i) - F(I2, i)| < ε
 i := i + 1;
IF (F(I1, i) < F(I2, i)) THEN I1 wins ELSE I2 wins

An example of this algorithm is shown in Figure 2, comparing the individuals I1
and I2 with fitness value arrays (corresponding to the 9 different stages), I1(10.05,

14.67… , 20.35), and I2 (10.06, 14.66, … , 10.35). In this case, I2 would be chosen
for evolution.

The individual representation and operators in DEVTAG are the same as in
TAG3P. Schematically, we could summarise the relationship as:

 DEVTAG = TAG3P representation/operators + Incremental Evaluation.

Fig. 2. An example of comparing two individual in DEVTAG

4 A New Approach To TAG-Based Developmental GP

In this section, we first briefly describe L-systems, then detail our new approach
(DTAG3P) on developmental genetic programming using a new representation called
TAG based L-systems (L-TAG).

4.1 L-Systems

L-Systems were introduced by Lindenmayer in 1968 [8], using the central concept of
a rewriting mechanism. The essential difference between Chomsky grammars and L-
systems lies in the method of applying productions. In Chomsky grammars,
productions are applied non-deterministically, whereas in simple L-systems they are
applied in parallel, and simultaneously replace all letters in a given word. This
difference reflects the biological motivation of L-systems, providing a commonly
used formalism to describe developmental processes of natural organisms. The
detailed definition of L-systems and their operation are given in [9].

4.2 TAG Based L-systems

An L-systems in our representation comprises of a triple G (V, ω, P), where V is the
set of alphabet, or set of predecessors {L1,L2, L3,…} (note that predecessors are
actually auxiliary trees (see β13-β16 trees from Fig. 4), this notation is merely indicative
of a pre-order traversal of those trees). The initial axiom ω is an initial tree adjoined
to a letter from the alphabet (a predecessor). The set of rewriting rules P = {Pi: i =
1..m} have the form Pi: Li →S1S2…Sn, where Si is either a β-tree or a predecessor.
For example, G’(V’, ω’, P’) denotes an L-system with V’={L1,L2,L3,L4}, ω’=(α1,L1),
and P’ is as below:

P’1: L1→ α1 β1 β2 L2 β3L4
P’2: L2→ α2 β2 β1β4 β3L2L3
P’3: L3→ α1 β5 β6 L4 β7 β8L1
P’4: L4→ α2 β1 L2 β4 β7L3
Figure 3 depicts a TAG derivation tree which may be generated from the L-system

above. It starts with a random initial tree, α1 tree, and letter L1. L1 is then replaced by
its successor. This successor has two letters L2, L4, which are then expanded by their
successors. This process is repeated until the number of developmental phases, which
was specified for the particular problem, is reached. In this paper, for the family of the
polynomial symbolic regressions (F1, F2, ..,F9), the developmental phases stop after
DEPTH=9 times repetitions.

Fig. 3. An example of TAG based L-systems

4.3 Developmental Tree Adjoining Grammar Guided Genetic Programming

DTAG3P uses L-TAG systems to encode Tree Adjoining Grammars and thus set the
language bias for a genetic programming system. As in Koza-style GP, DTAG3P
consists of five main components:

Initialization procedure: The process starts by randomly generating L-systems,
using a fixed parameter NUMRULES, the number of L-system rules. V is a set of
letters {L1,L2, …,LNUMRULES} (considered as β-trees from the auxiliary tree set in Glex,
see Fig.4), then axiom ω is generated by selecting a random α tree from the initial
tree set in Glex, adjoined to randomly chosen one letter from the alphabet. The
successor of each rule is subsequently augmented by β-trees randomly drawn from
the auxiliary tree set in Glex by using adjunction at random places until the chosen
number of β-trees (randomly chosen from MINBETAS to MAXBETAS) is reached.

After that, TAG derivation trees are produced by decoding the L-systems generated.
A parameter DEPTH is used to specify the number of cycles of replacement of a letter
by its successor.

Genetic operators:
- Crossover: Crossover is a two step process. First, rules are altered, with a 50%

chance of swapping successors of the same randomly chosen predecessor of
two parents, and a 50% chance of copying a random rule from a parent to a
child. After that, a normal sub-tree crossover operator occurs in a random
successor of a parent. If no crossover occurs, copy the parents to the new
children.

- Mutation: Mutation operator occurs in a random successor as a sub-tree
mutation operator in TAG3P.

Parameters: The minimum and maximum size of genomes (MIN_SIZE,
MAX_SIZE), size of population (POP_SIZE), maximum number of generations
(MAX_GEN), number of rules (NUMRULES), the minimum and maximum number
of β-trees (MINBETAS, MAXBETAS) in a successor and probabilities for genetic
operators.

Selection methodology and reproduction: These are as in typical evolutionary
algorithms. In this paper, tournament selection is used.

Fitness evaluation: DTAG3P uses the incremental evaluation described in the
previous section to evaluate fitness.

5 Experimental Setup

As in most grammar-based GP systems, the search space is delineated by a grammar. The
context-free grammar G for the first experiments in this paper has a function set including
unary and binary operators {+, - ,*, /, sin, cos, log, exp}. The terminal set is X.

Formally:
G = (N,T,P,S}
S = EXP – the start symbol
N = {EXP, PRE, OP, VAR, CONST}
T = {x, sin, cos, lg, ep, +, -, *, /},

(ep is exponential, lg is log function).
P consists of
EXP → EXP OP EXP | PRE EXP | VAR | CONST
OP → + | - | * | /
PRE → sin | cos | lg | ep
VAR → x
As from [18], this generates a corresponding TAG Glex= {N={EXP, PRE,

OP,VAR},T={X, sin, cos, log, ep,+, -, *, /, (,)}, I, A) where I∪ A is as in Figure 4.

Fig. 4. Elementary trees for Glex

Table 1. Parameter settings for the symbolic regression problem

Objective Find a symbolic regression function F9(GP, TAG) or F1, F2, F3, ..
,F9(DEVTAG, DTAG3P) that exactly fits a given sample of 20 (xi, yi)
data points.

Success Predicate Sum of errors over 20 points < ε = 0.01

Terminal sets X - the independent variable

Operators(Function set) +,-,*,/, sin, cos, exp, log

Fitness Cases The sample of 20 points in the interval [-1..+1].

Fitness Sum of the errors over 20 fitness cases.

Genetic Operators Tournament selection(3), crossover between rules, sub-tree crossovers
and sub-tree mutation on sucessors on DTAG3P, sub-tree crossovers and
sub-tree mutations using on TAG3P, normal standard crossovers and
muations using on GP

Parameters The crossover probability is 0.9. The mutation probability is 0.1.

Min/Max initial zise on
DTAG3P, TAG3P

2 to 1000

Max depth using for GP 20

Number of rules 4

Min/Max number of β-tree
in each successor

1 to 5

Population size 100,250,500,1000

Some preliminary results using our incremental evaluation method on this
incremental problem family were presented in [16]. There, we reported that, with the

same number of function evaluations, DEVTAG substantially outperformed both
Koza-style tree-based GP, and the original, GP-like TAG3P. For example, in an
experimental setting with population size 250, and a budget of 229,500 function
evaluations, DEVTAG’s probability of success was 33%, well above that achieved by
the other treatments – TAG3P’s probability of success was 8%, while no successes
were achieved in 100 GP runs. To investigate the effect of the full developmental
approach of DTAG3P, four experimental settings have been used by changing different
population sizes (POPSIZE = 100, 250, 500 and 1000), with the maximum generation
size (MAXGEN) changing correspondingly to keep a constant budget of 229,500
(9x51x500) function evaluations; these are to the same experimental settings as in [16]:

6 Results and Discussion
Table 2. Successful runs (from 100 runs)

POPSIZE 100 250 500 1000 Statistical Significance
DTAG3P 41 72 73 78 α=0.01
DEVTAG 13 33 27 3 α=0.01
TAG 3 8 9 4 α=0.01
GP 0 0 0 0 α=0.01

Fig. 5. Cumulative success frequency of DTAG3P, DEVTAG
and TAG vs. number of function evaluations

Fig. 6. Cumulative success frequency of DTAG3P
on each of the 9 problems

Table 2 shows the number of successful runs, which found the exact solutions, out
of 100 for each of the four treatments and four different population sizes. It is clear
that DTAG3P very substantially outperforms the other representations at all
population size settings. For example, for the POPSIZE=250 setting, DETAG3P’s
success was 72% which is well above that achieved from other treatments;
DEVTAG’s success: 33%, TAG: 8%.GP: 0 – it means that the GP runs were never
successful.

Figure 5 shows the cumulative probability of success of the three successful
treatments (for population size 250), plotted against the number of function
evaluations used in the evolution. The steepest and shortest curve has the lowest
computational costs in terms of number of function evaluation. To help in
understanding how DTAG3P incrementally solves the problems, figure 6 shows the
cumulative probability of success of DTAG3P, for all 9 symbolic regression
problems, for the particular case of population size 250. It is worth nothing that
DTAG3P gives us solutions to all the other eight functions, at no extra computation
cost.

From table 2, as with DEVTAG, DTAG3P, which uses the same incremental
evaluation method as DEVTAG, is very effective at finding extract or near-exact
solutions to the problem at all population size settings. However, DTAG3P’s
performance is much better than DEVTAG. We interpret this as resulting from
DTAG3P’s more flexible representation. Because of L-system self-adaptation, even
though we provide a fixed evaluation schedule, the system is free to adapt the amount of
change from evaluation point to evaluation point (unlike DEVTAG, with its pre-
determined initial depth and increment), allowing DTAG3P to find solutions more easily.

From figure 5, we see that it takes DEVTAG some time to find solutions at all, but
once it does so, it rapidly finds more. We interpret this as DEVTAG needing a
number of evaluations to get evolution running well at the lower levels, but once it
does, solutions to F9 follow rapidly. DTAG3P find solutions even faster and better as
a result of its re-rewriting mechanism. The patterns found in previous levels are
copied to the next levels, saving time by solving a complex problem built on simpler
ones. We note in passing that counting function evaluations under-estimates the
computational advantages of DEVTAG and DTAG3P. Because of the stepped
evaluation method, many of the evaluations of higher order functions are actually
never used in selection; in a system focused on performance rather than research, they
would not be evaluated at all (this point was studied in greater detail in [17]).

Figure 6 appears to confirm this interpretation, of gradually finding lower-level
solutions, with the solutions of higher complexity following fairly rapidly. There is a
strong suggestion from the very closeness of the curves, that once DTAG3P has found
building blocks for lower-level solutions, they are quickly assembled in forming the
higher-level solutions. By using the rewriting grammar mechanism, we believe
DTAG3P is achieving this by replicating building blocks and creating modularity. We
are currently in the process of implementing a method, based on tree-compression
methods, for measuring this directly. At the very least, the results strongly support the
view that incremental learning of a family of increasingly difficult functions has been
demonstrated.

To investigate whether DTAG3P’s performance subjective to the two new
parameters: number of rules (NUMRULES), and the minimum/maximum number of
β-trees (MINBETAS, MAXBETAS) in a successor, we did another experiment with a
population of 250 and 100 generations. The number of runs was 30. The similar (not
statistically significant difference) performance of DTAG3P with different settings for
these parameters indicates that, on the problems tried, these parameters do not
significantly affect DTAG3P’s ability to find exact solutions.

Table 3. Successful runs (from 30 runs,
change NUMRULES, keep other parameters the same)

NUMRULES 2 4 6
DTAG3P 76.6 70 83.3

Table 4. Successful runs (from 30 runs,

change MAXBETAS, keep other parameters the same)

MAXBETAS 3 5 7
DTAG3P 60 70 66.6

7 Conclusions and Future Works

The results strongly suggest that the DTAG3P approach, using a TAG-based analogue
of L-systems rewriting rules, support the hypothesis that evaluation during
development, on a family of problems of increasing difficult, can lead to incremental
learning (and also, to modular solutions – this is certainly our impression on viewing
the evolved genotypes).

The computational cost of the approach is also worth noting (though it is not the
primary focus of this work), DTAG3P being much less expensive than the other
approaches in computational cost, as well as yielding much more (a family of
functions rather than just one) in return for that computational investment.

 In the near future, we aim to apply this system to a range of problem families, and
to analyse its behaviour, particularly in terms of the modularity and complexity of
evolved solutions.

Acknowledgement

The fouth author was partly funded by a national research grant on
fundamental sciences, grant number - #203106, for doing this work.

References

1. Nguyen, Xuan Hoai, McKay, R. I. and Abbass, H. A.: Tree Adjoining Grammars,
Language Bias, and Genetic Programming. In Ryan, C., Soule, T., Keijzer, M., Tsang, E. P.
K., Poli, R. and Costa, E. (editors): Proceedings of EuroGP2003, LNCS, Vol. 2610, pp.
335-344, Essex, Springer-Verlag, 2003.

2. Koza John R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA,1992.Angeline, P.J “Evolutionary
Algorithms and Emergent Intelligence”, PhD thesis, Computer Science Department, Ohio
State University, 1994.

3. Koza. John R. Genetic Programming II: Automatic Discovery of Reusable Programs, MIT
Press, Cambridge Massachusetts, May 1994.

4. Rosca, Justinian P. and Ballard, Dana H.: Hierarchical Self- Organization in Genetic
Programming. In Rouveirol, C. and Sebag, M. (eds): Proceedings of the Eleventh
International Conference on Machine Learning, Morgan Kaufmann, 1994.

5. Joshi, A.K., Levy, L. S., and Takahashi, M.: Tree adjunct grammars, Journal of Computer
and System Sciences, 21(2), Pages 136 – 163, 1975.

6. Joshi A.K and Y.Schabes, Tree Adjoining Grammars, in G. Rozenberg and A. Saloma,
editors, Handbook of Formal Languages, Springer-Verlag, 69-123,1997.

7. Nguyen Xuan Hoai, McKay, R.I., Essam, D.L. and Chau, R.: Solving the Symbolic
Regression Problem with Tree Adjunct Grammar Guided Genetic Programming: The
Comparative Results.. In Yao, X. (ed): Congress on Evolutionary Computation (CEC2002),
IEEE Press, vol. 2, 1326-1331, 2002.

8. A Lindenmayer. Mathematical models for cellular interaction in development parts I and II.
Journal of Theoretical Biology, 18:280-299 and 300-315, 1968.

9. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag
(1990).

10. Angeline, P. J. Pollack, J. Evolutionary Module Acquisition, Proceedings of the 2nd Annual
Conference on Evolutionary Programming, pp. 154-163, MIT Press, 1993.

11. Hornby, Gregory S.: Measuring, Enabling and Comparing Modularity, Regularity and
Hierarchy in Evolutionary Design. In Beyer, H.-G. et al.: Proceedings of the 2005 Genetic
and Evolutionary Computation Conference, ACM Press (2005) Vol.2, 1729-1736.

12. Hornby, G. S. and Pollack, Jordan. B. Evolving L-Systems To Generate Virtual Creatures
Computers and Graphics, 25:6, pp 1041-1048. 2001.

13. Hornby, G. S. Generative Representations for Evolving Families of Designs. Genetic and
Evolutionary Computation Conference, pp 1678-1689, Springer-Verlag, 2003

14. Jacob, C.: Genetic L-system Programming. In Davidor, Y., Schwefel, P., eds.: Parallel
Problem Solving from Nature III, Lecture Notes in Computer Science. Vol. 866. (1994)
334-343.

15. Haddow, P.C., Tufte G., and van Remortel P,: Shrinking the genotype: L-systems for
Evolvable Hardware. In Liu, Y., Tanaka, K., Iwata, M., Higuchi, T. and Yasunaga, M.
(eds): Evolvable Systems: From Biology to Hardware, 4th International Conference, ICES
2001, Lecture Notes in Computer Science, Vol. 2210, Springer-Verlag, Berlin –
Heidelberg – New York (2001) 128 –139.

16. R.I. McKay, Tuan-Hao Hoang, D. Essam, and Nguyen Xuan Hoai, Developmental
Evaluation in Genetic Programming: The Preliminary Results, EuroGP 2006, Lecture Notes
in Computer Science (LNCS), vol. 3905, 280-289, Springer-Verlag, 2006.

17. Tuan-Hao Hoang, Daryl Essam, R.I(Bob) McKay and Xuan Hoai Nguyen, Solving
Symbolic Regression Problems using Incremental Evaluation in Genetic Programming, to
appear in Proceedings of IEEE Congress on Evolutionary Computation, IEEE Press, 2006.

18. Nguyen Xuan Hoai, R.I McKay and D. Essam. Representation and Structure Difficulty in
Genetic Programming, IEEE Trans on Evolutionary Computation, 10(2), 2006, 157-166.

19. Gerhard Schlosser and Gunter P. Wagner (eds.) Modularity in Development and Evolution,
The University of Chicago Press, 2004.

	4.3 Developmental Tree Adjoining Grammar Guided Genetic Programming

