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ABSTRACT
Self Modifying Cartesian Genetic Programming is a general
purpose, graph-based, developmental form of Cartesian
Genetic Programming. Using a combination of computa-
tional functions and special functions that can modify the
phenotype at runtime, it has been employed to find general
solutions to certain Boolean circuits and mathematical
problems. In the present work, a new version, of SMCGP
is proposed and demonstrated. Compared to the original
SMCGP both the representation and the function set have
been simplified. However, the new representation is also
two-dimensional and it allows evolution and development
to have more ways to solve a given problem. Under most
situations we show that the new method makes the evolution
of solutions to even parity and binary addition faster than
with previous version of SMCGP.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.1.2 [Software]: Automatic Programming

General Terms
Algorithms

Keywords
Genetic programming, developmental systems

1. INTRODUCTION
Self Modifying Cartesian Genetic Programming (SM-

CGP) is a generalization and modification of the graph-
based form of Genetic Programming (GP) known as Carte-
sian Genetic Programming (CGP) [8],[10]. In addition to
usual computational functions, this generalization includes
functions that can modify the program encoded in the
genotype. SMCGP is developmental in nature in that
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evolved programs encoded in the genotype can be iterated
to produce an infinite sequence of programs (a developing
phenotype). The fitness of a genotype can be measured
incrementally over time (after each iteration). In addition,
during iterations programs (phenotypes) are able to acquire
more inputs and produce more outputs. It has been shown
that this allows genotypes to be evolved that represent
general solutions to computational problems. For instance,
the technique has been shown to be able to find general
solutions to parity, binary addition, and also algorithms that
compute mathematical constants that are exact in the limit
(i.e. π and e) [4]. SMCGP has hitherto been based on a one-
dimensional form of CGP (i.e. one in which there is only one
row of nodes). In this paper we describe a two-dimensional
form of SMCGP (SMCGP2). The new technique is applied
to two well known problems: building even-parity solutions
and binary addition. We show that SMCGP2 can find
programs that appear to be general solutions, to the degree
tested, faster than SMCGP or any other previously known
technique.

2. FROM CGP TO SMCGP
CGP encodes (generally acyclic) computational structures

in the form a two-dimensional grid of primitive functions
(nodes) and the connections between them. The genotype
is a list of integers of three kinds: node connections, node
functions, and program outputs. The node connection genes
encode the absolute addresses in a data array where the node
gets its input data from. The node function genes encode
the absolute addresses of function types defined in a lookup
table. The program output genes hold the data addresses
where the program outputs are to be taken from. CGP
has been shown to be a highly competitive form of genetic
programming [13].

Unlike CGP, SMCGP encodes connections between nodes
using relative addressing [2]. That means that a node
with connection gene, g, at node position p in a genotype,
obtains its input data from a node at position p − g. It
retains function addresses. The major change from CGP
is that SMCGP includes functions that cause changes to
the representation itself. These function require extra genes
which encode information about how these changes are to
be carried out. The extra genes are called ‘arguments’.
Later versions of SMCGP introduced a new mechanism
for acquiring inputs and delivering outputs [4]. This new
version retains many of these features, however there are
some significant differences, and is fully described in the
next section.
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Gene Type Description
Function Integer address of function type Computational function of the node.
Constant Real Floating point number that is used to encode a value.
Input connections Address x 2 Relative addresses of the inputs to the node function.
SM Location Address Relative address where SM operations should occur.
SM Size Address Size of the associated SM operator.

Table 1: Genes needed to encode a node in SMCGP2.

3. REPRESENTATION
The representation used in SMCGP was designed to be

compact. However, this lead to the overloading of the
argument genes in each node, where the same gene could
be interpreted in different ways. This reduced the ability
for the programs to be human readable. In the new version,
the representation has been significantly changed to improve
readability.

Like standard CGP, SMCGP2 genotypes represent com-
putation using a 2D grid of nodes. As with CGP there
are two user defined parameters, height and width which
are respectively synonymous with what are termed in CGP,
number of columns and number of rows. If the height is
set to 1, then the representation becomes 1D, and similar to
the previous version of SMCGP. The content of each node
is described in Table 1. As with the previous version of
SMCGP, relative addresses are used for the node connections
of the graph. The address type is a pair of integers,
representing how many nodes back in the horizontal and
vertical dimensions the address refers to. The horizontal
address must always be greater than 0. This prevents
cycles in the program as nodes can only connect to nodes in
columns to their left.

If the function in a node is a SM operator, the SM location
and size genes are used. For the SM location, the addresses
can be negative. This means the SM operations can be
applied anywhere in the grid. The SM size address specifies
the height and width of the SM operator.

The constant gene is used to store a real numbered value
that can be used by the node’s function. For example, if
the node is the ‘Const’ function, then the value returned by
that node is the constant gene’s value.

All genes within each node are under evolutionary control,
and can be mutated with equal probability.

Some of the SM operators add empty space into the
program. Empty space did not exist in the previous version
of SMCGP, and is a natural consequence of operating in 2D.
Empty space can be converted to nodes in two ways: either
overwritten by SM functions, or mutated into functional
nodes. If a mutation operator is applied to an empty node,
it gets converted into a randomly generated node. Similarly,
a node can be mutated to an empty space. Genes encoding
empty space are redundant and are not used in calculating
fitness.

3.1 Interpreting a SMCGP2 Genotype
Interpreting the genotype in SMCGP2 is similar to that in

SMCGP. First, the phenotype is created by making a copy
of the genotype. All SM operations apply to this phenotype
and do not modify the genotype.

Next, the output nodes need to be identified. This
is done by scanning the phenotype from either top-left
to bottom-right (forwards) or from bottom-right to top-

Figure 1: Example showing how empty space affects
computing relative addresses. Empty nodes are
represented by X. From C to B, the relative address
is 2,1 - meaning 2 nodes to the left, and one node up.
From C to A, the relative address is 4,1. Note how
the empty nodes are not counted when computing
how many nodes back to connect.

left (backwards), and remembering which nodes have the
function type ‘Output’. The direction of the parse is a user
defined parameter of the experiment, and we investigate its
effect later in this paper.

Once the output nodes have been found, the values of the
nodes that connect to them can be computed. This is done
by following the relative addresses, in a recursive manner,
through the genotype. If a node contains a self-modifying
operation, then a copy of the node is appended to a ‘To Do’
list. After each iteration, the SM operations listed in the
‘To Do’ list are processed to produce the next iteration of
the phenotype. To prevent the phenotype from growing too
quickly and to improve human readability, the length of the
list is limited (here to just 2 operations). Hence, at most two
SM operations will occur per iteration.1. SM nodes have a
passive role in computation, and if they are called they pass
through the first input to the calling node.

Empty space is taken into consideration when computing
where relative addresses connect to. The relative address is
computed using only non-empty nodes. Figure 1 shows an
example of two address computations.

As with CGP and SMCGP, only nodes that are connected
to the outputs need to have their values computed. Even
with large genotypes a relatively small number of nodes are
in use, and hence the computation is efficient. Further, some
nodes may be connected to more than once, and their value
only has to be computed once.

3.2 Self Modifying Function Set
In work with the previous version of SMCGP, it was

determined that many of the self-modifying (SM) operators
were rarely or not effectively used. In the new version of
SMCGP, the set of SM operators has been simplified.

1As with SMCGP, it is also possible to make the insertion
onto the ‘To Do’ list conditional. For example, with numeric
problems, a node may only be appended when the first input
value is greater than the second.
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The set of SM operators is described in Table 2. SM
functions are now consistent in how they interpret the
location and size of their action.

SM operations have two parameters: SM Location (SML)
and SM Size (SMS). The location helps specify where in
the phenotype modifications will occur, whilst the size
determines how many nodes the operation may use. Where
in the phenotype the SM operation occurs is relative to
the location of the calling node (NL). For example, if we
consider the duplication function (‘DUP’), the nodes that
are duplicated are found by adding the location address of
the calling node to the SM Location (i.e. SML + NL).
The number of nodes to copy is specified by SMS, which
determines a region of a given height and width to copy.
The size of this region includes empty nodes. Nodes are
then duplicated and inserted at NL+ SML.

Other SM operations work in a similar fashion.

3.3 Program Input and Output functions
SMCGP also introduced other functions, and as these

were found to be beneficial they have been retained in
SMCGP2. These functions are listed in Table 2.

When a program is executed, the interpreter maintains
a pointer which points to a possible input of the program.
Calling INP returns the value at the current position, and
then moves the pointer to the next entry in the input
list. Using the INPP function returns the input at the
current position, and moves the pointer backwards. The
pointer loops around the input list, so that there is always a
valid input available. The SKIP function takes the numeric
constant encoded in the node, and moves the pointer that
many steps - again wrapping around as appropriate. It
then returns the input value at that position. This allows a
program to jump to any input in one call. Having functions
that return input values in this manner allows the program
to vary the number of program inputs with each iteration - it
just needs to add appropriate calls to one of these functions.
INP, INPP and SKIP do not connect to other nodes, i.e.
they have arity zero.

Similarly, the nodes used as outputs for the program have
a special OUTPUT function. The interpreter looks for
OUTPUT nodes when determining the program stored in
the phenotype. The number of OUTPUT nodes can change
as the program is iterated, and this allows the number of
program outputs to vary with iteration. Various measures
need to be taken if the number of OUTPUT nodes does not
equal the number of outputs defined by the task. If there are
no OUTPUT nodes in the graph, then the last n nodes in
the graph are used. If there are more OUTPUT nodes than
are required, then the right-most OUTPUT nodes are used
until the required number of outputs is reached. If the graph
has fewer OUTPUT nodes than are required graph, then
nodes are chosen as outputs by moving forwards from the
right-most node flagged as an output. If there is a condition
where not enough nodes can be used as outputs (as there are
not enough nodes in the graph), the individual is labeled as
corrupt and is given a bad fitness score to prevent selection.

4. EVOLUTIONARY ALGORITHM
As with SMCGP, a simple, 1+4 evolutionary strategy is

applied. The best individual in the population is used to
produce 4 offspring. The top ranked offspring replaces the
parent. Where there is no measured improvement in fitness,

the parent is replaced by an offspring of equal fitness. If all
offspring are worse than the parent, the parent is retained.
Crossover is not used in our examples, however SMCGP has
been tested with crossover and appears to function correctly.
Mutation used is probabilistic, with each gene having an
equal probability of being altered.

5. TEST PROBLEM: PARITY
Parity is a well studied problem in both genetic pro-

gramming and developmental systems. A previous form
of developmental CGP was able to find solutions up to 5
inputs, but was unable to find general solutions [11]. In the
first SMCGP paper, parity circuits of up to 8 inputs were
evolved - however they were not tested for generalization
[2]. Rule and grammar based systems have also been used
to grow parity solutions. For example, L-systems have been
used to generate a grammar for modifying GP trees that
solved parity up to 12 inputs [6]. Using artificial protein
rules, circuits up to 12 inputs were found [1]. In [1] the
authors also compared to direct (i.e. non developmental)
encodings, and were unable to produce circuits with more
than 4 inputs. In general, direct encodings are unable to
solve large instances of the parity circuit. In [12] circuits
with 22 inputs are directly evolved using a novel crossover
operator. General solutions have also been found using GP,
[7] evolved machine language programs that could iterate
over the bits in the input string and [14, 15] used recursion.
These approaches produced programs rather than circuits
to solve the problem. In contrast, the technique presented
in this paper evolves programs that produce circuits.

Here, SMCGP2 is evaluated on the same problem and
compared to SMCGP. SMCGP has been used to find
programs that can generate even parity circuits of any size
[3, 4], where the task is to evolve programs that iteratively
generate circuits of different numbers of inputs. On the first
iteration, the program implements a 3 input parity circuit.
On the next iteration, after the SM operations have been
applied, it implements 4 input parity. Each subsequent
iteration produces a parity circuit of the next size. For this
to function, the SM operations have to add new Boolean
functions to perform the computation and also new functions
to obtain the additional inputs. Fixed sized programs
can only solve for a specific number of inputs. SMCGP
was found to outperform more traditional approaches when
the number of inputs was relatively large for fixed sized
programs, e.g., with more than 5 inputs. SMCGP, however,
was able to obtain general solutions, which could solve a
problem of any size.

The same fitness function is employed here. In the case of
parity, to begin with, we evolve for three input bits. When
a successful solution is found, the fitness function requires
that the program produces a three input circuit, followed by
a four input circuit. The process continues in this way until
we obtain a phenotype that correctly implements a parity
circuit with twenty inputs. Fitness is defined as the number
of correctly predicted output bits over all circuit sizes tested.
The fitness function does not continue to test circuits that
fail to produce a parity circuit of a given size.

Two different function sets are compared. Both contain
all of the functions listed in Table 2. In addition, the “full”
set contains all possible 2-input Boolean functions. The
“reduced” set contains AND, NAND, OR and NOR.

To investigate the behaviour of SMCGP2 under various
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SM Function Description
DUP Extracts a section, SML+NL to SML+NL+SMS, and inserts at SML+NL. This

resizes the graph, extra space is left empty.
OVR Extracts a section, SML+NL to SML+NL+SMS, and copies in SML+NL. Nodes may

be overwritten, and the graph may be expanded if copied nodes go beyond the current
graph size.

DEL Deletes a section, SML+NL to SML+NL+SMS by replacing the nodes with empty
spaces.

CROP Crops a section, SML+NL to SML+NL+SMS. All other nodes are deleted.
DELROW Deletes the row at vertical component of SML+NL.
DELCOL Deletes the column at horizontal component of SML+NL.
ADDROW Adds a row at vertical component of SML+NL.
ADDCOL Adds a column at horizontal component of SML+NL.

Input/Output Functions Description
INP Returns the next input.
INPP Returns the previous input.
SKIP Skips N inputs, where N is the integer value of the constant stored in that node.
OUTPUT Flags a node as being used as an output.

Table 2: Description of SM and Input/Output functions. NL = Location of calling node, SML = Location
of SM action (i.e. the offset where the self-modification will occur), SMS = SM size (i.e. the size of the
modification). NL, SML and SMS are 2D-addresses.

conditions, the parity problem was evaluated under a large
number of conditions. This step allows us to chose the ‘best’
configuration for the algorithm, and allows us to compare
SMCGP2 to other approaches more easily.

All combinations of the following parameters were tested:
Genotype Width = 5, 10, 15, 20; Genotype Height = 1, 5,
10, 15, 20; Function sets = Full, Reduced; SM Size = 10,
100, 1000, 10000; Mutation Rates = 0.005, 0.01, 0.05, 0.1 .

Programs were evolved to solve parity from 2 to 20 inputs,
and the individual experiment was considered successful if
a program functioned correctly. Programs were then tested
on their ability to generalize by solving 2 to 24 inputs.

Experiments were repeated 10 times, for each of the 1,280
different parameter configurations. Evolution was limited to
10 million evaluations.

6. RESULTS
The overall success rate, over all parameter configurations,

was found to be 68.1%. 59.3% of all runs resulted in
programs that generalised to solve all sizes of parity circuit
tested. Table 3 shows the configurations with the best
performance in terms of their ability to generalize, the
number of evaluations required, with the different function
sets. All circuits were always able to generalize to the larger
parity circuits. Progams that are 1 node high do the worst,
and the smallest configuration 1 high x 5 wide is always
unsuccessful.

Table 3 shows the top ten best configurations for both the
full and reduced function sets. The best configurations have
similar performance, but the parameters vary considerably.
This shows that SMCGP2 may be tolerant to parameter
choices. Table 4 shows the average number of evaluations
to evolve to a given sized parity circuit (or more specifically
to find a program that when iterated produces all parity
circuits up to that number of inputs). The results are based
on the best ten configurations for both function sets. It
should be noted that the criterion for judging the quality was
the degree to which the evolved solutions generalized. The
results for the full function set show that SMCGP2 is better

than previously published results in SMCGP [4]. Since
extensive comparisons were made there to other approaches,
as far as we can tell, the SMCGP2 results are the most
efficient yet seen. The results also indicate that general
solutions are found at around 6 or 7 inputs, as the number of
evaluations required to solve further problems remains fairly
constant. The results for the reduced function set show that
SMCGP2 does not perform as well as SMCGP. The reasons
for this are currently unclear, but we expect that it may be
the result of the larger genotypes and larger search spaces
that SMCGP2 employs. Additionally, the self modifying
functions are different in SMCGP2, and it is possible that
a useful function has not been implemented. SMCGP2 also
appears to find general solutions at 6 or 7 inputs with the
reduced function set. However, it is important to remember
that these techniques solve for a single instance of the parity
circuit problem - and do not find general solutions.

Table 3 shows the best configurations, but it is also
interesting to investigate the effect of each parameter in
isolation. In Table 5, the results show that using the
full function set is preferable to the reduced function set.
Even though the search space is now larger (due to more
functions), the solution space is also likely to be much larger.

From Table 5, it appears that for the parity problem the
parse direction (i.e. if the graph interpreter starts looking
for outputs at the top-left (forwards) or from bottom-right
(backwards)) makes little difference to the success rate.
From Table 3 it is clear that working backwards is common
with the most successful and fastest configurations. In previ-
ous work with SMCGP both directions were examined, and
forwards was found to be better in some circumstances. It is
expected that this may be a problem dependent parameter.
Working forwards tends to produce more compact solutions,
as there are less active nodes in the phenotype. It is likely
that parity is too simple a problem to run into problems
with phenotypic bloat. In Table 9, the sizes of the graph are
kept fairly compact, despite the fact that the genotypes are
large and are interpreted backwards.

In SMCGP, a mutation rate of 0.1 was typically applied, a
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Average evaluations Std.dev Height Width Mutation Rate SM Size Parse Direction
Reduced Function Set
187,695 197,600 1 15 0.05 1000 Backwards
257,291 243,255 1 20 0.1 1000 Forwards
393,402 254,737 1 15 0.1 1000 Backwards
415,524 419,690 1 20 0.05 10000 Backwards
417,126 343,312 15 20 0.05 1000 Backwards
465,178 540,770 5 15 0.1 10000 Backwards
465,792 603,180 1 15 0.05 1000 Forwards
495,061 370,903 10 15 0.1 10000 Backwards
552,197 360,228 15 10 0.05 10000 Backwards
559,342 721,085 1 20 0.05 1000 Forwards
Full Function Set
10,973 8,477 15 10 0.1 1000 Backwards
13,442 14,066 1 20 0.05 10000 Backwards
15,867 9,647 1 20 0.05 1000 Forwards
16,506 18,575 1 20 0.1 10000 Backwards
20,074 12,546 1 15 0.1 1000 Backwards
22,029 18,990 5 10 0.1 10 Backwards
22,486 42,504 1 20 0.1 1000 Backwards
25,766 40,991 5 20 0.1 10 Backwards
30,755 44,223 5 20 0.1 1000 Forwards
34,096 49,501 5 15 0.05 10 Backwards

Table 3: The top 10 performing configurations per function set. These configurations were able to solve the
seen problems with the fewest evaluations and with 100% success.

SMCGP2, Full SMCGP2, Reduced SMCGP, Full SMCGP, Red.
Inputs Avg Std Dev Avg Std Dev Avg Avg
3 9,166 9,103 382,963 417,212 37,276 247,753
4 12,412 10,786 449,040 456,939 41,697 275,663
5 18,875 22,925 547,709 700,569 43,016 278,635
6 21,548 28,948 553,292 703,260 43,593 298,104
7 22,247 29,807 557,285 702,668 150,719 318,376
8 22,250 29,806 558,313 702,876 150,721 322,843
9 22,332 29,781 558,406 702,901 150,722 322,843
10 22,332 29,781 559,196 703,167 150,722 322,843
11 22,332 29,781 559,205 703,163 150,722 322,851
12 22,333 29,782 560,724 702,408 150,722 322,851
13 23,729 32,547 560,728 702,415 150,722 322,866
14 23,729 32,547 560,734 702,417 150,722 322,866
15 23,731 32,548 560,744 702,411 150,722 322,866
16 23,732 32,547 560,744 702,411 150,722 322,866
17 23,732 32,547 560,744 702,411 150,722 322,870
18 23,732 32,547 560,744 702,411 150,722 322,870
19 23,733 32,547 560,745 702,410
20 23,733 32,547 560,745 702,410

Table 4: Number of evaluations to solve parity. For SMCGP and SMCGP2 the evolved programs are
developmental. For SMCGP2, the results are the average performance of the top 10 best configurations.
Note best refers to best in terms of generalization, rather than speed of evolution.
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Func. Set Parse Direction % Success % Generalize
Full Backwards 87.5 75.3
Full Forwards 88.4 75.0
Full Combined 88.0 75.1
Reduced Backwards 59.8 54.5
Reduced Forwards 41.6 36.4
Reduced Combined 50.6 45.4

Table 5: Success rate and rate of generalization by
the direction (or where results from both directions
are combined) of the decoding of the phenotype and
by function set type. The relationship is unclear,
and this is again reflected in table 3. The combined
results show that the full function set is much better
at both evolving given problems as well as producing
generalized solutions.

Func. Set Mutation Rate % Success % Generalize
Full 0.005 84.2 74.1
Full 0.01 87.2 74.0
Full 0.05 89.9 75.1
Full 0.1 90.1 77.0
Reduced 0.005 33.2 30.3
Reduced 0.01 45.4 41.1
Reduced 0.05 63.6 56.5
Reduced 0.1 59.0 52.4

Table 6: Success rate and rate of generalization
by mutation rate and function set. It generally
appears that higher mutation rates are preferable.
In previous SMCGP work, a mutation rate of 0.1
was typically used.

value that was chosen after some informal experimentation.
In Table 6, it appears that for SMCGP2 a higher mutation
rate is generally better. This is in contrast to classical CGP,
where very low mutation rates have been found to be optimal
[9].

SMCGP2 introduces the new parameter of ‘SM size’. It
was important to investigate how this affects results, as there
was concern setting it too high would lead to phenotypic
bloat. However, the results from Table 7 show that
maximum larger sizes for the SM operations are preferable.
This is somewhat surprising as Table 9 shows that the
solutions are compact, and this is despite the ability for the
SM operations to make very large changes at each step.

Table 8 shows the effect of the initial height and width of
the genotype on evolution. The results for parity indicate
that there exists a sweet spot where the genotype is neither
too small to encode a solution (e.g. 1 node high by 5 wide)
or too big to encode a compact program. For all widths, at
height 20, there is a drop in the success rate for both the
evolution and for the ability of the programs to generalize.

Table 3 indicated that the best height for the genotype
is 1 node. This makes the genotype one dimensional, and
therefore superficially similar to the SMCGP representation.
In Table 9 the average change in size of the phenotype
at different iterations are shown (other results omitted
for space). The results show that SMCGP2 uses the 2D
representation during phenotypic development, and this
suggests that the 2D properties are important to SMCGP2.
The results also show that the growth is fairly well managed

Function Set SM Size % Success % Generalize
Full 10 78.8 78.5
Full 100 88.4 45.6
Full 1,000 93.1 87.6
Full 10,000 92.4 91.6
Reduced 10 49.2 49.0
Reduced 100 26.2 12.8
Reduced 1,000 63.7 57.2
Reduced 10,000 65.8 65.2

Table 7: Success rate and rate of generalization by
SM size and function set. In general, the larger
the amount of phenotype can change, the better the
Success rate.

in these cases, and there is no excessive bloat - despite the
fact the phenotype is limited to 1 million nodes. In future
work, it will be interesting to observe optimal genotype
dimensions for other problems.

As an illustration, Figure 2 shows an example of parity
circuit development. The left most program solves for 2
input parity. The next programs solve for 3,4 and 5 inputs.
The right-most program shows the phenotype solving for
12 input parity. Although there are obvious regularities, it
is interesting to note that the behavior of the active nodes
on the left differs throughout the developmental stages. In
previous work on parity with SMCGP, irregular growth was
not observed. We therefore speculate that SMCGP2 may
have interesting properties in producing irregular, complex
patterns.

7. ADDER
To verify that SMCGP2 can also function on other

Boolean problems, evolution was used to evolve a digital
adder. Previously SMCGP has been used to find solutions,
including general solutions, to this problem. Unlike parity
the number of outputs also increases as the number if inputs
increases. For brevity, the adder evolution was performed
using only the best configuration from the parity results.
This is unlikely to be the best configuration, and in future
work we will explore the parameter space for this problem.
The experiment was repeated 50 times.

Table 10 shows the average number of evaluations required
to solve to a given sized parity circuit. Evolution was
allowed to find programs that scaled from 1 + 1 bit adder
to 8+8 bit adder. All runs were successful. Further, all but
one run successfully generalized to solve up to 10+10 bit
adder. The results with SMCGP2 are highly competitive
with previously published results in SMCGP [4].

8. CONCLUSIONS
This paper has introduced SMCGP2, and has shown that

it is capable of efficiently evolving what appear to be general
solutions for parity and adder circuits. The results are either
better, or highly competitive, with previous work.

SMCGP2 has many advantages over SMCGP. The simpli-
fied representation and function set should make programs
more human readable. The use of a 2D representation allows
for much greater expressiveness of the phenotype. This may
allow evolution to find solutions to more complicated prob-
lems than was previously possible. We invite suggestions for
potential challenges.
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Full Function Set Reduced Function Set
Width Height % Success % Generalize % Success % Generalize
5 1 0.0 0.0 0.0 0.0
5 5 95.9 82.8 27.3 22.5
5 10 98.4 83.3 25.1 20.8
5 15 97.3 87.7 22.3 18.3
5 20 96.3 83.6 15.9 15.2
10 1 89.4 79.9 45.0 44.0
10 5 98.8 84.5 76.0 65.4
10 10 99.5 87.7 64.9 58.0
10 15 100.0 83.2 64.0 57.5
10 20 99.0 84.8 52.8 46.4
15 1 75.4 64.4 51.2 48.4
15 5 96.7 81.3 71.0 64.1
15 10 99.5 84.0 76.4 68.6
15 15 99.4 82.2 66.8 56.6
15 20 98.9 84.3 50.6 46.6
20 1 69.4 55.7 51.5 47.4
20 5 99.2 85.2 76.1 72.9
20 10 98.4 83.9 78.3 67.2
20 15 98.2 82.7 62.6 55.5
20 20 99.4 81.5 56.5 50.0

Table 8: Success rate and rate of generalization by function set type and by genotype size for evolution of
parity. Evolution is unable to find solutions when given a 5 x 1 genotype, which is probably because the
genotype is too small. For the full function set, the taller the genotype, the better the results. For the
reduced genotype, this does not appear to be the case. Here, heights 5 and 10 seem better for each width.

Full Function Set Reduced Function Set
Change between iterations Change from start Change between iterations Change from start

Inputs Width Height Width Height Width Height Width Height
2 23.5 3.8 6.0 1.2 22.5 7.9 6.5 1.9
3 12.7 1.6 22.3 2.9 16.4 2.6 29.6 4.3
4 16.4 1.7 39.9 4.4 18.7 1.8 47.7 4.1
5 18.3 2.3 54.1 7.0 22.6 1.6 69.0 5.1
6 24.8 3.1 77.8 9.4 32.3 2.1 102.1 6.6
... ... ... ... ... ... ... ... ...
19 9.9 1.2 175.6 21.3 13.3 1.8 253.8 27.6
20 9.9 1.2 185.4 22.5 13.3 1.8 267.1 29.4

Table 9: Results showing how the phenotype height and width changes between iterations and from the initial
starting size.

SMCGP2 SMCGP
n Avg Std Dev Avg
1 15,259 12,138 2,415
2 83,805 95,332 952,965
3 240,375 921,138 1,043,732
4 241,031 921,007 1,083,890
5 241,041 921,005 1,237,723
6 241,047 921,005 1,439,856
7 241,047 921,005
8 241,047 921,005

Table 10: Evaluations required to find an adder
capable of adding two n-bit numbers. Apart from
the 1-bit adder, SMCGP2 outperforms SMCGP [4].

9. FUTURE WORK
In future work, we will explore the capabilities of SM-

CGP2 further, and attempt to identify problems that have

previously been impossible to solve using evolution and
development. Another goal for future work is to explore
problems that do not have such obvious regularity as digital
circuits. Towards this goal, there are current results that
use SMCGP2 to further previous work on finding general
solutions to mathematical problems [5]. Here, the improved
human-readability is of particular help.

We expect SMCGP2 to be at least as expressive as
SMCGP, and as can be seen by previous work with SMCGP,
the technique should be capable of solving a wide range
of different problems. The ability for SMCGP, and by
extension SMCGP2, to revert to a non-developmental GP
is also a useful property of the representation.
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Figure 2: An example of a parity circuit generating program in SMCGP2. Each sub-image shows the
phenotype at a different stage in the development. The left most program solves for 2 input parity. The next
programs solve for 3,4 and 5 inputs. The right-most program shows the phenotype solving for 12 inputs.
Although there are obvious regularities, it is interesting to note that the behavior of the active nodes on the
left differs throughout the developmental stages.

11. REFERENCES
[1] T. G. Gordon and P. J. Bentley. Development brings

scalability to hardware evolution. In Proceedings of the
2005 NASA/DoD Conference on Evolvable Hardware,
pages 272–279, 2005.

[2] S. Harding, J. F. Miller, and W. Banzhaf.
Self-modifying cartesian genetic programming. In
H. Lipson, editor, Genetic and Evolutionary
Computation Conference, GECCO 2007, Proceedings,
London, England, UK, July 7-11, 2007, pages
1021–1028. ACM, 2007.

[3] S. Harding, J. F. Miller, and W. Banzhaf. Self
modifying cartesian genetic programming: Parity. In
A. Tyrrell, editor, 2009 IEEE Congress on
Evolutionary Computation, pages 285–292,
Trondheim, Norway, 18-21 May 2009. IEEE
Computational Intelligence Society, IEEE Press.

[4] S. Harding, J. F. Miller, and W. Banzhaf.
Developments in cartesian genetic programming:
Self-modifying CGP. Genetic Programming and
Evolvable Machines, 11:397–439, 2010.

[5] S. Harding, J. F. Miller, and W. Banzhaf. SMCGP2:
Finding Algorithms That Approximate Numerical
Constants Using Quaternions and Complex Numbers.
Accepted for publication in GECCO 2011, 2011.

[6] T.-H. Hoang, R. McKay, D. Essam, and X. H. Nguyen.
Developmental evaluation in genetic programming: A
position paper. Frontiers in the Convergence of
Bioscience and Information Technologies, 2007. FBIT
2007, pages 773–778, Oct. 2007.

[7] L. Huelsbergen. Finding general solutions to the
parity problem by evolving machine-language
representations. In J. R. Koza, W. Banzhaf, and et al.,
editors, Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 158–166,
University of Wisconsin, Madison, Wisconsin, USA,
22-25 July 1998. Morgan Kaufmann.

[8] J. F. Miller. An empirical study of the efficiency of
learning boolean functions using a cartesian genetic
programming approach. In Proceedings of the 1999
Genetic and Evolutionary Computation Conference
(GECCO), pages 1135–1142, Orlando, Florida, 1999.
Morgan Kaufmann.

[9] J. F. Miller and S. L. Smith. Redundancy and
computational efficiency in cartesian genetic
programming. IEEE Transactions on Evolutionary
Computing, 10:167–174, 2006.

[10] J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli and et. al, editors, Genetic
Programming, Proceedings of EuroGP’2000, volume
1802 of Lecture Notes in Computer Science, pages
121–132, Edinburgh, 15-16 Apr. 2000. Springer-Verlag.

[11] J. F. Miller and P. Thomson. A developmental
method for growing graphs and circuits. In
Proceedings of the 5th International Conference on
Evolvable Systems: From Biology to Hardware, volume
2606 of Lecture Notes in Computer Science, pages
93–104. Springer, 2003.

[12] R. Poli and J. Page. Solving high-order boolean parity
problems with smooth uniform crossover, sub-machine
code gp and demes. Genetic Programming and
Evolvable Machines, 1(1-2):37–56, 2000.

[13] J. A. Walker and J. F. Miller. Automatic acquisition,
evolution and re-use of modules in cartesian genetic
programming. IEEE Transactions on Evolutionary
Computation, 12:397–417, 2008.

[14] M. L. Wong and K. S. Leung. Evolving recursive
functions for the even-parity problem using genetic
programming. In P. J. Angeline and K. E. E. Kinnear,
Jr., editors, Advances in Genetic Programming 2,
chapter 11, pages 221–240. MIT Press, Cambridge,
MA, USA, 1996.

[15] M. L. Wong and T. Mun. Evolving recursive programs
by using adaptive grammar based genetic
programming. Genetic Programming and Evolvable
Machines, 6(4):421–455, 2005.

1498



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




