skip to main content
10.1145/2330163.2330268acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

MT-CGP: mixed type cartesian genetic programming

Published:07 July 2012Publication History

ABSTRACT

The majority of genetic programming implementations build expressions that only use a single data type. This is in contrast to human engineered programs that typically make use of multiple data types, as this provides the ability to express solutions in a more natural fashion. In this paper, we present a version of Cartesian Genetic Programming that handles multiple data types. We demonstrate that this allows evolution to quickly find competitive, compact, and human readable solutions on multiple classification tasks.

References

  1. H. A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25:265--281, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. F. Binard and A. Felty. Genetic programming with polymorphic types and higher-order functions. In Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO '08, pages 1187--1194, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Brameier and W. Banzhaf. A comparison of linear genetic programming and neural networks in medical data mining. Evolutionary Computation, IEEE Transactions on, 5(1):17 --26, feb 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. Chang and J. Ghosh. Principal curve classifier-a nonlinear approach to pattern classification. In Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on, volume 1, pages 695 --700 vol.1, may 1998.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. Clack and T. Yu. Performance enhanced genetic programming. In IN PROCEEDINGS OF THE SIXTH CONFERENCE ON EVOLUTIONARY PROGRAMMING, pages 87--100. Springer, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Eftekhari, H. A. Moghaddam, M. Forouzanfar, and J. Alirezaie. Incremental local linear fuzzy classifier in fisher space. EURASIP J. Adv. Signal Process, 2009:15:1--15:9, January 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Espejo, S. Ventura, and F. Herrera. A survey on the application of genetic programming to classification. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(2):121 --144, march 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. A. Fayed, S. Hashem, and A. F. Atiya. Self-generating prototypes for pattern classification. Pattern Recognition, pages 1498--1509, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Frank and A. Asuncion. UCI machine learning repository, 2010.Google ScholarGoogle Scholar
  10. G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34:1879--1881, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Guerin-Dugue and et al. Deliverable r3-b4-p task b4: Benchmarks. Technical report, Technical Report, 1995.Google ScholarGoogle Scholar
  12. P.-F. Guo, P. Bhattacharya, and N. Kharma. Automated synthesis of feature functions for pattern detection. In Electrical and Computer Engineering (CCECE), 2010 23rd Canadian Conference on, pages 1--4, may 2010.Google ScholarGoogle ScholarCross RefCross Ref
  13. P. Hao, L. Tsai, and M. Lin. A new support vector classification algorithm with parametric-margin model. In Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on, pages 420--425. IEEE, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Harding, J. F. Miller, and W. Banzhaf. Developments in cartesian genetic programming: self-modifying cgp. Genetic Programming and Evolvable Machines, 11(3--4):397--439, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Harding, J. F. Miller, and W. Banzhaf. A survey of self modifying cgp. Genetic Programming Theory and Practice, 2010, 2010.Google ScholarGoogle Scholar
  16. R. Janghel, A. Shukla, R. Tiwari, and R. Kala. Intelligent decision support system for breast cancer. In Y. Tan, Y. Shi, and K. Tan, editors, Advances in Swarm Intelligence, volume 6146 of Lecture Notes in Computer Science, pages 351--358. Springer Berlin / Heidelberg, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. X. Liu, R. S. Zhang, F. Luan, X. J. Yao, M. C. Liu, Z. D. Hu, and B. T. Fan. Diagnosing breast cancer based on support vector machines. Journal of Chemical Information and Computer Sciences, 43(3):900--907, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. F. Miller. An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO), pages 1135--1142, Orlando, Florida, 1999. Morgan Kaufmann.Google ScholarGoogle Scholar
  19. J. F. Miller, editor. Cartesian Genetic Programming. Natural Computing Series. Springer, 2011.Google ScholarGoogle Scholar
  20. J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evolutionary design of digital circuits - part I. Genetic Programming and Evolvable Machines, 1(1):8--35, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. F. Miller and S. L. Smith. Redundancy and computational efficiency in cartesian genetic programming. In IEEE Transactions on Evoluationary Computation, volume 10, pages 167--174, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. J. Montana. Strongly typed genetic programming. Evolutionary Computation, 3(2):199--230, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Oltean and C. Grosan. Solving classification problems using infix form genetic programming. In Programming, The 5 th International Symposium on Intelligent Data Analysis, M. Berthold (et al), (Editors), LNCS 2810, pages 242--252. Springer, 2003.Google ScholarGoogle Scholar
  24. L. Prechelt. PROBEN1 -- A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultat für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, Sep 1994.Google ScholarGoogle Scholar
  25. A. Robinson and L. Spector. Using genetic programming with multiple data types and automatic modularization to evolve decentralized and coordinated navigation in multi-agent systems. In E. Cantú-Paz, editor, Late Breaking Papers at the Genetic and Evolutionary Computation Conference (GECCO-2002), pages 391--396, New York, NY, July 2002. AAAI.Google ScholarGoogle Scholar
  26. M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  27. L. Spector, J. Klein, and M. Keijzer. The push3 execution stack and the evolution of control. In H.-G. Beyer, U.-M. O'Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, and E. Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2, pages 1689--1696, Washington DC, USA, 25--29 June 2005. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wikipedia. Matthews correlation coefficient -- wikipedia, the free encyclopedia, 2011. {Online; accessed 27-January-2012}.Google ScholarGoogle Scholar
  29. T. Yu and C. Clack. Polygp: a polymorphic genetic programming system in haskell. In Proc. of the 3rd Annual Conf. Genetic Programming, pages 416--421. Morgan Kaufmann, 1998.Google ScholarGoogle Scholar
  30. B.-T. Zhang and H. Muhlenbein. Balancing accuracy and parsimony in genetic programming. Evolutionary Computation, 3:17--38, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. MT-CGP: mixed type cartesian genetic programming

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      GECCO '12: Proceedings of the 14th annual conference on Genetic and evolutionary computation
      July 2012
      1396 pages
      ISBN:9781450311779
      DOI:10.1145/2330163

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 July 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,669of4,410submissions,38%

      Upcoming Conference

      GECCO '24
      Genetic and Evolutionary Computation Conference
      July 14 - 18, 2024
      Melbourne , VIC , Australia

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader