
Cartesian Genetic Programming on the GPU

Simon Harding and Julian F. Miller

Abstract Cartesian Genetic Programming is a form of Genetic Programming

based on evolving graph structures. It has a fixed genotype length and a

genotype–phenotype mapping that introduces neutrality into the representation.

It has been used for many applications and was one of the first Genetic Programming

techniques to be implemented on the GPU. In this chapter, we describe the

representation in detail and discuss various GPU implementations of it. Later in

the chapter, we discuss a recent implementation based on the GPU.net framework.

1 Introduction

Cartesian Genetic Programming (CGP) was one of the first Genetic Programming

representations to take advantage of the general purpose computing capabilities of

modern GPUs [5]. As with other evolutionary algorithms (EAs), CGP maps well

to the GPU architecture and is able to exploit the massive parallelism. But because

CGP is based on a fixed length graph that allows node reuse, its implementation is

distinct from the typical tree-based Genetic Programming (GP).

For those unfamiliar with CGP, an overview of the representation is provided in

Sect. 2. In Sect. 3 we provide a review of the previous work of CGP on GPU. We

see that GPU implementations on CGP have been used not only for typical machine

S. Harding (*)

Machine Intelligence Ltd, Exeter, UK, EX4 IEJ

e-mail: simon@machineintelligence.co.uk

J.F. Miller

Department of Electronics, University of York, York Y01 9UD, UK

e-mail: julian.miller@york.ac.uk

S. Tsutsui and P. Collet (eds.), Massively Parallel Evolutionary Computation

on GPGPUs, Natural Computing Series, DOI 10.1007/978-3-642-37959-8 12,

© Springer-Verlag Berlin Heidelberg 2013

249



250 S. Harding and J.F. Miller

learning problems such as regression, classification and image processing but also

for the fitness evaluation in complex fluid dynamics problems. Finally, in Sect. 4 a

recent implementation using an unusual programming approach is introduced.

2 Cartesian Genetic Programming

We give a brief overview of CGP. A more detailed account is available in the

recently published book [24]. In CGP [20, 21], programs are generally represented

in the form of directed acyclic graphs. These graphs are often represented as a two-

dimensional grid of computational nodes. The genes that make up the genotype

in CGP are integers that represent where a node gets its data, what operations the

node performs on the data and where the output data required by the user is to

be obtained. When the genotype is decoded, some nodes may be ignored. This

happens when node outputs are not used in the calculation of output data. When

this happens, we refer to the nodes and their genes as “non-coding”. We call the

program that results from the decoding of a genotype a phenotype. The genotype in

CGP has a fixed length. However, the size of the phenotype (in terms of the number

of computational nodes) can be anything from zero nodes to the number of nodes

defined in the genotype. The types of computational node functions used in CGP

are decided by the user and are listed in a function lookup table.

In CGP, each node in the directed graph represents a particular function and is

encoded by a number of genes. One gene is the address of the computational node

function in the function lookup table. We call this a function gene. The remaining

node genes say where the node gets its data from. These genes represent addresses

in a data structure (typically an array). We call these connection genes. Nodes take

their inputs in a feed-forward manner either from the output of nodes in a previous

column or from a program input. The number of connection genes a node has is

chosen to be the maximum number of inputs (often called the arity) of the node

functions used.

In CGP program data inputs are given the absolute data addresses 0 to ni minus 1

where ni is the number of program inputs. The data outputs of nodes in the genotype

are given addresses sequentially, column by column, starting from ni to niCLn 1,

where Ln is the user-determined upper bound of the number of nodes. The general

form of a Cartesian genetic program is shown in Fig. 1. If the problem requires no
program outputs, then no integers are generally added to the end of the genotype.

In general, there may be a number of output genes (Oi ) which specify where the

program outputs are taken from. Each of these is an address of a node where the

program output data is taken from. Nodes in columns cannot be connected to each

other. In many cases graphs encoded are directed and feed-forward; this means that

a nodemay only have its inputs connected to either input data or the output of a node

in a previous column. The structure of the genotype is seen in the schematic in Fig. 1.

All node function genes fi are integer addresses in a lookup table of functions.



Cartesian Genetic Programming on the GPU 251

C0,0

C0,a

F0
n

F1
n+1

C
r−1,0

C
r−1,a

F
r−1

n+r−1

C1,0

C1,a

C
r,0

C
r,a

F
r

n+r

F
r+1

n+r+1

C2r−1,0

C2r−1,a

F2r−1
n+2r−1

C
r+1,0

C
r+1,a

C
cr,0

C
cr,a

F
cr

n+cr

F
cr+1

n+cr+1

C(c+1)r−1,0

C(c+1)r−1,a

F(c+1)r−1
n+(c+1)r−1

C
cr+1,0

C
cr+1,a

0

1

n−1

O0

O
m

O1

F0C0,0 C0,aF1C1,0 C1,a F(c+1)r−1 C(c+1)r−1,0 C(c+1)r−1,a O0O1 O
m

Fig. 1 General form of CGP. It is a grid of nodes whose functions are chosen from a set of

primitive functions. The grid has nc columns and nr rows. The number of program inputs is ni
and the number of program outputs is no. Each node is assumed to take as many inputs as the

maximum function arity a. Every data input and node output is labelled consecutively (starting

at 0), which gives it a unique data address which specifies where the input data or node output

value can be accessed (shown in the figure on the outputs of inputs and nodes)

All connection genes Cij are data addresses and are integers taking values between

0 and the address of the node at the bottom of the previous column of nodes.

In our work here, we have used a one-dimensional geometry (one row of nodes).

We have also adopted some of the features used in a developmental form of

CGP [12]. We use relative connection addresses (rather than absolute), in which

a connection gene represents how many nodes back (on the left) the node gets it

inputs from. When these addresses point beyond the left end of the graph, zero is

returned as a node input. The way we handle inputs and outputs is also different from

classical CGP and also follows the method used in [12, 13]. This requires adding

additional argument genes to all nodes (so nodes now have function, connection and

argument genes), that is, a single positive floating point constant. Inputs are handled

via functions: INP, INPP and SKIPINP. These functions ignore their connection

genes; they return the input in the array of inputs given by an input pointer variable.

After INP (INPP) the pointer is incremented (decremented). In the case of SKIPINP,

the pointer is incremented by the argument of SKIPINP and then the mod operation

(by the number of inputs) is taken (this ensures a valid input is always obtained).

A function OUTPUT allows the input/output interpreter to find which nodes to use

as output nodes at run time. The location and number of OUTPUT nodes can change

over the run time of a program.When the genotype is decoded, the interpreter starts

at the beginning of the encoded graph and iterates over the nodes until it finds

the appropriate number of OUTPUT nodes. It then evaluates (recursively) from

these nodes. The interpreter has features that allow it to cope when the number

of OUTPUT nodes is different from the required number of outputs. If there are

more OUTPUT nodes found than are needed, the excess nodes are simply ignored.

If there are too few (or none), the interpreter starts using nodes from the end of the

graph as outputs. This ensures that programs (of sufficient size) are always “viable”.



252 S. Harding and J.F. Miller

3 CGP on GPUs

Since 2007, several different implementations of CGP have been developed using

different platforms and targeting different applications.

The first publication that reported an implementation of CGP on GPUs bench-

marked the algorithm on regression and Boolean problems [5]. It showed that,

compared to a naive, CPU-based C ] implementation, the GPU was able to execute

evolved programs hundreds of times faster. The paper used the Microsoft Acceler-

ator framework [26], which is a .Net library for the GPU. Accelerator is limited to

performing vector operations and cannot exploit the rich programming capabilities

that recent graphics cards allow. However, it provides a simple method for GPU

development. To run CGP using Accelerator, an existing CPU-based implementa-

tion was converted to use the Accelerator vector as the data type. The function set

contained functions such as add and subtract that would operate on vectors and

perform the chosen operation on the elements of the vectors to produce an output

vector. Using this approach, each column of the input dataset was presented as a

vector. The output of the programwould be a single vector, containing the predicted

outputs for each row. The fitness function was also implemented using Accelerator.

On the GPU, the difference between the predicted and actual outputs was computed,

and then a reduction was performed to find the sum of the differences. In this

chapter, the EA and the interpreting of the genotype were done on the CPU, with

the fitness evaluation and the execution of the individual done on the GPU.

A follow-up paper investigated the use of Accelerator for artificial developmental

systems [6]. In this scenario, an artificial developmental system is defined as 2D

cellular automata, where each cell contains a CGP program to define its update

rules. For this problem, the GPU was seen as an ideal platform. Cellular automata

are inherently parallel systems, with each cell determining the next state based on

the state of its neighbours at the current time step. Although such developmental

systems had been successfully implemented on the CPU [23], they tended to be

small as the computational demands are high. Using the GPU, it was found that

it was possible to execute large cellular automata, with complex programs and for

more time steps than would have been practical on the CPU.

The update process of the artificial developmental system shares a large number

of similarities with morphological image operations. Here, a kernel takes the values

of a neighbourhood of pixels and outputs a new value for the centre pixel of that

neighbourhood. A simple example is a smoothing operation that outputs a weighted

sum of the neighbouring pixels. Although weighted sums are the most common

forms of these kernels, it is possible to use complicated expressions, including

evolved programs. As expected, it was found that CGP on the GPU was able

to rapidly find such programs [4, 7, 8]. Before such GPU implementations were

available, most work on evolving image filters was restricted to fitness evaluation

with a single 256 � 256 (or smaller) image. This led to problems of overfitting.

However, by implementing the processing on the GPU, many images, each with

different properties, could be efficiently tested.



Cartesian Genetic Programming on the GPU 253

Initially, suitable GPUs for GPGPU were relatively expensive and obscure. How-

ever, they quickly became a standard component in recent systems. For example,

when a student computer lab was updated, it became possible to test the use of

multiple GPUs as part of an ad hoc cluster [11]. Previous versions of CGP on

GPUs performed evaluated one individual at a time, with the fitness cases being

operated on in parallel. Using a cluster of GPUs, it was possible to evaluate the

population in parallel, which in turn increased the speed at which the population

could be evaluated.

Evaluating programs with loops and recursion can be extremely computationally

expensive, and this is one of the reasons that evolution of such programs is under-

represented in the literature. Using GPUs though reduces this computational cost

significantly. Although CGP is typically used to evolve feed-forward expressions,

by removing the restriction that nodes must connect to previous columns, it is

possible to evolve cyclic graphs. It is possible to evaluate cyclic CGP on the GPU

very efficiently and process individuals hundreds of times faster than with a single

CPU [18].

All of these previous examples looked at more traditional applications of GP,

such as regression and classification. However, GP can also be used for other

applications—such as shape design [2, 15, 19]. In [10], GPUs were used to evaluate

a computational fluid dynamics (CFD) simulation to test an evolved wing design.

A form of CGP based on Self-Modifying CGP [12, 13] was used to generate

the cross-sectional shape of an airfoil. This was then simulated to determine its

lift and drag properties. Using the GPU, the simulation speeds were dramatically

improved. To further increase performance, an ad hoc cluster of GPUs was used to

evaluate the population in parallel. Care was taken to ensure that the EA could run

totally asynchronously, as CFD simulations vary in how long they take to execute

depending on factors such as how much turbulence is generated.

4 Example: CGP for Classification

4.1 GPU.NET

As shown in previous sections, GPU programming often requires specialist pro-

gramming skills. Although the development tools have been considerably improved

in recent years, they are still difficult to work with. In the literature, we see that there

are many different ways to programGPUs and that EA have been implemented with

most of the common types. Most EAs have been written using NVidia’s CUDA, with

a few more recent examples using OpenCL. It is also possible to write low-level

shader kernels (using Cg, OpenGL or DirectX); however these are targeted for

graphics programming, and the language semantics make implementing “general

purpose programs” trickier. Tools such as MS Accelerator can generate, or use,

shader programs—but have the complexity abstracted away from the developer.



254 S. Harding and J.F. Miller

CGP has previously been implemented in both CUDA and Accelerator. However,

in this chapter we present an implementation based on a recent commercial,

closed-source tool for programmingGPUs from TidePowerd called GPU.NET. Like

cuda.net and MS Accelerator, GPU.NET is designed to work with Microsoft’s .Net

Common Language Runtime (CLR). GPU.NET’s main feature is that it converts

Intermediate Language (IL) in an already compiled .Net assembly to device code

(e.g. PTX instructions for NVidia graphics cards). GPU.NET’s tool rewrites the

assembly converting flagged methods into kernels that can run on a GPU; it also

automatically adds in new functionality to handle transferring data and launching

the kernels. Kernels can be written in any .Net-managed language, such as C ], and

use the same threading and memory model as CUDA. An example kernel is shown

in Listing 1.

Writing GPU code in this way has some benefits and also some drawbacks.

Currently there are no supplied GPU debugging tools. However, it is very easy to

execute the code on the CPU and use the CPU debugging tools. Further there is

difficulty in determining how the code has been translated and what optimisations

have been (or can be) made. It should be noted that the generated PTX is further

compiled by the device driver before execution. Compared to a compiled native

application, there is a small overhead in using .Net to call unmanaged code (i.e.

the functions in the device driver). Each function call to native code can have an

overhead of a few microseconds. Therefore, as with all GPU programming, care has

to be taken to ensure that the unit of work given to the GPU is sufficiently large to

make the overheads negligible.

Listing 1 Example showing the kernel code to element-wise add two vectors of numbers together

[Kernel ]

p r i v a t e s t a t i c v o i d Add( f l o a t [ ] i npu t1 , f l o a t [ ] i npu t2 , f l o a t [ ] r e s u l t ) f

i n t Thread Id = BlockDimension .X � Block Index .X + Thread Index .X;

i n t To t a l Th r e ad s = BlockDimension .X � Gr idDimens i on .X;

f o r ( i n t i = Th read Id ; i < i n p u t 1 . Leng th ; i += To t a l Th r e ad s )

r e s u l t [ i ] = i n p u t 1 [ i ] + i n p u t 2 [ i ] ;

g

p u b l i c s t a t i c v o i d AddGPU( f l o a t [ ] i npu t1 , f l o a t [ ] i npu t2 , f l o a t [ ] r e s u l t ) f

Launcher . S e t B l o ckS i z e ( 1 2 8 ) ;

Launcher . S e tG r i d S i z e ( i n p u t 1 . Leng th / (128�128 ) ) ;

Add ( i npu t1 , i npu t2 , r e s u l t ) ;

g

4.2 A GPU-Based Interpreter for CGP

Looking back at previous CGP implementations and other work in the field, we

see that there are two methodologies for implementing GP on GPUs. One is to

compile native programs for executions on the GPU, where candidate individuals

are converted to some form of source code and then compiled before fitness

testing. In an early example of GP on the GPU, one implementation compiled



Cartesian Genetic Programming on the GPU 255

individual programs from generated Cg shader code and then loaded into the GPU

for execution [1]. The MS Research Accelerator toolkit generates and compiles a

DirectX shader program transparently. It then executes this program. In [9], CUDA

C programs were generated from the GP individual, compiled to a GPU “cubin”

PTX library and then executed on the GPU. With CUDA, this PTX code needs

further just-in-time compiling by the graphics driver.

This process of pre-compilation leads to a significant time overhead and in

general means that this approach is most suited where there is a large amount of

data to be processed and the evolved programs are sufficiently complicated.

Another methodology involves writing an interpreter that runs on the GPU as a

kernel, which executes a set of operations on the data. The interpreter runs the same

evolved program over every element in the dataset and does so in parallel. Typically

in the interpreters, each thread only considers one fitness case. The benefit of this

approach is that the GPU program only needs to be compiled and loaded once and

that the only thing that changes is the data that represents the programs to be tested

for fitness. The interpreter approach has been used with CUDA [17,25] and DirectX

shaders [27]. Without the pre-compilation overhead, the interpreters work well for

smaller amounts of data and for shorter programs. However, interpreters introduce

their own performance issues, as there is now the continuous overhead of parsing the

evolved program in addition to performing the computation. Fortunately on GPUs,

the branching that is typically required in an interpreter is handled very efficiently.

With a GP tree, the interpreter for the tree can be a very straightforward

implementation. GP trees are typically binary trees, and there is no obvious

redundancy in the encoding. This means that interpreters can use and read a reverse

Polish version of the tree and use only two registers to store intermediate results.

The representation for CGP introduces a number of features that mean the

implementation is slightly more complicated. In CGP nodes in the graph are often

reused; therefore, the result for that computation (and all proceeding computations

in that node’s subtree) can be cached to avoid re-computing their value. With the

normal CPU implementations, this is not a problem as there is typically a lot of

working memory available and the performance penalties for what memory is used

are hidden by the compiler. With a CUDA GPU, there is a multilayered memory

hierarchy that can be extremely limited, depending on the “compute capabilities” of

the hardware.

For versions 1.0 and 1.1, each multiprocessor has only 8,000 32-bit registers.

In version 1.2, this was increased to 16,000 and in version 2 this is 32,000. The

registers are the fastest memory to work with on the GPU. The next level up in the

hierarchy is the shared memory. This is also fast memory, but again is very limited

with 16KB of storage on 1.x compute capabilities and 48KB on 2.x compatible

hardware. The top level in the hierarchy is the global memory that can be very large,

but can have significant performance penalties in use, as there may be conflicts and

caching issues.

With the CGP interpreter, we have to be very aware of how these mem-

ory constraints will impact the node reuse. CGP genotypes typically include a

lot of redundancy in the form of neutral, unconnected nodes. In a good CPU



256 S. Harding and J.F. Miller

implementation, the nodes in the graph will be analysed before execution to

determine which nodes are involved in the computation. This means that not all

nodes in the graph need to be executed. In a GP tree, all nodes are active in

the computation (unless there are simplifications that can be determined before

execution). CGP genotypes are fixed length, so the maximum number of program

operations is limited; further the length of the program stored in the genotype does

not bloat over time [22], which has implications for perceived efficiency that we

observe later in this chapter. Further, CGP also allows for multiple program outputs

to be considered. This also impacts the implementation, as each of these outputs

needs to be held in memory.

The function set used here consists of the mathematical operations C; ;�;�,

log./, exp./,
p

./ and sin./. The genotype size was set to 100,000 nodes. Each gene

has an equality probability (0.01) of being mutated. A 1C4 evolutionary strategy

(ES) was used [24].

To test using GPU.NET, three different interpreter strategies were considered.

All three strategies were implemented to run the same format instruction code (IC).

In the next section, the instruction code is discussed. The following section describes

how the different strategies worked.

4.3 Generating the Instruction Code

Generating the “interpreted code” (IC) from CGP requires a number of steps, which

are all performed on the CPU side. In the first step, the genotype is analysed to

determinewhich nodes are to be used as outputs. This is done by reading through the

nodes to find special “OUTPUT” functions. More information on this approach can

be found in [12,13]. Once the output nodes are determined, the active computational

nodes can be found. Essentially this is done by recursing backwards through the

connections from each of the outputs, but in reality this can be most efficiently

implemented in a linear way. At the same time the number of times a node is reused

is also counted.

From this the IC itself can be generated. In this interpreter model, each line in

the IC contains a function, the addresses of two source registers and the address of

a destination register. The interpreter here allows for ten working registers. When

the interpreter runs a program it performs the function on the values stored in the

source registers and stores the output value in the destination register.

Hence the next step in the process is to work forward through the active nodes

to write out each step of the IC. For each node, a register is selected (from a stack

of currently available registers) to store the output result in. This register address is

then stored in a dictionary alongside the node index. The source registers for this

node are computed using previous entries in this dictionary.

There are two circumstances in which there will be no source register in the

dictionary: nodes that return inputs and nodes that have connections whose relative

address is beyond the edges of the graph, in the former such connections return zero.



Cartesian Genetic Programming on the GPU 257

For functions that return a program input, the interpreter has a special instruction

that can load (i.e. copy) a value from the input dataset to a destination register.

Using the counter stored in the initial parsing and by keeping count of howmany

times the register was read from, the converter knows when a value in a register will

no longer be used. When this happens that memory location is released to be used

by further operations. To release the address, the address is just pushed back into

the stack of available registers.

In the work here, we consider only one output per program. This value is copied

into shared memory so that it can be returned from the GPU. In future work, this

can easily be expanded to copy the output to shared memory whenever an output

node is computed.

4.4 The Interpreters

Three different interpreters were written. The first places the interpreter loop on the

host (CPU) side, with the program instructions implemented as linear algebra-style

vector operations. In this setup, the interpreter’s loop runs on the host and calls a

GPU function to operate on a vector of data. Each vector represents one column of

data in the dataset, with the data being aligned so that all elements at a given index

are from the same row. Having the interpreter loop on the CPU removes the need

for the GPU to implement a branching structure. In future systems, it would also

simplify the implementation of operations that operate across rows (such as “min”

or “max”). The implementation of these vector operations is also convenient as the

memory access does not run into any bottlenecks, as the memory access patterns

are optimal for the GPU. The interpreter uses the register pattern described above to

hold intermediate results, with each register being a vector in global memory. As the

length of these vectors is the same as the number of rows in the data, there may be

issues with memory. The GPU needs enough global memory to hold the dataset, as

well as the output vectors and ten vectors to use as working registers (see Sect. 4.5).

TidePowerd does not allow for the creation of arrays that are local to a kernel.

So the next interpreter method uses the fast shared memory to store the working

register values. However, as mentioned previously, there is a lack of available shared

memory on the GPU. This means that the number of concurrent threads (i.e. the size

of the thread block) has to be relatively small. On the compute capability 1.3 devices

used here, the shared memory is 16KB. With ten working registers using 4 bytes per

floating point number, there is (theoretically) a maximum of 409 threads per block.

However, we used a thread block size of 384, which is the next smallest power of 2.

This, in principle, should allow for full occupancy of the GPU.

As the number of threads per block is very limited and fewer than the number

of processors available, there may be a risk of underutilising the GPU. In the third

implementation, the registers were moved from the fast shared memory to slower

global memory. This then meant that more threads could execute per block—and



258 S. Harding and J.F. Miller

Table 1 For the interpreter, program length and the number of working

registers required are important parameters. These results show how

they vary depending on the size of the genotype

Program length Peak registers used

Genotype width Avg. Std. dev. Avg. Std. dev.

16 3.6 2.4 2.6 0.8

32 4.6 3.3 2.8 1.0

64 5.2 4.2 3.0 1.2

128 6.0 5.4 3.1 1.4

256 6.6 6.3 3.2 1.6

512 8.0 8.3 3.5 2.0

1,024 9.0 9.2 3.6 2.0

2,048 9.2 10.1 3.6 2.1

4,096 10.5 12.4 3.8 2.5

8,192 12.4 14.9 4.0 2.7

16,384 13.6 16.6 4.2 3.0

32,768 14.8 18.4 4.3 3.3

65,536 17.3 21.8 4.7 3.8

131,072 16.8 23.2 4.5 3.8

262,144 19.7 25.3 5.0 4.3

hence, more processors could be used in parallel. However, now the register memory

is a slower resource.

In previous work using interpreters, each thread dealt with one fitness case at

a time. In this work, we also investigated the possibility of testing multiple fitness

cases per thread.

4.5 Sizing for Interpreter Parameters

To determine the number of registers needed and the maximum amount of storage

we needed for the interpreter, we analysed the requirements of randomly generated

genotypes. Although this does not provide the true requirements of evolved

programs (which can grow within the bounds of the genotype), it gives an indication

of the requirements.

Table 1 shows the behaviour of the program length and maximum number of

working registers required for various program lengths. For the working registers

(the more constrained parameter) we found that 8.5 registers should be sufficient

95% of the time. For convenience, we chose to use ten registers (which covers

97% of the randomly generated programs). The maximum program length that can

be used with GPU.NET is more flexible. The results indicated that 50 operations

should be sufficient, but as this resource is not as limited, we use a maximum length

of 200 operations.



Cartesian Genetic Programming on the GPU 259

4.6 Fitness Function

For benchmarking, two fitness functions were implemented. Both are based on the

KDD Cup Challenge 1999 data [3, 16]. One fitness function was a typical classi-

fication problem where the fitness of an individual was a measure of the accuracy

in detecting normal or abnormal network traffic (in the original problem, the type

of abnormal traffic is the classifier output). The fitness itself is also calculated

using a kernel on the GPU. To calculate the score, 512 threads were launched

(each to operate on 1=512 the data). Each thread counts the number of true/false

positives/negatives within a section of all the program outputs, which are then

combined host side to find a confusion matrix. From this the sensitivity-specificity

was calculated.

For the second fitness function, the fitness was the number of instructions in

a program. Informal testing, and previous experience with GPUs, showed that

longer programs are more efficient—and a higher speed-up can be achieved. Where

programs are generated directly from trees, linear genetic programming, etc., then

all operations in the genotype are executed. In CGP, because of redundancy, this is

not the case. With the bloat-free evolution of CGP, we would also expect programs

to be more compact. Therefore this second fitness function gives a better idea of the

maximum capabilities of the system. The first fitness function however gives a more

realistic impression of how CGP on GPU behaves with a typical problem.

4.7 Speed Results

As with previous papers on GP on GPUs, we measure the speed by counting the

number of Genetic Programming Operations Per Second (GPOps/s) that can be

performed. This measure includes all the overheads (e.g. transferring data, programs

as well as executing the interpreter), and so it is expected to be significantly less than

the theoretical Floating Point Operations Per Second (FLOPS) that is often quoted

whenmeasuring GPU speed. Unless stated otherwise here, the GPOps/s are reported

just for program interpreter stage and not the fitness evaluation stage. It should

also be noted that MGPOps/s and GGPOps/s are used to indicate mega-GPOps/s

and giga-GPOps/s, respectively. To measure the speed, multiple evolutionary runs

were performed, with each individual evaluation benchmarked. These were then

re-sampled by picking a number of evaluation results at random.

The computer has an AMD 9950 (2.6GHz) processor, running Windows 7, with

a Tesla C1060 (240 CUDA cores, 4GB, driver version 258.96).

4.8 Vector

We first present the results for the “vector” approach. Listing 1 shows an example

C ] kernel for adding two vectors together. TidePowerd’s converter requires the



260 S. Harding and J.F. Miller

kernels be private static written inside an internal static class. The kernel code itself

is also flagged with the [kernel] attribute. A public static method (which runs host

side) is then used to call this method. When the converter tool is used, it rewrites

the class file inside the assembly to add in code so that the host-side method can

call the GPU kernel. The methods flagged with [kernel] have their IL converted to

device code to run on the GPU. As the listing shows, the kernel code is very similar

to CUDA. However, the language conventions are all C ].

In the interpreter, the main loop iterates over the instructions and calls methods

(such as the Add function) on the vector data. Since this methodology is also most

suited for CPU execution, we report the timing information for a CPU version to

provide a comparison. The CPU version uses only one core. Although the data

type is float, .Net only provides double-precision versions of the non-primitive

mathematical operators.

For the CPU version, we found that the GPOps/s were independent of the length

of the program and (largely) of the number of elements in the vector. On average, the

CPU version was capable of 64MGPOps/s (standard deviation 13.2, 1,000 results)

with a minimum 18.3 and maximum of 139MGPOps/s.

We were unable to successfully run the GPU version on the complete dataset

as there was insufficient memory to hold the input data and the working registers

(ten registers, each the size of number of rows of the input data). Therefore, these

benchmarks are formed using 2,000,000 rows (half the data). GPU.NET is able to

work with multiple GPUs, so it would be possible to implement the software to span

the data over multiple devices.

On the reduced dataset, the GPU vector interpreter was able to perform an

average of 144MGPOps/s (std. dev. 12.8, 1,000 results sampled) and a minimum

of 64 and a maximum of 199MGPOps/s. The speed again was independent of the

length of the evolved program.

4.9 Global and Shared Memory

Listing 2 shows a section of the kernel source code for interpreting an evolved

program on the GPU. The arrays Ops, Src0, Src1 and Dest encode the evolved

program’s operations. Data is a pointer to the input data to the programs. Outputs

are placed into the output array. The Regs array is the working registers and is held

in global memory. The other kernel parameters specify the length of the program,

dimensions of the input data, number of registers available and the number of test

cases to process per kernel. Listing 3 shows a similar kernel, but with the working

registers now held in the faster shared memory.

Both kernels have stability issues when working when theWorkSize (the number

of test cases per thread) was increased and the program would crash. It is unclear

why this occurs, as the CPU version of these kernels appears to function correctly.

Unfortunately TidePowerd does not yet provide debugging tools, so we were unable

to find the cause. Both types of failure are evident in Figs. 2 and 3, where the



Cartesian Genetic Programming on the GPU 261

Listing 2 Kernel for interpreting a program on the GPU, using global memory to store register

results for intermediate workings

[Kernel ]

p r i v a t e s t a t i c v o i d RunProgGM( i n t [ ] Ops , i n t [ ] Src0 , i n t [ ] Src1 ,

i n t [ ] Dest , f l o a t [ ] Data , f l o a t [ ] Output , f l o a t [ ] Regs ,

i n t ProgLength , i n t Dat aS i ze , i n t DataWidth , i n t RegCount , i n t WorkSize ) f

i n t ThreadID = BlockDimension .X � Block Index .X + Thread Index .X;

i n t To t a l Th r e ad s = BlockDimension .X � Gr idDimens i on .X;

i n t RegOf f se t = Thread Index .X � RegCount ;

i n t Op = 0 ; f l o a t vSrc0 = 0 ; f l o a t vSrc1 = 0 ;

/ / C l ea r r e g i s t e r s ( o m i t t e d f o r sp a ce )

f o r ( i n t v = 0 ; v < WorkSize ; v++) f

i n t RegOf f se t 2 = ( Th read Index .X � RegCount ) ;

f o r ( i n t p = 0 ; p < ProgLeng th ; p ++) f

Op = Ops [ p ] ;

i f (Op ==  1) break ;

i f (Op == 100) f / / l o a d

Regs [ RegOf f se t 2 + Des t [ p ] ] =

Data [ ( WorkSize � ThreadID � DataWidth ) + v + Src0 [ p ] ] ;

co nt i nue ;

g

vSrc0 = Regs [ RegOf f se t 2 + Src0 [ p ] ] ; vSrc1 = Regs [ RegOf f se t 2 + Src1 [ p ] ] ;

i f (Op == 1) / / add

Regs [ RegOf f se t 2 + Des t [ p ] ] = vSrc0 + vSrc1 ;

. . . / / a b r i d g ed f o r sp a ce

e l s e i f (Op == 8) / / s q r t

Regs [ RegOf f se t 2 + Des t [ p ] ] =

TidePowerd . DeviceMethods . DeviceMath . Sq r t ( vSrc0 ) ;

g

Outpu t [ ( ThreadID � WorkSize ) + v ] = Regs [ RegOf f se t 2 + ( RegCount  1 ) ] ;

g

g

Listing 3 Kernel for interpreting a program on the GPU, using shared memory to store register

results for intermediate workings

[ SharedMemory (10 � 38 4 ) ] / / 10 w o rk i n g r e g i s t e r s , 384 c o n c u r r e n t t h r e a d s .

p r i v a t e s t a t i c rea do nl y f l o a t [ ] Regs = n u l l ;

[Kernel ]

p r i v a t e s t a t i c v o i d RunProgSM( i n t [ ] Ops , i n t [ ] Src0 , i n t [ ] Src1 ,

i n t [ ] Dest , f l o a t [ ] Data , f l o a t [ ] Output ,

i n t ProgLength , i n t Dat aS i ze , i n t DataWidth , i n t RegCount , i n t WorkSize ) f

i n t ThreadID = BlockDimension .X � Block Index .X + Thread Index .X;

i n t To t a l Th r e ad s = BlockDimension .X � Gr idDimens i on .X;

i n t RegOf f se t = Thread Index .X � RegCount ;

i n t Op = 0 ; f l o a t vSrc0 = 0 ; f l o a t vSrc1 = 0 ;

/ / C l ea r r e g i s t e r s

f o r ( i n t v = 0 ; v < WorkSize ; v++) f

i n t RegOf f se t 2 = ( Th read Index .X � RegCount ) ;

f o r ( i n t p = 0 ; p < ProgLeng th ; p ++) f

Op = Ops [ p ] ;

i f (Op ==  1) break ;

i f (Op == 100) f / / l o a d

Regs [ RegOf f se t 2 + Des t [ p ] ] =

Data [ ( WorkSize � ThreadID � DataWidth ) + v + Src0 [ p ] ] ;

co nt i nue ;

g

vSrc0 = Regs [ RegOf f se t 2 + Src0 [ p ] ] ; vSrc1 = Regs [ RegOf f se t 2 + Src1 [ p ] ] ;

i f (Op == 1) / / add

Regs [ RegOf f se t 2 + Des t [ p ] ] = vSrc0 + vSrc1 ;

. . . / / a b r i d g ed f o r sp a ce

g

Outpu t [ ( ThreadID � WorkSize ) + v ] =

Regs [ RegOf f se t 2 + ( RegCount  1 ) ] ; ;

g

g



262 S. Harding and J.F. Miller

Fig. 2 Graph showing how the speed is dependent on both the length of the evolved program (in

operations) and the number of test cases handled per thread (WorkSize). The results here are for

the interpreter using global memory. Missing results are due to program instability

Fig. 3 Graph showing how the speed is dependent on both the length of the evolved program (in

operations) and the number of test cases handled per thread (WorkSize). The results here are for

the interpreter using shared memory. Using shared memory with GPU.NET is much more stable

and faster than using global memory



Cartesian Genetic Programming on the GPU 263

Table 2 Speed of the two different interpreters, in MGPOps/s

Global memory Shared memory
Interpreter

WorkSize 1 128 2;048 1 128 2;048

Minimum 31 37 32 38 53 32

Maximum 434 401 333 1;244 1;113 467

Average 317 286 255 1;009 756 307

Std. dev. 84 84 53 249 279 85

sampled results do not have the same coverage. However, the shared memory

interpreter when used with WorkSizeD 1 appeared to consistently work. As there is

a limited amount of shared memory, the block size was set to 384 threads. For the

global memory kernel, a block size of 512 threads was used.

Table 2 shows statistical results from both interpreter types. Five hundred

samples per WorkSize were used. It can be clearly seen that the shared memory

version is much faster. It is interesting to see that giving each thread more test cases

to work with (and hence fewer threads running) reduced performance. The most

efficient approach is to have one test case per thread.

The graphs in Figs. 2 and 3 show how the interpreters’ performance is dependent

on both the length of the evolved program and the number of test cases each thread

handles. The longer the program length, the more efficient the interpreter becomes.

However, in this scenario the fitness function was to find long programs. In real-

world situations, long programs may not be desirable (and may even be penalised

by the fitness function) or may not occur due to the GP representation or operators

used. With CGP, we do not expect programs to grow over time [22], and therefore

we would not expect the same high performance as demonstrated here (in Sect. 4.11,

this effect is investigated). With other forms of GP, such as basic versions of tree-

based GP, we would expect the program length to increase over time. Since this

performance-to-program length relationship appears in other GPU papers, it would

be interesting to know how the apparent efficiency of the implementations would be

effected by forcing the evolution to reduce program length.

4.10 Fitness Scores

The time required to compute the confusion matrix for the fitness scores is, in

principle, only dependent upon the number of test cases. It was found that this

took on average 0.04 s to compute. However, the timings showed a large variance

(a standard deviation of 0.1 s, median 0.03 s). It is unclear why this should occur, and

perhaps when better debugging tools are available, the reason will become apparent.

Fitness evaluation time was also hampered by the need to do large memory transfers

to move the predicted and expected outputs to the GPU. This is a current limitation

with GPU.NET where the memory management cannot be hand-optimised.



264 S. Harding and J.F. Miller

4.11 CGP Classification Results

Both to test CGP as a classifier and to investigate the GPU implementation

under a more real-world environment, longer experiments (a maximum of 10,000

evaluations) were run using the shared memory approach, with WorkSizeD 1.

Fitness here was the sensitivity-specificity metric discussed previously.

Looking at performance, we found that the average speed was 210MGPOps/s

(std. dev. 126, maximum 701) for executing the evolved programs. When the

fitness evaluation itself was taken into consideration, the average performance was

192MGPOps/s (std. dev. 118, maximum 657). As discussed previously, the average

CPU speed was 64MGPOps/s, which means that with a real fitness function, this

method produces, approximately, a three times speed-up on average and a peak of

just over ten times speed-up. The relatively limited speed-up is largely due to the

short programs found by CGP. The average program contained only 20 operations

(std. dev. 14, min. 3 and maximum 84). These are therefore on the borderline of the

area where the GPU produces an advantage. For this task, it may have been more

efficient to use the multicore CPU to perform the evaluations. It would have also

been possible to implement this application to use multiple GPUs, and this would

have also led to a performance increase. As these efficiencies are based on these

particulars of this classification task, observed speed-ups in other applications will

be different.

Although not the focus of this chapter, it is worth noting that the classification

results from CGP appear to be very good. In over 50 experiments, it was found

that the average fitness (sensitivity-specificity) was 0.955 (std. dev. 0.034). The

maximum classification rate found was 99:6%; however without a validation test,

we cannot exclude overfitting.Modifying the fitness function to collect both training

and validation fitness scores would be a straightforward extension.

5 Conclusions

CGP was one of the first Genetic Programming techniques implemented on the

GPU and has been successfully used to solve many different problem types using

GPUs. Although this chapter focused on TidePowerd’s implementation, CGP has

successfully been developed using technologies such as CUDA andMSAccelerator.

In all circumstances, significant speed-ups have been reported.

As GPU technology improves, both in terms of hardware features and software

development, it is likely that more advanced CGP approaches such as SMCGP and

MT-CGP [14] will be implemented. SMCGP requires a very flexible environment

to work in, as programs can change dramatically during their run time. MT-CGP

operates on multiple data types, and this presents some interesting challenges when

developing a high-performance system. However, as GPGPU becomes ever more

flexible, we expect that CGP will be able to take advantage of the new capabilities.



Cartesian Genetic Programming on the GPU 265

Acknowledgements SH acknowledges the funding from Atlantic Canada’s HPC network

ACENET and by NSERC under the Discovery Grant Program RGPIN 283304-07. SH would

like to thank Innervision Medical Ltd. and TidePowerd for their technical assistance.

References

1. Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics

hardware. In: Thierens, D., Beyer, H.G., et al. (eds.) GECCO ’07: Proceedings of the 9th

Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1566–1573. ACM

Press, London (2007)

2. Coates, P.: Using Genetic Programming and L-systems to explore 3D design worlds. In:

CAADFutures’97. Kluwer Academic, Dordecht (2008)

3. Elkan, C.: Results of the KDD’99 classifier learning contest. http://cseweb.ucsd.edu/�elkan/

clresults.html (1999)

4. Harding, S.: Evolution of image filters on graphics processor units using Cartesian genetic

programming. In: Wang, J. (ed.) 2008 IEEE World Congress on Computational Intelligence.

IEEE Computational Intelligence Society, IEEE Press, Hong Kong. http://ieeexplore.ieee.org/

xpl/freeabs all.jsp?arnumber=4631051 (2008)

5. Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M., O’Neill, M.,

Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) Proceedings of the 10th European Con-

ference on Genetic Programming. Lecture Notes in Computer Science, vol. 4445, pp. 90–101.

Springer, Valencia (2007). doi:10.1007/978-3-540-71605-1 9. http://www.springerlink.com/

index/w57468k30j124410.pdf

6. Harding, S.L., Banzhaf, W.: Fast genetic programming and artificial developmental systems on

GPUs. In: 21st International Symposium on High Performance Computing Systems and Appli-

cations (HPCS’07), p. 2. IEEE Computer Society, Canada (2007). doi:10.1109/HPCS.2007.17.

http://doi.ieeecomputersociety.org/10.1109/HPCS.2007.17

7. Harding, S., Banzhaf, W.: Genetic programming on GPUs for image processing. In: Lanchares,

J., Fernandez, F., Risco-Martin, J. (eds.) Proceedings of the First International Workshop

on Parallel and Bioinspired Algorithms (WPABA-2008), Toronto, Canada, 2008, pp. 65–72.

Complutense University of Madrid Press, Madrid. http://www.inderscience.com/search/index.

php?action=record&rec id=24207&prevQuery=&ps=10&m=or (2008)

8. Harding, S., Banzhaf, W.: Genetic programming on GPUs for image processing. Int. J. High

Perform. Syst. Archit. 1(4), 231–240 (2008). doi:10.1504/IJHPSA.2008.024207. http://www.

inderscience.comkern-1pt/search/index.php?action=record&rec id=24207&prevQuery=&ps=

10&m=or

9. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA.

In: Hidalgo, I., Fernandez, F., Lanchares, J. (eds.) Workshop on Parallel Architectures

and Bioinspired Algorithms. Raleigh, USA. http://www.evolutioninmaterio.com/preprints/

CudaParallelCompilePP.pdf (2009)

10. Harding, S., Banzhaf, W.: Optimizing shape design with distributed parallel genetic program-

ming on GPUs. In: Fernández de Vega, F., Hidalgo Pérez, J.I., Lanchares, J. (eds.) Parallel

Architectures and Bioinspired Algorithms. Studies in Computational Intelligence, vol. 415,

pp. 51–75. Springer, Berlin (2012)

11. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA. http://

www.evolutioninmaterio.com/preprints/Technicalreport (submitted)

12. Harding, S., Miller, J.F., Banzhaf, W.: Developments in Cartesian genetic programming: self-

modifying CGP. Genet. Program. Evolvable Mach. 11(3–4), 397–439 (2010)

13. Harding, S., Miller, J.F., Banzhaf, W.: A survey of self modifying CGP. Genetic Programming

Theory and Practice, 2010. http://www.evolutioninmaterio.com/preprints/ (2010)



266 S. Harding and J.F. Miller

14. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: Mixed type cartesian genetic

programming. In: Proceedings of the Fourteenth International Conference on Genetic and

Evolutionary Computation Conference, pp. 751–758. ACM, New York (2012)

15. Hotz, P.E.: Evolving morphologies of simulated 3D organisms based on differential gene

expression. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 205–213.

Elsevier Academic, London (1997)

16. KDD Cup 1999 Data: Third international knowledge discovery and data mining tools

competition. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (1999)

17. Langdon, W.B.: A many threaded CUDA interpreter for genetic programming. In:

Esparcia-Alcázar, A.I., Ekárt, A., et al. (eds.) Genetic Programming. Lecture Notes in

Computer Science, vol. 6021, pp. 146–158. Springer, Berlin (2010)

18. Lewis, T.E., Magoulas, G.D.: Strategies to minimise the total run time of cyclic graph

based genetic programming with GPUs. In: Proceedings of the 11th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’09, pp. 1379–1386. ACM, NewYork (2009).

doi:10.1145/1569901.1570086. http://doi.acm.org/10.1145/1569901.1570086

19. Lohn, J.D., Hornby, G., Linden, D.S.: Human-competitive evolved antennas. AI EDAM 22(3),

235–247 (2008)

20. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a

Cartesian genetic programming approach. In: Proceedings of Genetic and Evolutionary

Computation Conference, pp. 1135–1142. Morgan Kaufmann, Los Altos (1999)

21. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of European Con-

ference on Genetic Programming. Lecture Notes in Computer Science, vol. 1802, pp. 121–132.

Springer, Berlin (2000)

22. Miller, J.: What bloat? Cartesian genetic programming on Boolean problems. In: Goodman,

E.D. (ed.) 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers,

pp. 295–302. Morgan Kaufmann (2001)

23. Miller, J.F.: Evolving a self-repairing, self-regulating, French flag organism. In: Deb, K., Poli,

R., Banzhaf, W., et al. (eds.) GECCO (1). Lecture Notes in Computer Science, vol. 3102,

pp. 129–139. Springer, Berlin (2004)

24. Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin

(2011)

25. Robilliard, D., Marion-Poty, V., Fonlupt, C.: Genetic programming on graphics processing

units. Genet. Program. Evolvable Mach. 10(4), 447–471 (2009)

26. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program GPUs for

general-purpose uses. In: ASPLOS-XII: Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating Systems, pp. 325–335.

ACM, New York (2006). http://doi.acm.org/10.1145/1168857.1168898

27. Wilson, G.C., Banzhaf, W.: Deployment of parallel linear genetic programming using GPUs

on PC and video game console platforms. Genet. Program. Evolvable Mach. 11(2), 147–184

(2010)


