Skip to main content

Discovering Boolean Gates in Slime Mould

  • Chapter
  • First Online:
Inspired by Nature

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 28))

Abstract

Slime mould of Physarum polycephalum is a large cell exhibiting rich spatial non-linear electrical characteristics. We exploit the electrical properties of the slime mould to implement logic gates using a flexible hardware platform designed for investigating the electrical properties of a substrate (Mecobo). We apply arbitrary electrical signals to ‘configure’ the slime mould, i.e. change shape of its body and, measure the slime mould’s electrical response. We show that it is possible to find configurations that allow the Physarum to act as any 2-input Boolean gate. The occurrence frequency of the gates discovered in the slime was analysed and compared to complexity hierarchies of logical gates obtained in other unconventional materials. The search for gates was performed by both sweeping across configurations in the real material as well as training a neural network-based model and searching the gates therein using gradient descent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ReLU: Rectified Linear Unit.

References

  1. Andrew, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific (2010)

    Google Scholar 

  2. Andrew, A.: Slime Mould Logical Gates: Exploring Ballistic Approach. arXiv:1005.2301, (2010)

  3. Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)

    Google Scholar 

  4. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuat. B Chem. 188, 38–44 (2013)

    Google Scholar 

  5. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Organ. Elect. 14(12), 3355–3361 (2013)

    Google Scholar 

  6. Adamatzky, A.: Slime mould electronic oscillators. Microelect. Eng. 124, 58–65 (2014)

    Google Scholar 

  7. Andrew, A.: Advances in Physarum Machines: Sensing and Computing with Slime Mould. Springer (2016)

    Google Scholar 

  8. Adamatzky, A., Bull, L.: Are complex systems hard to evolve? Complexity 14(6), 15–20 (2009)

    Google Scholar 

  9. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: NASCENCE project: nanoscale engineering for novel computation using evolution. Int. J. Unconvent. Comput. 8(4), 313–317 (2012)

    Google Scholar 

  10. Angelica,, C., Dimonte, A., Berzina, T., Erokhin, V.: Non-linear bioelectronic element: Schottky effect and electrochemistry. Int. J. Unconvent. Comput. 10(5–6), 375–379 (2014)

    Google Scholar 

  11. Dreyfus, S.E.: The computational solution of optimal control problems with time lag. IEEE Trans. Automat. Control 18(4), 383–385 (1973)

    Article  MathSciNet  Google Scholar 

  12. Ella, G., Andrew, A.: Translating slime mould responses: a novel way to present data to the public. In: Adamatzky, A.: (ed.), Advances in Physarum Machines. Springer (2016)

    Google Scholar 

  13. Gale, E., Adamatzky, A., De Lacy Costello, B.: Slime mould memristors. BioNanoScience 5(1), 1–8 (2013)

    Google Scholar 

  14. Simon, H., Julian, F. Miller. Evolution in materio: A tone discriminator in liquid crystal. In: Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800–1807, (2004)

    Google Scholar 

  15. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. In Proc. Eur. Conf. Artif. Life (ECAL 2005), Workshop on Unconventional Computing: From Cellular Automata to Wetware, pp. 133–149. Beckington, UK, (2005)

    Google Scholar 

  16. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J. Unconvent. Comput. 3(4), 243–257 (2007)

    Google Scholar 

  17. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (1998)

    Google Scholar 

  18. Linnainmaa, S.: The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s thesis, University of Helsinki (1970)

    Google Scholar 

  19. Lykkebo, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: a hardware and software platform for in materio evolution. In: Ibarra, O., Kari, L., Kopecki, S. (eds.) Unconventional Computation and Natural Computation, LNCS, pp. 267–279. Springer International Publishing (2014)

    Google Scholar 

  20. Mayne, R., Adamatzky, A.: Slime mould foraging behaviour as optically coupled logical operations. Int. J. Gen. Syst. 44(3), 305–313 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mayne, R., Tsompanas, M.-A., Sirakoulis, G., Adamatzky, A.: Towards a slime mould-FPGA interface. Biomedical. Eng. Lett. 5(1), 51–57 (2015)

    Google Scholar 

  22. Miller, Julian F., Harding, Simon L., Tufte, Gunnar: Evolution-in-materio: evolving computation in materials. Evolution. Intelligen. 7, 49–67 (2014)

    Article  Google Scholar 

  23. Stephenson, S.L., Stempen, H., Ian, H.: Myxomycetes: A Handbook of Slime Molds. Timber Press Portland, Oregon, (1994)

    Google Scholar 

  24. Giuseppe, T., Pasquale, D’.A., Cifarelli, A., Dimonte, A., Romeo, A., Tatiana, B., Erokhin, V., Iannotta, S.: A hybrid living/organic electrochemical transistor based on the physarum polycephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6(5), 2859–2868 (2015)

    Google Scholar 

  25. Thompson, A., Layzell, P.: Analysis of unconventional evolved electronics. Commun. ACM 42(4), 71–79 (1999)

    Article  Google Scholar 

  26. Thompson, A.: Hardware Evolution–Automatic Design of Electronic Circuits in Reconfigurable Hardware by Artificial Evolution. Springer, (1998)

    Google Scholar 

  27. Toth, R., Stone, C., Adamatzky, A., De Lacy Costello, B., Larry, B.: Dynamic control and information processing in the Belousov-Zhabotinsky reaction using a coevolutionary algorithm. J. Chem. Phys. 129(18), 184708 (2008)

    Google Scholar 

  28. Tsuda, S., Aono, M., Gunji, Y-P.: Robust and emergent physarum logical-computing. Biosystems 73(1), 45–55 (2004)

    Google Scholar 

  29. Tsuda, S., Jones, J., Adamatzky, A., Mills, J.: Routing physarum with electrical flow/current. arXiv:1204.1752, (2012)

  30. Tsuda, S., Zauner, K.P., Gunji, Y.-P.: Robot control: from silicon circuitry to cells. In: Biologically Inspired Approaches to Advanced Information technology, pp. 20–32. Springer, (2006)

    Google Scholar 

  31. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, (1974)

    Google Scholar 

  32. Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Google Scholar 

  33. Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A.: Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of physarum polycephalum. Sens. Actuat. B Chem. 191, 844–853 (2014)

    Google Scholar 

  34. Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A.: Transfer function of protoplasmic tubes of Physarum polycephalum. Biosystems 128, 48–51 (2015)

    Google Scholar 

  35. Whiting, J.G.H., Mayne, R., Moody, N., De Lacy Costello, B., Adamatzky, A.: Practical circuits with physarum wires. arXiv:1511.07915 (2015)

Download references

Acknowledgements

The research leading to these results has received funding from the EC FP7 under grant agreements 317662 (NASCENCE project) and 316366 (PHYCHIP project).

The authors would like to acknowledge the assistance of Odd Rune Lykkebø for his technical assistance with Mecobo. Simon and Andy prepared the mould and performed the exhaustive search experiments on the hardware platform, Jan, Klaus and Jürgen contributed with the mould neural network modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Harding, S., Koutník, J., Schmidhuber, J., Adamatzky, A. (2018). Discovering Boolean Gates in Slime Mould. In: Stepney, S., Adamatzky, A. (eds) Inspired by Nature. Emergence, Complexity and Computation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-67997-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67997-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67996-9

  • Online ISBN: 978-3-319-67997-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics