
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scaling Genetic Improvement and Automated Program Repair
Mark Harman∗
Meta Platforms Inc.

London, UK

ABSTRACT
This paper outlines techniques and research directions for scaling
genetic improvement and automated program repair, highlighting
possible directions for future work and open challenges.

KEYWORDS
Genetic Improvement; Automated Program Repair; Search Based
Software Engineering (SBSE)

ACM Reference Format:
Mark Harman. 2022. Scaling Genetic Improvement and Automated Program
Repair. In International Workshop on Automated Program Repair (APR’22),
May 19, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3524459.3527353

1 INTRODUCTION
Genetic Improvement [33] seeks to modify an existing software
system to improve some aspect of its behaviour, without regressing
on any existing desired behaviours. Genetic improvement is guided
by software testing. The tests measure, not only the achievement
of the improvement objective, but also the degree to which the
improved program avoids regressions.

Automated genetic improvement technology has the ability to
investigate many more candidate modifications than a human, but
lacks the insight and context of a human software engineer. Nev-
ertheless, as Section 2 outlines, the increasing scale of software
systems tips the balance of opportunity away from human analysis
in favour of automated techniques.

The increasing consumption of world energy resources in com-
putation [13], with ever larger and more complex systems, creates
many subtle dependencies between different levels of abstraction.
A human software engineer, no matter how talented, cannot be ex-
pected to find all opportunities for optimising resource consumption
across the full software stack, in the presence of such complexities.
Automated genetic improvement can complement human decision-
making and deployment choices, using computational search to
explore the trade-off space, and reporting promising improvements
to the human engineer.

∗Mark Harman’s scientific work is part supported by European Research Council (ERC),
Advanced Fellowship grant number 741278; Evolutionary Program Improvement
(EPIC) which is run out of University College London, where he is part time professor.
He is a full time Research Scientist at Meta Platforms Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APR’22, May 19, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9285-3/22/05. . . $15.00
https://doi.org/10.1145/3524459.3527353

Many software systems are increasingly containerised and de-
ployed on cloud-based platforms [36]. Such cloud-based deploy-
ment facilitates testing across the full system stack, in safe sandbox
isolation. As the technologies for cloud deployment become better
developed, understood, and standardised, there will be increased
opportunities for cloud deployment optimisation [20].

Search based program repair [14] can be thought of a special
case of genetic improvement [33] where the aspect to be improved
is a functional property of the system. Genetic improvement has
also been applied to a wide variety of other non-functional prop-
erties, such as execution time, memory consumption and energy
consumption [33]. Genetic improvement can also be thought of as a
flavour of program synthesis. Unlike traditional synthesis [16, 29],
the improvement technology is not merely constrained to guar-
antee meaning preserving transformations. Instead, it is free to
investigate any modification that achieves a satisfactory signal that
the improvement does not cause a regression. In this paper, we use
genetic improvement to refer to search-based automated program
repair, search based program synthesis, and any other technique
that seeks to improve software guided by signal from software
testing.

The ability to avoid regression depends crucially on the strength
of the regression testing signal; poor quality tests will tend to lead
to high probability of regression. Nevertheless, candidate improve-
ments that perform well on the desired improvement criteria may
give useful insights to software engineers, even when they do lead
to regressions.

Furthermore, not all regressions are equal. There are situations
in which some regressions can be tolerated when they also facili-
tate a sufficiently strong improvement in a desirable non-functional
property. Software engineers make these engineering trade-offs all
the time. Genetic improvement is a way to automate investigation
of such multi criteria decision trade-off spaces [21]. Techniques
that limit themselves only to known correctness–preserving trans-
formations inherently cannot explore such engineering trade-off
spaces.

Another exciting opportunity for genetic improvement is the
way in which techniques can potentially be applied at scale. Search
based program repair has already been deployed at scale, finding
simple fixes in systems of tens of millions of lines of code [31].
However, this previous work merely fixed the most trivial of bugs,
although arguably most widespread [24, 30]; the null pointer deref-
erence.

In order to open the floodgates of opportunity to all of the many
exciting developments from the research community, we need a
concerted focus on scalability of genetic improvement. This paper
attempts to make a contribution to this scalability agenda, by out-
lining current research that has potential to tackle some of these
problems, avenues for deployment of scalable techniques, and open
challenges for the research community.

1

https://orcid.org/0000-0002-5864-4488
https://doi.org/10.1145/3524459.3527353
https://doi.org/10.1145/3524459.3527353


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

APR’22, May 19, 2022, Pittsburgh, PA, USA Mark Harman

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 SCALE AS OPPORTUNITY
In principle, genetic improvement can be applied at any scale, be-
cause it only seeks to make minor modifications to an existing
(arbitrarily large) system rather than seeking to build systems from
scratch. Therefore, the size of the code discovery’ problem is largely
driven by the size of the improvements made, not the size of the
system to which the improvements are applied.

From an evolutionary computational perspective, and by analogy
with natural evolution, the goal genetic improvement is to gener-
ate humans by ‘improving’ apes, rather than seeking to generate
humans from scratch out of amino acids. The more significant is
the scale of the software system, the more likely it is that there is
robust test signal available.

As well as test cases written by the system’s developers, there is
production traffic, which can also be used to check for regressions.
In this way, scalability is an opportunity as well as a challenge;
the larger the system, the more comprehensive will be the likely
available test signal to guide genetic improvement.

Also, at scale, the balance of expertise between genetic improve-
ment and human domain knowledge shifts. Most developers can
understand relatively small isolated components, and their domain
knowledge helps them to identify optimisations that improve the
software system. However, large-scale systems have grown so com-
plex that few engineers understand the full stack operation; there
are simply too many inter–operating services, backend systems,
feature interactions, and subtle nuanced dependencies.

At this scale, the ability of an automated improvement technol-
ogy to search large numbers of candidate improvements can con-
siderably outperform human expertise. We have already seen these
characteristics in the related problem of program transplantation.
For transplantation, like genetic improvement, the complex con-
text and dependencies involved lend themselves to an automated
approach that is free to discard the vast majority of candidates it con-
siders. This insight has led to award–winning human–competitive
results for program transplantation using evolutionary computa-
tion [6].

Genetic improvement tends to tackle non-functional properties
such as resource consumption and performance. Resource and per-
formance bottlenecks in large-scale systems often arise as a result
of complex interactions between multiple different system compo-
nents. Human engineers are overwhelmed by complexity at this
scale, naturally resorting to abstraction as the only way to cope.
Some performance optimisations can be identified by understand-
ing workflows at abstract levels. Nevertheless, many surprising
performance improvements can be found only by identifying a set
of detailed small-scale changes, which combine together, across
levels of abstraction [27].

Of course, this does not mean that developers have no role to
play in automated genetic improvement. Experience from industrial
deployment of search based program repair [31] indicates that it
is important that developers play the role of final gatekeeper. In
a continuous integration system, changes need to be reviewed.
Authorship and ownership are important engineering principles
[1] that ensure accountability for code deployed to production.
Therefore this final gatekeeper role is a key part of any deployment
strategy.

In this industrial experience report [31], of all fixes found cor-
rect, approximately half were commandeered by the developer
and re-written in an alternative style, even though they were se-
mantically correct. Part of this behaviour might be attributable to
understandable human hubris. However, not withstanding such ‘hu-
man frailties’, developers are the ones who undoubtedly know best
how code should be represented in a system for on-going human
maintenance. It is also the human engineers, not the automated
improvement technology, that best understand the wider context
in which the system is deployed.

3 LANDSCAPE OF SCALE OPPORTUNITIES
FOR RESEARCHERS

When faced with the daunting challenges of tackling scale, re-
searchers might be tempted to focus on perfection of techniques
for smaller, more manageable, systems. However, the greatest im-
pact on the software industry is most likely to be obtained using
‘good enough’ techniques applied at scale, rather than ‘perfect’ tech-
niques applied only to simpler components. Fortunately, several
existing avenues of current research will likely to prove important
in achieving scalable genetic improvement. This section contains
examples of such techniques. It also sets out challenges and open
problems for the research community.

3.1 Test execution optimisation
One of the first scalability challenges tackled in the software engi-
neering literature was that of optimising test execution. For some
time it has been known that testing occupies a significant portion
of the software engineering budget, arguably as much as half [32].
This observation motivated software engineering researchers to
consider ways to optimise the selection, prioritisation and minimi-
sation of test suites [11, 40].

Since genetic improvement is guided by testing, one of the key
drivers of scalability is the ability to optimally deploy resources for
software testing. Researchers have therefore considered ways to
reuse, adapt and augment research associated with software test
optimisation for genetic improvement [15].

Testing is likely to remain central to scalability, effectiveness
and efficiency. Indeed, software testing is proving to be the suc-
cess driver for some of the most challenging automated software
development activities currently underway. For example testing
is driving recent advances in automated code construction with
AlphaCode [28] and language translation with TransCoder-ST [35].

Software testing is the oldest [37] the most widely practised
method of ensuring software behaves as intended.When automated,
it is essentially an automation of Popperian scientific investigation
applied to software [23]. The quality of the genetic improvement
is inherently dependent on the confidence the engineer can have
in the signal from software testing. It is with genetic improvement
that we find the strongest incarnation of the fundamental testing
dilemma: testing can reveal the presence of faults, but can never
demonstrate their absence [10]. Despite this apparently unassailable
aphorism from Dijkstra, software testing has proved to be highly
successful at giving confidence; software has become remarkably
reliable, despite the obvious shortcomings of software testing [23].

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scaling Genetic Improvement and Automated Program Repair APR’22, May 19, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Genetic improvement risks the strongest manifestation of test-
ing’s limitations, because of its high degree of automation. Genetic
improvement will clearly, therefore, benefit from existing research
on test optimisation. It may also provide fundamental contributions
to this research agenda.

Testing’s twin roles of identifying faults and giving confidence in
correctness apply at the very heart of genetic improvement. Tech-
niques that optimise the chance of finding faults soonest will help
discard sub-optimal improvement candidates more quickly. Tech-
niques that maximise the confidence in a candidate improvement,
while minimising the effort required to provide that signal, will
help guide the search towards promising candidates more quickly.

Research on scaling genetic improvement through test optimisa-
tion may also benefit the testing research agenda. The most press-
ing software testing questions engineers tend to ask can be more
readily and thoroughly investigated through the lens of genetic
improvement. Such questions include:

• ‘When do I know that we have tested enough?’
• ‘What confidence do I have that there are no serious bugs

remaining?’
• ‘What is the chance that this bug found by testing will

manifest in production?’
If we are to deploy genetic improvement at scale, in practical

software engineering scenarios, these questions are unavoidable.
By contrast, for much of the wider testing research agenda, some
or all of the three questions can be circumvented, despite being
pressing practical concerns for practising software engineers.

3.2 The build effort problem
Large systems typically have build times that run intomanyminutes
[3, 7, 22], even with smart infrastructure, bespoke build systems,
and build caching. There has been a great deal of progress on build
technology, giving rise to bespoke sophisticated build systems [12].
Nevertheless, build times for the largest systems have remained
stubbornly in the region of ‘multiple minutes’ since the 1970s. Of
course the sizes of the largest systems have grown by orders of
magnitude since then, thereby ensuring that absolute build effort
has remained high, despite advances in both build systems, and the
hardware on which they execute.

This creates a ‘built effort problem’ for genetic improvement,
because we need to evaluate many candidates to find an improved
version, thereby rendering the technique inapplicable when the
build effort is too large. The relative constancy of maximal build
effort, over such a long period, suggests that the build effort prob-
lem will remain with us for the foreseeable future. Therefore, any
technique that seeks to scale genetic improvement needs to operate
effectively for systems with high build effort per build workflow
execution. The remainder of this section considers ways in which
we might tackle the build effort problem.

3.2.1 Exploiting techniques for mutation optimisation. Mutation
testing has been a topic of study since the 1970s [9, 17]. It is an inher-
ently computationally expensive testing technique, due to the large
number of mutations from which the engineer can choose. This has
made it the subject of research on mutation test optimisation. Much
more work is needed to adapt these mutation testing orientated
techniques to the closely related problem of genetic improvement.

Such work will not only help genetic improvement scale, but
may yield insights into the fundamental nature of software faults,
and the relationship between faults and fixes. That is, despite many
years of study, the subtle interactions between syntax and seman-
tics of software changes, faults and failures, and the interactions
between multiple software changes remain comparatively poorly
understood. As with software test optimisation, optimising muta-
tion testing for genetic improvement may therefore provide a new
avenue of investigation for these fundamental questions.

Program repair seeks to make a small change to remove a bug in
an existing system. As such, it is the dual of mutation testing, which
seeks to insert a simulated bug into an existing system. Both ap-
proaches make small syntactic changes to the software system, cho-
sen from an enormous pool of potential candidates. This suggests
that automated repair techniques may benefit from the extensive
literature on mutation test optimisation.

Genetic improvement also makes small changes, but simply gen-
eralises from the problem of removing bugs, to that of improving
the system in some way. Since this is a generalisation of search
based program repair to arbitrary improvements, the same obser-
vations apply; genetic improvement, in general, can benefit from
work on optimisation of selection, prioritisation, and minimisation
of test mutants. Much previous work has focused on mutant selec-
tion, with approaches such as ‘do faster’, ‘do smarter’, ‘do fewer’. A
full treatment of all of these techniques is beyond the scope of the
present paper. Fortunately, extensive surveys are available [26].

One technique associated with optimisation of mutation testing
is the so-called ‘metamutant’ (aka ‘mutant schemas’ [38]); rather
than compiling each mutant, the metamutant is a single compila-
tion that encodes for multiple mutants. This is a technique that
recognises the importance of minimising build effort. As the size
of programs tackled by mutation testing increased, the community
quickly realised that build effort started to dominate the computa-
tional cost of mutation testing. This observation led to mutation
testing tools that optimised for minimisation of build effort [25].

Metamutants could also be adapted for genetic improvement.
This would tackle the build problem by compiling into a single
version of the program, multiple different possible improvements,
each of which is selected at run time. However, this will not be
applicable in every situation. For example, if the selection of an
instance from a metamutant slows runtimes considerably, this may
interfere with assessment of performance. Furthermore, the meta-
mutant approach would not inapplicable when optimising for the
footprint size of the software system to be improved. Fortunately,
for problems like automated repair, the metamutant approach is
highly applicable, and will facilitate significant scalability when the
build effort problem is particularly pernicious.

3.2.2 Deep Parameter Exposure. Suppose we had a ‘configuration’
object that determined the behaviour of the property to be improved.
With this object we could, at run time, simply supply different pa-
rameters to search the configuration space. Of course, most systems
are not designed this way. Many of the key values that determine
the non-functional properties to be improved are unlikely to be
found in configuration files. Furthermore, some configuration files
are not even run–time–loadable, but are compiled into the build of
the system.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

APR’22, May 19, 2022, Pittsburgh, PA, USA Mark Harman

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Nevertheless, suppose we choose to redesign the system under
improvement to have a dynamically loaded configuration file that
does, indeed, include those key values known to determine the oper-
ational characteristics to be improved. This run–time–configurable
version of the system under improvement obviates the need to
rebuild the system for every fitness evaluation. It allows us to ge-
netically improve the software through parameter tuning, which is
a well understood and widely studied problem.

The process of automatically identifying this dynamic configu-
ration object is known as ‘deep parameter optimisation’ [39], not
because it is based on deep machine learning (although such param-
eters might be identified using ML techniques), but rather because
the parameters are deeply embedded in the software system. By
exposing such deeply embedded parameters, they become a more
readily available target for genetic improvement through parameter
optimisation [33].

In the case of execution time optimisation, for example, such
parameters might determine the value of data that flows into im-
portant loop control predicates, or other internal configuration
values that influence the frequency or nature of hot path execution.
Deep parameter optimisation offers promising ways to tackle the
build effort problem for practical, scalable, genetic improvement
and program repair.

3.3 The New Feature Build Cost Problem
Sometimes, engineers have the key insights into the candidate
changes that need to be made to a system in order to improve
behavioural properties of interest. For example, when seeking to
improve systems to make them safer [2]. There are often many
choices of feature, each with their own parameter spaces and char-
acteristics. Many of these features will tend to interact with one
another to produce emergent behaviours that are hard to predict,
especially before any of the features has been built.

It is clearly wasteful to build non-trivial features into a system,
only to discover that they interact in undesirable ways, or that pa-
rameter tunings cannot be found that would improve the behaviour
of interest. Simulation can provide a viable alternative, in which
the features are simulated, and the genetic improvement approach
searches over the space of simulated features.

3.3.1 Simulation and Mechanism Design. At Meta, we have been
experimenting with simulation–based approaches to tackling this
problem. Such a simulation–based requirements analysis would
have the potential to revolutionise the requirements process, with
simulation dramatically scaling the potential of A/B testing, support-
ing counterfactual investigations, predictive feature deployment,
and specialisation.

In particular, we used a mechanism design layer to simulate
the effects of potential new features. We also simulated the effects
due to different parameter tuning choices, including parameters
pertinent to simulated features, through this mechanism layer [2].
Using the mechanism design approach we recognise that the space
of optimisations to be found may involve non-trivial engineering
effort. Therefore, rather than building each future in full, merely
to discover that it has to be discarded as an inadequate source of
improvement, we simulate the effect of a large space of potential
features and their parameter tunings.

Figure 1: TheWWSimulation Hierarchy: a recursive chain of
cyber cyber digital twins. The figure is taken from the Meta
WW team’s EASE ’21 keynote paper [4].

Weuse computational search to evaluate simulated feature spaces
and optimisation choices. The search process identifies attractive
candidates, which then feed into the decision process for require-
ments for software improvement by human engineers. The mecha-
nism is a model of the execution behaviour of the candidate feature.
A mechanism-based approach can be thought of, simultaneously,
as an instance of a model based software engineering and as be-
ing an approach to requirements elicitation. We could also think
of our approach as a form of search based software requirements
elicitation [41], or as a form of simulated genetic improvement.

We conducted research and experimentationwith this simulation–
based approach, using mechanism design. The ultimately selected
features still need to be built, potentially by human effort. However,
the space of candidates we can prototype, and the complex interac-
tions between their behaviours, can be explored more thoroughly,
and at scale, through the simulation phase. In this way we ensure
that precious human effort is reserved for only the most promising
features, known to be likely to provide significant improvements.

In order to scale the approach, we built off-line versions of our
simulation, which optimised the execution time for the simulation.
These offline simulations are guided by online simulation. Online
simulation executes on the real platform. Therefore its simula-
tions, although more computationally expensive than their off-line
counterparts, are highly realistic and faithful to the original sys-
tem to be optimised. However, considering automated search is
inherently computationally demanding, the off-line modes of simu-
lation are needed to allow the engineer to negotiate the trade-off
between faithfulness of simulation and execution time. This lay-
ered approach creates a hierarchical cyber cyber digital twin [4],
as illustrated in Figure 1.

The hierarchy of digital twins supports the simulation of user be-
haviours on the real platform. The mechanism layer lies in between
the bots that simulate user behaviours and the underlying system
(which, in the hierarchy’s base case, is the real software system,
but can also be its offline digital twins). The approach, which we
illustrate here in Figure 2, is covered in more detail in the WW
team’s RAISE 2021 keynote paper [5].

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scaling Genetic Improvement and Automated Program Repair APR’22, May 19, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 2: Heat maps from mechanism design exploration. Both heat maps show impact of different limits on maximum friends
visible to a bot at each step (vertical axis) with different levels of propensity for the bot to engage in harmful behaviour
(horizontal axis). These results were produced by the WW system, but the intervention in question is not in production and
is shown here merely illustrative purposes only. The heat map on the left results from simulating on the high fidelity (but
computationally expensive), online graph. The heat map on the right is result of simulating on a synthetic graph; it retains the
overall distribution, thereby faithfully simulating the impact of the intervention, but it was computed approximately 100x
faster. This figure is taken from the WW team’s RAISE ’21 keynote paper [5].

3.4 The Software Specialisation Problem
Automated software specialisation has long been a topic of interest
in software engineering [8]. The key insight is that not all users’
needs are the same; identifying different constituencies of users, and
their corresponding use cases, opens up the potential for specialisa-
tion. Through specialisation, each user constituency runs a different
version of the overall system. Sadly, the technical complexities of
deploying different specialised versions, and the considerable effort
required to disentangle these different versions, havemade software
specialisation highly challenging in practice. Automation is clearly
key to tackling both problems. Genetic improvement provides a
perfect fit, because different fitness functions automatically yield
different versions of the system under improvement [21, 34].

Despite this, automated specialisation through genetic improve-
ment, remains surprisingly underexplored. We need more work on
genetic improvement for software product lines. There is a well-
developed literature, and many practical industrial applications
of software product lines, offering many opportunities for search
based software engineering in general, and genetic improvement
in particular [18].

We also need work on tailored deployment. The costs of main-
taining different versions of software systems, and constructing
them in the first place, currently combine to make specialisation
unattractive. Much of the problem lies in the human-centric mainte-
nance and construction costs. Genetic improvement can be used to
explore potential candidate deployment opportunities, measuring
andminimising the likely maintenance cost. We needmore research
on integrated end-to-end software specialisation that takes into
account, not only the number of variants and their suitability, but
also minimises the burden of onward maintenance and evolution.

3.5 The Hot Fix Problem
In order to deploy automated repair at scale, we need to be able to
discover and deploy fixes in real time; the hot fix problem. There is
considerable potential to tackle the hot fix problem using a com-
bination of predictive modelling and genetic improvement. It is
unrealistic to expect human engineers to cater for large numbers
of possible changes in operational environments. Combining pre-
dictive modelling with genetic improvement we can automatically
search the space of risks in an automated cost benefit analysis. In
this way, we use predictive modelling to identify when a risk may
be likely to materialise, and use genetic improvement to pre-search
the space of potential hot fixes that can be deployed to amelio-
rate it affects. This combination provides one research avenue for
automated autonomous adaptation through genetic improvement
[19].

3.6 The Automated Acceptance Test Problem
The final arbiter of whether a genetically improved system can be
deployed lies in compelling results from end–to–end testing. The
more automated the approach, the more scalable it will be. However,
this final arbiter has traditionally been considered to be a human,
essentially playing the role of acceptance tester. For scalability, we
need to minimise the reliance on human acceptance testing.

The problem is that the acceptance test needs to execute the
entire system, in a realistic production setting. Traditional end–to–
end tests often involve mocking details, and other compromises
that mean that the test result may not be faithful to the real pro-
duction setting, making acceptance tests unreliable. In theory this
is not a problem: simply make a copy of the entire system, includ-
ing all production databases, and execute this in a safe sandbox
environment, in order to faithfully replicate likely behaviour of the
improved system in production.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

APR’22, May 19, 2022, Pittsburgh, PA, USA Mark Harman

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

In practice, having such a safe sandbox for the copy of the entire
system can be highly non-trivial. In industrial settings, fully end-
to-end testing is surprisingly challenging; even tests designated
as system tests typically involve some mocking of components,
either for efficiency reasons, or to protect production; it is not
always possible to execute a ‘system’ test on the real system. There
is an unavoidable tension between the realism of an end–to–end
system test (how faithfully does the test model what would happen
in production on the real system?) and the risk to production of
executing the test (what is the chance that running the test may,
itself, adversely affect production behaviour of the system?).

For example, the test might affect state that is visible to some
users, or pollute logs, intended to record behaviours only of real
users. In theory, any unwanted state changes can either be rolled
back or isolated, and any such pollution can be avoided, by ensuring
separate logging streams. In practice, this may involve consider-
able engineering effort, especially when the system is not initially
designed with such testability in mind.

Fortunately, the rapid uptake of cloud-based and containerised
solutions offers an exciting avenue to full end–to–end testing, that
faithfully mimics production, without necessarily risking any effect
to production. Cloud-based deployment models lend themselves
to optimisation [20] and have natural synergies with genetic im-
provement, offering platforms for evaluation and deployment of
genetically improved software variants.

4 CONCLUSIONS: OPEN PROBLEMS AND
SCALING CHALLENGES FOR RESEARCHERS

We conclude with six open problems for the research community,
research on which may help facilitate genetic improvement scala-
bility:

(1) How best can we reuse test optimisation research ?
(2) What techniques can be used to tackle the ‘build effort

problem’ ?
(3) How can we develop approaches to the ‘new feature prob-

lem’, that best combine the complementary abilities of hu-
man and machine ?

(4) How can we best tackle the challenges of software speciali-
sation using genetic improvement ?

(5) How can we develop integrated deployment techniques to
tackle the hot fix problem ?

(6) How can we best achieve realism for ‘automatic acceptance
testing’, without compromising production behaviours ?

5 ACKNOWLEDGEMENTS
The experience of working on the deployment simulation-based
testing, Sapienz automated test design and Sapfix at Meta platforms
Inc. has had a profound affect on my understanding of issues relat-
ing to scalable software engineering, testing, genetic improvement,
and simulation.

I am deeply grateful to my many excellent colleagues at Meta for
countless exciting conversations about these topics and their hard
work and skill that has seen deployment and practical experience
with related technologies.

REFERENCES
[1] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna

Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Shan He, Ralf
Lämmel, Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. 2020. Ownership
at Large: Open Problems and Challenges in Ownership Management. Proceedings
of the 28th International Conference on ProgramComprehension (ICPC 2020) (2020).

[2] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Laemmel,
Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. 2020. WES: Agent-based
User Interaction Simulation on Real Infrastructure. In GI @ ICSE 2020, Shin
Yoo, Justyna Petke, Westley Weimer, and Bobby R. Bruce (Eds.). ACM, 276–284.
https://doi.org/doi:10.1145/3387940.3392089 Invited Keynote.

[3] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, Silvia Sapora, and Justin Spahr-Summers. 2021. Testing Web Enabled
Simulation at Scale Using Metamorphic Testing. In International Conference on
Software Engineering (ICSE) Software Engineering in Practice (SEIP) track. Virtual.

[4] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Lucas, Erik
Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, Jie M. Zhang, and Norm
Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins. In 25th
International Conference on Evaluation and Assessment in Software Engineering
(EASE 2021). Virtual.

[5] John Ahlgren, Kinga Bojarczuk, Inna Dvortsova, Mark Harman, Rayan Hatout,
Maria Lomeli, Erik Meijer, and Silvia Sapora. 2021. Behavioural and Structural
Imitation Models in Facebook’s WW Simulation System (Keynote Paper). In 9𝑡ℎ
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE 2021). virtual conference.

[6] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated software transplantation (Gold Medal Winner at GECCO
2016 Human Competitive Results Competition — The HUMIES. Also winner of
an ACM distinguished paper award at ISSTA 2015). In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore,
MD, USA, July 12-17, 2015. 257–269.

[7] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
dependency detection for safe Java test acceleration. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. 770–781.

[8] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E.-N. Volanschi. 1998.
Tempo: specializing systems applications and beyond. Comput. Surveys 30, 3
(Sept. 1998). http://www.acm.org:80/pubs/citations/journals/surveys/1998-30-
3es/a19-consel/ Article 19..

[9] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on
test data selection: Help for the practical programmer. IEEE Computer 11 (1978),
31–41.

[10] Edsger W. Dijkstra. 1969. Structured programming. http://www.cs.utexas.edu/
users/EWD/ewd02xx/EWD268.PDF circulated privately.

[11] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A systematic review
on regression test selection techniques. Information & Software Technology 52, 1
(2010), 14–30.

[12] Justin Etheredge. 2020. Why does it take so long to build software? https:
//www.simplethread.com/why-does-it-take-so-long-to-build-software/

[13] Erol Gelenbe and Yves Caseau. 2015. The impact of information technology on
energy consumption and carbon emissions. ubiquity 2015, June (2015), 1–15.

[14] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[15] Giovani Guizzo, Justyna Petke, Federica Sarro, and Mark Harman. 2021. En-
hancing genetic improvement of software with regression test selection. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1323–1333.

[16] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1–119.

[17] R. G. Hamlet. 1977. Testing programswith the aid of a compiler. IEEE Transactions
on Software Engineering 3 (1977), 279–290.

[18] Mark Harman, Yue Jia, Jens Krinke, Bill Langdon, Justyna Petke, and Yuanyuan
Zhang. 2014. Search based software engineering for software product line
engineering: a survey and directions for future work (Keynote Paper). In 18𝑡ℎ
International Software Product Line Conference (SPLC 14). Florence, Italy, 5–18.

[19] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke, Iman Hemati
Moghadam, Shin Yoo, and FanWu. 2014. Genetic Improvement for Adaptive Soft-
ware Engineering (Keynote Paper). In 9𝑡ℎ International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2014) (Hyderabad,
India). ACM, New York, NY, USA, 1–4. https://doi.org/10.1145/2593929.2600116

[20] Mark Harman, Kiran Lakhotia, Jeremy Singer, David White, and Shin Yoo. 2013.
Cloud Engineering is Search Based Software Engineering Too. Journal of Systems
and Software 86, 9 (2013), 2225–2241.

[21] Mark Harman, William B. Langdon, Yue Jia, David R. White, Andrea Arcuri, and
John A. Clark. 2012. The GISMOE challenge: Constructing the Pareto Program
Surface Using Genetic Programming to Find Better Programs (Keynote Paper).

6

https://doi.org/doi:10.1145/3387940.3392089
http://www.acm.org:80/pubs/citations/journals/surveys/1998-30-3es/a19-consel/
http://www.acm.org:80/pubs/citations/journals/surveys/1998-30-3es/a19-consel/
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF
https://www.simplethread.com/why-does-it-take-so-long-to-build-software/
https://www.simplethread.com/why-does-it-take-so-long-to-build-software/
https://doi.org/10.1145/2593929.2600116


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Scaling Genetic Improvement and Automated Program Repair APR’22, May 19, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

In 27𝑡ℎ IEEE/ACM International Conference on Automated Software Engineering
(ASE 2012). Essen, Germany, 1–14.

[22] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 197–207.

[23] Charles Anthony Richard Hoare. 1996. How did software get so reliable without
proof?. In IEEE International Conference on Software Engineering (ICSE’96). IEEE
Computer Society Press, Los Alamitos, California, USA. Keynote talk and
extended abstract.

[24] Charles Anthony Richard Hoare. 2009. Null references: The Billion Dollar
Mistake. In QCON conference. London, England. https://www.infoq.com/
presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

[25] Yue Jia and Mark Harman. 2008. Milu: A Customizable, Runtime-Optimized
Higher Order Mutation Testing Tool for the Full C Language. In 3𝑟𝑑 Testing
Academia and Industry Conference - Practice and Research Techniques (TAIC
PART’08). Windsor, UK, 94–98.

[26] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (September–
October 2011), 649 – 678.

[27] William B. Langdon and Mark Harman. 2014. Genetically Improved CUDA
C++ Software. In 17𝑡ℎ European Conference on Genetic Programming (EuroGP).
Granada, Spain, 84–95.

[28] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level Code
Generation with AlphaCode. Technical Report. DeepMind.

[29] Zohar Manna and Richard J. Waldinger. 1975. Knowledge and Reasoning in
Program Synthesis. Artificial Intelligence 6, 2 (1975), 175–208.

[30] Ke Mao. 2017. Multi-objective Search-based Mobile Testing. Ph. D. Dissertation.
University College London, Department of Computer Science, CREST centre.

[31] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In International Conference on Software Engineering (ICSE)
Software Engineering in Practice (SEIP) track. Montreal, Canada.

[32] Glenford J. Myers. 1979. The Art of Software Testing. Wiley - Interscience, New
York.

[33] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
a Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(June 2018), 415–432. https://doi.org/doi:10.1109/TEVC.2017.2693219

[34] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014.
Using Genetic Improvement & Code Transplants to Specialise a C++ Program to
a Problem Class. In 17𝑡ℎ European Conference on Genetic Programming (EuroGP).
Granada, Spain, 132–143.

[35] Baptiste Roziere, Jie Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve,
and Guillaume Lample. 2022. Leveraging Automated Unit Tests for Unsupervised
Code Translation. In 10𝑡ℎ International Conference on Learning Representations
(ICLR 2022). To appear.

[36] Salman Taherizadeh and Marko Grobelnik. 2020. Key influencing factors of the
Kubernetes auto-scaler for computing-intensive microservice-native cloud-based
applications. Advances in Engineering Software 140 (2020), 102734.

[37] Alan M. Turing. 1949. Checking a Large Routine. In Report of a Conference on
High Speed Automatic Calculating Machines. University Mathematical Laboratory,
Cambridge, England, 67–69.

[38] Roland H Untch. 1995. Schema-based mutation analysis: A new test data adequacy
assessment method. Ph. D. Dissertation. Clemson University.

[39] Fan Wu, Mark Harman, Yue Jia, Jens Krinke, and Westley Weimer. 2015. Deep
Parameter Optimisation. In Genetic and evolutionary computation conference
(GECCO 2015). Madrid, Spain, 1375–1382.

[40] Shin Yoo and Mark Harman. 2012. Regression Testing Minimisation, Selec-
tion and Prioritisation: A Survey. Journal of Software Testing, Verification and
Reliability 22, 2 (2012), 67–120.

[41] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. 2008. Search Based
Requirements Optimisation: Existing Work and Challenges. In International
Working Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ’08), Vol. 5025. Springer LNCS, Montpellier, France, 88–94.

7

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://doi.org/doi:10.1109/TEVC.2017.2693219

	Abstract
	1 Introduction
	2 Scale as opportunity
	3 Landscape of scale opportunities for researchers
	3.1 Test execution optimisation
	3.2 The build effort problem
	3.3 The New Feature Build Cost Problem
	3.4 The Software Specialisation Problem
	3.5 The Hot Fix Problem
	3.6 The Automated Acceptance Test Problem

	4 Conclusions: Open problems and scaling challenges for researchers
	5 Acknowledgements
	References

