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Abstract. Genetic Programming (GP) is a powerful optimization algo-
rithm, which employs crossover for a main genetic operator. Because a
crossover operator in GP selects sub-trees randomly, the building blocks
may be destroyed by crossover. Recently, algorithms called PMBGPs
(Probabilistic Model Building GP) based on probabilistic techniques
have been proposed in order to improve the problem above. We pro-
pose a new PMBGP employing Bayesian network for generating new
individuals with a special chromosome called expanded parse tree, which
much reduces the number of possible symbols at each node. Although the
large number of symbols gives rise to the large conditional probability
table and requires a lot of samples to estimate the interactions among
nodes, a use of the expanded parse tree overcomes these problems. A
computational experiment on a deceptive MAX problem (DMAX prob-
lem) demonstrates that our new PMBGP is superior to other program
evolution methods.

1 Introduction

In this paper, we propose a program optimization algorithm based on GP which
adopts a probabilistic model for a genetic operator. Our approach POLE (Pro-
gram Optimization with Linkage Estimation) [1] employs Bayesian network for
a probabilistic model and uses a special chromosome called expanded parse tree
to overcome the problem of prior PMBGPs.

GP is an extended algorithm of GA and is capable of handling programs and
functions. Because GP has a structural chromosome which is very flexible, GP
has been applied to many problems (robot engineering, financial engineering, bio
informatics, etc) and has been considered to be a very powerful way for solving
these problems.

The main genetic operator in Evolutionary Algorithms (EAs) is a crossover
operator. Although the crossover operator is a very powerful operator in GA
and GP, it also has a drawback. In simple GA and GP, crossover is carried out
randomly regardless of the problem it applied. As a result, the building blocks
may be destroyed by crossover and this destruction makes the search inefficient.

Recently new genetic operators based on probabilistic techniques have been
proposed to replace the old crossover operator. These probabilistic techniques



are considered to be able to overcome the drawbacks of the crossover operator.
More and more attentions have been paid to these algorithms. It is called PM-
BGA (Probabilistic Model Building GA) [2] or EDA (Estimation of Distribution
Algorithm) [3], and PMBGP (Probabilistic Model Building GP) [4].

In the prior PMBGPs based on the standard GP, several probabilistic models
have been applied (e.g. univariate, parent-child relation). In order to express the
general probabilistic interactions, an estimation of Bayesian network is a good
solution. However, there is a big problem on applying the estimation of Bayesian
network to the program evolution. Because GP uses many symbols during the
search (e.g. F = {+,−,×, ...}, T = {x, y,ℜ, ...}), the number of possible symbols
at each node become very large. When the number of possible symbols is large,
conditional probability tables (CPT) which express the quantitative relationship
among nodes becomes large. As a result, many samples are required to construct
the Bayesian network. Furthermore, all the programs generated with Bayesian
network have to be syntactically correct.

In order to overcome the problem explained above, our approach adopts a
special chromosome called expanded parse tree (see Section 3.1) for expressing
the individuals. With the expanded parse tree, the number of possible symbols
can be dramatically reduced. At the same time, all program generated under the
expanded parse tree are syntactically correct.

Characteristics of our approach are listed below.

– The Bayesian network is used for estimating the interactions among nodes.
– A special chromosome called expanded parse tree is employed.

In the following sections, we describe the details of our approach.

2 Related Works

Fig. 1. Graphical interpretation of PMBGPs.

EAs based on probabilistic models were first carried out in the field of binary
GA. Binary PMBGAs can be classified into three groups: univariate model, bi-
variate model and multivariate model. In these fields, many algorithms have been
proposed. Especially, multivariate algorithms which use Bayesian network (e.g.



BOA (Bayesian Optimization Algorithm) [5], EBNA (Estimation of Bayesian
Network Algorithm) [6], LFDA (Learning Factorized Distribution Algorithm)
[7], etc) are considered to be very strong algorithms because of their model
flexibility.

PMBGPs can be broadly classified into two groups: the algorithms based on
simple GP and those based on grammar-guided GP.

– Standard GP based PMBGP (Figure 1)
PIPE (Probabilistic Incremental Program Evolution) [8], EDP (Estimation
of Distribution Programming) [9], ECGP (Extended Compact Genetic Pro-
gramming) [4], BOAP (BOA Programming) [10]

– Grammar Model based PMBGP
SG-GP (Stochastic Grammar-based GP) [11], PEEL (Program Evolution

with Explicit Learning) [12], GMPE (Grammar Model based Program Evo-
lution) [13], Grammar Transformations in EDA [14], BAP (Bayesian Auto-
matic Programming) [15]

Our approach POLE, which belongs to the standard GP group, is much im-
proved over the prior models (PIPE, EDP, ECGP, BOAP). Because PIPE and
EDP use fixed probabilistic models, these models are less flexible compared to
Bayesian network. Although ECGP can estimate any interactions, the size of
joint distribution becomes very large and only small building blocks can be esti-
mated. In the zigzag tree used in BOAP, syntactically incorrect individuals can be
easily generated and these incorrect individuals have to be managed with some
heuristics. Because our approach employs Bayesian network and the expanded
parse tree, any interactions can be estimated with smaller conditional probabil-
ity table size. Furthermore, all the programs generated with our approach are
syntactically correct.

3 Proposed Method

PIPE, EDP and ECGP use the standard parse tree as simple GP. In these
algorithms, all programs are handled as a full α-ary tree (Figure 2(a)), α being
the maximum arity among functions. The positions of each node are superposed
and the probability distributions are constructed by counting the frequencies. In
the standard parse tree, both functions and terminals are located at branches in
the tree. Although terminal z and function exp in Figure 2(a) are at the same
depth, the types of these nodes are different. The size of traditional CPT is
calculated with Equation 1, which also represents the number of free parameters
in Bayesian network.

K =
n−1∑
i=0

∥Πi∥ (∥Xi∥ − 1) (1)

In the case of the standard parse tree, ∥Xi∥ = |F ∪ T |, ∥Πi∥ = |F ∪ T ||Πi|,
where ∥Xi∥ is the number of possible instances of Xi, Πi represents the set



of parent nodes of Xi in Bayesian network and n denotes the number of nodes.
Usually, GP uses about 10 symbols during the search. Then ∥Xi∥ = |F ∪T | = 10.
On the other hand, binary GA uses only 2 symbols, ∥Xi∥ = 2. This example
shows that the size of CPT in PMBGP based on the standard parse tree is much
larger compared to that in binary PMBGA.

In our approach, BIC (Bayesian Information Criteria) [16] is used for scoring
networks. In this metric, CPT size K is used for a penalty term. If the size of
CPT is large, only small number of relations can be estimated. Furthermore,
more samples are required to construct the Bayesian network.

In order to improve the problems mentioned above, we propose the use of
the expanded parse tree with Bayesian network. This expression much reduces
the number of possible symbols at each node. As a result, size of CPT can be
dramatically reduced. We will show the reason of the size reduction in the next
section.

3.1 Expanded Parse Tree

Fig. 2. Standard parse tree (a) and the expanded parse tree (b). The gray nodes
represent introns. Squares and circles represent functions and terminals. Both trees are
syntactically identical.

Expanded parse tree is an expression way for tree structures (programs, func-
tions, etc) and was proposed in an algorithm named Evolutionary Programming
with Introns (EP-I) [17]. The expanded parse tree was originally devised to ap-
ply GA crossover to GP. The use of the expanded parse tree enables application
of GA operators to GP.

GP and GA are based on the same concept of natural evolution and have
a lot in common. GA uses linear arrays and crossover is done by swapping the
sub-arrays of two individuals. On the other hand, GP adopts tree structures and
crossover is operated by exchanging sub-trees. Tree structures can be converted
to linear arrays (and also fixed length by inserting null nodes) as GA. However,
the node types (function or terminal) of each position differ among individuals



and this difference gives rise to the syntactic destruction after applying GA-style
crossover to GP.

If the length of chromosomes is fixed and the node types (function of ter-
minal) at each position are fixed among all individuals, GA crossover can be
applied. EP-I extended the standard parse tree to satisfy the above request by
inserting the selector nodes and adding introns beneath unused arguments. In
EP-I, this extended expression is called expanded parse tree. Figure 2(b) describes
an example of the expanded parse tree. This expanded parse tree is syntactically
identical to Figure 2(a). Figure 2(a) expresses the standard parse tree used in
the traditional GP. Expanded parse tree is expressed with full α-ary tree (α is
the maximum arity among functions). The expanded parse tree inserts selector
operators (L and R) to the parse tree in order to make the terminal nodes posi-
tioned at the leaves of the full α-ary tree. In this figure, L and R denote selector
operator and are operated as R(x, y) = y and L(x, y) = x. However with these
extra operators, the length of individuals are different among individuals because
there are operators which have fewer arity than the maximum arity (In Figure
2(b), sin has only one arity and this is fewer than 2 which is the maximum ar-
ity). EP-I attaches introns to the unused parameters for the sake of overcoming
the problem. For instance, exp is converted to 2 arity function and evaluated
exp(x, y) = exp(x). In Figure 2(b), gray nodes stand for introns. Introns will not
be interpreted during evaluation. The standard parse tree of maximum depth D
whose maximum arity is α can be converted to a full α-ary expanded parse tree
of maximum depth D.

In the expanded parse tree, node types at each position are identical among
all individuals (Figure 2(b)). In Figure 2, nodes represented with circles are
functions and squares are terminals. We can see all function nodes are positioned
at the branches and all terminals at leaves. Then the GA-style crossover can be
applied to the expanded parse tree.

In the previous section, we have denoted that the size of CPT is very large
when applying the Bayesian network to the standard parse tree. This is because
we have to consider the possibility of both F and T in each position in the
standard parse tree. However, in the expanded parse tree which is used in our
approach, function nodes are always positioned at the branches, and the terminal
node at the leaves (Figure 2(b)). With this property, CPT size can be shrunk.

We will show the reduction of CPT size in the expanded parse tree with
an example. Let us assume the parity problem (F = {And, Or,Nand,Nor},
T = {d0, d1, d2, d3, d4, d5}). Then we consider the interactions between nodes
positioned at branches (Figure 3). In the case of the standard parse tree, the
number of possible instances at the branches is |F ∪ T | = 10. CPT size becomes
K = 90 with Equation 1. On the other hand, in the expanded parse tree case,
CPT size becomes K = 20 because only function nodes and a selector node L are
positioned at the branches. This example shows that CPT size in the expanded
parse tree is 2/9 times as small as that in the standard parse tree. This difference
becomes larger when the node has more parent nodes. We have denoted that



Fig. 3. CPT size comparison of a concrete example in the standard parse tree (a) and
the expanded parse tree (b).

CPT size is used for a penalty term in BIC metric. Large CPT size requires a
lot of samples to estimate the interactions among nodes.

In our approach, we employ the expanded parse tree for expressing individ-
uals. In EP-I, both L and R nodes are used for selector operators. However, we
use only L operator because we want to save CPT size.

3.2 Algorithm

In this section, we explain the details of proposed method POLE (Program
Optimization with Linkage Estimation). A flowchart of POLE is described below
which is also identical to that of other PMBGAs and PMBGPs.

Step 1 Initialization of individuals
Step 2 Evaluation of individuals
Step 3 Selection of individuals

According to the fitness values, individuals are selected which are used for
construction of Bayesian network and estimation of parameters. The number
of individuals to select is represented with M × Ps, where Ps is a selection
rate and M is a population size. Any selection methods can be employed
and we use a truncate selection.

Step 4 Construction of Bayesian network
Bayesian network is constructed with the samples and parameters are also
estimated. In our implementation, networks are constructed from scratch at
each generation.

Step 5 Generation of new individuals
New individuals are generated with constructed Bayesian network. If we
want to use the elitist strategy, better M × Pe individuals are copied from
previous generation, where Pe denotes elite rate.

Until termination criteria are met, steps from 2 to 5 are repeated.

Construction of Bayesian network We adopted Bayesian network for the
probabilistic model because Bayesian network is a very flexible model.



Fig. 4. The parent candidacies for a
node9 in a case of RP = 2 are described
as gray nodes.

Fig. 5. Network example.

Construction of Bayesian network from given data is known to be a very
computationally expensive task. Many algorithms have been proposed up to
now and we employed the combination of BIC (Bayesian Information Criteria)
[16] scoring metric and K2 algorithm [18]. K2 algorithm can construct Bayesian
network relatively fast, because K2 algorithm make the ordering on the variables.
In K2 algorithm, the parent candidacies of nodei are nodes which have smaller
indexes. K2 algorithm tries to add parents from parent candidacies repeatedly.
The parent addition which most increases the score is applied to the network.

K2 algorithm can construct Bayesian network relatively fast. However, be-
cause GP requires a lot of nodes during search, K2 algorithm may not be fast
enough for the program evolution. In the tree structure, interactions among
neighbor nodes may be stronger than those among distant nodes. Our algorithm
takes advantage of this assumption for a fast network construction.

In POLE, the nodes which satisfy the following two conditions are parent
candidacies of nodei (Nodes are numbered with breadth-first traversal), where
U(i, Rp) is the node Rp levels above nodei.

– Nodes which belong to the sub-tree rooted at U(i, Rp)
– Nodes whose indexes are smaller than i

Figure 4 is an example of parent candidacies. This figure shows parent candi-
dacies of node9 (Rp = 2). The candidacies are described with gray nodes. Figure
5 is an example of Bayesian network structure in POLE. Edges are generated
among nodes to estimate the interactions among nodes.

Generation of new individuals New individuals are generated with Bayesian
network and CPT. First, the nodes which have no parent nodes are decided
with the probability distribution. Then nodes whose parents are already fixed
are conditionally generated. Because the Bayesian network is DAG (Directed
Acyclic Graph), all nodes can be decided in turn.



Table 1. Main paremeters for POLE.

Symbol Meaning Value
Ps Selection rate 0.1
Pe Elite rate 0.005
k The number of maximum incoming edges ∞

Rp Parent range 2
PF Function selection rate at the initialization 0.8

4 Comparative Experiment

In order to show the effectiveness of our approach, we applied POLE to a de-
ceptive MAX (DMAX) problem. In the experiments, we used 4 models itemized
below for comparison.

– POLE
This is a proposed method. To estimate the interactions among node,

Bayesian network is constructed. The number of maximum incoming edges
per node is not limited. For selection, a truncate selection is used and for
initialization, Grow is adopted. Parameters are listed in Table 1.

– MODEL A
This algorithm is a k = 0 case of POLE. No network is constructed in

this algorithm and no interactions among nodes are estimated. The search
mechanism resembles that of PIPE. Other setups are identical to POLE.

– MODEL B
This model considers parents and children relationships in the tree structure
as EDP. However, this algorithm uses the expanded parse tree and this is
the difference between MODEL B and the original EDP. Other setups are
identical to POLE.

– Simple GP (SGP)
This algorithm is a simple implementation of GP. In the experiments,

Pe = 0.005, Pc = 0.995, Pm = 0, Pr = 0 are used. Crossover points are
selected with bias. Crossovering the two individuals, the first crossover point
is selected from functions and terminals with the possibilities of 0.9 and 0.1,
respectively. The second point is selected under the condition that the depth
of both individuals does not exceed the depth limitation. For selection, a
tournament selection is used, and for initialization of individuals, Grow is
adopted.

4.1 Deceptive MAX (DMAX) Problem

The MAX problem [19, 20] is a benchmark test for investing the search mecha-
nism of GP, and is widely used as a benchmark test for PMBGP [9, 13]. An objec-
tive of the MAX problem is to find the function which returns the largest value
under limitation on maximum tree depth. Symbols are also limited (F = {+,×},
T = {0.5}). To investigate the search performance of POLE, we applied our ap-
proach to a deceptive MAX problem, which is an extended problem of the MAX



problem. Because the original MAX problem does not have deceptiveness, it is
very easy for some PMBGPs which do not consider the interactions to solve.
We extended the MAX problem by adding the deceptiveness and we call this
extended problem deceptive MAX problem (DMAX problem).

A main objective of the DMAX problem is identical to the original one:
to find the functions which return the largest real value under the limitation
on maximum tree depth D. However, the symbols used in the DMAX problem
are different from those used in the MAX problem. The DMAX problem uses
the symbols represented with Equation 2, where addm and multiplym are m
arity function and defined as Equation 3. Terminal χ is a complex value and
represented in Equation 2. A fitness value of individual is a real part of its
function. If a value of a function is a+ bi (where i =

√
−1), then its fitness value

is a. The DMAX problem can be represented with 3 parameters, m (arity), r
(root of rth power) and D (maximum tree depth).

F = {addm,multiplym}, T = {χ, 0.95}, χ = cos
2π

r
+ i sin

2π

r
(2)

addm(a0, ..., am−1) =
m−1∑
j=0

aj , multiplym(a0, ..., am−1) =
m−1∏
j=0

aj (3)

The difficulty of this problem depends on these three parameters. In this
paper, we experimented with m = 5, r = 3, D = 3 and 4 which has a very
strong deceptiveness (Section 4.1).

Let us consider the optimum value (the maximum value) in the DMAX
problem of m = 5, r = 3 and D = 3. In this setup, χ3 = 1. First, add
χ with add5 to make 5χ. Then multiply this value with multiply5 and the
value becomes (5χ)5 = 55χ5 = 55χ2. However, Re(55χ2) is a negative value
and is not a good solution. So 2 values out of 5 values to be multiplied have
to be real values. 5 × 0.95 is used as a substitution for 5χ and the maxi-
mum value is (5χ)3(0.95 × 5)2 = 2820.3125. In D = 4, the maximum value
is (5χ)24(0.95 × 5) ≈ 2.83 × 1017.

In the normal MAX problem, it is very easy to get the maximum value with
multiplying (0.5 + 0.5 + 0.5 + 0.5). On the other hand, DMAX is more difficult
to solve because of the deceptiveness.

Experimental setups We used the DMAX problem of m = 5, r = 3, D =
3, 4. In every algorithm, we started from M = 100 and increase M by 5

√
10

times (M = 100, 160, 250, 400, 630, 1000, 1600...) until the algorithm achieves
the possibility of success at 100% (20 runs). The maximum population size is
M = 25000. We observed the average number of fitness evaluations in each
algorithm. In SGP, tournament size is set to T = 2.



Fig. 6. The number of fitness evaluations
(m = 5, r = 3). The results of MODEL
A and MODEL B are omitted, because
these algorithms could not achieve the
possibility of success = 100% in D = 4
even with M = 25000.

Fig. 7. An abstract image of DMAX fit-
ness landscape when using GP. Horizontal
axis stands for the structural proximity.
(a) ∼ (d) correspond to those in Figure 8.

Fig. 8. The local (a) and global (d) optima in the DMAX problem (m = 5, r = 3,
D = 3). (b) and (c) show intermediate structures.

Results and discussion Figure 6 describes the average number of fitness eval-
uations in 20 runs. Because MODEL A and MODEL B was not able to achieve
the possibility of success = 100% in D = 4 even with M = 25000, we did not
show the results of them. In this figure, the horizontal axis represents tree size
((5D−1)/(D−1)). According to this figure, we can see that our approach requires
much less number of fitness evaluations than SGP, not to mention, MODEL A
and MODEL B. Although SGP can get the optimum solution more effectively
than MODEL A and MODEL B, the number of fitness evaluations in SGP scales
up more rapidly than POLE. GP can not solve the DMAX problem effectively
because of deceptive fitness landscape of the problem. Figure 8(a) is a local op-
timum and Figure 8(d) is a global optimum of the DMAX problem (m = 5,
r = 3 and D = 3). When an individual represented in (a) transforms to (d) with



crossover, the individual have to go through the intermediate structures repre-
sented in (b) and (c). However, fitness values of (b) and (c) are negative and the
possibility that these intermediate structures are selected in the next generation
is very low. Figure 7 is an abstract image of DMAX fitness landscape when using
GP crossover. As can been seen, (b) and (c) structures are the valleys in this
fitness landscape.

MODEL A and MODEL B have more tendencies to be trapped with the local
optimum than SGP, because MODEL A and MODEL B are not able to estimate
the building block properly and easily destroy them. As a result, MODEL A and
MODEL B are much more inferior to POLE in this problem. With the same
population size as that of POLE with which POLE acheived the possibility of
success = 100% in D = 4, MODEL A and MODEL B could not find the optimum
out of 20 runs.

Because our approach estimates the interactions among node effectively,
POLE can get the optimum value with the least number of fitness evaluations.
In the DMAX problem, POLE is much more effective in solving the DMAX
problem than prior program evolution methods.

5 Conclusion

We have proposed Bayesian network for estimation of interactions among nodes
by using the expanded parse tree which dramatically reduce the size of CPT.
It has been shown that in the DMAX problem, POLE shows the superior per-
formance compared to simple GP and other probabilistic models. POLE may
be effective for the problem which has strong deceptiveness in the search space.
Applications of POLE to real-world problems are our future research topic.
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