From: AAAI Technical Report WS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Augmenting Collective Adaptation
with Simple Process Agents

Thomas Haynes
Department of Mathematical & Computer Sciences
600 South College Ave.
The University of Tulsa
Tulsa, OK 74104-3189
e-mail: haynes@euler.mcs.utulsa.edu

Abstract

We have integrated the distributed search of genetic
programming based systems with collective memory
to form a collective adaptation search method. Such a
system significantly improves search as problem com-
plexity is increased. However, there is still consid-
erable scope for improvement. In collective adapta-
tion, search agents gather knowledge of their environ-
ment and deposit it in a central information reposit-
ory. Process agents are then able to manipulate that
focused knowledge, exploiting the exploration of the
search agents. We examine the utility of increasing
the capabilities of the centralized process agents.

Introduction

A computational agent society can exhibit collective
behavior in two dimensions: action and memory. Col-
lective action is defined as the complex interaction that
arises out of the sum of simpler actions by the agents.
These simpler actions reflect a computational bound on
either the reasoning power or memory storage of the in-
dividual agent. Such bounds are caused by the combin-
atorial explosion found in either search or optimization
of NP complete problems (Garey & Johnson 1979).
Collective memory is defined as the combined know-
ledge gained by the interaction of the agents with both
themselves and their environment. We combine the raw
power of collective action with the expressiveness of
collective memory to enhance a distributed search pro-
cess. The integration of action and memory leads to
a distributed society of search agents which interact
via collective memory; allowing for either agent com-
munication or for a centralized search of the gathered
knowledge. We consider simple computational search
agents, which are chromosomes in a genetic program-
ming (GP) (Koza 1992) population.

Genetic algorithms (GA) (Holland 1975) are a class
of distributed search algorithms inspired by biological
evolutionary adaptation. GP is an off-shoot of GA’s,
and is typically used in the antomatic induction of pro-
grams. Both GA and GP represent search strategies
in a population of chromosomes. Each chromosome in
the population can be searching different parts of the

41

search space or fitness landscape. Each chromosome
can be considered to be a behavioral strategy to con-
trol an agent (Haynes et al. 1995) and are considered
to be autonomous in the sense that they do not typic-
ally interact to find a solution. They are also implicitly
cooperative since the more fit chromosomes of genera-
tion G; are more likely to contribute genetic material
to the chromosomes in generation Giy1. Each chro-
mosome is evaluated by a fitness function, which maps
the chromosome representation into a given problem
domain. The evaluation of one chromosome typically
is independent of all others.

We have found that collective adaptation, which is
the addition of collective memory to a GP-based learn-
ing system, significantly improves the search process as
problem complexity is increased (Haynes 1997). We
believe that this improvement is a direct result of the
change of focus from strict competition to cooperation.
However, there is still considerable room for improve-
ment. In this paper, we investigate increasing the pro-
cessing power of process agents, which are computa-
tional agents external to the GP system, to improve
the collective adaptation.

Computational Agent Society

As problem spaces increase in complexity, the search
for a solution can overwhelm a single computational
agent. We can increase the exploratory power during
the search process by introducing more agents. The
first step is parallel search; the agents cannot commu-
nicate and thus are unable to coordinate their search
efforts. We might assign n agents to the search, but
instead of examining n different areas of the space,
they might converge to one area, perhaps representing
a local minimum. The next step is to allow communic-
ation between the agents, and thus move to distributed
search. The agents are able to coordinate their actions,
maximizing their coverage of the problem space.

We wish to minimize the complexity of the agents in
this society. We believe that the knowledge gained from
the interactions of the simple agents will be greater
than the sum of the knowledge of those same individual
agents. To that end, we wish to limit communication,



as it can place too much of a burden on the agents.
Further, we limit the amount of state that an agent can
posses. Our basic model is that of the social insect;
near mindless individuals which interact to form an in-
telligent group. We need to strike a balance between
parallel and distributed search. If our agents are simple
enough, then they will be cheap in terms of execution
time. If we are able to detect the redundant results, we
can allow redundant search. Finally, to reduce com-
munication, we restrict it to either before or after an
agent is actively searching.

Our goal is to utilize simple computational agents to
retrieve knowledge from the problem space, store that
knowledge in an information center, and allow other
computational agents to manipulate that knowledge in
the information center. To that end, we define:

Information center as a centralized repository of
knowledge. As the computational agents are simple
and lack their own memory, this repository can act
as a collective memory for the whole computational
agent society.

Search agents as those agents which retrieve know-
ledge from the problem space. They may not com-
municate with other agents outside of the information
center. They may add knowledge to the information
center, but they may not delete from it.

Process agents as those agents which manipulate the
knowledge stored in the information center. They
may delete knowledge from the repository.

The computational agent society is depicted in Fig-
ure 1. Note that search agents S2 and S3 retrieve the
same knowledge. A task for one of the process agents
would be to eliminate redundant knowledge.

Information
Center

®

Figure 1: Computational agent society employing an
information center. Process agents are labeled with a
P and search agents with a S.

Process agents cannot manipulate the search space;

42

they must direct the search agents in order to sense and
manipulate the search space. The search agents can
neither manipulate the information center nor direct
other search agents. The interactions of both the pro-
cess and search agents with the information center form
two orthogonal dimensions of access. Both dimensions
can take on one of two discrete values: passive and
active. Passive agents do not retrieve knowledge from
the information center, while active agents can retrieve
knowledge. We reference a tuple in these dimensions
by Interactivity-Processing, where Interactivity denotes
the state of the search agents and Processing denotes
the state of the process agents.
The four models of access are:

Active-Passive The information center is interact-
ively accessed by the independent search agents.
They gather knowledge and deposit it into the in-
formation center. Before a new search is started, a
search agent can retrieve and utilize knowledge from
the information center to guide and shape the search.

Active-Active The information center is interactively
accessed by the independent search agents. By ma-
nipulating the repository, the process agents can
guide the search agents.

Passive-Passive This form of access is actually par-
allel search as there is no communication.

Passive-Active The search agents do not interact
with the information center. They still gather and de-
posit knowledge into the repository, but they cannot
retrieve knowledge from it. The information center
is a focusing of the problem space from which process
agents can manipulate the knowledge.

We examine the coordination of knowledge of
loosely-coupled, heterogeneous, and initially simple
agents. The agents can adapt during the search pro-
cess, eventually becoming quite complex.

Genetic Programming

Genetic programming is a machine learning technique
used in the automatic induction of computer pro-
grams (Koza 1992). A GP system is primarily com-
prised of three main parts:

¢ a population of chromosomes
e a chromosome evaluator
e a selection and recombination mechanism.

In implementing a system for a new problem, the de-
signer must encode function and terminal sets, which
will comprise the elements or genes of the chromosome,
and implement a function which can evaluate the fit-
ness, or applicability, of a chromosome in the domain.

Chromosomes are typically represented as parse
trees. The interior nodes are functions and the leaf
nodes are terminals. The first population of chromo-
somes is randomly generated. Each chromosome is



then evaluated against a domain specific fitness func-
tion. The next generation is comprised of the offspring
of the current generation: parents are randomly se-
lected in proportion to their fitness evaluation. Thus,
more fit chromosomes are likely to contribute genetic
material to successive generations. This generational
process is then repeated until either a preset number
of generations has passed or the population converges.

Two considerations for designing the function and
terminal sets are closure and sufficiency. Closure states
that all functions must be able to handle all inputs, i.e.,
division can handle a 0 denominator. Sufficiency re-
quires that the domain be solvable with the given func-
tion and terminal sets. One ramification of closure is
that all functions, function arguments, and terminals
have just one typality. Hence, closure means any ele-
ment can be a child node in a parse tree for any other
element without having conflicting data types.

Montana claims that closure is a serious limitation to
genetic programming. He introduces a variant of GP in
strongly typed genetic programming (STGP), in which
variables, constants, arguments, and returned values
can be of any type (Montana 1995). The only restric-
tion is that the data type for each element be specified
beforehand. This causes the initialization process and
the various genetic operations to only construct syn-
tactically correct trees. It has been shown that STGP
can significantly reduce the search space (Haynes et
al. 1995; Montana 1995). The STGP variant mainly
restricts the construction and reproduction of chromo-
somes; the basic algorithm is GP.

Clique Detection

Clique detection has been used as a benchmark for im-
proving learning in GP systems (Haynes 1996; Haynes,
Schoenefeld, & Wainwright 1996). A collection of
cliques in a graph can be represented as a list of a
list of vertices which, in turn, can be represented by a
tree structure. Given a graph G = (V, E) a clique of
G is a complete subgraph of G. A clique is denoted
by the set of vertices in the complete subgraph and the
goal is to find all cliques of G. Since the subgraph of
G induced by any subset of the vertices of a complete
subgraph of G is also complete, it is sufficient to find
all maximal complete subgraphs of G. A maximal com-
plete subgraph of G is a maximal clique. Each chromo-
some in a STGP pool will represent sets of candidate
maximal cliques. The function and terminal sets are
F = {ExtCon, IntCon} and T = {1,...,#vertices}.
ExtCon “separates” two candidate maximal cliques,
while IntCon “joins” two candidate cliques to create
a larger candidate.

The fitness evaluation rewards for clique size and
rewards for the number of cliques in the tree. To gather
the maximal complete subgraphs, the reward for size is
greater than that for numbers. The evaluation also does
not reward for a clique either being in the tree twice
or being subsumed by another clique. The first falsely

43

inflates the fitness of the individual, while the second
invalidates the goals of the problem. The algorithm for
the fitness evaluation is:

¢ Parse the chromosome into a sequence of candidate
maximal cliques, each represented by an ordered list
of vertex labels.

e Throw away any duplicate candidate maximal
cliques and any candidate maximal cliques that are
subsumed by other candidate maximal cliques.

o Throw away any candidate maximal cliques that are
not complete subgraphs.

The fitness formula is
[+
F=oac+ Z g™,

i=1
where ¢ = # of valid candidate maximal cliques and
n; = # vertices in clique C;. Both o and # are con-
figurable by the user. A has to be large enough so
that a large clique contributes more to the fitness of

one chromosome than a collection of proper subcliques
contributes to the fitness of a different chromosome.

arica

Figure 2: Example 10 node graph.

Figure 2 is a ten node graph we have used in our
previous research to test the clique detection system.
There are exactly 10 cliques: C' = {{0, 3,4}, {0,1, 4},
{1,4,5}, {1,2,5}, {2,5,6}, {3,4,7}, {478} {458},
{5, 8,9}, {5,6, 9} }. An example chromosome for the
10 node graph is presented in Figure 3. It has five
candldate cliques, and the only cliques are #2 and #5:

= {{4,8,7},{5,6}}. The others are eliminated be-
cause they violate at least one of the rules: #4 con-
tains duplicate vertices, i.e. vertex 7 is repeated; #3 is
subsumed by #2; and, #1 is not completely connected.

This example graph exhibits nice regularities which
allows for the efficient comparison of results across dif-
ferent test runs. We have utilized these regularities
to identify and enumerate the building blocks, i.e., the
connected components (Haynes 1996). We repaired
chromosomes by stripping out all invalid candidate
cliques. We investigated various rates of return of re-
paired chromosomes into the population. We found
that by duplicating the coding segments we could sig-
nificantly improve the search process.



Sandidale

Candidate !
Clique #1 lique #2

Candidate
Clique #3

Candidate

. Candidate
Clique #4 Clique #5

Figure 3: S—expression for 10 node graph.

If a chromosome contained no valid candidate
cliques, we tried a repair strategy of injecting the set
of all valid cliques found to date. We found that such
a repair strategy led to premature convergence in a
non—optimal section of the search space. We find if
we instead adopt a Passive-Active collective adapta-
tion technique in this domain, the search process is
greatly facilitated. With the Passive-Active collective
adaptation we do not repair chromosomes which have
no valid candidate cliques. Instead the search agents
gather candidate cliques into the information center and
the process agent removes duplicates and candidates
subsumed by larger candidates.

The addition of Passive-Active collective adaptation
to the search technique significantly improves the effi-
ciency of the search process (Haynes 1997). We want
to leverage that improvement to allow clique detec-
tion in more realistic graphs. The ten node graph
we use to illustrate the clique detection is contrived
and thus facilitates the search process, i.e. a known
optimal solution exists. The search for the optimal
solution for this graph is not trivial with either plain
GP or STGP systems. In the Second DIMACS Chal-
lenge (Johnson & Trick 1993) random graphs were gen-
erated as tests for the maximum clique detection prob-
lem (ftp://dimacs.rutgers.edu/pub/challenge). While
the duplication of coding segments repair process is
able to search such graphs, the plain STGP system will
prematurely converge.

We now examine the hamming6-4.clq dataset from
the DIMACS repository, which has 64 vertices, 704
edges, and a maximum clique size of 4. From a brute
force algorithm, we know that there are 464 cliques,
with a maximum fitness of 1,597,424. We present the
results, in Figure 4, of testing both R10Q7, i.e., replace
the original chromosome with the repaired one with a
probability of 0.1 and the coding segment is duplicated
seven times during the replacement process, and PA,
i.e., add Passive-Active collective adaptation to piece
together the set of all cliques.

The addition of Passive-Active collective adaptation

44

700000

600000

500000 1~

400000 [

200000

100000

2(:)0 Goniorgﬂun 400 5(‘)0 600

Figure 4: Passive-Active collective memory search ap-
plied to the hamming6-4 graph. In particular, com-
parison of best fitness per generation for duplication of
coding segments repair of chromosomes with a 10% re-
turn rate and 7 duplicates (R10Q7), and Passive-Active
collective adaptation (PA), which utilizes R10Q7 to

drive the search agents.

is significant in improving the search process. However,
the highest reported fitness of about 650,000 is only
about 40% of the maximum fitness. As the learning
curve has not stabilized at a plateau, we could allow
the search to continue for more generations. We could
also increase the population size.

Experiments

Both methods fail to address our implicit desire to ef-
fectively search the space in both minimal time and
memory. A possible extension is bestow further com-
putational effort to the process agent(s) (The process
agent in this domain just collates the knowledge, re-
moving duplicates.). The information center is a rich
storehouse of knowledge and the process agents should
be able to exploit the exploration of the search agents.



Imagine the information center as a lens for focusing
the search space into a more manageable space; the
process agents are able to confine their search to the
rich areas of the search space. The process agents are
not working in the original search space, where confine-
ment in a rich, but narrow, area might lead to an agent
being trapped in a local minimum. As the search space
has been refined for the process agents, they should be
able to avoid the combinatorial explosion found in the
original space. Thus, we can extend the process agents
with simple algorithms, which might not be effective in
the face of the combinatorial explosion.

In the context of the clique detector, we can consider
a brute force algorithm:
1. Set i = 0 and construct a set S; of all candidate

cliques of size 2, i.e., if there is an edge between two

vertices, add them as a candidate clique.

2. Loop over both the set of all candidate cliques and
the set of all vertices, S;:

(a) If a candidate clique can not be expanded by the
addition of one vertex, then add it the set S;yi.

(b) Else, for each vertex which expands the candidate
clique, add a new candidate clique to the set S;4.1.

3. Increment i by one, and repeat until no new candid-
ate clique is formed, i.e. S; = Si41.

In the original search space, such an algorithm
quickly becomes infeasible as the problem complexity
scales up. However, it can remain feasible in the fo-
cused search space.

Our first experiment adds an additional process
agent to our computational agent society. Each genera-
tion, after both the search agents and the collating pro-
cess agent execute, the new agent randomly selects a
vertex and tries to extend each of the candidate cliques
contained in the information center (Expand by Ran-
dom Vertex, ERV). There are some subtle differences
between this algorithm and the brute force one: 1) Not
all vertices are guaranteed to be considered as expan-
sion vertices; 2) Candidate cliques which are subsumed
by larger cliques can not be used for exploration, i.e.,
the four candidate cliques, of size 3, of a candidate
clique of size 4, Cy;, can not be used to find poten-
tial candidate cliques of size 4, C4;(j # ©), which have
three vertices in common with C4;; and 3) The ERV
algorithm is not guaranteed to find all cliques, whereas
the brute force algorithm can do so.

While point 2 is a weakness, it is also a strength:
as problem complexity increases, the system does not
need to remember everything, alleviating the combinat-
orial explosion in storage. The GP can be used in this
case to facilitate exploration; as it is redundantly gath-
ering knowledge, over generations as well as in the same
generation, it can detect new combinations of candidate
cliques. Indeed this feature discovery is the contribu-
tion of the GP subsystem.

The results of the Passive-Active collective adapt-
ation with “energetic” process agents (PA-Energetic)

45

are shown in Figure 5. For comparison, the results
from our earlier Passive-Active experiments with just
collation are also presented (PA-R10Q7). Finally, the
fitness corresponding to the optimal solution is presen-
ted (Set of All Cliques). It is evident that the extension
of the computational abilities of the process agent, with
a simple rule, is significantly effective in reducing the
computational effort in the distributed search. On the
average, the optimal solution is found in generation 368.

1.60+06
Set of All Cliques

1.40+08

1.20408 [~

1e+06 |

Fitness

800000 -

600000 |
PA-R10Q7

400000

200000

° L L '
300 400 500
Generation

1] 1(‘)0 2(';0 600
Figure 5: Comparison of fitness per generation for
Passive-Active collective adaptation with two levels of
activity on the part of the process agents: 1) a simple
collating agent (PA-R10Q7), and 2) an agent which,
after collation, extends by one randomly selected ver-
tex each generation (PA-ERV). The underlying search
engine is genetic programming with duplication of cod-
ing segments repair of chromosomes with a 10% return
rate and 7 duplicates. All points represent the average
of 10 runs. Also shown is the fitness associated with
the set of all cliques (Set of All Cliques).

Why is this innocuous seeming extension so effect-
tve? The search space is narrowed into the information
center space. The process agent is able to quickly ex-
plore the rich areas of the search space. Will the ad-
dition of process agents, employing simple algorithms,
always lead to an improvement in learning? Even if we
exclude bad algorithms, e.g., randomly delete one ver-
tex from each candidate clique, the answer is still no.
While not by design, the ERV algorithm minimizes its
impact on building blocks, i.e. candidate cliques, and
is quite ambitious in that the same expansion is tried
on all candidate cliques. Each generation, the process
agent employing the ERV algorithm is slowly expand-
ing candidate cliques.

Consider instead a less ambitious algorithm, which
maximizes locality in attempting to detect new candid-
ate cliques. In the Merge Adjacent Candidate Cliques,
MA, algorithm, we employ two additional process
agents in conjunction with the collating one. After the
collation, the first new process agent sorts all candidate



cliques, based on vertex ordering within the candidate
clique, and then the second one merges adjacent can-
didate cliques if the union of the vertices forms a new
candidate clique.

The MA algorithm seems feasible, but we find that
it actually performs worse than Passive—Active collect-
ive adaptation, seeFigure 6. Why? The process agent
which merges the candidate cliques is forming larger
candidate cliques than the agent employing the ERV
algorithm. As a result smaller building blocks are not
being exploited by the process agent. If n cliques of
size k have a core candidate clique of size 7,7 < k, once
one of the n cliques is found, the core candidate clique
is not available for merging. By maximizing locality,
this algorithm ensures that multiple mergers can not
take place unless the core candidate clique comprises
the first ¢ vertices of each candidate clique. It is not
exploiting the exploration of the search agents.

We can test our hypothesis by considering a third
algorithm, Merge Random Candidate Clique, MR. We
employ two process agents; one to sort and one to
merge. However, now the merger randomly selects one
of the candidate cliques and tries to merge it with every
other candidate clique in the information center. As can
be seen from Figure 6, this algorithm is significantly
better than Merge Adjacent (MA) and worse than Ex-
pand Random Vertex (ERV). It performs better than
MA because it does not maximize locality, each can-
didate clique has the opportunity to merge with the
randomly selected one. It performs worse than ERV
because it is taking too big a step during the merge
process.

Conclusions

Collective adaptation is applicable in integrating results
from loosely-coupled agents. Simple search agents are
effective in gathering knowledge. We can increase the
processing power of the search agents, but there might
be physical or economical restrictions on the processing
capabilities of the search agents. If there are such re-
strictions on the search agents, we can add simple al-
gorithms to the process agents, capitalizing on the re-
duced search space. The advantage of considering a re-
duced search space is that simplistic algorithms, which
are not economical in the original search space, can be
used to effectively prune the search space farther.

References

Garey, M. R., and Johnson, D. S. 1979. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, CA: W.H. Freeman and
Co.

Haynes, T.; Wainwright, R.; Sen, S.; and Schoene-
feld, D. 1995. Strongly typed genetic programming
in evolving cooperation strategies. In Eshelman, L.,
ed., Proceedings of the Sixth International Conference
on Genetic Algorithms, 271-278. San Francisco, CA:
Morgan Kaufmann Publishers, Inc.

46

1.8e+06

Set of All Cliques

1.40+08 [~

1.20406 -

10408 -

Fitness

800000 |
600000 |-
PA-R10Q7

400000 [~

200000

o 0 160 2(‘)0 Genae?gﬂon 4(‘)0 560 600

Figure 6: Comparison of fitness per generation
for Passive-Active collective adaptation with different
levels of activity on the part of the process agents:
1) a simple collating agent (PA-R10Q7), 2) agents,
which after collation, sort then merges adjacent candid-
ate cliques if they are connected (PA-MA), 3) agents,
which after collation, sort and merge one randomly se-
lected candidate clique with all other compatible can-
didate cliques in the information center, and 4) an agent
which, after collation, extends by one randomly selec-
ted vertex each generation (PA-ERV). The underlying
search engine is genetic programming with duplication
of coding segments repair of chromosomes with a 10%
return rate and 7 duplicates. All points represent the
average of 10 runs. Also shown is the fitness associated

with the set of all cliques (Set of All Cliques).

Haynes, T.; Schoenefeld, D.; and Wainwright, R.
1996. Type inheritance in strongly typed genetic pro-
gramming. In Kinnear, Jr., K. E.; and Angeline,
P. J., eds., Advances in Genetic Programming 2. MIT
Press. chapter 18.

Haynes, T. 1996. Duplication of coding segments
in genetic programming. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence.
Haynes, T. 1997. Collective memory search. In
Proceedings of the 1997 ACM Symposium on Applied
Computing. ACM Press.

Holland, J. H. 1975. Adpatation in Natural and Artifi-
cial Systems. Ann Arbor, MI: University of Michigan
Press.

Johnson, D. S., and Trick, M. A. 1993. Cliques, color-
ing, and satisfiability: The second DIMACS challange.
(to appear).

Koza, J. R. 1992. Genetic Programming: On the Pro-
gramming of Computers by Natural Selection. Cam-
bridge, MA: MIT Press.

Montana, D. J. 1995. Strongly typed genetic pro-
gramming. Evolutionary Computation 3(2):199-230.





