
Linear Genomes for Structured Programs

Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

Abstract In most genetic programming systems, candidate solution programs
themselves serve as genome upon which variation operators act. However, because
of the hierarchical structure of computer programs and the syntactic constraints that
they must obey, it is difficult to implement variation operators that affect different
parts of programs with uniform probability. This lack of uniformity can have detri-
mental effects on evolutionary search, such as increases in code bloat. In prior work,
structured programs were linearized prior to variation in order to facilitate uniform
variation. However, this necessitated syntactic repair after variation, which reintro-
duced non-uniformities. In this chapter we describe a new approach that uses linear
genomes that are translated into hierarchical programs for execution. We present the
new approach in detail and show how it facilitates both uniform variation and the
evolution of programs with meaningful structure.

Key words: uniform variation, linear genomes, Push, Plush

Thomas Helmuth
Computer Science, Washington and Lee University, Lexington, Virginia USA, e-mail: hel-
mutht@wlu.edu

Lee Spector
Cognitive Science, Hampshire College, Amherst, MA USA, e-mail: lspector@hampshire.edu

Nicholas Freitag McPhee
Division of Science and Mathematics, University of Minnesota, Morris, MN USA, e-mail:
mcphee@morris.umn.edu

Saul Shanabrook
Computer Science, University of Massachusetts, Amherst, MA USA, e-mail:
s.shanabrook@gmail.com

1

helmuth
Typewritten Text
Preprint: To appear in: Genetic Programming Theory and Practice XIV (GPTP 2016). Springer.

2 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

1 Introduction

In traditional tree-based genetic programming, genetic operators such as subtree
crossover and subtree mutation exhibit biases as to how likely it is for any given
component of a parent program to be transferred to the resulting child. These bi-
ases make these genetic operators, and indeed any genetic operators defined over
tree structures, decidedly nonuniform. What is meant by “uniform” in this context?
In prior work [17] we defined uniformity in terms of two desiderata for variation
operators:

• “that the probability of an inherited program component being modified during
inheritance is independent of the size and shape of the parent programs beyond
the component in question”

• “that pairs of parents are combined in ways that allow arbitrary combinations of
components from each parent to appear in the child.”

Genetic programming’s most common program representation leverages the rel-
ative simplicity of Lisp symbolic expressions, which can express richly structured
programs despite having few syntactic constraints in comparison to other common
programming languages [4]. Hierarchical symbolic expressions, represented by tree
structures, simplify the implementation of genetic operators that produce syntacti-
cally valid children from syntactically valid parents, using processes of subexpres-
sion replacement and exchange. However, the widely-used operators based on these
processes do not meet our definitions for uniformity. For example, in standard sub-
tree mutation a single subexpression is chosen and replaced, making the chance of
replacing each subexpression inversely proportional to the size of the overall pro-
gram. So standard mutation violates the first uniformity desideratum. In standard
crossover a single subexpression is replaced by a subexpression from the other par-
ent, restritcing the ways in which the components of the parents can be combined in
children. Thus standard crossover violates the second uniformity desideratum.

Why do these deviations from uniformity matter? One issue is that the any partic-
ular subexpression is more likely to survive without modification if it is embedded
within a large program rather than a small program. This can bias survival of impor-
tant subexpressions toward larger programs, irrespective of fitness, leading to “code
bloat” [9]. Another issue, related to the second uniformity desideratum, is that stan-
dard crossover does not permit complementary parts of two parents to be combined
in their child, unless all of the needed parts from one parent are segregated in a
single subexpression.

Several researchers have previously noted these and related issues and have at-
tempted to address them through modification of the standard genetic operators.
For example by making the probabilities of chosing a subexpressions dependent on
it’s size [4, 3], adjusting the number of replacements or exchanges [19], and by re-
stricting exchanges to pairs of expressions with specified properties [12, 13, 14]. As
detailed in [17], none of these methods meet our definition of uniformity, limited in
principle by the nested structure of the programs that are being modified.

Linear Genomes for Structured Programs 3

Genetic programming systems which use linear program representations are im-
mune to most of the problems raised here, because uniform genetic operators can be
straightforwardly applied on linear sequences [11]. Much of the prior work in lin-
ear genetic programming is focused on programs expressed in a low-level language
with few control and data structures. Here we aim to provide uniform variation for
programs in a language that can support arbitrary control and data structures and
for which program structure is therefore likely to be more important. An existing
framework in which linear genomes can indeed be used to evolve highly structured
programs is “grammatical evolution,” in which the genes on linear genomes are
used as indices into grammars that can express arbitrary languages [15]. While uni-
form genetic operators can indeed be used on these genomes, the effects that small
changes to genomes have on the expressed programs are often quite large, so that
uniformity at the level of genomes is unlikely to translate into uniformity at the level
of programs.

In earlier work, we sought to achieve greater uniformity by treating programs as
linear sequences only during variation [17]. Our ULTRA (Uniform Linear Transfor-
mation with Repair and Alternation) operator first translates hierarchically struc-
tured programs into linear sequences, with parentheses replaced by independent
tokens. It then applies uniform mutation and alternation (a form of multipoint
crossover) to the linear sequences. Finally, it translates the resulting linear sequences
back into hierarchical programs. Because the tokens for parentheses may have be-
come imbalanced during uniform variation, a repair step is required to rebalance
them. While the prior work demonstrated that ULTRA had several desirable prop-
erties, the artifacts produced by the repair step were themselves non-uniform and
biased the shape of evolving programs in peculiar ways. This nonuniformity was
one motivation for the work presented here.

Another motivation for the work described below was the fact that while ULTRA
supports reasonably-uniform variation of structured programs, it does nothing to
produce structure where it is most likely to be useful, in the context of instructions
that make use of structure, such as conditional branches or loops.

The idea for the alternative approach that we present here arose when considering
the problems raised above in the context of independent work that we were conduct-
ing in which “epigenetic” markers were added to instructions and literals in linear
programs in order to turn those genes on or off [6, 7, 5]. We realized we could use
similar epigenetic markers to specify the hierarchical structure for programs that
are “expressed” from linear genomes. This allows us to perform uniform genetic
operators on linear genomes and only express them as hierarchical programs for
fitness testing. Furthermore, we specify that opening parentheses are automatically
inserted following structure-dependent instructions during translation and use epi-
genetic markers to indicate where closing parentheses should occur. Thus we make
it more likely that parenthesized, hierarchical structures appear in programs next to
instructions that can make use of them.

We note that the use of the term “epigenetic” for these markers is most appro-
priate when they can change not only during reproduction, but also in their problem
environments. While we do not describe such processes here, we have used these

4 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

markers in this way in the past [5]. In that work, we used hill climbing to modify the
epigenetic markers of an individual if those modifications improve its fitness. While
this effort did not produce significantly better results, using similar mutations to turn
off or on genes in newly created children, and allowing selection pressure to sort out
the changes, did produce impressively better results on 2 out of 5 problems. So, even
though we do not explore changing epigenetic markers during the “lifetimes” of the
programs in the present work, the markers that we use do enable such modifications;
additionally, because of the ways that these markers are attached to instruction and
literal “genes,” we think that the use of the label “epigenetic” is reasonable in this
context.

In the remainder of this chapter we first provide a brief description of Push the
programming language, which is expressed from our linear genomes. We then de-
scribe our new linear genome representation, which we call “Plush” (where the “l”
is for “linear”), in detail. This description is followed by experimental results that
demonstrate the ways in which Plush facilitates program structure and the efficacy
of various uniform genetic operators.

2 Push and PushGP

The Push programming language was developed specifically to serve as the target
language for program evolution in genetic programming and related program syn-
thesis methods (Spector, 2001; Spector and Robinson, 2002; Spector et al, 2005).
Push is a postfix, stack-based language, which is similar in some respects to others
that have been used for genetic programming (Perkis, 1994). When a Push program
is executed, literals are pushed onto data stacks and instructions act on data that
is on the stacks. Among the types of data stored on stacks and manipulated by in-
structions is code, which permits the expression of complex control structures via
code manipulation. Program execution is implemented through the decomposition
of programs and the processing of their instructions and literals on a special stack
that contains code, the exec stack. Because all instructions take their arguments
from appropriately typed stacks, and because of the Push convention that instruc-
tions finding insufficient data on the relevant stacks act as no-ops, instructions and
literals of any types can be interleaved in arbitrary ways without risk of type errors.

Like Lisp symbolic expressions, Push programs may be hierarchically structured
with parentheses, and this structure has consequences for program execution when
code-manipulation instructions are used. Unlike symbolic expressions, parenthe-
sized code blocks may appear anywhere in a Push program, and their presence or
absence does not change the syntactic validity of the program. For example, the
exec if instruction will execute one of the top two items on the exec stack, de-
pending on the value on top of the boolean stack, and discard the other. Those
items serve as the conditional execution branches of the if statement, and either may
be a single instruction or a code block containing any number of grouped instruc-
tions. For example, in the program:

Linear Genomes for Structured Programs 5

(arg1 exec_if (4 5 integer_add) 7),

if arg1 is true, 7 (as the “else” clause) will be removed, and the block of code (4 5
integer add) will remain on the exec stack. If arg1 is false, the “then” clause
(4 5 integer add) will be popped and 7 will remain on the exec stack.

In early versions of PushGP, the parenthetic structure of programs also affected
the ways that genetic operators operated on programs. The genetic operators in
these versions of PushGP were intentionally similar to those used in traditional,
Lisp symbolic expression genetic programming systems; mutation involved replac-
ing subexpressions with new subexpressions, while crossover involved the exchange
of subexpressions across programs. This facilitated comparisons between the differ-
ent program representations, and the translation of ideas from one project to an-
other. But, these subtree-based operators lacked uniformity for the same reasons
traditional tree-based operators do.

3 Plush

Plush1 genomes provide an alternative representation for Push programs, storing
programs in linear sequences that enable simple uniform genetic variations. There
is a many to one mapping from Plush genomes to Push programs, as described by
the translation process below.

One of the goals of introducing Plush genomes is to ensure that every argument
taken from the exec stack for use by an instruction consists of a parenthesized
block of code. In prior work, when evolving Push programs as genomes, we would
often see exec stack manipulating instructions taking single instructions as argu-
ments, instead of blocks of code. By ensuring that such instructions are followed
by code blocks, we hope to encourage more modular programs that can make better
use of exec stack arguments.

The many Push instructions that take arguments from the exec stack include
instructions for looping, conditional execution, and other program manipulation.
For example, the instruction exec if requires two exec stack arguments, one to
execute if the condition is true and the other to execute if the condition is false. The
instruction exec do*times needs one exec stack argument, which is executed
repeatedly in a loop. In the program in Section 2, the exec if instruction takes two
arguments from the exec stack: (4 5 integer add) and 7. The first is a block
of code, and the second is a single instruction (in this case, an integer literal). Note
that blocks of code can contain zero or more instructions, so that the above program
could be replaced with a functionally equivalent one where each of exec if’s
arguments is a block of code:

(arg1 exec_if (4 5 integer_add) (7))

1 Linear Push

6 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

3.1 Structure

Plush genomes are linear sequences of gene maps, each of which contains, at min-
imum, an instruction and an epigenetic close count marker used to determine the
placement of parentheses during translation. For example, below is a very simple
Plush genome that encodes the Push program (1 2 integer add):

[{:instruction 1, :close 0}
{:instruction 2, :close 0}
{:instruction integer_add, :close 0}]

Plush gene maps can optionally contain other epigenetic markers. For example, the
:silent marker contains a boolean that indicates whether the instruction should
be included in the translated program. We have not yet added other epigenetic mark-
ers to Plush, but could imagine others being useful.

3.2 Translation

The process of translating a linear Plush genome into a syntactically valid, hierarchi-
cal Push program (which is a tree) is for the most part a depth-first construction of
that program tree. The Plush genome is traversed linearly, adding each gene map’s
instruction to the end of the translated program. The hierarchical structure of the
resulting program depends entirely on which of its instructions take arguments from
the exec stack. Each instruction that does not take any arguments from the exec
stack is simply appended to the growing program, and is not followed by a code
block. An instruction that takes X arguments from the exec stack will be followed
by X code blocks. After such instructions, further instructions will be added inside
the opened code block, and will open nested code blocks when appropriate. Instruc-
tions only indicate where the code blocks open (i.e. they insert open parentheses);
they do not describe where they should close (i.e. the location of the matching close
parentheses).

As genes are translated from Plush into Push code, the values of the :close
epigenetic markers determine where code blocks are closed. For every gene that
is translated from Plush to Push: after the :instruction token has been added
to growing Push program, and after a new block has been opened (if the instruc-
tion requires one), the :close marker is applied to the growing Push program. In
particular, this number indicates the number of opened code blocks to close with
closing parentheses. If the number is greater than the number of currently opened
code blocks, all opened code blocks are closed. Note that if a code block is closed
and the preceding instruction requires another code block (such as with exec if,
which requires two code blocks), one is immediately opened, which may be im-
mediately closed if the :close marker is large enough. Finally, if the end of the
genome is reached without closing all opened code blocks, the remaining blocks

Linear Genomes for Structured Programs 7

are automatically closed, including any blocks that still needed to be opened for
instructions that take multiple exec stack arguments.

These automatic code blocks ensure that the hierarchical structure of a program
has semantic meaning according to its instructions. It may help to think about a
language such as Python or Java, in which it makes sense to block off a chunk of
code following the start of a loop, but does not make semantic (or syntactic) sense
to have a block of code follow a variable assignment. While such semantically-
irrelevant code blocks are syntactically valid in Push, they have no affect on the
semantics of the program.

3.3 Special genes

The :silent epigenetic marker and two special instructions also affect the trans-
lation process:

• A Plush gene map with a :silent marker set to true is completely ignored
and does not affect the growing Push program. Such genes have been “silenced.”

• The noop open paren instruction immediately opens a new code block but
adds no instruction to the Push program. No parenthesized branch is ever opened
in the Push program unless the instruction takes one or more arguments from
Push’s exec stack or the instruction is noop open paren.

• The noop delete prev paren pair instruction restructures the Push pro-
gram without affecting the translation state in any other way: it searches through
the Push program until it finds the last block closed in translation, and “lifts” the
contents of that block to the level of its parent in the program. For example, if the
Push program is [1 2 (3 4) 5 (6 *)], with the asterisk indicating where
the next item would be added, inside a currently unclosed block, the result of
applying this transformation would be [1 2 3 4 5 (6 *)].

3.4 Example Translation

Here we give a brief example of a Plush genome and its corresponding Push program
to illustrate the translation process. The genome:

[{:instruction exec_do*times :close 0}
{:instruction 8 :close 0}
{:instruction 11 :close 3}
{:instruction integer_add :close 0 :silent true}
{:instruction exec_if :close 1}
{:instruction 17 :close 0}
{:instruction noop_open_paren :close 0}
{:instruction false :close 0}

8 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

Table 1 Genetic operator parameter settings used in all of our PushGP runs.

Parameter Value

uniform mutation rate 0.01
constant tweak rate 0.5
uniform close mutation rate 0.1
close increment rate 0.2
alternation rate 0.01
alignment deviation 10

{:instruction code_quote :close 0}
{:instruction float_mult :close 2}
{:instruction exec_rot :close 0}
{:instruction 34.44 :close 0}))

is translated into the Push program:

(exec_do*times (8 11) exec_if
()
(17
(false code_quote (float_mult))
exec_rot (34.44) () ()))

The first instruction, exec do*times, takes one argument from the exec stack,
and therefore opens one code block. The next two instructions are added to this
block, which is closed by the 3 :close marker. Note that while this marker says
to close 3 code blocks, there is only one open block to close. This block is followed
by a silenced gene containing the instruction integer add, which is not added to
the Push program.

Next, the exec if instruction takes two arguments from the exec stack. Since
the :close count of the exec if instruction itself is 1, the first of those two
blocks is immediately closed, and the second opened. Following 17 in the opened
block, the noop open paren instruction opens a code block without adding an
instruction to the Push program.

In the remainder of the Plush genome, the code quote instruction takes one
exec stack argument, which is closed along with another code block after the
instruction float mult. Finally, exec rot opens three code blocks, none of
which are closed by the end of the program. As such, these blocks are automatically
closed at the end of the program.

4 Uniform Genetic Operators

One of the advantages of a linear genome representation is it allows us to use uni-
form genetic operators. This section describes in detail the genetic operators we use

Linear Genomes for Structured Programs 9

with Plush. For reference, Table 1 has the parameter settings related to genetic op-
erators that we use in our experiments using the genetic operators described below,
giving an idea of reasonable settings for these parameters; all indications thus far
show these operators to be robust to changes in these parameter settings.

Uniform mutation modifies a single parent genome by changing each of its in-
structions with some probability, designated the uniform mutation rate. If an instruc-
tion in the genome is selected to be changed, we first check whether the instruction
is a constant or a Push instruction. If it is an instruction, it is simply replaced by
a random instruction from the instruction set. If it is a constant, there is a constant
tweak rate probability of tweaking the constant; otherwise, it is replaced by a ran-
dom instruction. The way in which a constant is tweaked depends on the type of the
constant: integers and floats are perturbed by Gaussian noise with standard devia-
tion of 1.0, strings have a 10% probability of replacing each character with a random
character, and booleans are replaced by a random boolean.

While uniform mutation can change the instructions in a genome, it cannot affect
the close epigenetic markers, and therefore cannot affect the structure of a program.
We therefore created a uniform close mutation operator that takes a parent and alters
its close markers. With uniform close mutation rate probability, it either increments
or decrements the close marker associated with each instruction. The close marker
cannot be decreased below 0, but has no upper bound. The probability of increment-
ing a close marker, as opposed to decrementing it, is given by the close increment
rate; we typically keep this number less than 0.5, since otherwise we find that close
markers tend to grow more than they shrink.

We use a crossover operator, alternation, heavily inspired by the ULTRA op-
erator, which functioned on Push programs as genomes instead of linear genomes
[17]. In alternation, both parents are traversed in parallel, copying instructions from
one or the other into the child program. Before copying each gene, alternation has a
small probability, the alternation rate, of moving the copying head to the other par-
ent at the same index. Thus alternation copies sections of code from each parent into
the child genome. In order to allow alternation to an index not identical to the prior
index, we perturb the index with Gaussian noise, using the alignment deviation as
the standard deviation for the perturbation. Thus the copy head may jump forward
or backward during an alternation, but will not likely jump far.

Finally, we employ genetic operator pipelines to chain together two or more op-
erators to create a single child. We mainly use this functionality to create a child
genome by applying alternation and then uniform mutation.

The genetic operators described here meet the requirements of uniformity de-
scribed in Section 1. In particular, all three operators give uniform probability of
inheriting particular genetic material in a parent: with uniform mutation and uni-
form close mutation this probability is explicitly defined and with alternation it is
roughly one half. Additionally, alternation allows “arbitrary combinations of com-
ponents from each parent to appear in the child” [17], even though some of these
combinations may be more likely than others based on position in the parent.

10 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

Table 2 Number of succesful runs out of 100. To be successful, a program has to perfectly pass all
cases in the training set as well as an unseen test set. “Auto-Parens Off” is the version of the system
where the locations of parentheses must be determined by evolution, instead of automatically.

Problem Plush Auto-Parens Off

Replace Space With Newline 51 51
Negative To Zero 45 34
X-Word Lines 8 0
Count Odds 8 5
Digits 7 9

5 Automatic Code Blocks Experiment

One of the primary motivations for developing Plush was to ensure that control
instructions, which take arguments from the exec stack, have code blocks as argu-
ments instead of single instructions. As discussed above, Plush automatically opens
one or more parenthesized code block following each instruction that requires one or
more arguments from the exec stack. Here, we conduct an experiment to examine
the utility of automatic code blocks.

For this experiment we created a system that does not automatically create
code blocks following specific instructions, but otherwise has similar characteris-
tics to Plush. We started with Plush and removed the automatic opening of code
blocks following specific instructions. We then added to the instruction set copies
of noop open paren, as described in Section 3.3. Since we expect code blocks
should be more common than other instructions, we added a number of copies of
noop open paren to the instruction set to make a random program have a similar
number of open parentheses as when using Plush with automatic parentheses; this
resulted in around 30 copies added to about 150 other instructions, varying slightly
per problem and instruction set. Otherwise, this method uses the same implementa-
tion as Plush, including close parenthesis markers. We call this method Auto-Parens
Off for this experiment.

We compare Plush having automatic parentheses on and off using five general
program synthesis benchmark problems. These problems require programs to ma-
nipulate multiple data types and use control flow structures. As such, we expect
solutions to these problems will likely need to use hierarchical structure of code
blocks in order to solve the problem, although solutions are possible without such
structure. For more details about each problem, see their definitions in [2].

We conducted 100 runs with automatic parentheses on and 100 with them off
on each problem. Table 2 gives the number of successful runs, i.e. runs that found
a solution program that passed all of the training cases as well as every case in an
unseen test set. The only problem that showed a significant difference between the
systems is X-Word Lines, where native normal Plush was significantly better than
with auto parenthesis off; in fact the set of runs with them off found no solutions at
all.

Linear Genomes for Structured Programs 11

We examined a sample of the solution programs from each problem. With the ex-
ception of the Replace Space With Newline problem, every solution program made
semantic use of code blocks; in other words, each contained a code block that was
an argument to an instruction that manipulated the exec stack. This was true both
of programs using automatic parentheses and those that did not. On the other hand,
almost all of the solutions to the Replace Space With Newline problem did not make
semantic use of code blocks.

While these results do not make a strong case for the importance of automatic
code blocks, they do hint at its power, specifically on the X-Word Lines problem. In
this problem, a program must take an input string and an integer X , and should print
the string with exactly X words on each line. Interestingly, every solution to this
problem had at least two layers of nested, semantically-meaningful code blocks,
which we did not see in many of the solutions to other problems. It may be the
case that finding the correct position for one set of parentheses does not drastically
hinder evolution without automatic parentheses, but correctly nesting multiple sets
of parentheses significantly increases the difficulty.

6 Uniform Genetic Operators Experiment

As described in Section 4, the linear genomes of Plush allowed us to implement
uniform genetic operators that don’t exhibit the drawbacks often associated with
tree-based genetic operators. Here we explore the efficacy of each of these oper-
ators by comparing sets of runs using different combinations and probabilities of
operators. We tested five different treatments consisting of different probabilities
of each genetic operator; these treatments are detailed in Table 3. Note that while
no prior work has formally compared different settings of these operators, previous
studies using Plush genomes [2, 1, 10] used the treatment REG.

We conducted trials with 100 GP runs using each treatment on five general pro-
gram synthesis benchmark problems; again, see [2] for details of these problems.
We present the results of these tests in Table 4.

While all treatments lead to relatively similar results, the treatment that per-
formed most differently from the others is NUM (No Uniform Mutation). This treat-
ment primarily uses alternation, with a small percentage of uniform close mutation
operators. NUM had much lower success rates on all problems compared to REG,
with a chi-squared significance test (with Holm correction) indicating significant
differences at the 0.05 level on Replace Space With Newline, Negative To Zero, and
X-Word Lines. This result indicates that uniform mutation has the largest role in
determining success of PushGP on these problems.

Since runs without uniform mutation performed worst of our three treatments
each leaving out a single operator, we decided to try a treatment only using uniform
mutation, with results in the OUM column of Table 4; note that this treatment is
very similar to NA in operator probabilities. While the success rates are lower than
REG across the board, they are not significantly worse than REG on any problem.

12 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

Table 3 The probabilities of using each genetic operator to create a child for the five different
treatments used in our genetic operator experiments. The operators, listed by their abreviations,
are: “Alt.” = alternation, “Uni. Mut.” = uniform mutation, “Close Mut.” = close mutation, and “Alt.
+ Uni. Mut.” = alternation followed by uniform mutation.

Treatment Description Alt. Uni. Mut. Close Mut. Alt. + Uni. Mut.

REG Regular Operators 0.2 0.2 0.1 0.5
NCM No Close Mut. 0.22 0.22 0 0.56
NUM No Uni. Mut. 0.9 0 0.1 0
NA No Alt. 0 0.9 0.1 0
OUM Onlt Uni. Mut. 0 1.0 0 0

Table 4 Number of succesful runs out of 100 trials for different genetic operator treatments on five
program synthesis problems; see Table 3 for treatment details. To be successful, a program has to
perfectly pass all cases in the training set as well as an unseen test set.

Problem REG NCM NUM NA OUM

Replace Space With Newline 51 50 24 55 41
Syllables 18 20 7 9 7
Negative To Zero 45 41 11 46 40
X-Word Lines 8 12 0 1 1
Count Odds 8 5 0 6 1

Even so, these results indicate that uniform mutation is not sufficient to produce
the best results on its own, but works best in tandem with the other operators. Note
that if a particular instruction disappears from the population, alternation and close
mutation are not able to reintroduce it; we hypothesize that uniform mutation may
provide the important ability to never get stuck in a population that cannot recover a
useful lost instruction. Additionally, uniform mutation allows evolution to perform
local search by changing small numbers of instructions, the importance of which
has recently been noted [18].

The results do not indicate strongly whether uniform close mutation is partic-
ularly helpful or harmful. NCM, which does not use close mutation, gave results
almost identical to REG. Another interesting comparison is NA, which uses 90%
uniform mutation and 10% close mutation, and OUM, which uses 100% uniform
mutation. While the differences between NA and OUM are not significant, NA does
better on 4 of the 5 problems. Here, close mutation may be helping change the hier-
archical shape of programs, which is possible through alternation but not by uniform
mutation alone. Note that we never use close mutation more than 10% of the time,
making it difficult to ascertain its importance.

Finally, even though these experiments show some differences between genetic
operator treatments, those differences are overall minor and rarely statistically sig-
nificant. These results show that the Plush representation is robust to major differ-
ences in genetic operator probabilities, as long as uniform mutation is included in
some respect. This means practitioners need not worry about finding perfect settings

Linear Genomes for Structured Programs 13

Count Odds Neg. To Zero RSWN Syllables X−Word Lines

0

100

200

300

400

500

0 100 200 3000 100 200 3000 100 200 3000 100 200 3000 100 200 300
Generation

M
ea

n
pr

og
ra

m
 s

iz
e

Fig. 1 Mean program sizes each generation for 100 runs each of five different software synthe-
sis benchmark problems. Each run is plotted as a distinct line. “RSWN” is an abbreviation for
“Replace Space With Newline”.

for genetic operators, but instead can choose any reasonable settings and expect to
not be worse than another setting.

6.1 Bloat

Code bloat without corresponding improvement in fitness has long caused problems
in genetic programming [16, 8]. In our experience with uniform genetic operators
in Plush, we have not observed code bloat. Figure 1, for example, plots the mean
program size of each population over time for each run using the REG genetic op-
erators. One of the problems (Count Odds) shows a slight decrease in average pro-
gram size, and one (Replace Space With Newline) shows moderate growth. The
mean program size for the other three problems remains fairly flat. In these runs, the
maximum program size limit for the Count Odds and Negative to Zero problems
is 1000, and for the other three problems is 1600. None of the mean program sizes
come close to approaching these limits.

Of the uniform genetic operators we describe, only alternation can create a child
of a different size than its parent. In fact, alternation has a slight bias toward creating
smaller children than their parents, since alternation terminates upon reaching the
end of the current parent’s genome. This bias may partially account for the bloat
control observed here, though children of alternation may also be larger than their
parents. On the other hand, even operators that do not change the size of the pro-
duced children such as uniform mutation may have anti-bloat effects. For example,
a bloated program will likely have more of its instructions replaced by uniform

14 Thomas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook

mutation than a smaller program, increasing the chances of changes that break the
functionality of the parent.

7 Conclusions

We have described a linear representation (Plush) for structured programs (in the
Push programming language), and shown that it allows for uniform genetic opera-
tors that produce meaningful structure while solving difficult problems. The central
idea of the representation scheme is to use epigenetic markers, attached to instruc-
tions and literals, to indicate where structure should be added to programs when they
are expressed from the linear genomes. We compared the efficacy of different com-
binations of uniform genetic operators operating on Plush genomes and showed how
the Plush-to-Push translation scheme encourages the expression of programs with
structure in appropriate places. We note that the Plush-based system appears to be
relatively robust to settings of the genetic operators and that it is capable of solving
difficult software synthesis problems without producing significant code bloat.

Acknowledgements This material is based upon work supported by the National Science Foun-
dation under Grants No. 1129139 and 1331283. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

1. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis: a diver-
sity analysis. In: Genetic Programming Theory and Practice XIII, Genetic and Evolutionary
Computation. Springer (2015)

2. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: GECCO
’15: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp.
1039–1046. ACM, Madrid, Spain (2015). DOI doi:10.1145/2739480.2754769. URL
http://doi.acm.org/10.1145/2739480.2754769

3. Helmuth, T., Spector, L., Martin, B.: Size-based tournaments for node selection. In: M. Nico-
lau (ed.) GECCO 2011 Graduate students workshop, pp. 799–802. ACM, Dublin, Ireland
(2011). DOI doi:10.1145/2001858.2002095

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992). URL
http://mitpress.mit.edu/books/genetic-programming

5. La Cava, W., Helmuth, T., Spector, L., Danai, K.: Genetic programming with epigenetic local
search. In: GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference, pp. 1055–1062. Madrid, Spain (2015)

6. La Cava, W., Spector, L.: Inheritable epigenetics in genetic programming. In: R. Riolo, W.P.
Worzel, M. Kotanchek (eds.) Genetic Programming Theory and Practice XII, Genetic and
Evolutionary Computation, pp. 37–51. Springer, Ann Arbor, USA (2014)

7. La Cava, W., Spector, L., Danai, K., Lackner, M.: Evolving differential equations with
developmental linear genetic programming and epigenetic hill climbing. In: GECCO

Linear Genomes for Structured Programs 15

Comp ’14: Proceedings of the 2014 conference companion on Genetic and evolution-
ary computation companion, pp. 141–142. ACM, Vancouver, BC, Canada (2014). DOI
doi:10.1145/2598394.2598491

8. Luke, S.: Issues in scaling genetic programming: Breeding strategies, tree generation, and
code bloat. Ph.D. thesis, Department of Computer Science, University of Maryland, A. V.
Williams Building, University of Maryland, College Park, MD 20742 USA (2000). URL
http://www.cs.gmu.edu/ sean/papers/thesis2p.pdf

9. Luke, S., Panait, L.: A comparison of bloat control methods for genetic programming. Evolu-
tionary Computation 14(3), 309–344 (2006)

10. McPhee, N.F., Donatucci, D., Helmuth, T.: Using graph databases to explore the dynamics of
genetic programming runs. In: Genetic Programming Theory and Practice XIII, Genetic and
Evolutionary Computation. Springer (2015)

11. Oltean, M., Grosan, C., Diosan, L., Mihaila, C.: Genetic programming with linear represen-
tation: a survey. International Journal on Artificial Intelligence Tools 18(2), 197–238 (2009).
DOI doi:10.1142/S0218213009000111

12. Page, J., Poli, R., Langdon, W.B.: Smooth uniform crossover with smooth point muta-
tion in genetic programming: A preliminary study. Tech. Rep. CSRP-98-20, University of
Birmingham, School of Computer Science (1998). URL ftp://ftp.cs.bham.ac.uk/pub/tech-
reports/1998/CSRP-98-20.ps.gz

13. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic
programming. In: J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel,
M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo (eds.) Genetic Programming 1998: Proceed-
ings of the Third Annual Conference, pp. 293–301. Morgan Kaufmann, University of Wiscon-
sin, Madison, Wisconsin, USA (1998). URL http://www.cs.essex.ac.uk/staff/poli/papers/Poli-
GP1998.pdf

14. Poli, R., Page, J.: Solving high-order Boolean parity problems with smooth uniform crossover,
sub-machine code GP and demes. Genetic Programming and Evolvable Machines 1(1/2), 37–
56 (2000). DOI doi:10.1023/A:1010068314282. URL http://citeseer.ist.psu.edu/335584.html

15. Ryan, C., Collins, J.J., O’Neill, M.: Grammatical evolution: Evolving programs for an arbi-
trary language. In: W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty (eds.) Proceedings of the
First European Workshop on Genetic Programming, LNCS, vol. 1391, pp. 83–96. Springer-
Verlag, Paris (1998). DOI doi:10.1007/BFb0055930. URL http://www.lania.mx/ ccoello/eu-
rogp98.ps.gz

16. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a review of
past and current bloat theories. Genetic Programming and Evolvable Machines 10(2), 141–
179 (2009). DOI doi:10.1007/s10710-008-9075-9

17. Spector, L., Helmuth, T.: Uniform linear transformation with repair and alternation in genetic
programming. In: R. Riolo, J.H. Moore, M. Kotanchek (eds.) Genetic Programming Theory
and Practice XI, Genetic and Evolutionary Computation, chap. 8, pp. 137–153. Springer, Ann
Arbor, USA (2013). DOI doi:10.1007/978-1-4939-0375-7 8

18. Trujillo, L., Z-Flores, E., Juárez-Smith, P., Legrand, P., Silva, S., Castelli, M., Vanneschi, L.,
Schütze, O., Muñoz, L.: Local search is underused in genetic programming. In: Genetic Pro-
gramming Theory and Practice XIV, Genetic and Evolutionary Computation. Springer (2016)

19. Van Belle, T., Ackley, D.H.: Uniform subtree mutation. In: J.A. Foster, E. Lutton, J. Miller,
C. Ryan, A.G.B. Tettamanzi (eds.) Genetic Programming, Proceedings of the 5th European
Conference, EuroGP 2002, LNCS, vol. 2278, pp. 152–161. Springer-Verlag, Kinsale, Ireland
(2002)

