
Improving Generalization of Evolved Programs through
Automatic Simplification

�omas Helmuth
Washington and Lee University

Lexington, Virginia, USA
helmutht@wlu.edu

Nicholas Freitag McPhee
University of Minnesota, Morris

Morris, Minnesota, USA
mcphee@morris.umn.edu

Edward Pantridge
MassMutual Financial Group
Amherst, Massachuse�s, USA
epantridge@massmutual.com

Lee Spector
Hampshire College

Amherst, Massachuse�s, USA
lspector@hampshire.edu

ABSTRACT
Programs evolved by genetic programming unfortunately o�en
do not generalize to unseen data. Reliable synthesis of programs
that generalize to unseen data is therefore an important open prob-
lem. We present evidence that smaller programs evolved using the
PushGP system tend to generalize be�er over a range of program
synthesis problems. Like in many genetic programming systems,
programs evolved by PushGP usually have pieces that can be re-
moved without changing the behavior of the program. We describe
methods for automatically simplifying evolved programs to make
them smaller and potentially improve their generalization. We
present �ve simpli�cation methods and analyze their strengths and
weaknesses on a suite of general program synthesis benchmark
problems. All of our methods use a straightforward hill-climbing
procedure to remove pieces of a program while ensuring that the
resulting program gives the same errors on the training data as did
the original program. We show that automatic simpli�cation, previ-
ously used both for post-run analysis and as a genetic operator, can
signi�cantly improve the generalization rates of evolved programs.

CCS CONCEPTS
•Computing methodologies! Genetic programming;

KEYWORDS
genetic programming, generalization, over��ing, automatic simpli-
�cation, Push

ACM Reference format:
�omas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee
Spector. 2017. Improving Generalization of Evolved Programs through
Automatic Simpli�cation. In Proceedings of GECCO ’17, Berlin, Germany,
July 15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3071178.3071330

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4920-8/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3071178.3071330

1 INTRODUCTION
Supervised machine learning algorithms are trained on data for
which correct answers (e.g. classes, outputs, predictions) are known
in advance, with the goal of producing a system that will subse-
quently also give the correct answers for new, unseen data. In
the context of genetic programming (GP) [20], this means that we
seek to evolve a program that will produce correct outputs when
run on any valid inputs, including inputs not encountered during
the evolutionary process. �at is, we seek programs that general-
ize to unseen test data. While the challenges of learning solutions
that generalize have long been recognized and studied, both in GP
(e.g. [4, 8, 10, 32, 33]) and other machine learning algorithms (e.g.
[5]), the challenges in this area have not yet been fully met, and
signi�cant problems remain open.

Another set of long-standing, open research questions in GP
concerns the growth of programs over evolutionary time, and the
presence of unnecessary code in evolved programs—see, for exam-
ple, the survey [27]. Such code growth can consume computational
resources, slow down the GP search process, and produce programs
that are di�cult for users to understand or apply.

In this paper we report on work stemming from steps taken to
deal with long programs, which then unexpectedly provided sub-
stantial and robust bene�ts with respect to generalization. Specif-
ically, we explore the idea of automatically simplifying evolved
programs, originally developed to aid in their analysis and applica-
tion [29]. When using automatic simpli�cation in experiments, we
noticed instances in which programs that did not generalize prior to
simpli�cation did generalize a�er simpli�cation [11]. In this paper
we systematically study the e�ects of automatic simpli�cation on
generalization.

�e study presented here was conducted entirely on evolved
Push programs, evolved with the PushGP genetic programming
system [31]. Push has an unusually permissive syntax, in which
any tokens of the language may appear in any order, and all possi-
ble programs produce interpretable results. �is means that it is
particularly easy to automatically simplify Push programs while
maintaining program behavior on the training data. To do so, one
can remove random tokens from programs, interpret the result-
ing programs, and compare program behavior before and a�er
such modi�cations. All of the automatic simpli�cation methods
discussed in this paper work this way.

helmuth
Typewritten Text
© Thomas Helmuth 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in GECCO 2017, http://dx.doi.org/10.1145/3071178.3071330.
Citation: Helmuth, T., N. F. McPhee, E. Pantridge, and L. Spector. Improving Generalization of Evolved Programs through Automatic Simplification. In GECCO '17: Proceedings of the 2017 Genetic and Evolutionary Computation Conference. July 2017. ACM.

GECCO ’17, July 15-19, 2017, Berlin, Germany Thomas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee Spector

Automatic simpli�cation was introduced to Push as a tool for
making evolved programs easier to understand [25, 31]. Smaller
solutions have other bene�ts as well, such as faster running times.
While it can be applied to any Push program, it has typically been
used only a�er the completion of GP runs, to make solution pro-
grams easier to understand without changing their behavior [29].
It has also been tried as a growth-control genetic operator during
GP runs, with mixed success [35]. Here we consider only post-run
simpli�cation, and we focus only on its e�ects on code size and
program generalization.

In the following section we �rst brie�y describe related work on
automatic simpli�cation and generalization in GP. We next discuss
relevant aspects of the Push programming language and our auto-
matic simpli�cation methods. We then describe our experimental
design and results, and discuss our conclusions.

2 RELATEDWORK
Simpli�cation of evolved programs has been used for various rea-
sons in GP, though as far as we know, never explicitly to improve
generalization of an evolved solution. Some of the primary uses
include making evolved programs easier to understand [20] and
controlling bloat during a run [3, 6, 19, 34]. Of particular interest
is work that uses simpli�cation during a run to reduce over�t-
ting [17, 19]. Additionally, algebraic simpli�cation has been used
to combat exponential code growth in geometric semantic genetic
programming [23]. Unlike our work, most of these methods use
algebraic techniques for simpli�cation that cannot change the out-
put of a program on any input, and therefore cannot a�ect the
generalization to unseen data.

Various work has been done to reduce the problems of over�t-
ting in GP [4, 8–10, 33]. In other work, an ensemble of symbolic
regression datasets were created using bootstrapping [1]. Here,
the variance of a individual’s error on these data sets was used in
combination with the error on the original data set to create a new
�tness function. When this new �tness function is used to drive GP,
it was shown to produce be�er generalizing programs. In [2] a mea-
sure of each individual’s variance of output values (referred to as
smoothness) is used in a modi�ed version of tournament selection.
�is scheme was shown to produce be�er generalizing programs
on symbolic regression problems.

Relations between program size and and generalization have
been studied previously. Many of these studies have been conducted
in the context of tree based genetic programming, which has an
idiosyncratic tendency to produce program “bloat” [32]. �e genetic
representations and variation operators that we use here do not
share these tendencies [15], so the relevance of the prior work in this
area is unclear. Finally, our �ndings here may provide additional
perspectives on discussions about the relations between model
simplicity and generality, or the lack thereof, in the neural network
and data mining research communities [5].

3 PUSH, PLUSH, AND PUSHGP
�e Push programming language was developed speci�cally to
express programs that evolve in GP systems [28, 30, 31]. Push is a
stack-based language that runs on a virtual machine with separate
stacks for each data type. It provides support for standard types,

Algorithm 1: Automatic Simpli�cation
Input : individual ind, number of simpli�cation steps, method

for simpli�cation step takeSimplificationStep

errorVector computeErrorVector(ind) ;
for s 0 to steps do

newInd takeSimplificationStep(ind) ;
newErrorVector computeErrorVector(newInd) ;
if newErrorVector = errorVector then

ind newInd
end

end
return ind

such as numbers, characters, and collections, and also for Push
program code that can be dynamically executed.

Push programs have a nested structure, appearing super�cially
like Lisp programs, although the execution model is di�erent. Early
PushGP systems operated on this nested structure directly, mutating
and recombining programs similarly to tree-based GP systems, by
replacing and exchanging sub-expressions. More recently, a linear
representation called Plush (the “l” is for linear) has been developed
for genomes, to which uniform linear operations can be applied [15].
When Plush is being used, the individuals in the GP population
are created, mutated, and recombined as linear Plush genomes, but
are then translated into nested Push programs for execution (and
therefore for error testing). Plush genes carry epigenetic markers,
including a silentmarker that prevents the translation of that gene
to the Push program [21] and structural markers that close nested
blocks. �ese aspects of the representation are important for the
work described here because automatic simpli�cation methods can
be designed to operate on either Push programs or Plush genomes;
for example, they could operate by removing either literals and
sub-expressions in Push programs, or by removing or silencing
genes in the linear Plush representation. See [15] for additional
details of Push and Plush.

4 AUTOMATIC SIMPLIFICATION IN PUSH
Automatic simpli�cation is a simple hill-climbing algorithm that
tries to make a program smaller without changing the program’s
behavior on the training cases. At each step, we �rst make small
changes to the program to make it smaller. We then check whether
the smaller program produces the same error vector (sequence of
errors for all test cases) as the original program. If so, we continue
with the new program; otherwise, we revert to the previous pro-
gram. �is process repeats for a set number of simpli�cation steps,
and then returns the resulting simpli�ed program. �e algorithm
is presented in detail in Algorithm 1.

In this paper we explore �ve di�erent methods of automatic
simpli�cation. Each method follows the same general algorithm;
they only di�er in the particular steps taken to make programs
smaller. Below is a description of each method:

Program simpli�cation, which has been used in Push since
its inception [25], acts on an individual’s Push program, as opposed
to its linear Plush genome. At each simpli�cation step, it has an
80% chance of removing one or two random “code points” from

Improving Generalization of Evolved Programs through Automatic Simplification GECCO ’17, July 15-19, 2017, Berlin, Germany

the program, where a code point is an instruction, a constant, or a
parenthesized block of code. �e other 20% of the time it randomly
removes one set of parentheses from a code block in the program,
�a�ening the code inside the parentheses into the level that the
code block occupied.

�e other four simpli�cation methods act on an individual’s lin-
ear Plush genome prior to its translation into a Push program. �ere
are three basic steps that are used across these genome methods:
silencing random genes, unsilencing random genes, and NOOPing
random genes. Silencing a gene activates its “silent” epigenetic
marker, preventing that instruction from appearing in the resulting
Push program, as well as not opening or ending any parenthesized
code blocks. When picking a random gene to silence, we never
select a gene that is already silent.

Note that by silencing genes instead of removing them entirely,
it becomes possible to backtrack by unsilencing previously silenced
genes. We hope that the backtracking enabled by unsilencing will
allow simpli�cation to escape some program size local minima
that it might otherwise be impossible to escape, resulting in more
reliable simpli�cation to smaller programs. We never unsilence a
gene unless it is currently silent or NOOPed.

Finally, some methods “NOOP” genes by replacing their instruc-
tions with NOOP instructions that have no e�ect when executed.
Some Push programs require an instruction to be present in a lo-
cation, with no particular concern for that instruction’s details. It
is not uncommon, for example, for programs to use the number
of instructions on the exec stack as a numeric constant without
ever actually executing those instructions. We can replace these
instructions with NOOPs without a�ecting the semantics of the
program, potentially making the program more general without
actually making it smaller, or possibly enabling further simpli�-
cations. Genes that are already NOOPed cannot be selected by a
NOOP step of simpli�cation.

�e four genome methods of simpli�cation are listed in Table 1.
Each method lists the types of steps that can be taken and the prob-
ability of each step being chosen. Genome simpli�cation, the most
basic of the methods, only allows for the silencing of 1 to 4 ran-
dom genes in a single step. Genome-Backtracking andGenome-
Backtracking-Noop occasionally unsilence a silent gene while
silencing another. Genome-Noop and Genome-Backtracking-
Noop use NOOPing to turn intsructions into NOOPs without re-
moving them entirely. We chose the probabilities for each method
mostly arbitrarily, and do not believe that the precise values have
much a�ect on our results.

Note that while the Program simpli�cation method can remove
unnecessary parentheses from a program, none of the genome
methods have this ability. Since the genome methods change the
genomes themselves, which have no parentheses, they cannot re-
move the parentheses that appear in the resulting translated pro-
gram. �ey can silence an entire gene, which will omit its instruc-
tion and any open parentheses it requires, but they cannot simply
remove a pair of extraneous parentheses.

5 EXPERIMENTAL DESIGN
In our experiments, we aim to answer several key questions. First,
does automatic simpli�cation e�ectively improve the generalization

Table 1: Genome simpli�cation methods. Each method lists
the possible single simpli�cation steps it can take during
simpli�cation, and the probability of taking each step.

Method Step Prob.

Genome Silence 1 (gene) 0.50
Silence 2 0.30
Silence 3 0.10
Silence 4 0.10

Genome-Backtracking Silence 1 0.40
Silence 2 0.25
Silence 3 0.10
Silence 4 0.05
Silence 1, Unsilence 1 0.05
Silence 2, Unsilence 1 0.10
Silence 3, Unsilence 1 0.05

Genome-Noop Silence 1 0.40
Silence 2 0.25
Silence 3 0.10
Silence 4 0.05
Noop 1 0.10
Noop 2 0.10

Genome-Backtracking- Silence 1 0.30
Noop Silence 2 0.20

Silence 3 0.10
Silence 1, Unsilence 1 0.05
Silence 2, Unsilence 1 0.10
Silence 3, Unsilence 1 0.05
Noop 1 0.10
Noop 2 0.10

of evolved programs that pass every training case? Further, which
of the simpli�cation methods described in the previous section
produces the smallest programs, which generalizes the best, and is
there correlation between ge�ing smaller and generalizing be�er?

To examine these questions, we conducted simpli�cation exper-
iments using evolved solution programs from a suite of general
program synthesis benchmark problems [14]. �is benchmark suite
is composed of 29 general programming problems taken from intro-
ductory computer science homework assignments. �ese problems
require solution programs to utilize a wide range of programming
constructs, such as multiple data types, control �ow structures,
and multiple inputs/outputs. A�er the original publication of these
benchmark problems [14], they have seen use in a range of stud-
ies using PushGP (eg. [11–13, 22]), as well as work considering a
general program synthesis grammar for grammar guided genetic
programming [7].

For these problems, we are primarily interested in whether we
can �nd a program that passes every training case and unseen
test case, since programs that do not achieve at least this level of
generalization do not represent true solutions to the problems [14].
We will call a program that passes all of the training set a “solution”,
and a program that additionally passes all of the unseen test set a
“generalizing solution”.

GECCO ’17, July 15-19, 2017, Berlin, Germany Thomas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee Spector

We took our evolved solution programs, which we will hence-
forth call “unchanged” programs to distinguish them from their
simpli�ed versions, from the original set of benchmarking runs us-
ing the benchmark suite [14]. In those original runs, each problem
was a�empted 100 times each for several selection methods; in this
work, we only use the 100 runs that used lexicase selection, as it
consistently had the highest success rates and provided solutions to
the most problems. In these runs, PushGP created at least one gen-
eralizing solution to 22 of the problems. In addition, we include one
problem (Super Anagrams) for which 14 programs were evolved
that passed the training set but did not pass the unseen test set. We
also include the Checksum problem, which was not solved in the
runs for the original publication, but was subsequently solved with
some additions to the training set.

In earlier work, it was shown that simplifying the same program
many times can result in a range of resulting program sizes [29].
To account for this variance in the simpli�ed programs, we per-
formed multiple simpli�cations of each unchanged program. For
each of our �ve simpli�cation methods, we conducted 100 sepa-
rate simpli�cation trials of each unchanged program, recording the
size and generalization of each simpli�ed program. Push program
sizes are the sum of the number of literals and nested blocks they
contain. Some of the unchanged programs also entirely passed
the unseen test set (i.e. generalized), and some did not (i.e. did
not generalize). When running GP on real-world problems, one
will not know whether an evolved solution program generalizes
or not before using simpli�cation. �us we are interested in not
only what happens to evolved programs that do not generalize, but
also to those that already generalize. For example, it would not
be bene�cial to improve generalization of some programs while
breaking generalization of many more.

For each simpli�cation trial, we simpli�ed the unchanged pro-
gram using 10,000 steps of the simpli�cation algorithm (see Al-
gorithm 1). While this number of steps is o�en far more than
necessary to e�ectively simplify most programs, the simpli�cation
process is not prohibitively expensive. While every simpli�cation
step requires reevaluating the program, 10,000 steps is equivalent
to the number of evaluations used in 10 generations of GP with a
population of 1,000. Since we are advocating for one simpli�cation
at the end of a GP run, this computational e�ort seems reasonable
compared to GP runs of hundreds of generations.

�e benchmark suite we used prescribes using randomly gener-
ated training and test cases for most of the input and output data.
Since automatic simpli�cation requires use of training data, we use
the training and test sets that were used for the original run for
every simpli�cation of the solution program from that run.

6 RESULTS
We �rst consider the the impact of simpli�cation on the size of
each solution program. Figure 1a presents the average program
size of the unchanged solution programs on each problem as a
horizontal black line. It then gives the average simpli�ed size of
the simpli�ed solution programs, with 100 trials per solution, for
each of our �ve simpli�cation methods. It is immediately clear that
every simpli�cation method has a large impact on the average size
of the solution programs, with most shrinking to half their original

Table 2: �e average rank in size for each simpli�cation
method across the data in Figure 1a, where lower rank
means smaller programs. “Unchanged” is the rank of the
evolved programs without any simpli�cation.

Method Average Rank

Program 1.87
Genome-Backtracking-Noop 2.13
Genome-Backtracking 2.79
Genome-Noop 3.60
Genome 4.60
Unchanged 6.00

size or smaller. In fact, the size di�erences resulting from the
various simpli�cation methods are all quite small when compared
to the di�erence between the simpli�ed sizes and the unchanged
programs’ sizes.

In Table 2 we examine aggregate performance of the simpli�-
cation methods by calculating the average rank of program size
for each method across the 24 problems, with rank 1 indicating
the smallest average program size and rank 6 having largest. Note
that we include the unchanged programs as one “method”, which
is why we have 6 possible ranks. Program simpli�cation achieves
the smallest programs on average, with both of the Genome back-
tracking methods coming soon a�er. �e genome methods without
backtracking have worse average ranks, with the unchanged pro-
grams always having worst rank. Since parentheses are counted as
part of the size of a program, and since the Genome methods cannot
remove extraneous parentheses (as mentioned in Section 4), we
hypothesize that Program simpli�cation is able to achieve smaller
sizes largely based on removing such parentheses.

�e Friedman test on the data in Table 2 gives a p-value < 0.001,
indicating that at least one method performs signi�cantly di�er-
ently from the others. We then use a post-hoc Wilcoxon-Nemenyi-
McDonald-�ompson test [16] to give the signi�cance in the di�er-
ences in ranking between each pair of methods at the 0.05 signi�-
cance level. Every simpli�cation method besides Genome signi�-
cantly outranks the Unchanged programs. Program also outranks
Genome-Noop and Genome; and both Genome backtracking meth-
ods outrank Genome. Note that even though these results show
signi�cant di�erences in rank among the methods, most of the
actual di�erences in average size are relatively small compared to
the sizes of the unchanged programs.

Next, we consider the e�ect of simpli�cation on the general-
ization of programs to unseen test data. In Figure 1b, we plot the
percent of programs that generalize for each simpli�cation method,
as well as a horizontal bar representing the percent of unchanged
programs that generalize. Every simpli�cation method either im-
proves generalization or has no e�ect on every problem besides
Double Le�ers. Some of the increases in generalization appear
substantial, improving as much as 25% in the case of Median.

Also note that the �ve problems with the worst generalization
in Figure 1b are among the problems for which program sizes were
largest post-simpli�cation in Figure 1a. For whatever reason, pro-
grams that solve these problems tend to be large, unable to shrink,

Improving Generalization of Evolved Programs through Automatic Simplification GECCO ’17, July 15-19, 2017, Berlin, Germany

0

100

200

300

Checksum (5
)

Cmp S
tr L

engths (6
0)

Count O
dds (8

)

Digits
 (2

4)

Double Lette
rs (6

)

Even S
quares (2

)

For L
oop In

dex (1
)

Grade (7
)

Last In
dex O

f Z
ero (7

8)

Median (9
3)

Mirro
r Im

age (9
7)

Negativ
e To Zero (7

2)

Number Io
 (1

00)

Replace S
pace W

ith
 N

ewlin
e (5

4)

Scrabble S
core (2

)

Small O
r L

arge (3
3)

Smalle
st (1

00)

Strin
g Lengths B

ackwards (8
0)

Sum O
f S

quares (7
)

Super A
nagrams (1

4)

Sylla
bles (2

1)

Vector A
verage (2

3)

Vectors S
ummed (1

)

X W
ord Lines (1

1)

P
ro

g
ra

m
 S

iz
e

Method
Genome

GenomeBacktracking

GenomeBacktrackingNoop

GenomeNoop

Unchanged

Program

0.00

0.25

0.50

0.75

1.00

Checksum (5
)

Cmp S
tr

Lengths (6
0)

Count O
dds (8

)

Digits
 (2

4)

Double Lette
rs (6

)

Even S
quare

s (2
)

For L
oop In

dex (1
)

Gra
de (7

)

Last In
dex O

f Z
ero

 (7
8)

Median (9
3)

Mirr
or I

mage (9
7)

Negativ
e To Z

ero
 (7

2)

Number I
o (1

00)

Replace S
pace W

ith
 N

ewlin
e (5

4)

Scra
bble S

core
 (2

)

Small O
r L

arg
e (3

3)

Smalle
st (

100)

Strin
g Lengths B

ackward
s (8

0)

Sum O
f S

quare
s (7

)

Super A
nagra

ms (1
4)

Sylla
bles (2

1)

Vector A
vera

ge (2
3)

Vectors S
ummed (1

)

X W
ord

 Lines (1
1)

%
 G

e
n
e
ra

li
z
e
d

Figure 1: (a) �e average program size of simpli�ed programs and (b) proportion of simpli�ed programs that generalize to
unseen test data for each of our �ve simpli�cation methods. �e unchanged solution program averages are represented with
horizontal black bars. Each simpli�cation method performs repeated trials using the same set of unchanged programs, and
therefore has the same opportunities for simpli�cation as the other methods. �e number of unchanged solution programs
included for each problem is given in parentheses, representing the number of starting points for each problem.

and do not generalize well. We hypothesize that large programs
such as these contain many ad-hoc components that over�t to indi-
vidual test cases without really “learning” the underlying problem
structure, and therefore do not generalize to unseen data.

As with average program sizes, there do not appear to be large
di�erences between the simpli�cation methods in terms of general-
ization. To see if the small di�erences do a�ect rank, we calculated
the average rank of each method across all problems. Here, rank 1
signi�es the best (highest) generalization, and rank 6 represents the
worst generalization. �ese average ranks are presented in Table 3.

For generalization, the di�erences in rank for the simpli�cation
methods are not as pronounced as with simpli�ed sizes. Note that
Program simpli�cation, while producing the smallest programs, has
the worst generalization of the simpli�cation methods; all of the
Genome-based methods remain in the same order. �e Friedman
test on the data in Table 3 gives a p-value < 0.001, indicating that
at least one method performs signi�cantly di�erently from the
others. We then use a post-hoc Wilcoxon-Nemenyi-McDonald-
�ompson test [16] to give the signi�cance in the di�erences in
ranking between each pair of methods at the 0.05 signi�cance

GECCO ’17, July 15-19, 2017, Berlin, Germany Thomas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee Spector

Table 3: �e average rank in generalization for each simpli�-
cationmethod across the problems in Figure 1b, where lower
rank means better generalization. “Unchanged” is the rank
of the evolved programs without any simpli�cation.

Method Average Rank

Genome-Backtracking-Noop 2.73
Genome-Backtracking 3.02
Genome-Noop 3.29
Genome 3.33
Program 3.67
Unchanged 4.96

Table 4: �is table records every single simpli�ed program
across all problems. �e top row corresponds to unchanged
programs that did not generalize, where the bottom row
is those that did generalize. �e le� column contains all
simpli�ed programs that did not generalize, and the right
column has those that did. For example, of the programs
that did not originally generalize, 53,787 of their simpli�ca-
tions do generalize while 102,617 do not. % Pre and % Post
give the percent of programs that generalized pre- and post-
simpli�cation respectively.

Generalizes
Post-Simpli�cation

No Yes % Pre

Generalizes Pre: No 102,617 53,787 35%
Generalizes Pre: Yes 3,735 289,265 65%

% Post 24% 76%

level. Here, every simpli�cation method signi�cantly outranks
Unchanged. �is shows that any of these methods can be used to
improve generalization. But, there is not a signi�cant di�erence
in generalization rank between any of the simpli�cation methods.
�us the average rank of each method is approximately the same,
which is unsurprising considering their similarities in Figure 1b.

Table 4 gives the total count of each combination of programs
that did/did not generalize pre-simpli�cation with did/did not gen-
eralize post-simpli�cation. Considering the top row of unchanged
programs that did not generalize, over 33% generalized a�er simpli-
�cation. On the other hand, out of the starting programs that did
generalize before simpli�cation (the bo�om row), only about 1.2%
of the simpli�cations broke them so that they did not generalize.
�is gives strong evidence that simpli�cation can be used to make
evolved programs more likely to generalize, without a large risk of
breaking programs that already generalize. In total, 65% of the un-
changed programs generalized before simpli�cation; that number
rises to 76% a�er simpli�cation, an increase in generalization of 11
percentage points.

We next want to explore how size a�er simpli�cation corre-
sponds to the generalization of simpli�ed programs. Figure 2 plots
the counts of the sizes of the simpli�ed programs that started with
unchanged programs that did not generalize, aggregated across

0

2000

4000

6000

0 100 200 300
Post Simplification Program Size

C
ou

nt

Generalized: No Yes

Figure 2: Counts of post-simpli�cation program sizes for
cases where the original program did not generalize. Orange
(no) are programs that continued to not generalize a�er sim-
pli�cation; green (yes) are programs that do generalize a�er
simpli�cation. �e programs here correspond to the top row
in Table 4.

all problems. �is �gure clearly shows that when the resulting
simpli�ed program was relatively small (with size less than about
25), it was much more likely to change from ungeneralizing to
generalizing, as seen by the early spike in the “yes” counts. On
the other hand, programs that remained larger a�er simpli�ca-
tion were more likely to remain ungeneralizing, shown by the “no”
counts. �us, most of the improvements in generalization that we
described previously come from simpli�cations that achieve small
program sizes. �is clearly shows that there is a correlation, if not
causation, between post-simpli�cation size and the probability of
generalization.

7 DISCUSSION
As noted earlier, all �ve simpli�cation methods lead to substantial
reductions in program size across all 24 test problems, as shown in
Figure 1a, with the average simpli�ed sizes o�en well under half
the original sizes, and sometimes much smaller than that.

Further, all the simpli�cation methods improved generalization
rates for all but a few problems (see Figure 1b), but again with li�le
di�erence among the simpli�cation methods. In some cases, e.g.,
Count Odds, all the unsimpli�ed programs already generalized,
so the best simpli�cation could do is to not make things worse.
In other cases, such as Checksum, Double Le�ers, and Vectors
Summed, there were very few solution programs generated in the
initial 100 PushGP runs (5, 6, and 1, respectively). With so few
data points to work with it’s not surprising that in some cases (e.g.,
Checksum and Vectors Summed) there was no change in general-
ization. In the case of Double Le�ers, �ve of the six initial solutions
were consistently simpli�ed without a�ecting generalization. �e
sixth solution, however, frequently led to simpli�cations that no
longer generalized. Only 37 of the 100 Program simpli�cation re-
sults, for example, generalized, while only 45 of the 100 Genome
simpli�cations generalized.

Our a�empts at improving on simpli�cation of Push programs
by simplifying genomes, including with backtracking and NOOPs,

Improving Generalization of Evolved Programs through Automatic Simplification GECCO ’17, July 15-19, 2017, Berlin, Germany

seems mostly for naught. Program simpli�cation led to the smallest
programs, though as mentioned, this might be due to its ability to
remove extraneous parentheses as opposed to potentially over�t
code. On the other hand, Genome-Backtracking-Noop simpli�ca-
tion had the best rank on generalization, though not signi�cantly
so, and had the second smallest rank on simpli�ed size of programs.
�e backtracking ability of this method may have allowed it to
avoid some locally optimal simpli�cations. We have anecdotally
noticed an example where Program simpli�cation is not able to
escape such a local optima, and Genome-Backtracking-Noop might
have made improvements in such cases. Adding NOOPs seems
to have a lesser e�ect, since the Genome-Noop method produced
larger programs than Genome-Backtracking, yet both were smaller
than Genome without either enhancement.

Despite all of these minor di�erences, all simpli�cation methods
performed rather similarly across the board, with all showing major
improvements over not using simpli�cation. �us, the choice of
using any simpli�cation method seems like the more signi�cant
decision than which simpli�cation method to use.

Figure 2 makes it clear that smaller post-simpli�cation sizes were
strongly correlated with the ability to generalize a�er simpli�cation.
�is is consistent with a broad range of work that either argues
theoretically (e.g., the minimum description length principle [18,
36]) and/or empirically that smaller programs will be more likely to
generalize [26]. While there have been contrary results that show
that program size and generalization are not always correlated [27,
32], the correlation seems extremely strong in our data.

�e relationship between program size and generalization is
almost certainly driven at least in part by both the problem being
solved and the representation being used for solutions. It’s possi-
ble, therefore, that the strong correlation we see is in some way
related to the kinds of so�ware synthesis problems we’re using as
benchmarks, which clearly behave di�erently from other common
application areas such as symbolic regression and classi�cation.

It is also possible that design decisions in PushGP play a role here.
Any a�empt to control or reduce program size in GP is premised on
the idea that there must be some parts of the program that aren’t
playing an important role and can thus be removed; such code has
been called many things over the years, such as “introns” or “bloat”.
�e fact that the evolved PushGP solutions were o�en substantially
larger than necessary is arguably not a�ributable to “bloat” as it’s
typically been understood [24], since in PushGP we don’t see a
general tendency towards increasing program size over time. �ere
is obviously “unnecessary” code in these evolved Push programs,
but understanding the source and role of this removable Push code
is complex, in part because there are potentially many categories
of unused or unnecessary code in Push. Examples include:

• Instructions that do nothing because they require argu-
ments that are not on the appropriate stacks when they
are executed.

• Instructions that do something, but not something that
has an impact on the �nal result because, e.g., they act on
values on stacks that play no role in the key computation.

• Instructions whose presence is important (e.g., as a marker
or to make sure the exec stack has the right depth), but
whose details or behavior is not.

Note also that the “activity” of many of these instructions is highly
dependent on context. An instruction that does nothing in a parent
because the arguments it needs aren’t available, might play a promi-
nent role in a child if a change “upstream” causes those arguments
to now be available.

8 CONCLUSIONS AND FUTUREWORK
�e results of our experiments show, across a range of so�ware
synthesis benchmark problems, that smaller programs evolved by
PushGP tend to generalize be�er than larger programs. �e results
also show that evolved programs can be automatically simpli�ed
using a variety of simple hill-climbing procedures, and that simpli-
�ed programs tend to generalize be�er than unsimpli�ed programs.
Furthermore, programs that can be successfully simpli�ed (that is,
that the simpli�cation procedure can make much smaller) are more
likely to show improved generalization a�er simpli�cation. �e dif-
ferences between our simpli�cation methods were not signi�cant,
but signi�cant improvements were produced by all of them.

�e recommendation, therefore, for users of PushGP is to always
perform automatic simpli�cation on the results of evolution, using
any of the methods described here. �ere is a reasonable chance
that doing so will improve the generalization of evolved programs,
and a much smaller chance that it will hurt it. If a program is
substantially smaller a�er automatic simpli�cation, then it will
have an even be�er chance of generalizing.

Would the same advice apply to users of other types of GP sys-
tems? For some systems, such as tree-based GP with non-numeric
functions, automatic simpli�cation based on hill-climbing may be
non-trivial. Our methods might be applied more easily to other
forms of GP, including grammatical evolution, Cartesian GP, and
linear GP systems, in which one can remove single instructions
without breaking the program entirely.

An extension of the work presented here would be to run the
same tests using di�erent types of problems, such as classi�cation
and symbolic regression. Another area for future work is to im-
prove the automatic simpli�cation methods themselves. While we
presented results with several simpli�cation methods, all of them
used a simple hill-climbing search procedure that can get stuck in
local minima, even when using backtracking steps. A multi-start
hillclimber, for example, might simplify programs more reliably.

ACKNOWLEDGMENTS
�anks to the members of the Hampshire College Computational
Intelligence Lab for discussions that helped shape this work and
to Josiah Erikson for systems support. �is material is based upon
work supported by the National Science Foundation under Grants
No. 1617087, 1129139 and 1331283. Any opinions, �ndings, and
conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily re�ect the views of the
National Science Foundation.

REFERENCES
[1] Alexandros Agapitos, Anthony Brabazon, and Michael O’Neill. 2012. Controlling

Over��ing in Symbolic Regression Based on a Bias/Variance Error Decom-
position. In Parallel Problem Solving from Nature, PPSN XII (part 1) (Lecture
Notes in Computer Science), Vol. 7491. Springer, Taormina, Italy, 438–447. DOI:
h�p://dx.doi.org/doi:10.1007/978-3-642-32937-1 44

GECCO ’17, July 15-19, 2017, Berlin, Germany Thomas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee Spector

[2] R. Muhammad Atif Azad and Conor Ryan. 2011. Variance based selection to
improve test set performance in genetic programming. InGECCO ’11: Proceedings
of the 13th annual conference on Genetic and evolutionary computation. ACM,
Dublin, Ireland, 1315–1322. DOI:h�p://dx.doi.org/doi:10.1145/2001576.2001754

[3] Markus Brameier and Wolfgang Banzhaf. 2001. A Comparison of Linear Genetic
Programming and Neural Networks inMedical DataMining. IEEE Transactions on
Evolutionary Computation 5, 1 (Feb. 2001), 17–26. h�p://web.cs.mun.ca/⇠banzhaf/
papers/ieee taec.pdf

[4] Mauro Castelli, Luca Manzoni, Sara Silva, and Leonardo Vanneschi. 2010. A
comparison of the generalization ability of di�erent genetic programming frame-
works. In IEEE Congress on Evolutionary Computation (CEC 2010). IEEE Press,
Barcelona, Spain. DOI:h�p://dx.doi.org/doi:10.1109/CEC.2010.5585925

[5] Pedro Domingos. 2016. Master Algorithm. Penguin Books.
[6] Aniko Ekart. 2000. Shorter Fitness Preserving Genetic Programs. In Arti�cial

Evolution. 4th European Conference, AE’99, Selected Papers (LNCS), C. Fonlupt,
J.-K. Hao, E. Lu�on, E. Ronald, and M. Schoenauer (Eds.), Vol. 1829. Dunkerque,
France, 73–83. h�p://www.sztaki.hu/⇠ekart/ea.ps

[7] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. 2017.
A Grammar Design Pa�ern for Arbitrary Program Synthesis Problems in Genetic
Programming. In 20th European Conference on Genetic Programming. In press.

[8] Ashley George and Malcolm I. Heywood. 2006. Improving GP classi�er gen-
eralization using a cluster separation metric. In GECCO 2006: Proceedings
of the 8th annual conference on Genetic and evolutionary computation, Vol. 1.
ACM Press, Sea�le, Washington, USA, 939–940. DOI:h�p://dx.doi.org/doi:
10.1145/1143997.1144159

[9] Ivo Goncalves and Sara Silva. 2013. Balancing Learning and Over��ing in
Genetic Programming with Interleaved Sampling of Training data. In Proceedings
of the 16th European Conference on Genetic Programming, EuroGP 2013 (LNCS),
Vol. 7831. Springer Verlag, Vienna, Austria, 73–84. DOI:h�p://dx.doi.org/doi:
10.1007/978-3-642-37207-0 7

[10] Ivo Goncalves, Sara Silva, and Carlos M. Fonseca. 2015. On the Generalization
Ability of Geometric Semantic Genetic Programming. In 18th European Confer-
ence on Genetic Programming (LNCS), Vol. 9025. Springer, Copenhagen, 41–52.
DOI:h�p://dx.doi.org/doi:10.1007/978-3-319-16501-1 4

[11] �omas Helmuth. 2015. General Program Synthesis from Examples Using Genetic
Programming with Parent Selection Based on Random Lexicographic Orderings
of Test Cases. Ph.D. dissertation. University of Massachuse�s, Amherst. h�p:
//scholarworks.umass.edu/dissertations 2/465/

[12] �omas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2015. Lexicase
Selection For Program Synthesis: A Diversity Analysis. In Genetic Programming
�eory and Practice XIII (Genetic and Evolutionary Computation). Springer, Ann
Arbor, USA. DOI:h�p://dx.doi.org/doi:10.1007/978-3-319-34223-8

[13] �omas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2016. �e Impact of
Hyperselection on Lexicase Selection. In GECCO ’16: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, Tobias Friedrich (Ed.). ACM,
Denver, USA, 717–724. DOI:h�p://dx.doi.org/doi:10.1145/2908812.2908851

[14] �omas Helmuth and Lee Spector. 2015. General Program Synthesis Benchmark
Suite. In GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary Compu-
tation Conference. ACM, Madrid, Spain, 1039–1046. DOI:h�p://dx.doi.org/doi:
10.1145/2739480.2754769

[15] �omas Helmuth, Lee Spector, Nicholas Freitag McPhee, and Saul Shanabrook.
2016. Linear Genomes for Structured Programs. In Genetic Programming �eory
and Practice XIV (Genetic and Evolutionary Computation). Springer, Ann Arbor,
USA.

[16] M. Hollander and D.A. Wolfe. 1999. Nonparametric Statistical Methods. Wiley.
[17] Dale Hooper and Nicholas S. Flann. 1996. Improving the Accuracy and Ro-

bustness of Genetic Programming through Expression Simpli�cation. In Genetic
Programming 1996: Proceedings of the First Annual Conference. MIT Press, Stan-
ford University, CA, USA, 428. h�p://digital.cs.usu.edu/⇠�ann/gp.pdf

[18] Hitoshi Iba, Hugo De Garis, and Taisuke Sato. 1994. Genetic programming using
a minimum description length principle. Advances in genetic programming 1
(1994), 265–284.

[19] David Kinze�, Mengjie Zhang, and Mark Johnston. 2010. Investigation of simpli-
�cation threshold and noise level of input data in numerical simpli�cation of
genetic programs. In IEEE Congress on Evolutionary Computation (CEC 2010). IEEE
Press, Barcelona, Spain. DOI:h�p://dx.doi.org/doi:10.1109/CEC.2010.5586181

[20] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA. h�p://mitpress.
mit.edu/books/genetic-programming

[21] William La Cava and Lee Spector. 2014. Inheritable Epigenetics in Genetic
Programming. In Genetic Programming �eory and Practice XII (Genetic and
Evolutionary Computation). Springer, Ann Arbor, USA, 37–51. DOI:h�p://dx.doi.
org/doi:10.1007/978-3-319-16030-6 3

[22] Nicholas Freitag McPhee, Mitchell Finzel, Maggie M. Casale,�omas Helmuth,
and Lee Spector. 2016. A detailed analysis of a PushGP run. In Genetic Program-
ming�eory and Practice XIV (Genetic and Evolutionary Computation). Springer,
Ann Arbor, USA.

[23] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. 2012. Geometric
Semantic Genetic Programming. In Parallel Problem Solving from Nature, PPSN
XII (part 1) (Lecture Notes in Computer Science), Vol. 7491. Springer, Taormina,
Italy, 21–31. DOI:h�p://dx.doi.org/doi:10.1007/978-3-642-32937-1 3

[24] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A
�eld guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk. h�p://www.gp-�eld-guide.
org.uk (With contributions by J. R. Koza).

[25] Alan Robinson. 2001. Genetic Programming: �eory, Implementation, and the
Evolution of Unconstrained Solutions. Division III thesis. Hampshire College.
h�p://hampshire.edu/lspector/robinson-div3.pdf

[26] Justinian Rosca. 1996. Generality Versus Size in Genetic Programming. In Genetic
Programming 1996: Proceedings of the First Annual Conference. MIT Press, Stanford
University, CA, USA, 381–387. �p://�p.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.
gz

[27] Sara Silva, Stephen Dignum, and Leonardo Vanneschi. 2012. Operator equalisa-
tion for bloat free genetic programming and a survey of bloat control methods.
Genetic Programming and Evolvable Machines 13, 2 (2012), 197–238.

[28] Lee Spector. 2001. Autoconstructive Evolution: Push, PushGP, and Push-
pop. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001). Morgan Kaufmann, San Francisco, California, USA, 137–146.
h�p://hampshire.edu/lspector/pubs/ace.pdf

[29] Lee Spector and�omas Helmuth. 2014. E�ective simpli�cation of evolved push
programs using a simple, stochastic hill-climber. In GECCO Comp ’14: Proceed-
ings of the 2014 conference companion on Genetic and evolutionary computation
companion. ACM, Vancouver, BC, Canada, 147–148. DOI:h�p://dx.doi.org/doi:
10.1145/2598394.2598414

[30] Lee Spector, Jon Klein, and Maarten Keijzer. 2005. �e Push3 execution stack
and the evolution of control. In GECCO 2005: Proceedings of the 2005 conference
on Genetic and evolutionary computation. ACM Press, Washington DC, USA,
1689–1696. DOI:h�p://dx.doi.org/doi:10.1145/1068009.1068292

[31] Lee Spector and Alan Robinson. 2002. Genetic Programming and Autoconstruc-
tive Evolution with the Push Programming Language. Genetic Programming and
Evolvable Machines 3, 1 (March 2002), 7–40. DOI:h�p://dx.doi.org/doi:10.1023/A:
1014538503543

[32] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. 2010. Measuring bloat,
over��ing and functional complexity in genetic programming. In GECCO ’10:
Proceedings of the 12th annual conference on Genetic and evolutionary com-
putation. ACM, Portland, Oregon, USA, 877–884. DOI:h�p://dx.doi.org/doi:
10.1145/1830483.1830643

[33] Leonardo Vanneschi and StevenGustafson. 2009. Using crossover based similarity
measure to improve genetic programming generalization ability. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary computation.
ACM, Montreal, 1139–1146. DOI:h�p://dx.doi.org/doi:10.1145/1569901.1570054

[34] Phillip Wong and Mengjie Zhang. 2006. Algebraic simpli�cation of GP programs
during evolution. In GECCO 2006: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, Vol. 1. ACM Press, Sea�le, Washington,
USA, 927–934. DOI:h�p://dx.doi.org/doi:10.1145/1143997.1144156

[35] Haoxi Zhan. 2014. A quantitative analysis of the simpli�cation genetic operator.
In GECCO 2014 student workshop, Tea Tusar and Boris Naujoks (Eds.). ACM,
Vancouver, BC, Canada, 1077–1080. DOI:h�p://dx.doi.org/doi:10.1145/2598394.
2605684

[36] Byoung-Tak Zhang and Heinz Mühlenbein. 1995. Balancing accuracy and parsi-
mony in genetic programming. Evolutionary Computation 3, 1 (1995), 17–38.

