An Exploration of Grammars in Grammatical

Evolution

Erik Anders Pieter Hemberg,

M.Sc. Chalmers University of Technology

The thesis is submitted to University College Dublin
for the degree of Ph.D.
at the School of Computer Science Department and Informatics
Research Supervisors:
Dr. Michael O’Neill

Prof. Anthony Brabazon

External Examiner:

Dr. William Langdon

September 17, 2010

Abstract

The grammar in the grammar-based Genetic Programming (GP) approach of Grammat-
ical Evolution (GE) is explored. The GE algorithm solves problems by using a gram-
mar representation and an automated and parallel trial-and-error approach, Evolutionary
Computation (EC). The search for solutions in EC is driven by evaluating each solution,
selecting the fittest and replacing these into a population of solutions which are modified to
further guide the search. Representations have a strong impact on the efficiency of search
and by using a generative grammar domain knowledge is encoded into the population of
solutions. The grammar in GE biases the search for solutions, and in combination with a
linear representation this is what distinguishes GE from other GP-systems.

After a review of grammars in EC and a description of GE, several different construc-
tions of grammars and operators for manipulating the grammars and the evolutionary
algorithm are studied. The thesis goes on to study a meta-grammar GE, which allows a
larger grammar with different bias. By adopting a divide-and-conquer strategy the goal is
to investigate how a modular GE approach solves problems of increasing size and in dynam-
ically changing environments. The results show some benefit from using meta-grammars
in GE, for the meta-grammar Genetic Algorithm (mGGA) and they re-emphasize the
grammar’s impact on GE’s performance.

In addition, GE and meta-grammars are more formally described. The bias, both
declarative and search, arising from the use of a Context-Free Grammar representation and
the constraints of GE and the mGGA are analyzed and their implications are examined.
This is done by studying the effects of the mapping and operations on the input, single and
multiple changes in input, as well as the preservation of output after a change. Furthermore,
a matrix view of a grammar and different suggestions for measurements of grammars are
investigated, in order to allow the practitioner to get an alternative view of the mapping

process and of how operations work.

To my parents

Acknowledgment

I want to thank all the Natural Computation Research and Application group members,
especially mentioning the directors Michael O’Neill and Anthony Brabazon, as well as
Conor Gilligan, James McDermott, Jonathan Byrne, Edgar Galvan-Lopez and John-Mark
Swafford. I also thank Cornelia Haeringen for proofreading.

This research is based upon works supported by the Science Foundation Ireland under

Grant No. 06/RFP/CMS042.

11

Contents

List of Figures ix
List of Tables xiii
List of Grammars XV
Publications Arising xviii
1 Introduction 1
1.1 Evolutionary Computation 2
1.1.1 Grammars - Representation 4
1.2 Research Aims 6
1.2.1 Questions 6
1.2.2 Objectives of Thesis 7
1.3 Contributions 8
1.4 Limitations 10
1.5 Thesis Overview 11

I Preliminaries - Preparing for an Exploration of Grammars
in Grammatical Evolution 13
2 Grammar Representation 15
2.1 Grammar Definitionso 15

111

2.1.1 Context-Free Grammar 16

2.1.2 Probabilistic Context-Free Grammar 19

2.2 Grammars in Evolutionary Computation 22
2.2.1 Grammar-based Algorithms 23
2.2.2 Measuring Grammars 29
2.2.3 Different Grammar Measures, 29
2.2.4 Grammar Properties for Search 30

2.3 Summary ... o. oL 32
3 Description of Grammatical Evolution 33
3.1 GE Algorithm 34
3.1.1 Biological Inspiration 0. 35
3.1.2 GE Control Flow 35
3.1.3 Grammar Mappingin GE 38
3.1.4 Background to Mappingin GE 0. 41

3.2 Operators 47
3.2.1 Variation Operations 48
3.2.2 Selection and Replacement 49

3.3 GEin Practice 50
3.3.1 Applications 50
3.3.2 Implementing GEo L0 51

3.4 Summary e 52

II Experiments - Exploring Grammars in Grammatical Evo-

lution 53
4 Grammar Mapping 55
4.1 Pre-, In-, Postfix Grammars 55
4.1.1 Symbolic Regression 58

v

4.1.2 Grammaro 58

4.2 Experiment 59
4.2.1 Setup 60

4.3 Results e 61
4.4 DISCuSsSion 62
4.5 Summary ... e 63
5 Meta-Grammar for Automatically Defining Functions - Modularity 67
5.1 Modularity 68
5.1.1 Modularity Overview 68
5.1.2 EC Examples of Modularity 70
5.1.3 Modularity in GP oo 74
5.1.4 Automatically Defined Functionsin GE. 76

5.2 Meta-Grammars and Grammatical Evolution 76
5.2.1 Grammatical Evolution by Grammatical Evolution 7

5.3 Experiments & Results 80
5.3.1 Meta-Grammar ADFo 80
5.3.2 Setup 80
5.3.3 Ant Trails 81
534 Results - Ant Trails 83
5.3.5 Symbolic Regression 84
5.3.6 Results - Symbolic Regression 88
0.3.7 Discussion 89

5.4 Summary 91
6 Meta-Grammar for Genetic Algorithms - Scalability 94
6.1 Meta-Grammar Genetic Algorithm 94
6.1.1 Grammars for Bit Stringso 95
6.1.2 Examples of mGGA Grammars 98

6.2 Scalability of the mGGA 103

6.2.1 Regularity 104
6.2.2 Modular Genetic Algorithm 104
6.2.3 Checkerboard Problem 105
6.2.4 mGGA on the Checkerboard 106
6.2.5 mGGA Performance under Noisy Conditions 109
6.3 Summary e 109

7 Altering Search Rates of the Meta- and Solution Grammars in the mGGA112

7.1 Different Mutation Rates 113
711 Setup 114
7.1.2 Results. 115

7.2 Sampling Each Solution Grammar n Times 115

7.3 Discussion 118
7.3.1 Mutation Rate o 118
7.3.2 Length Inspection oo 119

T4 SUMMATY o o e 121

8 Grammatical Bias and Use of Building Block Structures in the mGGA 127

8.1 Grammar Design 128
8.2 Experiments & Results 130
8.2.1 Checkerboard Results L. 132
8.2.2 Dynamic Noisy Checkerboard Results 134
8.3 Building Block Structure Usage 134
8.4 Summary 135

IIT Theory - Formalizing the Exploration of Grammars in

Grammatical Evolution 143

9 Formal Description of GE and the mGGA 145

vi

9.1 The GE Components 147
9.1.1 Representation Spacesin GE 156
9.1.2 Full Description of GE L. 157

9.2 The mGGA 158

9.3 Discussion 159
9.3.1 The mGGA 160

9.4 Summary e 160

10 Theory of Disruption in GE 162

10.1 Single Change in the Chromosome 163
10.1.1 Codon Change 163
10.1.2 Integer Production Choice Change 164
10.1.3 Change Grammar Design 168

10.2 Multiple Changes in the Chromosome 171
10.2.1 Crossover 171

10.3 Input Change and Output Preservation 172
10.3.1 Change Effectso 172
10.3.2 Branch Change o 175
10.3.3 Ripple 176

10.4 Disruption in a GE Population 177

10.5 The mGGA o 181
10.5.1 Changes in the mGGA 181

10.6 Discussion e 181
10.6.1 pi-GEo 182
10.6.2 GE Schema 183

10.7 Summary 184

11 Grammar Measurements 187

11.1 Grammar Identity and Properties 188

vil

11.1.1 Grammar Measurements for GE 189

11.1.2 GE Grammar Design and Complexity Measure 190

11.2 Probabilistic Context-Free Grammars in a Matrix Representation 191

11.2.1 Non-terminal Expectation Matrix 192

11.2.2 Terminal Expectation Matrix 196

11.3 Examples of the mGGA in Matrix Representation 197

11.3.1 Rewriting GE Grammars 197

11.3.2 Meta-Grammars in Matrix Representation 199

11.4 Discussion 201

11.5 Summary 203
IV Conclusions - Resolution of the Exploration of Grammars

in Grammatical Evolution 204

12 Conclusions & Future Work 205

12.1 Thesis Summary 205

12.1.1 Contributions 208

12.1.2 Limitations of Thesis 210

12.2 Opportunities for Future Research 211

List of Definitions 215

List of Examples 216

A Example individuals 217

Bibliography 222

Viil

List of Figures

1.1
1.2

3.1
3.2

3.3
3.4

3.5
3.6
3.7

4.1
4.2
4.3

Flow of a canonical Evolutionary Algorithm 3
The parts in GE which are explored are the operators in the search algorithm

and the grammar used to map the input to the output. 5

GE components Lo 34
GE mapping flow: input and grammar are mapped to output that is evalu-
ated and assigned a fitnesso oo L 38
Example of a derivation tree that generates a word, gjkh, using Grammar 3.2 41
Python implementation of GE mapping. Unexpanded non-terminal symbols
are put on a stack and the input is used to determine which production will
be chosen from each unexpanded non-terminal. The mapping is terminated
when the stack is empty or the input is used up, if there are unexpanded

non-terminals when the input is used the output is set to None (invalid).

Python almost reads like pseudo-code. 42
GE implemented with a GA used as a search engine. 48
Single point crossover in GE o L L 49
Integer flip mutationin GEo 49

Derivation trees mapped from the different post-, in- and prefix grammars 57
Expression trees and a plot of the function over the range 59

Best fitness results averaged over 1000 runs for pre-, in- and postfix experi-

1X

4.4

5.1

5.2

9.3
5.4

9.5
0.6

5.7
5.8
9.9
5.10

6.1

6.2

6.3

Box plots of Best Fitness and % invalids at the final generation for pre-, in-
and postfix experiments. For each target to the left is infix, center is postfix

and right isprefix Lo 66

Fig. 5.1(a) shows a schematic view of the abstract concept of modularity.
Fig. 5.1(b) shows a schematic view of classification of modularity. 69
An overview of the meta-grammar approach to GE. The meta-grammar
generates a solution grammar, which is used to generate a candidate solution. 77
Derivation of meta-grammar and solution grammar from Grammar 5.1 . . 79
Santa Fe Ant trail, average best fitness over the runs with error bars for
each generation 85
Los Altos Ant trail, average best fitness with error bars over generations . 86
Average best fitness plot with error bars over the generations for the San
Mateo ant trail. A t-test confirms that the fitness differs significantly be-

tween standard GE and the other grammars for all problems in the final

generation. Lo 86
Symbolic regression polynomso 87
Plot over generations for Eq. (5.1) 91
Plot over generations for Eq. (5.2) L. 92
Plot over generations for dynamic functions with a period of 10. 93

An example of the mapping of a meta-grammar. Diamonds are non- terminal
symbols and rectangles are terminal symbols. The numbers by the arrows
are used to denote which input chooses the production from the rule. . . . 101
The original Checkerboard-pattern matching problem instances in Fig. 6.2(a)
(from the top Cbza, Cbiag, and Cbsio). Fig. 6.2(b) Cbisg, shows a new

Checkerboard-pattern matching problem instance with a more fine-grained

regularity. L L 106
A graph for the mGGA for Cbjas, Checkerboard (1X1) is shown in 6.3(a),
and the standard Cbas, instance with p, = 0.051in 6.3(b). 111

7.1
7.2
7.3

7.4
7.5

7.6

7.7

7.8

8.1

8.2

8.3

8.4
8.5

8.6

Implicit sampling of a meta-grammar GE
Explicit sampling of a meta-grammar GE
On the x-axis are the problem instances, indicated by the total number of
bits, and on the y-axis the number of fitness evaluations (log-scale).
mGGA implicit sampling development of fitness
On the x-axis are the problem instances, indicated by the total number of
bits, and on the y-axis the number of fitness evaluations (log-scale).
Note log scale on x-axis and normalized fitness on y-axis. Fig. 7.6(a) shows
Cbsy and Fig. 7.6(b) shows Cbzy. The development of best fitness during
the fitness evaluations for explicit sampling.
Average number of codons used at the end of each instance for n-samples
in Fig. 7.1 and different mutation rates in Fig. 7.2.
Histogram over the number of combinations of the possible paths in the
solution grammars and codons used for Cbygs, in Fig. 7.8(a) and Cbhyyp in

Fig. 7.8(b). Samples with “Infinite” value are given the max value for each

On the x-axis is the number of fitness evaluations. On the y-axis is the
normalized fitness for the different grammar versions. Fig. 8.1(a) shows
Cbsy and Fig. 8.1(b) shows Cbyag, « « « v v v v v v v i i i i
On the x-axis is the number of generations. On the y-axis is the normalized
fitness for the different grammar versions for Cbs1o
The appearance of solutions for a sample of 100 runs of Cbgs.
mGGA grammar bias fitness sum of errors period 10
In Fig. 8.5(a) the x-axis is the fitness evaluation and the y-axis is the nor-
malized fitness and in Fig. 8.5(b) the x-axis is the period and the y-axis the
sum of errors for each period for the different grammar versions
Use of building block structures in solution for mGGA Cb;95, for Grammar 1

in Fig. 8.6(a) and using Grammar 1 and random search in Fig. 8.6(b). . . .

x1

116

123

142

9.1
9.2

10.1
10.2
10.3

11.1

11.2
11.3

GE spaces 146

The mapping in the mGGA 161
Grammars with different numbers of ruleso 170
Example individual and different changes 185
Derivation tree, string schema 186
Non-terminals, rule indexes, probability indexes, unique probabilities and

production choice probability 0oL 192
Grammar 2, A 200
Average length of codon use at the end point of each instance 201

xil

List of Tables

2.1
2.2

3.1

4.1
4.2

5.1
5.2
9.3

5.4

6.1
6.2

6.3

The Chomsky Hierarchy

Evolutionary Algorithms that explicitly use a grammar
Biology and GE analogy L.

Parameters for the GE algorithm
p-values for the grammars on the different targets, the average best fitness
and standard deviation are shown next to the grammar. [talics indicate a

significant p-value.

Definitions of modules
Parameter settings for the GE algorithm
p-values for the grammars compared to the standard grammar on the dif-
ferent trails
p-values for the grammars compared to the standard grammar on the dif-

ferent functions

Parameters for the GE algorithm
Performance changes for the mGGA on the standard non-noisy problem
instances. L L e

Performance values for the mGGA on the non-noisy problem instances. . .

X111

6.4

7.1

8.1
8.2
8.3

9.1

9.2

9.3

10.1

Statistics for performance of the mGGA on the Noisy Checkerboard in-
stances for Cbygg,. Success rate is the proportion of successfull solutions

over the runs.
mGGA parameters for sampling

mGGA grammar bias settings
mGGA grammar bias performanceo

mGGA grammar bias statistics oo oL

Codon change and production choice type change. These are the impacts
from a redundant deterministic mapping. L.
Codon change, current rule and production choice type change.

Codon change, production choice, current rule and next rule type change. .

Derivation tree change effects for the derivation § = «AB,a, 3 € V* with
derivation tree D(A). The change effects are dependent on if the subtree

changes size, then it is either a ripple or a branch

X1v

List of Grammars

2.1
2.2
3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3
5.4

Example of a CFG in BNF for generating a bit string
An example of a BNF for a bitstring of size 4 with three rules.
Example of a grammar for boolean expressions. <expr> has three produc-
tion choices, <biop> has four production choices, <uop> has one production
choice and <bool> has two production choices.
Example of a grammar for words.
Prefix grammars for Symbolic Regression, italics mark the difference be-
tween infix and postfix grammars.
Infix grammars for Symbolic Regression, italics mark the difference between
prefix and postfix grammars.
Postfix grammar for Symbolic Regression, italics mark the difference be-
tween infix and prefix grammars. L.
Simple meta-grammar example for evolving multiple functions. Note that
<code> and <line> are quoted.
Example Ant trail meta-grammar, adf,,,, is a meta-grammar that can evolve
ant-trail solution grammars.o
std - The standard GE grammar for the ant trails.
adf - GE grammar for the ant trails, with only one ADF.

XV

43

9.5

5.6
5.7

0.8

2.9

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

8.1

8.2
8.3

adfqyn - The grammar for the ant trails, which allows multiple function
definition is shown below. adf*() is expanded to create unique signatures
for the allowed functions. Then the function adf*() function call is used to
determine which of the functions tocall.
Symbolic Regression meta-grammar, std - For the standard GE grammar .
Symbolic Regression meta-grammar, adf - The GE grammar can define one
function with one argument.o
Symbolic Regression meta-grammar, adfg,, - The GE grammar for creating
any number of functions. Each function takes one argument.
Symbolic Regression meta-grammars, adf,,, - meta-GE grammar multiple
parameters. . . . oo oL . L oo e e e e e e
GEGA grammar for producing a bitstring of length eight.
GE bit string grammar with building block structures <bbk4>, <bbk2>.
Le. the reuse of groups of bits (building block structures) into a more com-
pact representation of the bit string.
GE bit string grammar with choices between building block structures.
Rules differing from Grammar 6.4 are shown in italics
Meta-grammar with building block structures example (nGGABB).
Example of a solution grammar produced by mGGABB (Grammar 6.4) . .
Meta-grammar with multiple building blocks (nGGAMBB). Rules differing
from Grammar 6.4 are shown in dtalics
Example of a solution grammar from mGGAMBB (Grammar 6.6). In <bit>
a bias towards 1 can be seen.o
mGGAMBB example solution grammar from implicit sampling
mGGAMBB explicit sampling example solution grammar
Part of Grammar 6.6 which biases the grammar towards the use of building
block structures.
mGGA grammar 1
mGGA grammar 2

Xvi

88

8.4
9.1
9.2
10.1
10.2
10.3
10.4
11.1
11.2

GE bit string grammar with building block structures <bbk4>, <bbk2>. . . 131

Left-recursive grammar which can have an immediate change effect 154
Right-recursive grammar which can have an delayed change effect 154
Grammar for Ex. 14o 165
Grammar variant for Ex. 1400 166
Grammar for Ex. 1500 168
Grammar for Ex. 17o 175
Grammar bit string example, again 192
Simplified grammar in Grammar 11.1. The simplification affects the size of

the derivation tree 198

Xvil

Publications Arising

1. Erik Hemberg, Conor Gilligan, Michael O’Neill, and Anthony Brabazon. A gram-
matical genetic programming approach to modularity in genetic algorithms. In Marc
Ebner, et al, eds, Proceedings of the 10th Furopean Conference on Genetic Program-

ming, volume 4445 of Lecture Notes in Computer Science, pages 1-11, Valencia,

Spain, 11 - 13 April 2007. Springer.

2. Jonatan Hugosson, Erik Hemberg, Anthony Brabazon, and Michael O’Neill. An
investigation of the mutation operator using different representations in grammatical

evolution. In Proceedings of IMCSIT, volume 2, pages 409-419, 2007.

3. Erik Hemberg, Michael O'Neill, and Anthony Brabazon. Grammatical bias and
building blocks in meta-grammar grammatical evolution. In Fwvolutionary Computa-
tion, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on, pages 37753782, 2008.

4. Erik Hemberg, Michael O’Neill, and Anthony Brabazon. Altering Search Rates of
the Meta and Solution Grammars in the mGGA. Lecture Notes in Computer Science,

4971: 362, Naples, Italy, 26-28 March 2008, Springer

5. Erik Hemberg, Nicolas McPhee, Michael O’Neill, and Anthony Brabazon. Pre-,in
and postfix grammars for symbolic regression in grammatical evolution. Workshop
and Summer School on Evolutionary Computing Lecture Series by Pioneers, Derry,

Northern Ireland, 18 -22 August 2008.

6. Michael O’Neill, Anthony Brabazon, and Erik Hemberg. Subtree deactivation control
with grammatical genetic programming. In IEEE Congress on Fvolutionary Com-
putation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence),
pages 3768-3774, Hong Kong, 2008. IEEE Press.

7. Michael O’Neill, Erik Hemberg, Conor Gilligan, Eliott Bartley, James McDermott,

XViil

10.

11.

and Anthony Brabazon. GEVA:Grammatical Evolution in Java. SIGEVOlution,
3(2):17-23, Summer 2008.

Jonathan Byrne, Michael O’Neill, Erik Hemberg, Anthony Brabazon Analysis of
constant creation techniques on the binomial-3 problem in grammatical evolution.

In Evolutionary Computation, 2009. CEC 2009, Norway, 2009. IEEE Press.

Erik Hemberg An exploration of learning and grammars in grammatical evolution.

In Proceedings of the 11th annual conference companion on Genetic and evolutionary

computation conference, pages 2705-2708. ACM, 2009.

Jonatan Hugosson, Erik Hemberg, Anthony Brabazon, and Michael O’Neill. Geno-
type representations in grammatical evolution. Applied Soft Computing, pp.36-43
Vol.10 Issue.1, 2010.

O’Neill M., McDermott J., Swafford J.M., Byrne J., Hemberg E., Shotton E., Mc-
Nally C., Brabazon A., Hemberg M. Evolutionary Design using Grammatical Evo-

lution and Shape Grammars: Designing a Shelter. International Journal of Design

Engineering, pp.4-24 Vol.3 No.1, 2010.

Xix

Chapter 1

Introduction

The research field of Natural Computation is where this thesis is set, a field which encom-
passes the study of concepts from nature and transforming them into problem solving tools
for different environments. The goal of using computers to automatically solve problems
is central to Artificial Intelligence and machine learning. By studying nature itself, we see
its originality in how it devises varying solutions for a different range of environments by
letting the fittest survive. Observing the resourcefulness of nature, especially as a computer
scientist, a spontaneous reaction is to wonder how all this could be represented.

The focus of the investigation is on Evolutionary Computation, which is a parallel search
of solutions, using grammars with a variable length representation, or, in more specific
terms, the exploration of grammars in Grammatical Evolution. Grammatical Evolution
(GE) is an evolutionary algorithm and the grammar is used to encode domain knowledge,
the search itself is driven by evolution, hence Grammatical Evolution. The grammar
in GE biases the search for solutions, and in combination with a variable length linear
representation this is what distinguishes GE from other Evolutionary Algorithms (EA).
The areas studied are the influence of the grammar used in the mapping process and the
adaptation of the grammar during search. This is done both empirically and theoretically.
After the experiments the role of the grammar in the search is further clarified along with

a formal description of the GE algorithm and stricter definitions of the method used.

1.1. EVOLUTIONARY COMPUTATION

A grammar in Evolutionary Computation (EC) is an indirect form of representation,
inducing bias to the search. Bias are all the factors that influence the form of each so-
lution [160]. For a successful search, a proper representation of the problem and of the
appropriate search operators is needed [137]. An improved understanding of the represen-
tation can help when trying to improve the performance of the algorithm used for search,
e.g. when creating new operators as well as when distinguishing which applications the
algorithm might suitably be used for. Hence, the representation is important for the ef-
ficiency of a search, for example a search using an indirect representation can be more
efficient than one using a direct representation. This because each space has different com-
positions of properties, e.g. properties of constraints and neighbors. The contribution of
this work is knowledge regarding the use of grammars in EC, more specifically, the use of
grammars with the GE algorithm.

This chapter is structured as follows. In Section 1.1 the domain of Evolutionary Com-
putation, as well as grammar representation will be introduced. In Section 1.2 the research
aim, exploration of grammars in Grammatical Evolution, is introduced. The contributions
are spelled out in Section 1.3. Limitations in the scope can be found in Section 1.4. Finally,

the chapter ends with an overview of the proceeding chapters in Section 1.5.

1.1 Evolutionary Computation

EC adapts inspiration from nature by using a parallel trial-and-error approach, allowing
the “fittest” to survive and reproduce. Organisms adapt by modifications, making them

more fit for existence in their environment.

Background

In Fig. 1.1 the flow of a canonical EC algorithm is described. First initialize a population,
then evaluate the population and give each individual a fitness, while the optimum is not
found or max iterations are not reached: select individual solutions depending on their

fitness from the population, apply operators to the selected solutions, which modify the

1.1. EVOLUTIONARY COMPUTATION

evaluation:
opt. fit. or max it.

selection

operations Yes

evaluation:
opt. fit. or max it.

Fig. 1.1: Flow of a canonical Evolutionary Algorithm. First initialize a population, then
evaluate the population, while not optimum found or not max iterations reached: select
individual solutions from the population, apply operators to the selected solutions and
replace the population.

replacement

solutions and allow the search to progress and replace the population given the individuals’
fitness. Béck et al. [7] give a more in-depth description of the different variations of EC.
In EC three big issues are: a) representation of the problem and potential solutions
b) specification of the problem objective, c) issues involving the way that the search for a
solution is conducted [165, 161]. Below follows a brief description of the different variants

of EC, including how they differ.

Evolutionary Programming(EP) [38] Developed by Fogel in the 1960s. Finite state
machines are used as predictors. The genotype is typically fixed-length character

strings, and the operators are often mutation and crossover.

1.1. EVOLUTIONARY COMPUTATION

Evolutionary Strategies(ES) [10] Developed by Schwefel in the 1960s. The genotype
is vectors of real numbers as well as representations of solutions. The genotype often
includes self-adaptive mutation rates by adding a normally distributed random value

to each component of the vector.

Genetic Algorithms(GA) [45] Developed by Holland in the 1970s. A fixed length
binary genotype is used. Basic mutation is applied to each gene. One point crossover

splits each parent at one point and exchanges the genes.

Genetic Programming(GP) [130, 86] Popularized by Koza in the 1990s. Individuals
are variable length parse trees, executable code. GP is patented for LISP [82]. Both

the structure and the contents of the solution are evolved.

EC methods have been applied to many different problems from optimization to sim-
ulation. To mention only a few applications: design en-route caching strategies [17],
an approach for network coding [79] and EC for crystal structure prediction [105]. A
large GP system for automated reverse engineering of nonlinear dynamical systems is
presented by Bongard and Lipson [11]. Moreover, EC has also been used for evolving
DNA-motifs [84, 49, 16].

The investigation in this work is the grammar-based GP methodology called GE, which

is one of the subdivisions of GP. In GE a grammar representation is used to bias the search.

1.1.1 Grammars - Representation

An intuitive description of a grammar is that of a mechanism for producing sets of strings [53,
12]. The use of a grammar in this thesis is to rewrite or generate sentences. The problem
of representation was referred to by Wagner [154] as “how to code a problem such that
random variation and selection can lead to a solution?”

Antonisse [6] used a grammar-based genetic algorithm. Banzhaf [8] and Keller and
Banzhaf [75] has binary strings as genotypes and program trees as phenotypes and uses a

Context-Free Grammar for repairing programs during the mapping from input to output.

1.1. EVOLUTIONARY COMPUTATION

Population_ .4~ ~"
- Individual;
A
AY
‘\
\
AY

Output
A

Search Algorithm

\ Map.ping (Grammar)
A

. | Input

Fig. 1.2: The parts in GE which are explored are the operators in the search algorithm
and the grammar used to map the input to the output.

This thesis examines grammars as a GP representation. Problems can be indirectly
represented by a grammar. The use of a grammar constrains and biases the search space.
The search space can be constrained by the declarative bias of the grammar, i.e. knowledge

separate from a learning system [161].

Grammatical Evolution

It was O’Neill and Ryan [115] who introduced GE, a grammar-based form of GP. In GE
the biological inspiration is the creation of protein from DNA and the feature distinguishing
GE from other EAs is the use of the grammar and the redundant deterministic mapping
used to generate output from input via the grammar. Already GE has been successfully
applied to a wide range of problems [118], e.g. in finance [34]. Fig. 1.2 shows how the
components of GE fit together and points at multiple parts where changes and learning
can occur.

Not only the operators in the search algorithm influence the outcome, but when apply-
ing an algorithm that maps input to output via a grammar, the grammar itself also affects
the result. In GE, the sequence of the input for the mapping to the solution can be learned
using any search algorithm, e.g. GAs or Particle Swarm Optimization [107]. Standard GE

uses standard GA mutation and single-point crossover.

1.2. RESEARCH AIMS

Adaptation

Adaptation occurs after alterations or change. In order for the search to progress, either
the solution or the problem is changed. One example of change could be the existence
of noise, i.e. the change only occurs by random chance and is non-deterministic. When
attempting to solve a problem a key question is what and how to change. When the EC
trial-and-error, “survival of the fittest” heuristic is used the complication lies foremost in
determining an appropriate fitness measure. In addition to the evolutionary component
it is possible to add other algorithms or heuristics for learning. These components give
the search bias and learning bias. Moreover, in order to explain adaptation we can study
the relationship between modules and adaptation. It can be said that modules, depending
on context, can both facilitate and complicate adaptation [39]. This ability depends on
how abstractions are captured. Furthermore, it is argued that correct modules require less

change for a successful adaptation.

1.2 Research Aims

In evolutionary search with a grammar, the grammar is important because it constrains
and biases the search space by the probability of generating different sentences and by
the possible sentences in the language given by the grammar. A grammar is an indirect
encoding and in the case of GE it is generative, i.e. the input is rewritten to an output.
Here, the role and importance of the grammar in GE will be explored. The long term goal

is to be able to add to the understanding of how to automatically solve problems.

1.2.1 Questions

The aim is to understand the role of grammars in Grammatical FEvolution.

Performance

1. How does the grammar mapping affect the performance of GE?

1.2. RESEARCH AIMS

2. Can the use of a meta-grammar improve the performance of GE when problems of a

different scale are approached?

3. How does the grammar design influence the performance of GE?

Adaptation

4. Does the evolutionary learning of a grammar facilitate the capturing of modules?

Theory

5. How does the representation in GE react to changes in the input, i.e genotype?

6. How should different grammars be measured and compared?

1.2.2 Objectives of Thesis

In order to comply with the research aims the following objectives have been achieved:
1. Survey the state of the art for grammars in EC and in GE.
2. Implement an open source software library for GE.

3. Identify and explore areas for exploration of grammars in GE regarding performance

and adaptation.
4. Gain a wider understanding of GE by theoretically analyzing the results.

5. Draw conclusions from the empirical and theoretical results.

Method

The evolutionary computation method, Grammatical Evolution, was used to investigate
the impact of the grammar representation. The experiments were run on different versions
of GEVA [118] on a variety of Apple Macintosh computers with Intel Processors (Max
10 different machines, or 30 central processing units) manufactured from 2005-2009 with

varying versions of OS X.

1.3. CONTRIBUTIONS

1.3 Contributions

A number of publications have come out of this work and are listed in the Publications
Arising on page xviii. The exploration of grammars in GE has given rise to a number of

both practical and theoretical contributions which are outlined here:

Literature review Review of literature in EC regarding algorithms that use grammars
in Section 2.2, review of the use of grammars in GE in Section 3.1.4 and modularity

in EC in Section 5.1.

GE software library Developed, implemented and released under an open source license
Grammatical Evolution in Java (GEVA) [118], which has been used to implement

experiments for several publications.

Grammar mapping In Chapter 4 when using grammars to examine how the mapping
order, i.e. the expansion of non-terminals, is changed it was noted that the number
of invalid individuals, i.e. individuals that do not map to a valid solution, was tied
to the grammar and to the mapping order. Moreover, the results confirmed the
expectation that the choice of grammar can produce performance advantage for the

problems examined.

Explored meta-grammar & scalability The meta-grammar concept for GE, i.e. al-
lowing a larger grammar with different bias, was applied to problems of increasing
size in Chapter 6. The ability of the meta-grammar to scale to larger problems was

confirmed.

Explored meta-grammar & modularity Modularity when using meta-grammars was
explored both in a fixed-length solution context (Chapter 6, 7 & 8) as well as in a
variable-length solution context in Chapter 5. The benefits from a representation
which has bias towards modules, e.g. Automatically Defined Functions or building

block structures in the grammar in the solution for benchmark problems were verified.

1.3. CONTRIBUTIONS

Introduced meta-grammar operators Operators for meta-grammars were introduced
and examined in Chapter 7. It was confirmed that a slower rate of change (mutation)

for the meta-chromosome can improve performance.

Explored meta-grammar grammars The meta-grammar grammars were investigated
further, with respect to their bias in Chapter 8. The capability of the meta-grammar
to use the building block structures provided in the grammar was shown. One rec-
ommendation arising from this study is to adopt a meta-grammar that allows the
use of both a GA bit string representation in conjunction with the modular building

block structures.

Formally described GE In Chapter 9 a formal description of GE is proposed and allows

us to clearly show the different representations within the algorithm.

Theoretically analyzed the impact of change on GE input How an indirect repre-
sentation from a linear input sequence reacts to changes was studied in Chapter 10.
Different types of change considering change to input (genotype) were labeled and
how these were propagated into other change types in the output (phenotype) via
the linear mapping in the Context-Free Grammar. The conclusion is that the fewer
non-terminals there are in the grammar, the less susceptible it will be to disruption.

Furthermore, the effects of a change on the input were labeled.

Theoretically analyzed meta-grammar mapping The mapping process involving meta-
grammars was explored in Section 10.5. The added dependence on the meta-chromosome
for the solution chromosome and how the effects of change for a meta-grammar setup

were also examined.

Introduced a GE schema In Section 10.4 a GE schema theory was introduced. Some
operators were examined in relation to how sequences of the individual genotype are
propagated over a generation. It showed that the canonical GE mutation is quite

similar to crossover.

1.4. LIMITATIONS

Explored grammar measurement in GE Chapter 11 investigated how static analysis
can distinguish grammars in EC. A matrix representation for determining the length
of the expansion of non-terminals in a grammar, the Expected Derivation Length
(EDL) was introduced. Furthermore, a binary measurement of the convergence of a

Probabilistic Context-Free Grammar in GE was presented.

The main conclusions are that the grammar biases the search and that it is possible to
modify the grammar or operate on the structures created during the mapping to impose
better bias for the search. We also know of different types of bias that will occur in
grammars that are used. Furthermore, we can explore the different types of change that
a grammar or an operator promotes, thereby allowing us a better comparison of our GE
settings. The theory also presents new questions about how GE works and guide future

research in answering them.

1.4 Limitations

The focus is on exploring the grammar in GE. In order to do this, the use of simple
problems can improve the understanding of the grammar and thus obscuring the analyses
of the algorithm by the complexity of the problem itself can be avoided. The grammars
explored have been restricted to Context-Free Grammars.

When running an evolutionary algorithm, there are a number of direct and indirect
choices to be considered, e.g. the choice of operators and parameter values. Furthermore,
different problems have dissimilar behavior for various algorithms and settings. There was
no exhaustive search of these settings here in any way. As for the grammar, neither has
there been an exhaustive search of possible grammar combinations here. The foremost aim
has been to inquire about the impact of the grammar in GE search, which will then allow

optimization of the performance of the algorithm in the future.

10

1.5. THESIS OVERVIEW

Relevant Literature

In this thesis, the aim has been to study grammars in their EC context. This does not
imply that there is no valuable knowledge to be gained from other fields. There are many
good studies e.g. regarding schemas in both logic, mathematics and EC that have not been
drawn upon. There is a great potential for finding additional metrics and analyzes for the
grammars and schemas which might prove useful. There is also a vast literature on formal

languages and computational linguistics regarding grammars.

1.5 Thesis Overview

The aim is to explore grammars in Grammatical Evolution. In order to understand the
effect of grammars in GE both empirical and theoretical aspects are investigated. A broad
and novel understanding of grammars in GE is made possible by these studies. For the
purpose of producing a clear narrative the thesis is broken up in to four major parts. Each
part contains several short chapters, this to clearly separate as well as to allow digestion
of the different aspects of the research.

In Part I the preliminaries for the thesis are covered and the initial steps of our explo-
ration are described. This part presents an overview of research areas for the empirical and
theoretical investigations that will help us understand the grammars in GE and its impact
on performance and adaptation. In Chapter 2, terms and concepts regarding grammars
are defined. Previous work regarding grammars in EC is reviewed and gaps regarding the
understanding of grammars and the representation of individuals are revealed. Chapter 3
describes the concept of GE and different variants are presented. Moreover, research op-
portunities, such as grammar order in mapping, meta-grammars and formal description
are presented.

When attempting to understand grammars in GE it helps to first understand how
they work in practice. The areas of grammar mapping in GE, modularity by using larger

grammars, scalability and grammar design will be examined in Part II as well as the

11

1.5. THESIS OVERVIEW

questions of how the grammar can be used to improve performance and how it can be
altered. This is explained in Chapter 4. Here, the understanding of the grammar and
mapping in GE is examined by studying the mapping order, which gives insight into the
impact of the derivation order. It also shows how the grammar input is related to the rule
order bias.

The meta-grammar studies investigate how a larger grammar with a modified represen-
tation performs. Chapter 5 explores Automatically Defined Functions for meta-grammars.
The studies of the meta-grammars are extended in Chapter 6 to investigate not only the
ability to capture modules, but also the scalability. Moreover, the impact of operators on
the meta-grammar implementation as well as grammar design are studied in Chapter 7.
These reveal that the meta-grammar scales well for regular problems of increasing size.
The effects of the meta-grammar setup reveal that a grammar design which includes equal
bias to the use or non-use of building block structures has less variability in performance
than a grammar with a strong bias towards building block structures.

The theory in Part III further investigates and tries to formalize and generalize the
results from Part II. Gaps from GE are covered by the theory and questions raised by
the experiments are addressed, e.g. how GE reacts to changes and different operations.
A more rigorous description of mapping and the search spaces of the algorithm is given
in Chapter 9 and in order to theoretically and more clearly understand the impact of
grammars the entire mapping process is dissected. How a grammar affects the search is
studied in Chapter 10 by analyzing the different types of changes that can occur from the
use of a grammar in the mapping. This further clarifies the grammar’s role in the mapping
and the bias it gives to the search. Chapter 11 considers measurements of the grammars.

In Part IV conclusions are drawn. Chapter 12 contains these conclusions and an outline

of future work.

12

Part 1

Preliminaries - Preparing for an
Exploration of Grammars in

Grammatical Evolution

13

In Part I the preliminaries for the thesis are covered and the initial steps of our ex-
ploration are described. This part presents the map of research areas for the empirical
and theoretical investigations that will help us understand the grammars in GE and their
impact on performance and adaptation.

In Chapter 2 terms and concepts regarding grammars are defined. Previous work re-
garding grammars in EC is reviewed and gaps regarding the understanding of grammars
and the representation of individuals are revealed. Chapter 3 describes GE and differ-
ent variants are presented. Moreover, research opportunities, such as grammar order in

mapping, meta-grammars and formal description are presented.

14

Chapter 2

Grammar Representation

The key parts in this chapter are the definitions of grammar and how other EC algorithms
are using grammars and measurements in EC. This shows gaps in the understanding of
how a grammar performs and adapts in evolutionary search.

Section 2.1 will introduce formal definitions of Context-Free Grammars (CFGs) and
Probabilistic Context-Free Grammars (PCFGs) to aid the study of mapping in Grammat-
ical Evolution (GE), these definitions will be used for the description of mapping and how
output reacts to input changes, as well as for identification of grammar properties later
in Chapter 3 and 9 and 11. Section 2.2 surveys grammars in evolutionary computation.
The further complexities of grammars are examined in Section 2.2.2. Finally, Section 2.3

summarizes the chapter.

2.1 Grammar Definitions

Formal language theory deals with sets of strings which are called languages and with
mechanisms for recognizing and generating them [53]. Consequently, here the grammar
is considered in a computer science context for its syntactical properties. An intuitive
description of a grammar is that of a mechanism for producing sets of strings [53, 12]. The

use of a grammar is to rewrite or generate sentences.

15

2.1. GRAMMAR DEFINITIONS

Tab. 2.1: The Chomsky Hierarchy

Grammars Languages Automata
Phrase-structure .
. Non-deterministic or
Type 0 Recursively enumerable sets R . .
. . . deterministic Turing machines
Context-sensitive with erasing
Context-sensitive Context-sensitive Non deterministic linearly space
Monotonic bounded Turing machines
Context-free Context-free Non-deterministic push down
automata
LR(k) Deterministic context-free Deterministic push down au-
tomata
Linear Linear context-free Two-tape non-deterministic fi-
nite automata of a special type
Right linear Regular sots Non-deterministic or
Left linear & deterministic, one-way or

two-way finite automata

The Chomsky hierarchy [53] for formal languages is shown in Tab. 2.1.
Finite state languages are a subset of context-free languages, the extra power of context-
free languages is self-embedding or recursion, rewriting rules of the form A — «aA, see

Booth [12].

2.1.1 Context-Free Grammar

In a Context-Free Grammar the generation of a word is not dependent on the surroundings,

see Booth [12].

Definition 1 (Context-Free Grammar (CFG)) A CFGisa four tuple G = (N, 3, R, S),

where:
e N is a finite non-empty set of non-terminal symbols.
e Y is a finite non-empty set of terminal symbols and N N'Y = (), the empty set.

e R is a finite set of production rules of the form R : N +— V* : A — «a or (A, «)
where A € N and a € V*. V* is the set of all strings constructed from N U Y and
RCNxV* R#10.

e S is the start symbol, S € N. o

16

2.1. GRAMMAR DEFINITIONS

<bitstring> ::= <bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4>
<bbk4> ::=11 00

| 0 0 <bit> 1
<bit> ::=1

Grammar 2.1: Example of a CFG in BNF for generating a bit string

“Context-Free” means that for a rule A — «a, A can always be replaced by «, regardless
of context [53]. A CFG can have many forms: an example of two different forms is a CFG
with only one non-terminal |[N| = 1 and Chomsky Normal Form (each rule leads to either
two non-terminals or one terminal, VA € N,R: A— BC, A,B,C € N, a € ¥, making a
derivation tree a binary tree which is valid if S does not generate an empty string).

The grammars in this thesis will be described using Backus-Naur Form (BNF), which
is a meta-syntax to express CFGs in computer science. Knuth [80] describes the BNF as

a set of production rules written as
<non-terminal> ::= expression

Non-terminals are enclosed between <>, alternatives for a definition are grouped together,
: := separates left-hand from right-hand side and different production rules are separated

by |. expression is a sequence of one or more symbols expression € V7.

Example 1 (CFG) A CFG grammar for generating a bit string can be written as N =
{<bitstring>, <bbk4> <bit>}, ¥ = {1,00,1100} and S = <bitstring>. Here X is de-
fined to contain symbols which are the longest consecutive combinations of 1 and 0. Gram-

mar 2.1 could also be written with ¥ = {0, 1} the rules and the grammar in BNF.

A grammar generates a language L(G), see Wetherell [157]. The following defintion of

rewriting or generation is used, see Harrison [53]

Definition 2 (Generation) Let G = (N,X, R,S) be a context-free grammar and let
o, € V*. o directly generates (', written as o/ = (' if there exist ay,an,a, 5 € V*,

such that o/ = ayaas, ' = ayfay and a — [is in R. o

17

2.1. GRAMMAR DEFINITIONS

<bitstring> ::= <bbk2><bbk2>
<bbk2> ::=1 0

| <bit> 1
<bit> ::=1

Grammar 2.2: An example of a BNF for a bitstring of size 4 with three rules.

Note that the multiple-step generation, = is the reflexive-transitive closure of =. A
set is closed under some operation if application of that operation on members of the set
always produces a member of the set. A set that is closed under an operation satisfies a

closure property. From Harrison [53]
Definition 3 (Reflexive-Transitive closure) Let p C X xY and 0 C Y X Z be binary
relations. The composition of p and o is:

po =A{(z, 2)|[(x,y) € p,(y,2) € ofor somey € Y} C X x Z.

For binary relations on a set, p € X x X, the equality or diagonal relation is p’ =

{(z,z)|x € X}. For each i > 0, p"™! = p'p. The reflexive-transitive closure of p is:

r=Ur :

i>0

A sentential form of G is S(G) = {z : S = a,a € V*}. If a € ¥ then it is called a
sentence.

¥* denotes the set of all finite length 3 sequences [53].

Definition 4 (Language) The language generated by G is L(G) = S(G) N Xx = {z :

S = x,x €N} .

Example 2 (Sentence generation/derivation) From Grammar 2.2 we get

18

2.1. GRAMMAR DEFINITIONS

<bitstring> = <bbk2><bbk2>
<bbk2><bbk2> = 10<bbk2>
.= 1011

<bitstring> = 1011

Note that an underlined word indicates the rewritten symbol. O

This section has provided definitions of Context-Free Grammars, language- and sen-
tence generation. Now we will introduce Probabilistic Context-Free Grammars, which will

allow us to analyze different grammars used in GE in Chapter 11.

2.1.2 Probabilistic Context-Free Grammar

The CFG can be expanded to a Probabilistic Context-Free Grammar, where each rule has

an associated probability, see Wetherell [157].

Definition 5 (Probabilistic Context-Free Grammar (PCFG)) The Probabilistic CFG
is the tuple (G, P), where G is a CFG and P is an ordered set of probabilities {p;;} ,i is
the index for the non-terminal left-hand side and j is the index for the productions with

the same left-hand side.

e For all r;; € R there exists one probability p;; € P. (for r;; ¢ means left-hand
side(LHS) number ¢ in the BNF and j means production number j on the right-hand
side for LHS i, see 3)

e For each p;; € P,0 < p;; <1. If p;; = 0 then r;; can be eliminated from the grammar.

e For all 7, C R, ie. * is a wildcard and r; is the restriction R| ,{n;} € N,
i}

{n

>0 <j<lri Pis = 1- |7ix| is the number of productions with the same non-terminal

19

2.1. GRAMMAR DEFINITIONS

left-hand side. Let n; € N be the non-terminal with index ¢; then

rie = {(ni,r(ny)) :r € R} CR (2.1)

Example 3 (PCFG) The PCFG grammar in Backus-Naur Form is Grammar 2.1

700, Poo = Py = 1, <bitstring> — <bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4>
r = P, = 0.5, <obka> — 1100

105 P10 1)
r11, P11 = P = 0.5, <bbka> — 00<bit>1

Tgo,p20:P3:]_,<bit>—>1 0

Now it is possible to look at derivations from the PCFG, where expansion of the gram-
mar generates sentences in the language. That is, first the start symbol is expanded, and
then each non-terminal, to create a sentential form. The derivation is finished when there

are only terminal symbols in the string, a sentence in the language, from Wetherell [157].

Definition 6 (Derivation) A derivation A in a grammar G is a sequence of production

numbers, (i, .. .%,), such that

e For 0 <k <n, P, is a production of G.

For each k there exists a sentential form oy = ap AP, Ar € R, oy, 0B € V™.
e There is a string 6,41 € V™.

050:S(i.€.061251:A)

For each 0 <k <n, P, = Ar — V.

For each 0 < k < nk, 0 = apArBr = oV = Opa1- O

From Def. 6 it is possible to give a probability to a word, see Wetherell [157].

20

2.1. GRAMMAR DEFINITIONS

Definition 7 (Word probability) The probability of a word w € ¥* is

pw)= T (2.2)

1<k<IA|
where |A] is the length of the derivation. .

Example 4 (Word probability) Using Grammar 2.1 the word
11001100110011001100110011001100 has the probability p(w) = (1/2)® (note that

in Grammar 2.1 all words have the same probability) o

Here, we define a derivation tree as multiple derivation steps, as Whigham [158].

Definition 8 (Derivation tree) The derivation tree from the start symbol is denoted

by D :={S = a,a € X*}. .
In the derivation tree a branch is defined as

Definition 9 (Branch) The branch is denoted D(A), from the non-terminal A, therefore
D(A)={A=a,a ¥, Ac N},D(A)C D o

Within the input sequence and derivation tree there are partial derivation trees called

subtrees, Whigham [159].
Definition 10 (Derivation subtree) A subtree is Dy = {x = a,z € N,a € V*}. g
Differences in derivations are distinguished by their derivation trees, see Wetherell [157].

Definition 11 (Derivation difference) Two derivations, 6 and ¢’ are different if their

derivation trees are different. -

To summarize, this section has given definitions of CFGs, PCFGs and derivations, all

needed for future descriptions of mapping and representation.

21

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

2.2 Grammars in Evolutionary Computation

This section first recounts previous use of grammars in EC and then surveys some grammar-
based algorithms and identifies research opportunities. An early paper on work using Evo-
lutionary Computation (EC) and a grammar formalism was published by Hicklin [63]. For
GAs Antonisse [6] used a grammar-based genetic algorithm. Also Johnson and Feyock [68]
use a grammar to acquire expert system-rule bases, their algorithm generates LISP-like
rules for expert systems by using variable length integer strings and a CFG. This system
is quite similar to GE, but does not use the same mapping function and chromosome rep-
resentation, which leads to a different implementation of the operators. Another example
of early work with EC and a grammar is the one done by Gero et al. [43].

Grammars constrain and bias the search [130], i.e. the indirect encoding of the grammar
allows search space transformations. For each grammar there is a distribution of output
strings. The hope is that the grammar transforms the fitness landscape to make it easier to
solve and that the real solution is in the language the grammar creates. The possible vari-
ations of a grammar allow for a large number of different grammars. Moreover, even some
problem structures are grammar-related, e.g. the task of finding regular expressions. One
observation regarding the grammar encoding is that it can sometimes make the causality
constraint in the mapping from input to output difficult to follow.

A grammar can be static or dynamic and the grammars restrict the search space,
McKay et al. [93]. This can reduce the cost to find the solution, but in the worst case
it might also restrict the search to a space that does not contain a solution, or it might
make the space difficult to search. A common approach is to start with a general grammar
interactively modified by the user between runs.

Kargupta and Ghosh [69] investigate genetic code-like transformations for machine
learning, showing that genetic code-like transformations can construct a representation
that makes the learning problem easier to solve. Toussaint [151] discusses mapping in EC
and, focusing on variability at the evolution of output, proposes a theoretical framework

for evolution of complex input-output mappings. Keller and Poli [76] use grammars in a

22

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

cost-benefit investigation of a linear GP hyper heuristic.

Poli and McPhee [129] use an n-gram system to implement linear GP. Given a language
defined over some set of symbols, an n-gram is an ordered list of n symbols. For example,
in the English sentence “The cat sat on the mat”, “the cat” and “cat sat” are 2-grams,
while “the cat sat” is a 3-gram. An n-gram model is a type of probabilistic language model
based on learning the probabilities of possible n-grams from a language source. Later, the
developmental plasticity of linear GP is explored to show evolution of programs with reuse
and variation of the instruction sets used in the solutions [96].

This section has listed work with grammars in EC and presented examples of work
where changing the representation can improve the performance of the algorithm. When
using grammars it is important to get the grammar bias right, to ensure that the search
space covers the optimal solution. Moreover, there should be a high probability of finding
solutions that lead to the optimal solution in the language that the grammar generates.

There are still gaps in our knowledge of how grammars work in EC.

2.2.1 Grammar-based Algorithms

In Genetic Programming one issue with the representation is the closure of the expression,
in canonical GP only one type is allowed. This issue is addressed by Strongly Typed GP,
see Montana [98]. Typing can be handled by grammars as well. Whigham [158] added
grammars to the derivation trees for a more expressive syntax. Paterson and Livesey [125]
evolve caching algorithms in C and uses a fixed genotype to encode the indices for derivation
rules in a grammar.

In a study of grammars and evolutionary learning Whigham [161] desires a machine
that learns how to construct relationships based on a representation of the problem, and
considers learning as the search for one particular object from a large set of possible objects.
Learning with grammars in is done by updating the probability of rules by the frequency of
rule use in superior individuals. Also, new production rules can be added, these are learned

from superior individuals and chosen to have minimum impact on the original grammar.

23

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

Grammars can be used in conjunction with EAs to create Estimation of Distribu-
tion Algorithm Genetic Programming (EDA-GP) [144], where the probabilities and/or the
structure of the grammars are changed. The aim is to infer a grammar that captures the
correct model and where the grammar is a possible representation for constraints and bias.
There are different approaches of how to infer models, e.g. Minimum Description Length.
One common denominator is that it is computationally expensive to infer the model.

Learning can further be broken into levels and modules, where the modules are in-
vestigated or the links between them or even both. An overview of some representative
algorithms with adopting grammars is presented in Tab. 2.2. In the remainder of this
section they will be elaborated on.

The algorithms are divided by the structure of the individual solutions, that is, the
structure of the individuals is either tree-based, or linear. If it is an EDA the strucure
is non applicable (NA). The structure of the individual affects many of the EA operators
used. For EDAs the exploration of the search space is performed by adapting and sampling

probability distributions instead of using traditional genetic operators [130].

Tree-based

Algorithms with a tree-based representation and which use a grammar.

GGP Whigham [161] uses a grammar to constrain the individuals to only grammatically
correct individuals, thus adding domain knowledge and biasing the search. The

population is based on derivation trees on which the evolutionary operators operate.

DCTGP Logic-based GP with Definite Clause Translation Grammar Ross [136]. A
DCTG is a logical version of an attribute grammar, this permits the grammar-based
GP system to define non-trivial semantics. It has been used for the evaluation of a

stochastic regular motif language for protein sequences [135].

TAG-GP Hoai and McKay [64] investigate grammar- guided genetic programming with

Tree-Adjunct grammars (TAG). Hoali et al. [65] investigate representation and struc-

24

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

Tab. 2.2: Evolutionary Algorithms that explicitly use a grammar and learn. The columns
show if the parts are static (S) or dynamic (D). Representation describes if a specific type of
grammar is used. Structure refers to how an individual is represented. The algorithms are
divided by the structure of the individual solutions, that is, the structure of the individuals
is either tree-based, or linear. EDA is implied with NA.

Algorithm Mapping | Representation | Learning | Structure
Grammatical GP(GGP), | S/D CFG S/D Tree
Whigham [161]

Genetic Algorithm for Deriving | S CFG S Linear
Software (GADS), Paterson and

Livesey [126]

Definite Clause Translation Grammars | S DCTG D Tree
GP (DCTG-GP), Ross [136]

Developmental GP(DGP), Keller and | D CFG D Linear
Banzhaf [77]

Stochastic Context-Free Grammar GP | D PCFG D Tree
(SCFG-GP), Ratle and Sebag [131]

TAG-GP Hoai and McKay [64] S TAG S Tree
EDA-GP, Bosman and De Jong [13] D CFG D NA
PEEL, Shan [143] D PDF D NA (Linear)
Chemical GP, Piaseczny et al. [127] S Grammar D Linear
AGBGP, Wong [167] D Logic Grammar | D Tree
Bayesian Automatic program- | D CFG D NA
ming(BAP), Regolin and Pozo [133]

Probabilistic Adaptive Mapping(PAM | D CFG D Linear
GP), Wilson [165]

LPCSG, Tanev [150] D CSG D Tree
Shared Grammar Evolution, Luerssen | D CFG D Linear
and Powers [90]

PCFG-LA, Hasegawa and Iba [54] D PCFG D NA

25

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

tural difficulty in Genetic Programming using TAG and show that with this represen-
tation and using simple insertion and deletion operations very difficult GP problems

become easy to solve.

SCFG-GP Ratle and Sebag [131] introduced Stochastic Context-Free Grammar GP (SCFG-
GP), a technique in which programs are automatically created. They applied a
stochastic generative grammar together with a method of updating the grammar’s
probabilities based on the productions used in the best programs in previous gener-
ations. There was no transmission of genetic material via crossover. In the simple
(“scalar”) version of this technique, a single vector stored the grammar’s probabili-
ties. A more sophisticated (“vectorial”) version maintained one vector per possible
depth in the derivation tree, so that production probabilities were depth-dependent.
The motivation for depth-dependence was to allow some productions (e.g. recursive
ones) to be more likely early in the derivation, and others (e.g. non-recursive ones)

more likely at higher depths.

Adaptive Grammar Based Genetic Problem Wong [167] has a flexible framework
called GGP (Generic Genetic Programming). To learn programs in different lan-
guages the framework combines GP and Inductive Logic Programming, the use of
mathematical logic as a representation for examples, background knowledge and
hypotheses. The system can represent context-sensitive information and domain-
dependent knowledge. GGP is based on logic grammars because they are more ex-
pressive than CFGs in representing context-sensitive information and domain knowl-
edge for the induced target program. An extended-logic grammar differs from a CFG

in that the grammar symbols, may include arguments.

LPCSG Tanev [150] applies Learning Probabilistic Context-Sensitive Grammar (LPCSG)
which uses a table for probability distributions for rules with multiple productions,
with probabilities for each context and these are updated during evolution. Both

context of rule and probability are learned.

26

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

Linear

Algorithms with a linear representation and which use a grammar.

GADS Paterson and Livesey [126] introduced GADS, a technique for GP. The GADS
genotype is a list of integers representing productions in a syntax. This is used to
generate the phenotype. If the gene value is not within range of the number of

production choices to be expanded it is skipped and a new gene is read.

DGP Developmental Genetic Programming (DGP) includes methodologies that explicitly
set out to separate the genotype space from the phenotype (or solution) space through
a connection (or mapping) between the two spaces, see Keller and Banzhaf [77]. First
Keller and Banzhaf [77] co-evolves genotype and solution identical to O’Neill and

Ryan [114], then Margetts and Jones [91] expands the study with adaptive DGP.

PAM GP separates mapping from genotype (they are united in the implementation of
Keller and Banzhaf [77]). Mappings and genotypes are separated into two populations
that co-evolve, see Wilson [165]. Wilson’s system uses a mapping that can be seen
as a table relating genotype segments (binary sequence codons) to symbol members

of a function set [165, 164].

GE O’Neill and Ryan [115] The canonical form is inspired by the transcription and trans-
lation of a sequence of DNA into a protein. This is modeled by use of the grammar
and the redundant deterministic mapping is used to generate output from input via

the grammar. See Chapter 3 for further description of GE.

Shared Grammar Evolution Luerssen and Powers [90]. Luerssen [89] combines gram-
matical development with grammars in GP to establish declarative bias. Programs
are generated by a global Context-Free Grammar that is transformed and extended
by a user-defined grammar. Grammatical productions and encapsulated sub-routines

are shared between programs. This allows reuse and reduces evaluations.

27

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

Chemical GP Suzuki et al. [149], Piaseczny et al. [127], allow feedback to the rewriting

of rules in input-output mapping.

Estimation of Distribution Algorithms
Algorithms that estimate a distribution from which individuals are generated.

PCFG-LA Hasegawa and Iba [54] introduce a latent variable model for EDAs; i.e. a model
where a variable is inferred from other observed variables. This model is based on
a PCFG using different estimation methods. Also, PMBGPs (Probabilistic Model
Building GP) with SCFG has been examined by Hasegawa and Iba [55, 56].

Bayesian Automatic Programming Regolin and Pozo [133] combine grammar evolu-
tion and stochastic models to evolve programs, using a Bayesian network to consider

relations among production rules.

EDA-GP Bosman and De Jong [13] use a specific EDA for GP with a probabilistic model
that employs transformations of production rules in a Context-Free Grammar to rep-
resent local structures. They infer grammar and structure, MDL is used to measure

“goodness” of a grammar.

PEEL Shan [143], Program Evolution with Explicit Learning(PEEL) is a method which
is to GP as estimation of distribution algorithms is to GAs. It represents knowledge
explicitly, by using a table that describes the search space, which is incrementally
built, instead of using an implicit representation by a population. The table consists
of rules describing the likelihood that a given production will result from a given
non-terminal, under some conditions of depth and location in the tree. These rules
are added, refined, and updated according to the best individuals generated at each
step. It does not use a true, ongoing population, traditional mutation or crossover

operators.

This section has given some background to grammars in EC as well as a brief summary

of some grammar-based EC algorithms. It has shown that grammars are used in many

28

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

different algorithms as well as ways in EC. The structures representing the individuals and
the grammar are varying, all give different grammatical- and search bias and are adapted

in different ways.

2.2.2 Measuring Grammars

In this section we consider the properties of a grammar and how to measure grammar
complexity. The data that can be gathered from measuring a grammar can be used to
address broader performance issues and measurements in EC. This leads to a compact

introduction of performance measures in EC.

2.2.3 Different Grammar Measures

By using a grammar, the diversity of the solutions is affected. A grammar can be seen as a
distribution, Poli et al. [130], where each word in the language is an event. Other modeling
approaches of distributions can be given broadly by the EDA category. One difference
of the Grammatical GP approach to that of EDAs is that it uses an explicit population.
Shan [143] uses minimum description length (MDL) to learn a grammar, it is difficult to
infer PCFGs. A grammar creates a bias towards a certain kind of connections. This will
make the search successful if a solution has the same properties.

Lehman and Shelat [87], when discussing approximation algorithms for grammar-based
compression, measure grammar complexity as the total number of symbols on the right-
hand side of all rules. This measure is different to measuring the total size of the grammar.
It might not be trivial to calculate the values for the measures exactly. Compression has
been used as a measurement, Shin et al. [145] analyzed the regularity of GP genomes (trees)
by using compression and expression simplification. This was further extended by McKay
et al. [94] who used compression to understand how building blocks were distributed in
GP populations. Other metrics for bounding probabilities could be useful, see Gibbs and
Su [44].

The information gathered from measurement of grammars is helpful for guiding the

29

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

performance and the measure of the EA. In the next section some important performance

measures will be mentioned.

2.2.4 Grammar Properties for Search

Whigham [160] names two important components of search bias, strength and correctness.
A strong bias focuses on a small number of solutions and a weak bias has a larger number
of solutions instead. Correctness describes the suitability of the bias to the problem, an
incorrect bias does not allow the correct solution to be expressed. This leads to the problem

of constraining the search space while not disallowing correct solutions.

Minimum Encoding Inference

Shan [143] compares PCFGs using a minimum encoding inference metric, Minimum Mes-
sage Length (MML) or Minimum Description Length (MDL) [27]. Simpler models often
generalize better on unseen data, and MML trades model complexity for goodness of fit.
A model is worth considering if the shortening that the encoded data string gives is lower
than the cost of representing the structure and parameters of the model. This balances
the complexity and accuracy of the model. Thus, the model should minimize the cost of
coding the data, L(D) is the sum of the cost of coding the model L(G) and the cost of
coding the data given the model L(D|G) yields L(D) = L(G) + L(D|G). The probability

of generating the solutions from a grammar is

D D
pp = —log Hpi = —Zlogpi

To encode a PCFG the names of the terminals, the number of terminals, and the
number of non-terminals need to be encoded. Moreover, for each rule the LHS, the right-
hand side (RHS) and the probability need to be encoded. The probabilities are encoded
by a symmetric Dirichlet prior. The combination of these gives the total cost of encoding

the grammar.

30

2.2. GRAMMARS IN EVOLUTIONARY COMPUTATION

The method described by Shan [143] is to infer a grammar. For GE this approach
could be used to modify solution grammars with more than one sample. We are foremost
interested in comparing the grammars without knowing how they fit the data. How the
grammar fits the data can be added as an extra indicator. In addition, the MDL can be
used as the objective for the fitness function, with the model complexity being added to

the function, e.g.

h = L(G,) + L(D|G,)

where L(D|G;) is the currently used fitness function. Another approach would be to use
it multi-objectively.

The straightforward approach is to use the cost function for a grammar developed
by Shan [143]. It might be more sensible to introduce a meta-grammar GE specific cost
function for the grammar, which takes into account the properties discussed.

Given the properties desired by a grammar a cost function can be devised. An example

of a naive grammar cost function is:
e Number of terminals, ||
e Number of non-terminals, |N|
e Number of rules, |R|

e Number of non-terminals in the rules, i.e. the total number of non-terminals on the

right-hand side of the grammar

e Number of terminals in the rules, i.e. the total number of terminals on the right-hand

side of the grammar

e MML of the probabilities

c
MML(0, Dy,) = = > log 674117
i=1
+log Bo(au, ..., ac) +1/2(C —1)logn+ C/2(1 +log 1/12)

31

2.3. SUMMARY

One issue to consider is that in order to avoid premature convergence of the search a
minimum model might not be the most efficient. Therefore a desired model is a combination
of complex- enough models. Considering that some of the experiments have been dealing
with changing fitness landscapes it might also change the desired complexity of the model.

This section has briefly reviewed how to measure grammars in EC.

2.3 Summary

The central contents of this chapter were the definitions of grammar and how other EC
algorithms are using grammars and measurements in EC. Context-Free Grammars and
derivations have been defined. This is needed for the exploration of grammars in Gram-
matical Evolution as well as for understanding of what a grammar is. The use of grammars
in Genetic Programming has also been surveyed, along with the structures used to imple-
ment them as well as their approach to adaptation. Different measures of a grammar can be
useful in EC, both simple and practical ones, e.g. number of rules in the grammar, as well
as more theoretical measurements such as entropy, which are more difficult to compute.
There are still gaps in the knowledge of how a grammar performs and adapts in evolu-
tionary search. E.g. how grammars with large search spaces behave when only evolution
is used to guide the search.

Now that Evolutionary Algorithms and grammars have been presented we move on
to describe the Evolutionary Algorithm called Grammatical Evolution in more detail in

Chapter 3.

32

Chapter 3

Description of Grammatical

Evolution

Chapter 2 defined grammars, surveyed grammar-based algorithms in EC and measurements
of grammars in EC. In order to complete the prerequisites for exploration of grammars
in grammatical evolution, we now turn to a more in-depth description of the foremost
studied algorithm in this thesis, Grammatical Evolution (GE). This chapter presents a
broad overview of GE and of previous work and its components. GE is inspired by the
transcription and translation of a sequence of DNA into a protein. This is modeled by
use of the grammar and the redundant deterministic mapping used to generate output
from input via the grammar. The research opportunities revealed in this chapter are the
possibilities to further investigate grammar and search bias in GE and how they affect
performance, as well as how grammars with large search spaces adapt. In addition, the
chapter presents an occasion to more formally describe the algorithm and analyze how the
grammar is affected by changes in the input.

The GE system overview is shown in Fig. 3.1. The grammar maps the input (genotype)
to the output (phenotype). The phenotype is evaluated and the search is performed by
operations that use the fitness values for selection and replacement, as well as modifying

the genotype.

33

3.1. GE ALGORITHM

Grammar

Mapping

Grammatical Evolution

Phenotype

Fitness function Individual

ithess

Operations

Fig. 3.1: Grammatical Evolution components. GE takes an individual where the grammar
maps the input (genotype) to the output (phenotype). The phenotype is evaluated and
the search is performed by the operations that use the fitness values for selection and
replacement, as well as modifying the individual’s genotype.

Section 3.1 delves into grammar representation, the mapping, and previous research in
mapping. In Section 3.2 the operators used in GE are examined. Application areas of GE

are presented in Section 3.3, before the chapter is summarized in Section 3.4.

3.1 GE Algorithm

Grammatical Evolution (GE) is a grammar-based form of GP. It is inspired by represen-
tation in molecular biology and combines this with formal grammars. The GE system is
flexible and allows the use of alternative search strategies, whether evolutionary, determin-

istic or of some other approach. This system also includes the ability to bias the search by

34

3.1. GE ALGORITHM

changing the grammar used. Since a grammar is used to describe the structures that are
generated by GE, editing the grammar modifies the output structures. This constraining
power is one of GE’s main features. The genotype-phenotype, i.e. input-output mapping
means that GE allows search operators to be performed on any representation in the al-
gorithm, e.g. on the genotype (integer or binary chromosomes), as well as on partially
generated phenotypes, and on the completely generated derivation trees or phenotypes.
This section describes the inspiration for GE and the control flow of the algorithm and

the different steps.

3.1.1 Biological Inspiration

The biological inspiration for GE comes from the generation of a protein from a sequence
of DNA, which contains several mappings. A simplified description of the generation of a
protein from DNA is described in Tab. 3.1. In Biology, the genotype, DNA is transcribed
to RNA, the RNA is translated to amino acids, the amino acids create proteins, and the
proteins generate a phenotype. Analogously, for an individual in GE the genotype, binary
string, is transcribed to an integer sequence, the integers are translated to production

choices via a grammar, and the phenotype is the sentence generated from the grammar.

3.1.2 GE Control Flow

In GE the control flow of an EA in Fig. 1.1 is extended with a genotype-phenotype mapping,
this is the same as “decoding” in a GA. The canonical GE uses a standard GA as a search

engine, with crossover and mutation. The steps in a single iteration of GE are generally:

1. Imitialization Input in the initial solutions is generated, e.g. uniformly randomly

generated integer sequences (see Section 3.1.2).
2. Mapping Mapping via a grammar, e.g. CFG (see Section 3.1.3).

(a) Binary to Integer (Transcription) Binary to integer translation

35

3.1. GE ALGORITHM

Tab. 3.1: Comparison of a generation of a protein and the derivation of a sentence in GE. In
Biology the genotype, DNA is transcribed to RNA, the RNA is translated to amino acids,
the amino acids create proteins, and the proteins generate a phenotype. Analogously, for
an individual in GE the genotype, binary string, is transcribed to an integer sequence,
the integers are translated to production choices via a grammar, and the phenotype is the
sentence generated from the grammar.

Biology Grammatical Evolution
DNA Binary string
|3 Transcription U
RNA Integer sequence
|3 Translation U
Amino Acid Production choice
\ \
Protein Sentence(Program)
4 4
Phenotypic effect Evaluated sentence

(b) Integer to String (Translation) Grammar maps integer value to a sentential

form (sequence of symbols).
3. Evaluation The individual solutions are evaluated.
4. Operators Operations on input, e.g. mutation and crossover (see Section 3.2).

(a) Selection Some individuals from the current population are included in a new

population (see Section 3.2.2).

(b) Variation operators Individuals are modified by some operators, e.g. crossover

and mutation (see Section 3.2.1).

(c) Replacement A new population is created from the selected population and

from the current population (see Section 3.2.2).

5. Termination When the start symbol has generated a sentence, the genotype (input)

is extended by wrapping (see Section 3.1.2).

These steps complete the algorithm.

36

3.1. GE ALGORITHM

Initialization

The search must start with some initial solutions which later will be modified. For ini-
tialization the input is often uniformly randomly generated. The Ramped Half and Half
Initialization' of GP has also been studied [115]; in order to increase the diversity of so-
lutions in the initial population there is a start depth parameter and a maximum depth
parameter. The current max initialisation depth increases from the minimum to the max-
imum depth in order to ramp up the depths of the solutions in the population. Two tree
creation methods are combined, each with a 50% probability of being selected. The Grow
tree generation randomly chooses a rule until the current max depth is reached. When
using the Full tree generation a rule that will create a tree with the current maximum

depth will always be chosen.

Termination - Wrapping

During the genotype-to-phenotype mapping process it is possible to use all codons in the
genotype, and in this case the wrap operator is applied. This results in returning the the
start of the genotype and reading the first codon in the individual, i.e. codons are re-used
when wrapping occurs. GE works with or without wrapping, and wrapping has been shown
to be useful for some problems [120]. However, with wrapping, an additional functional
dependency between codons is introduced. Wrapping was further investigated [142] and a
heuristic to minimize the number of wraps needed before the system can determine failure
was presented. Hugosson et al. [67] investigated a novel wrapping operator for binary and
Gray code representations, and found that across the problems examined there was no
general trend to recommend the adoption of an alternative wrapping operator.

An individual that is not completely mapped, even after wrapping, is called an invalid
individual. The number of invalid individuals can be reduced e.g. by strong selection
pressure or by using steady-state replacement. Alternatively, a repair strategy which aims

to make invalid individuals valid can be used [122], where only terminating rules are allowed

ISometimes this is called Sensible Initialization in GE

37

3.1. GE ALGORITHM

integer input grammar

N4

derivation tree

output

fitness

Fig. 3.2: GE mapping flow: input and grammar are mapped to output that is evaluated
and assigned a fitness

to be chosen when all the codons have been used.

3.1.3 Grammar Mapping in GE

The mapping of GE is shown in Fig. 3.2. There are different spaces, genotype, phenotype
and fitness.

The Grammar

For GE a suitable BNF grammar definition must exist. How much domain knowledge to
incorporate is decided by the practitioner, who also defines how general or specific the
Backus Naur Form (BNF) grammar is.

In GE, a BNF-grammar describes the output sentences that can be produced by the

38

3.1. GE ALGORITHM

<expr> (<expr> <biop> <expr>)

| <uop> <expr>
| <bool>
<biop> ::= and
| or
| xor
| nand
<uop> ::= not
<bool> ::= true
| false

Grammar 3.1: Example of a grammar for boolean expressions. <expr> has three production
choices, <biop> has four production choices, <uop> has one production choice and <bool>
has two production choices.

system, as well as the grammar bias.

Example 5 (Boolean grammar) The Grammar 3.1 can be used to generate boolean
expressions, and <expr> can be transformed into one of three rules. It can become either
(<expr> <biop> <expr>), <uop> <expr>, or <bool>. From Definition 1 a grammar can

be represented by the tuple (N, %, R, S).

N = { <expr>, <biop>, <uop>, <bool> }
¥ = { and, or, xor, nand, not, true, false, (,) }

S = { <expr> }

The code produced after mapping a BNF-grammar in GE will consist of elements of the
terminal set . The grammar is used in a generative approach, whereby the evolutionary
process evolves the production rules to be applied at each stage of a derivation process (see
Def. 6 on page 20), starting from the start symbol, until a complete program is formed.
The mapping (derivation) is complete when the sentence is one that is comprised of only

elements of X.

39

3.1. GE ALGORITHM

The Mapping

The genotype is used to map the start symbol into a sentence, by the BNF-grammar. The
mapping is done by reading input(codons) to generate a corresponding integer value, from

which an appropriate production rule is selected by using the following mapping function:

Rule = ¢ mod r (3.1)

where ¢ is the codon integer value, and r is the number of rule choices for the current

non-terminal symbol.

Example 6 (Choosing a production from a rule) Consider the following rule from
the grammar in Grammar 3.1. Given the non-terminal <biop>, which describes the set of
boolean operators that can be used, there are four production rules to select from. The

choices are labeled from zero.

<biop> ::= and (0)
| or (1)
| xor (2)
| nand (3)

If the codon being read produces the integer 6, then Eq. (3.1) gives 6 mod 4 = 2, which

would select rule (2) xor. In the derivation <biop> is replaced with xor. o

Each time a production from a rule with more than one production choice has to
be selected to transform a non-terminal, another codon is read. In this way the system
traverses the genome.

The mapping is deterministic, i.e. the same input sequence will map to the same output
sequence if the grammar is unchanged, each time the same codon is expressed it will
generate the same integer value. But depending on the derivation context, i.e. the current
non-terminal to which the codon is being applied, a different production rule may be

selected, this is called intrinsic polymorphism [106].

40

3.1. GE ALGORITHM

input

44

246

13

49

21

mapping

(0) 449%3=2

[<C> <C>)

(1) 246%2=0 (2) 13%3=1 |(5) 3%2=1

(3) 49%2=1 \(4) 21%3=0

Fig. 3.3: Example of a derivation tree that generates a word, gjkh, using Grammar 3.2

While the mapping process in GE occurs and a sentence is being built, it can also be

represented as a derivation tree. A concrete example of mapping in GE is shown in Fig. 3.3.

Example 7 (GE implementation in Python) Instead of pseudo-code, python code is
presented, since it reads almost like pseudo-code. The implementation of a GE mapping

is shown in Fig. 3.4.

3.1.4 Background to Mapping in GE

This section describes variations of mapping in GE. In GE the mapping, in combination
with the operators, allows room for influencing the search bias. The representation, i.e. the
encoding, as well as the operators can be changed in an attempt to make the search
smoother [3]. However, Wagner and Altenberg [155] claim that complex gene interactions

are advantageous for the chance of exploring new, functionally advantageous phenotypes,

41

3.1. GE ALGORITHM

def generate(input, max_wraps=1):
used_input=0
wraps=0
output=[]

unexpanded_symbols=[start_rule]
while (wraps < max_wraps) and (len(unexpanded_symbols) > 0):
Wrap
if (used_input’%len(input) == 0) and (used_input > 0):
wraps += 1
Expand a production
current_symbol=unexpanded_symbols.pop(0)
Set output if it is a terminal
if current_symbol[1] != NT:
output.append(current_symbol[0])
else:
production_choices=rules[current_symbol [0]]
Select a production
current_production=input [used_input%len(input)]’len(production_choices)
Use an input if there was more than 1 choice
if len(production_choices) > 1:
used_input += 1
Derivation order is left to right(depth-first)
unexpanded_symbols=production_choices[current_production]+unexpanded_symbols

#Not completely expanded phenotype
if len(unexpanded_symbols) > O:
return (None, 0)
else:
return (output, used_input)

Fig. 3.4: Python implementation of GE mapping. Unexpanded non-terminal symbols are
put on a stack and the input is used to determine which production will be chosen from
each unexpanded non-terminal. The mapping is terminated when the stack is empty or
the input is used up, if there are unexpanded non-terminals when the input is used the
output is set to None (invalid). Python almost reads like pseudo-code.

42

3.1. GE ALGORITHM

<S> = <C>
| <C><C>

| <C><C>
 ::= <D>
| <D><E>

| <E>

<C> =g

| h

<D> ::=j
s

<E> ::=k

| 1

| m

Grammar 3.2: Example of a grammar for words.

i.e. evolvability as a mechanism of stabilization. Draghi et al. [35] claim that if the number
of phenotypes accessible to an individual by mutation is smaller than the total number of
phenotypes in the fitness landscape then mutational robustness can facilitate adaptation.
This means that neutral diversity in a robust population has the ability to accelerate
adaptation.

The bias in GE mapping that occurs when a production is selected from a rule with
respect to the design of different grammars and grammar-defined introns has been studied
by O’Neill et al. [116]. Wilson and Kaur [163] look at search, neutral evolution and mapping
in evolutionary computation, especially at GE. The analysis is done by grouping the GE
codons into quotient sets and showing their adjacencies regarding the mapping, this is then
used to explain the population’s movements on neutral landscapes. Here the equivalence
relation of the quotient sets is the search neutrality of the codons, i.e. neutrality (many-to-
one mappings) related to codons being indistinguishable on applying the mutation part of
the evolutionary process. There are also results showing neutral evolution’s effect on GE.
Furthermore, it is shown that two phases of the mapping in GE, the bijective transcription
of binary digits to integer input and the many-to-one translation of integer input to the

mapped output belong to separate equivalence classes. The neutrality and the genome are

43

3.1. GE ALGORITHM

investigated and described as trivially neutral or not derivation neutral. Also cases are
presented where rearranging the rules of a grammar does not affect performance.

The locality of a genotype-phenotype mapping describes how well genotypic neighbors
correspond to phenotypic neighbors [138]. The locality of the mapping in GE has previously
been investigated [138], the study concluded that some operators in GE had low locality,
i.e. genotypic neighbors did not correspond to phenotypic neighbors. Montes de Oca [99]
modifies the fitness function in order to improve results that are impeded by the the bias of
a digit concatenating grammar. This illustrates the use of other search biases in addition

to the grammar bias.

Grammar Alterations

There have been several studies regarding the expressiveness of the grammar and how it
can be altered [see 19, 108, 25, 4, 26, 32, 117, 116, 119, 57]. McConaghy and Gielen [92]
investigated how to use canonical form functions for genetic programming to evolve human
interpretable functions, trying it on circuit modeling problems, and used grammar-defined
introns in one of the experimental setups.

Grammars other than CFGs have been used or generated with GE:

Attribute grammars [25] Use an attribute grammar to solve knapsack problems. An

attribute grammar defines attributes for the productions.

Christiansen grammars [123] Extend the attribute grammar to Christiansen gram-
mars. The Christiansen grammars are adaptable, i.e. they can be modified while

they are being used.

Logic Programming grammars [72] apply GE to adaptive logic programming, as an

alternative search system for logic programming.

L-System grammars [122] created a system called genr8 which uses GE to generate

L-systems for generating surfaces.

44

3.1.

GE ALGORITHM

Set grammars [109] use GE with set grammars to evolve shelters by generating 3D-

shapes.

TAG grammars [101] used tree adjoining grammars in conjunction with GE.

Grammar Mapping Variations

Different grammar mappings have also been tried

mod and bucket [74] An alternative mapping function for GE, this is called the Bucket

Rule, differing from the standard modulo rule. The aim is to remove the fact that each
codon value always codes for the same production choice if the number of production
rules are the same, regardless of the rule. Instead, a mapping is done that allows the
same codon value to code for different production choices depending on the rule, in
order to remove the effect of rule definition ordering biasing the search. It is shown

that by using the bucket rule the rule definition ordering bias is reduced.

Chorus [140] A position-independent encoding system for grammar-based EAs inspired

by how genes produce proteins that regulate the metabolic pathways of the cell.
The phenotype is the behavior of the cell’s metabolism and this is mirrored in the
development of the computer program in Chorus. In this procedure, the actual
rule encoded by an gene (8-bit) is the same, regardless of the position of the gene
within the genome. The values in the genome are moded by the total number of
production choices in the grammar to guarantee that a vote is given every time a
gene is read. The derivation is done left-to-right and to expand a non-terminal the
production choices for that rule are considered and the production choice with the
most votes is selected. Each time a production choice is encountered by a gene its
vote is incremented by one, and each time it is used its vote is decremented by one.
If the votes are tied the next gene is read. This makes the relative position of the

genes important, not the absolute.

GAUGE [141] Genetic Algorithms Using Grammatical Evolution (GAUGE) is a position-

45

3.1. GE ALGORITHM

independent Genetic Algorithm that uses GE with an attribute grammar to dictate
what position a gene codes for. A fixed set of codon pairs, one for each gene position
in the original problem is used, with codons being 8-bit values. Moding the codons
to get the appropriate value also gives a redundant coding, with values being the
position the pair codes for and the value for that bit position. The mapping is done
by first assigning generating position and valuing pairs with an attribute grammar

and then putting the pairs in a correct order.

m-Grammatical Evolution [104, 37] A position-independent variation of input-output
mapping, where the order of the derivation sequence is specified in the genotype.

The papers showed significant improvement for the different derivation orders.

GE? In Grammatical Evolution by Grammatical Evolution(GE?) a meta-grammar GE
Algorithm, the input grammar is used to specify the construction of another syntac-

tically correct grammar. The generated grammar is then used to generate a solution

(see 5.2).

mGGA In the mGGA [111] the meta-grammar approach was shown as an alternative bi-
nary string genetic algorithm GA and improves its performance by the use of modules

(see 5.2).

Reinforcement learning [97] Incorporates Q-trees, structures for maintaining a pol-
icy of actions that are appropriate for each state, to create Grammatical Evolution
by reinforcement learning. The aim is to improve the individual’s local search by
incorporating Baldwinian learning, specific selection for general learning ability, i.e
individuals who learn beneficial behavior fast are fitter. The effect is widened by
introducing the Lamarck hypothesis, the idea that the parent’s genome is changed
during its existence. The learning is done for a number of episodes and then the

Q-tree is reverse-mapped to the individual chromosome.

46

3.2. OPERATORS

Representation of Genotype

It is not only the translation from genotype-to-phenotype that has been investigated. The
representation of the genotype and the operators used will also add to the search bias.
Hugosson [67] looked at genotype representations in GE by comparing binary and integer
representations, finding support for integer representation. The paper deepens the investi-
gation into the many-to-one mapping, and considers effects of the deterministic mapping
from a linear sequence of input to output.

The previous research in GE has shown that there is a gap in the understanding of how
grammar affects the search, and that the grammar is important for the performance. Even
if operators and genotype representations are changed it is difficult to clearly distinguish

these effects since they are affected by the mapping through the grammar.

3.2 Operators

Now we will present the different operations, the variations which are used to mix the
solutions in the search as well as replacement and selection. This section will present
the canonical operators in the GE search engine. The flow of the entire GE algorithm
including selection, mutation, crossover, evaluation and replacement is shown in Fig. 3.5,
GE implemented with a GA used as a search engine. From the original population a
new population is selected. Crossover and mutation operators are applied to the selected
population to create new individuals, which are evaluated. Finally, the original population
is replaced in part or entirely by the selected population.

Alternative search engines to the canonical GA have also been applied to GE. First,
the Particle Swarm algorithm was combined with GE to Grammatical Swarm [107]. Differ-
ential Evolution has also been used as a search engine to create Grammatical Differential

Evolution [110].

47

3.2. OPERATORS

selection

Selected
Population

mutation

Selected
Population

Original Replaced

crossover Population Population

Selected
Population

evaluation (mapping)

Selected
Population

replacement

Fig. 3.5: GE implemented with a GA used as a search engine.

3.2.1 Variation Operations

The use of a mapping process creates a distinction between the search and the solution
space. The genotype is evolved without knowledge of their phenotypic equivalent. When
a change in the genotype occurs, this has been shown to create a ripple effect [71], as the
function of the gene depends on the genes that precede it. Thus, a small genotypic change

can lead to a large phenotypic change [138].

Crossover

Single point crossover in GE is performed as in GAs and is shown in Fig. 3.6. One point
in each parent’s genotype is selected. The parts on each side of the point are joined to the
opposing part from the other parent. This crossover creates two children consisting of one

part from each parent. Harper [50] looks at structure-preserving crossover operators and

48

3.2. OPERATORS

Parent1 | 52 | 669 | 909 | 24 | 78 Parent2 [42 [303 | 11 | 242 (1| 1
Child2 |52 (669 |11]|242 1|1 Child1 | 42 | 303 [909 | 24 | 78

Fig. 3.6: Single point crossover in GE

42 | 666 | 13| 22 | 11 | 909
Mutation 1 utation 2
42 | 303|113 | 22| 11| 242

Fig. 3.7: Integer flip mutation in GE

self-selecting crossover operators [51]. A structure-preserving crossover operator preserves

the derivation tree in order to reduce the disruption of the linear mapping.

Mutation

Integer flip mutation in GE is shown in Fig. 3.7. Each input codon has a uniform probability

of changing to a new uniform integer value.

3.2.2 Selection and Replacement

Selection and replacement are often the standard GA types, tournament or roulette wheel

selection, and steady state or generational replacement.

49

3.3. GE IN PRACTICE

Selection

In the selection step, some individuals from the population are chosen according to some
measure. Then the variation operations are applied to the selected individuals. In roulette
wheel selection the probability for an individual to be selected is its fitness in relation to
the others. Each individual gets a proportion of a roulette wheel equal to its fitness.

In tournament selection, a tournament size is chosen, and a number of individuals
equal to the tournament size are randomly chosen from the population to compete in
the tournament. The individual with the best fitness of the individuals selected for the

tournament wins the tournament and is selected.

Replacement

The search progresses by replacing some individuals in the old populations with the newly
created individuals. If generational replacement is used, the entire population is replaced,
this search might converge quite slowly. A higher rate of convergence can be achieved if
only the most fit new individual replaces the least fit old individual, if it is fitter.

This section has introduced the canonical GE operators, the variation operators muta-

tion and crossover, and the selection and replacement operators.

3.3 GE in Practice

This section presents different applications of GE as well as implementations of the GE-

algorithm.

3.3.1 Applications

Here follows a brief overview of different applications of GE from the wide range of areas
where it has been applied. This shows the wide applicability of using a grammar in
the algorithm. Gavrilis and Tsoulos [41] used GE for Fetal Heart rate monitoring as an

application within medicine. On the more biological side Motsinger-Reif et al. [100] evolves

50

3.3. GE IN PRACTICE

neural networks using GE to detect gene-gene interactions in the presence of error. White
et al. [162] compares different GE strategies in human genetics.

For design, especially emergent design, O’Reilly and Hemberg [122] used GE for in-
tegrating generative growth and form exploration. Further exploration of GE in the arts
was done when Abu Dalhoum et al. [1] generated music using GE. Reddin et al. [132] used
GEVA to evolve elevator music. In another creative application Cebrian et al. [22] used
GE for automatic plagiarism detection. Another well-studied area is finance [15, 34].

For more computer science related applications caching algorithms were investigated [112].
Also Adaptive logic programming was attempted using GE [72]. In corporation with other
algorithms McKinney and Tian [95] uses GE to generate artificial immune systems. For
feature extraction for time-series classification GE was used by Eads et al. [36], who cre-
ated a two stage algorithm using grammars to constrain the set of valid feature extraction
programs, and incorporating domain knowledge. In computer graphics Murphy et al. [102]

evolved horse gaits, using GEVA.

3.3.2 Implementing GE

This section covers some of the published GE algorithms, for a more comprehensive list
of GE implementations see http://www.grammatical-evolution.org. libGE, a C++
library for GE was reviewed by Wilson et al. [166]. Another tool is GDF [152] a tool for
function estimation through grammatical evolution implemented in C++. JCLEC [153] is
a Java framework for evolutionary computation that has a package for GE. Also Georgiou
and Teahan [42] has implemented a complementary GE system in Java.

Grammatical Evolution in Java (GEVA) [118] is an open source implementation de-
veloped at UCD’s Natural Computing Research & Applications group. In addition to
providing the characteristic genotype-phenotype mapper of GE, a search algorithm engine
and a simple GUI are provided. Furthermore, a number of sample problems and tutorials

on how to use and adapt GEVA has been developed.

51

3.4. SUMMARY

3.4 Summary

This chapter has described GE in order to lay the foundations for an examination of gram-
mars in GE. We introduced the biological inspiration for GE, then examined grammar
representation, the mapping and previous research in mapping. The most common opera-
tors used in GE were presented. Finally, application areas of GE and implementations of
the GE algorithm were briefly introduced.

This chapter has presented gaps in the understanding of the mapping order as well as
how grammars affect the search. Furthermore, the gaps concerning understanding how the
grammar affects the performance of GE have been shown. Several studies have investigated
grammars, which has highlighted the importance of grammars for performance in GE.
Moreover, there have only been a few studies regarding the meta-grammars in GE and
how they can adapt during the search. Most have studied properties and possibilities
(expressions) of different grammars, and the bias that they allow. But much of the grammar
mapping itself and the theory behind it are still unknown.

Now the preliminary part of the thesis has been completed, with grammars defined
and the use of grammars in EC reviewed in Chapter 2, while this chapter presented GE.
In Part II the exploration of grammars in Grammatical Evolution begins. Chapter 4 is
concerned with the grammar mapping that occurs in GE and how this affects the search

performance.

52

Part 11

Experiments - Exploring Grammars

in Grammatical Evolution

93

In Part II we start our empirical exploration of grammars in GE, studying performance
and adaptation. From Part I we know that there are gaps concerning our understanding
of grammar mapping order, the larger meta-grammars and how the grammar affects the
change of codons.

The question is how the grammar could be used to improve performance and how it
could be altered. First we need to understand how a grammar works in practice and this is
pursued in Chapter 4. We studied the mapping order, which gives insight into the impact
of the derivation order. It also shows how the grammar input is related to the rule order.

The meta-grammar studies investigate how a larger grammar, with a modified represen-
tation performs. Chapter 5 explores automatically defined functions for meta-grammars.
The studies of the meta-grammars are extended in Chapter 6 to investigate not only the
ability to capture modules, but also the scalability. Moreover, the impact of operators for
the meta-grammar implementation as well as grammar design are studied in Chapter 7.
These reveal that the meta-grammar scales well for regular problems of increasing size.
In Chapter 8 the effects of the mGGA grammar design reveal that using building block
structures has less variance than a grammar with a strong bias towards building block
structures.

The theory is an extended discussion of the empirical results. The theory in Part III

further investigates and tries to formalize and generalize the results that are discovered in

Part II.

54

Chapter 4

Grammar Mapping

The first stop in the exploration of grammar in GE is the mapping process and how different
grammars can alter it. This chapter explores the order of the GE mapping process and
demonstrates how the grammar employed can be used to control the mapping order. Parts
of this chapter have been published [58]. We studied the mapping order, which gives insight
into the impact of the derivation order. It also shows how the grammar input is related to
the rule order.

In Section 4.1 the different grammars are presented. Section 4.2 introduces the exper-
iments, Section 4.3 shows the results, Section 4.4 contains the discussion and Section 4.5

summarizes the chapter.

4.1 Pre-, In-, Postfix Grammars

We investigate the importance of the ordering of the mapping process that occurs during the
generation of a solution. Traditional GE constructs derivation trees depth-first, shown in
Fig. 4.1. In 7GE (see 3.1.4 on page 41), however, individuals can evolve the order in which
non-terminals are expanded, leading to performance gains [14, 37]. This indicates that the
order in which non-terminals are expanded can affect search efficiency. Other studies also

indicate that grammar design can impact an algorithm’s performance [61, 114, 103, 99|

55

4.1. PRE-, IN-, POSTFIX GRAMMARS

<e> ::= (<0> <e> <e>) | <w>
<o> :1:= +|-|x]|/

<v> ::=x0 | x1 | <c>

<c> ::= 11213141|516171819

Grammar 4.1: Prefix grammars for Symbolic Regression, ¢talics mark the difference be-
tween infix and postfix grammars.

<e> ::= (<e> <o0> <e>) | <w>
<o> ::= +|-|%x|/

<v> ::= x0 | x1 | <>

<c> ::= 1]2]3141516171819

Grammar 4.2: Infix grammars for Symbolic Regression, italics mark the difference between
prefix and postfix grammars.

Here we use the standard depth-first mapper, with three grammars which differ only
in the ordering of the non-terminals in the productions. Grammar 4.2 is infix (typical in
most previous GE work), Grammar 4.1 is prefix, and Grammar 4.3 is postfix. All these
grammars are for symbolic regression problems. We then compare the performance of
these grammars on a suite of symbolic regression problem instances. If the order in which
non-terminals are mapped is truly important, we would expect differences in performance
between the starkly contrasting prefix and postfix grammars.

With prefix grammars for example, operators are determined earlier in the input se-
quence than the operands, whereas the opposite is true for postfix. As a result, the root of
a syntax tree is the last component of a program that is determined in postfix, as opposed
to the root being the first component of a program with prefix. See Fig. 4.1 where the

grammars from Grammar 4.1 and 4.2 and 4.3 produce the derivation trees.

<e> ::= (<e> <e> <0>) | <w>
<o> :i:= +|-|x|/

<v> ::=x0 | x1 | <c>

<c> ::= 1|213141516171819

Grammar 4.3: Postfix grammar for Symbolic Regression, italics mark the difference be-
tween infix and prefix grammars.

o6

4.1. PRE-, IN-, POSTFIX GRAMMARS

(¢) Postfix mapping

Fig. 4.1: Derivation trees mapped from the different grammars from 4.1, 4.2 and Gram-
mar 4.3. The grammars generate equivalent expressions (x+x+x+x+x) from different chro-
mosomes of length 17 and the codon number is indicated in the figure. Diamonds denote
non-terminal symbols and circles denote terminal symbols.

By using different grammars, the search space can be explored in different ways. The
same genotype gives different derivation trees (in both content and structure) and pheno-
types depending on the grammar. This is illustrated by examining the derivation trees that
are created when mapping the genotype to the phenotype. Fig. 4.1 shows how different

grammars can lead to different derivation trees that in fact represent the same phenotype

o7

4.1. PRE-, IN-, POSTFIX GRAMMARS

(the input sequences used to generate the trees, however, are different in each case).

4.1.1 Symbolic Regression

For a symbolic regression the goal is to find a function that matches a set of observed

points from a target function. In this experiment the following target functions were used:
1. 8/(2+ 2* +y?)
2. 3z —1)+yy/2-1)

3. B35+ yP/2—y—u

4 30422 +x4—x3+y—;—y+

(10-z)y? 2+

2+$2+y

5. o —l—x—%x3+y;—2y+

(10—z)y? 2+Z/_

2+$2+y

Some of these target functions were adopted from Keijzer [73], while others were created
to encourage the evolution of larger expression trees. For each evaluation 20 random
sample points for z and y were chosen from the range [—3,3|. Fig. 4.2 shows the target
functions plotted over this range, together with diagrams showing the structure of the
target expressions, with the structural complexity increasing with each target. The source

code for generating the trees is from Gustafson [48].

4.1.2 Grammar

The grammars used are shown in Grammar 4.1 and 4.2 and 4.3. The only difference
in the grammar is between the prefix-, infix- and postfix representation of the function
expression. This means that the grammars have different sites that determine the order of

the expansion of the grammar in relation to the root, see Fig. 4.1.

o8

4.2. EXPERIMENT

(b) Target (2), nodes=17, leaves=9

(c) Target (3), nodes=19, leaves=10

(e) Target (5), nodes=63, leaves=32

Fig. 4.2: Expression trees and a plot of the function over the range.
4.2 Experiment

The experiments are designed to test whether there is a difference in the performance
between the different grammars. The performance is measured as the average best fitness
¢ after 50 generations over 1000 runs. The False Discovery Rate (FDR) [9] is calculated
and the p-values are derived from two sided t-tests. The false discovery rate is used to
correct for multiple comparisons. The FDR is the expected false positive ratevalue telling
how many of the p-values from the multiple hypotheses that were significant given the

significance level, a of the FDR-test.

99

4.2. EXPERIMENT

Tab. 4.1: Parameters for the GE algorithm

Fitness function See 4.1.1
Initialization Ramped Half and Half
Grow Derivation tree depth | 12

Selection operation Tournament
Tournament size 3
Replacement Generational
Elites 2

Population size 500

Max wraps 1
Generations 50

Crossover probability 0.9
Mutation probability 0.01

Hypothesis

Hy: No difference in best fitness between the grammars, i.e. ¢pre = @rn, Orn = Ppost and

¢Pre - ¢Post

Hy: A difference in best fitness between the grammars, i.e. ¢pre # Prn, Prn # PpPost OF

¢Pre 7é ¢Post

a: The significance level of the test is 0.05.

4.2.1 Setup

Parameter settings for the GE algorithm are listed in Tab. 4.1. The input (called chromo-
somes) were variable-length vectors of integers (4 byte integers). Our fitness measure is
the sum of the squared error over the 20 points chosen from the target function. One-point
variable length crossover was used and an integer mutation operator where a new value was
randomly chosen. For division a naive protection was implemented, 0.0 was returned, i.e. it
was still deemed valid, if the divisor equaled 0. An individual is invalid if the phenotype

contains non-terminals after mapping. Invalids are given the worst possible fitness.

60

4.3. RESULTS

Tab. 4.2: p-values for the grammars on the different targets, the average best fitness and
standard deviation are shown next to the grammar. [talics indicate a significant p-value.

Target (1)

Grammar
Postfix
Prefix(2.714 £ 0.8189)

Infix(2.6969 + 0.8490)
0.640
0.640

Target (2)

Postfix(2.6742 + 0.7739)
X
0.640

Grammar
Postfix
Prefix(372.22 + 116.4965)

Infix(358.90 + 121.9458)
0.293
0.059

Target (3)

Postfix(364.53 4+ 120.4808)
X

0.227

Grammar
Postfix
Prefix(56.22 £ 15.05861)

Infix(55.22 + 14.48962)
0.920
0.200

Target (4)

Postfix(55.15 4+ 15.43094)
X

0.200

Grammar
Postfix
Prefix(957.7 £+ 325.5681)

Infix(906.7 + 325.1407)
2e-16
1.2e-4

Target (5)

Postfix(722.1 4 228.3647)
X
2e-16

Grammar
Postfix
Prefix(955.9 £ 332.0197)

4.3 Results

Infix(938.2 + 340.6127)
2e-16
0.200

Postfix(759.3 4+ 238.2787)
X

2e-16

The best fitness over time is shown in Fig. 4.3 and in Fig. 4.4(a) box plots of the runs are

shown. By examining the last generation of the runs for each problem with pairwise t-test

between the different grammars their performance is compared, shown in Tab. 4.2.

For Target (1) there is no significant difference between any of the grammars. Infix

is significantly better than Prefix for Target (2).

Target (3).

There is no significant difference for

For Target (4) Postfix has significantly better performance than both Infix

and Prefix, moreover Infix also has significantly better performance than Prefix. There is

a signficant better performance for Postfix compared to Infix and Prefix for Target (5).

For the two larger problem instances, Targets (4 & 5), a performance advantage was

observed for postfix when compared to both infix and prefix. Additionally, for Target (5)

infix outperformed prefix.

61

4.4. DISCUSSION

When studying the results from Fig. 4.4(b) one can notice that postfix grammars always
have more valid individuals when compared to prefix, except for Target (1), although for
Target (2 & 3) the number of invalids in all grammars is close to zero, but for Targets (5

& 4) the difference is higher.

4.4 Discussion

All grammars show a similar behavior when it comes to fitness. An inspection of the
results for each run revealed that for the prefix grammar, a significantly larger number of
invalid individuals was generated after the initial population. Clearly, this can account for
some of the differences in performance observed, but it is interesting to ask why so many
invalids are being generated? More invalids mean less fitness evaluations performed. One

explanation could be the different locations of the grammar expansions in the input string.

Example individuals at the last generation for Target (4 & 5).

Target (4)

Infix - Fitness:1014.33

1+ CCCCELR (((x0* ((4.0+(x1+x0))+ ((x0*x1)-(x1+x1)))) /x0) /5.0
))/4.0)/(5.0+(x1*(x1%x0))))/x1)/x1))*x0)

Postfix - Fitness:1015.75
(x1(((x1(((x1x0-) (x1x1 -)-) ((x0x1/) (x0x1*)-)+)+) ((x0x1/) (x1x1x*
)+)+) (x1x0+)*) /)

Prefix - Fitness:1006.35
(% (/ (+x0 (*x1x1)) (-x1 x0)) (*x(+x1x0) (-x0(*x1 (*x(/x0(*x1x1))x0)))))

Target(5)

Infix - Fitness:1030.78

((((x0*x1)-x1)-(1.0-(x0/(7.0-((x1+(((x1+(x1*x((x1/6.0)*(x1+(((
8.0+6.0)-x1)+(x1+(x0+2.0)))))))*((((7.0%
6.0)+x1)/x0)/(6.0%x1)))*2.0))/(x1/6.0))))))*((x0*x1)-x1))

62

4.5. SUMMARY

Postfix - Fitness:1005.93
((((x0x0%) ((x0((6.0((x0(x1x1-)-)x0*)-) ((((((x0((x1x1+)7.0/)*)
x0%) (x1x1/)+)x0/)x0%) (2.0x1/)*)-)*)9.0+) /)x0/)x0/)

Prefix - Fitness:1010.74
(+(*(+(-(/x16.0)x1)x0)x0) (+5.0x0))

When studying the examples from the Fig. 4.1 is possible to see that the index of
operators from <o> ::= +|-|*|/ are different. From Fig. 4.1 it is also possible to see
that the index of the codon determining the last <exp> non-terminal in Fig. 4.1(a) and
Fig. 4.1(b) is 16 while for Fig. 4.1(c) the index is 14. In the prefix solution the sum of the
expansion index of terminals is lower than for infix, which in turn is lower than postfix
solution. This comes from the fact that the grammar <e>; non-terminal at the max ¢ is

different for each grammar.

Pre-fix <e>; ::= (<0>;,1 <e>j19 <e>;;3)
In-fix <e>; ::= (<exp>j;1 <0>j19 <e>;y3)
Post-fix <e>; ::= (<exp>;11 <e>; 15 <0>;43)

Since the max number of codons used for <o> is one this leads to an index difference
for the codon which expands the last <exp> to be two between postfix and prefix, and
between postfix and infix. The effect of changes to codons and their location will be

further examined in Section 10.

4.5 Summary

We wished to see if the order of symbols within a grammar can impact the performance
of GE by comparing prefix-, infix- and postfix syntactical variants. The results suggest

that the choice of grammar can produce performance advantage for two of the different

63

4.5. SUMMARY

problems examined and no disadvantage for the others. This occurs because each grammar
creates solutions of diverging shapes which react to the operators in different ways.

We have now examined a simple study of how the grammars can impact the search
by altering the mapping order, and thus the neighboring phenotypes. We continue the
investigation of grammars by studying how allowing the grammar itself to evolve might
impact the search process. In Chapter 5 a meta-grammar approach to search is examined.
By using a grammar that allows the structure of the grammar to change, this will allow
the probabilities of the productions to change. First we study the principle of automati-
cally capturing modularity, which is adopted from GP, and coupling this to an adaptive

representation.

64

4.5. SUMMARY

1600

prefix

" prefix
postfix -------
infix -

1400 |

1200

1000 1
o 2
H H
g | g
£ £
z z
800 1
600 B
1 400 g
25 200
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Generation Generation

(a) Target (1), best fit. (b) Target (2), best fit.

2600

prefix Tprefix
postix ------- postlix ------
infix - 2400 |- infix -~ |

2200 |
2000 |- |
1800 [-)

1600 [%

Fitness
L
Fitness

1400

1200

1000

800 | e e E

600 L L L L

Generation Generation

(c) Target (3), best fit. (d) Target (4), best fit.

2600

Tprefix
postfix -------
infix]

2400 -
2200
2000

1800

1600

Fitness

1400

1200

1000

800 |

600 L L L L

Generation

(e) Target (5), best fit.

Fig. 4.3: Best fitness results averaged over 1000 runs for pre-, in- and postfix experiments.

65

4.5. SUMMARY

Boxplot of the best fitness after 50 generations

Q

g .8 8.8

o N I
T |
; .S EeE
8 % f % ' E I H - i
% | ! ' " I i ' i
g .EE | i 1 i i |
o b i
o &7 | * 8T
@ - ' i !
R
S g -
BSE
i o
g [
£ o
Ee o
g °o8
4
o
3
AER
| | 1 — Infix
% _ o Postfix
o Prefix
g T
% J
Target (1) Target (2) Target (3) Target (4) Target (5)
(a) Best fitness, y-axis is log scale
Boxplot of % invalids after 50 generations
S _
=
T 2 he -
— Infix | : ! H
Postfix — 1 E — ! E
Prefix . ! .
g g LI g
0 s
3 ° ° 8
o °© 9
o
o o o
o
° 8 8
Q
o | ° 8
e Cl
o o
8 ° ° °
g o o
ES
< 8 8
=} ° o o
o
o
o
o
8 0 8 °
o 8 ° o
° e ° 8
o o
o L g Ld o
: :
o ' o 8 !
8 '
2l 8 8 8 iild s835 - <
Target (1) Target (2) Target (3) Target (4) Target (5)

(b) % invalids in population

Fig. 4.4: Box plots of Best Fitness and % invalids at the final generation for pre-, in- and

postfix experiments. For each target to the left is infix, center is postfix and right is prefix
66

Chapter 5

Meta-Grammar for Automatically

Defining Functions - Modularity

After having studied the effects of grammar mapping order in GE we continue with studying
how allowing the grammar itself to evolve might impact the search process. First we
investigate how a grammar can be used to capture modularity. The grammar can be
modified to allow definitions of structures in the rules and non-terminals, which will be
able to bias the evolutionary search towards these structures. One approach to incorporate
structures in a CFG is to use a meta-grammar. In a meta-grammar GE Algorithm the
meta-grammar specifies the construction of another syntactically correct grammar. The
generated grammar is then used to generate a solution.

This chapter investigates the principle of automatically capturing modularity, adopted
from GP, and of coupling this to an adaptive representation. The contribution is the
extension of this approach to grammatical GP systems by using dynamic definition of
modules with fixed module signatures. Furthermore, this chapter also introduces a novel
meta-grammar approach to modularity and compares this approach to other grammar-
based approaches. The introduction of the meta-grammar and the ability to automatically
capture modules change both the grammatical- and the evolutionary search bias. The

contents are based on work presented by Hemberg et al. [62].

67

5.1. MODULARITY

In Section 5.1 modularity is presented and in Section 5.2 meta-grammars in GE are
introduced. Section 5.3 contains the experiments and the results. Finally, Section 5.4

recaptures this chapter.

5.1 Modularity

This section provides an overview of research in modularity. Section 5.1.1 presents a brief
overview of modularity, Section 5.1.2 introduces some examples of modularity definitions
in EC, Section 5.1.3 further investigates some examples of modularity in GP, and finally,

in Section 5.1.4 Automatically Defined Functions (ADFs) in GE are reviewed.

5.1.1 Modularity Overview

In EC literature, modularity is a reoccurring concept with a variety of definitions and
approaches. The definition of modularity used in this thesis is quite general and often
referred to, it is given by Simon [146] and it states that a module has more frequent
interactions within the subsystem than outside the subsystem. An example of this is
shown in Fig. 5.1(b). The initial consideration when discussing modularity is the context
in which modules are defined. Modules and context are both abstract concepts and concrete
objects, where the most general view is given by treating modules as abstract concepts that
sometimes can be instantiated. One distinction of modularity can be drawn by a top-down
or bottom-up view. The top-down view of modularity is the intuitive claim that abstract
concepts and concrete objects can contain modules. Simon [146] generalizes the notion of
modularity when talking about nearly decomposable problems. Fig. 5.1(a) shows a view
of modularity broken up into primitive-, module- and context levels. It also shows how the
bottom-up and top-down view relate to these levels.

The contents and relations in and between modules differ depending on the context.
A module itself can be either an abstract concept or a concrete object (within a concrete

object), or solely another abstraction in an abstract concept. An example of this can

68

5.1. MODULARITY

Primitive level

Module 1
Module level
y . : Context level
Top-down
(a) Modularity concept (b) Modularity example

Fig. 5.1: Fig. 5.1(a) shows a schematic view of the abstract concept of modularity. The
context decomposes into modules, and modules contain primitives. Each level has its own
measures and relations, also between the levels. The mappings between levels can have
different properties. Fig. 5.1(b) shows a schematic view of the classification of modularity.
The nodes (A,B,C) are classified as Module 1 and (D,E,F) as Module 2 since there are more
edges between the nodes in the modules than between nodes in Module 1 and Module 2.

be seen in compression, where if something can be compressed it can be said to contain
modules. Also worth noting is that the existence of modules implies the existence of
different levels. Furthermore, there can be hierarchies of modules not only at the module
level and primitive level. The components or primitives of the module exist at one level
and the module at a different one. This does not discount elements from one level to exist,
unchanged, at a different level. Moreover, each context can contain different modules. This
top-down break-up does not give details about the primitive contents of the modules or
how they are defined or related, only about their existence. It is possible to add measures
to the modules, but some context-relevant measures and relations are difficult to find, and
here the module serves a more descriptive and intuitive purpose.

The other view, non-exclusive of top-down, is bottom-up, identifying parts (primitives)
that can be combined to form a module. Here, one complication is to identify elements that
can be combined, as well as identifying the relations between the elements that create a
module and how to distinguish sensible modules. In order to identify a module the relations

between the elements must be measurable. Sometimes the measure of the modularity is

69

5.1. MODULARITY

extended to the context level. One way to extend the bottom-up view of modules is to see
them as relations between elements in a set. This is the basic requirement for modules.
Variations of module definitions are then dependent on how these interfaces or relations
are defined, e.g. as edges between nodes in a graph, as pathways between cells, or as
wires connecting components on a circuit board. The relations are applied to elements
in the set, e.g. to nodes in a graph, to cells, or to electronic components on a circuit
board. These relations can be such that the elements in the set are partially ordered. The
primitive elements in the sets can be mapped to a different level and the new representation
considered for module definition. Once a module has been defined, it can be reused if there
are regularities, i.e. when using hardware components for a computer a standard interface
is necessary in order to allow the modules to be reused and connected. It is also possible
to add relations between the defined modules, thus creating new modules and building a
hierarchy of modules.

Yu [170] reports that from graph theory modules are the partition of vertexes 7 of a
graph Gr into disjoint subsets. A graph is a set of vertexes (nodes) v and a set of weighted
edges € and is denoted Gr = (v,€). Many different constraints can be specified for the
partitioning of nodes. The measure of a module in graph theory can be the expected value
of the entities in the adjecency matrix.

Now that we know the general definition of modularity we will see how it has been used

in EC.

5.1.2 EC Examples of Modularity

In EC, Garibay [39] notes, modularity is a more general concept than building blocks,
in that a module does not have to be related to fitness. In EC there have been several
definitions of modularity, this section lists them. Tab. 5.1 has an example of a breakdown
of EC definitions of modularity.

With the existence of links in the problem, modules can be created, and in a fixed

length context they should preferably be situated close to each other, in the GA literature

70

5.1. MODULARITY

Tab. 5.1: Definitions of modules. The table intends to show the scope of module definitions.
In order to form a module in a context there must be a set of elements and relations between
the elements. Depending on the view of modules and complexity of elements the existence
of relations is explored. TD is Top Down, BU is Bottom Up definition of modules

Author View Context Elements Relations Measure
Simon [146] TD/BU | “General” Parts Connections Inter/Intra ~ Connec-
tions
Yu [170] BU GA Parts Connections Dependency Stricture
Matrix(DSM)

Garibay [39] TD GA Genomic & System | Dependencies Fitness

Hornby [66] TD Evo Design Sys- | Elements Manipulation Unit behavior
tems

Koza [81] TD GP Sub problems Addable Fitness

Woodward [168] | TD GP Functional and | Set definition Previous definition

Terminal

Watson [156] BU EC Variables Dependencies Relative fitness

Toussaint [151] | BU EC & Neural Net- | Functional traits’ | Adaption covari- | Adaption covariance
works index set ance

De Jong | BU EC co-evo repre- | Variables Dependencies Relative fitness

et al. [30] sentation

Luerssen and | BU Grammar GP, de- | Variables Variables’ configu- | Fitness

Powers [90] sign rations

Lipson BU EC Design Design units Performance Independent perfor-

et al. [88] mance

Wagner [154] BU Developmental Bi- | Genotype Pleitropy Pleitropic effects
ology

Chen et al. [23] | BU GA Sequence in Z» Dependencies Fitness

Parent BU GP Variable Links Dependent collection

et al. [124]

Shan BU GP(building Subtrees Fitness Number of occurrences

et al. [144] blocks)

Krawiec and | TD/BU | GP(functional Subtrees Fitness Monotonicity degree

Wieloch [83] modules)

71

5.1. MODULARITY

these are called building blocks, see Goldberg et al. [47]. Since the introduction of GAs,
the search for building blocks has been ever-present. Building blocks can be considered
as compositions of genes with either more or less linkages between them according to
Toussaint [151]. The goal is to find linkages between the GA variables that are fit and then
are propagated through the search, see Goldberg [46]. Parent et al. [124] say dependent
collections of links could be seen as modules and that modularization has mainly been of
interest to the GP community but is related to the search of building blocks in a GA. The
messy GA allows variable length strings that may be under- or over-specified in regard to
the problem solved and positional flexibility, with the aim to group dependent variables
into tight linkages [47].

Problems decomposed into components have different interactions, modularity is the
interaction between components, interacting modules form levels and overlap of component
use in modules [170]. In product design and development Dependency Structure Matrix
(DSM) clustering is a matrix representation of a graph containing information of pair-wise
interactions between every pair of components in a system. The aim of DSM-clustering is
to transfer the pair-wise interaction information into higher-order interaction information.
Yu [170] uses a method based on Minimum Description Length (MDL), using the minimal
total length for model description and data mismatch, to detect clusters in the DSM.

In a paper by Wagner [154], from a biological view, modularity is defined as follows

“Independent genetic representation of functionally distinct character com-
plexes can be described as modularity of the genotype-phenotype mapping
function. A modular representation of two character complexes C1 and C2 is
given if pleiotropic effects of the genes are more frequent among the members

of a character complex than among members of different complexes.”

It states that modules are important in evolution as disassociated semi-autonomous units.
Wagner [154] says that developmental biology considers disassociability and that develop-
ment is semi-autonomous, i.e. how genes group into gene nets with different gene actions

and products.

72

5.1. MODULARITY

In addition, when Garibay [39] investigates the effects of modularity on the search
space it is noted that modularity can bring improved scalability by using a compressed
representation once the modules are defined. His definition of modules is as genomic
primitives containing system primitives and other low level modules, this relates to building
blocks in GAs, but differs as to how they are affected by genetic operators. Furthermore,
by allowing modules the search space can also increase in size, and it should be taken into
account that there are also “bad” modules, in contrast to the “good” ones [39].

In a slightly different context, with a view to engineering, when talking about evolution-
ary design, Lipson et al. [88] define modularity as “the separability of a design into units
that perform independently.” For Evolutionary Design Systems Hornby [66] defines modu-
larity as “an encapsulated group of elements that can be manipulated as a unit”. Relating
it to the building block hypothesis in GAs, Hornby states that modularity is measured by
the number of structural units in a design. To measure modularity the amount of procedure
calls is counted. Additionally, when studying the development of co-evolutionary repre-
sentation De Jong and Oates [28] define modularity as the property that several variables
in a problem are dependent on one another as to their (near-)optimal settings, while the
dependencies between the module and variables outside the module are weak compared to
the former dependencies.

The modules are defined as regular and hierarchical, using an algorithm that in a
bottom-up fashion creates modules, by comparing potential building blocks to different
combinations. Watson [156] defines modularity when talking about compositional evolution

as follows

“In a given system of variables, the configuration of a subset of variables
that maximizes the fitness of the system may depend on the setting of the
remaining variables in the system. A system can be understood as modular
if it can be described in terms of subsets of variables where the number of
different configurations for a subset that could give maximal fitness (given all

possible configurations of variables in the remainder of the system) is low.”

73

5.1. MODULARITY

and finds it important to consider the interdependency between modules.

Toussaint [151] examines the evolution of genetic representations and modular neural
adaptation. The reducibility of the representation used to define elementary particles in
physics is analogously used to describe the notion of functional modules in EC and neural
adaptions. The modules are measured by the adaption co-variance.

After this overview of modularity and definition in EC in general we will now review

modularity in GP in particular.

5.1.3 Modularity in GP

In GP, Koza [81] takes a top-down view of modularity and devotes an entire book to sub-
dividing problems and solving the sub problems; if something is decomposable it consists
of modules. A more bottom-up definition of a model, apart from examples from various
areas, would be difficult to find.

Angeline and Pollack [5] investigate the evolutionary induction of subroutines and in-
troduce a Genetic Library Builder which allows compression of randomly selected subtrees.
The compressed subtrees are assigned unique names and placed in a library, which makes it
available for other solutions. The subroutines in the library are evaluated by the extent to
which they are used in future generations. Compressed subroutines can also be expanded
and replaced explicitly in the individual.

An approach to more problem-specific code is introduced by Spector [147] The capacity
of GP is increased by introducing Automatically Defined Macros (ADM) that perform
source code transformations, which allows implementation of new control structures.

From the GP context, other approaches to modularity are O’Reilly [121], who looks at
the generality of Automatically Defined Functions (ADFs), an approach to capture modules
and regularities using GP, by applying ADFs to Simulated Annealing. Whigham [160]
biases the search in GGP by modifying the grammar trying to identify a production that
appears to be useful and encapsulating it as an expansion in the new grammar. This

creates a global change to the grammar.

74

5.1. MODULARITY

The Push programming language is designed for the expression of evolving programs
with EC and automatically provides multiple data types such as automatically defined
subroutines, control structures and architecture. Spector and Robinson [148] use the Push
in combination with GP to perform auto constructive evolution. Yu [169] investigates
hierarchical processing for evolving recursive and modular programs using higher-order
functions and lambda abstraction, concluding that appropriate higher-order functions are
needed for beneficial structure abstraction.

Shan et al. [144] define building blocks as “sub-trees which appear more frequently
in good individuals”. Woodward [168] defines a module in GP as follows “A module
is a function that is defined in terms of a primitive set or previously defined modules.”
When evolving encapsulated programs as shared grammars Luerssen and Powers [90] talk
about modularity as “A subset M of variables in a specific design problem can be called
a module if the number of possible configurations of M that maximize the fitness for at
least one configuration of the remaining variables is less than the number of all possible
configurations for M.”

A low level modularization technique for linear GP system based on compression is
presented by Parent et al. [124]. The algorithm they use operates on the compressed
individual where module identification is facilitated by regularity in the representation.
Krawiec and Wieloch [83] study what they call functional modularity for GP. They use
the intuitive GP module definition “a piece of program code (subtree).” and continue to
analyze the modules using fitness cases and also introduce subgoals for the fitness evalu-
ation. Monotonicity is used to assess the subgoals utility for searching for good modules,
where for a given subgoal and a sample of modules, monotonicity measures the correlation
of the subgoals distance to the modules’ semantics as well as the fitness of the solution
the module is part of. Monotonicity differentiates two problems with different modularity,
allowing distinction of subgoals, and may be potentially used for problem decomposition.
Kashtan et al. [70] found that varying environments can speed up evolution, especially
when there are modularly varying goals. This suggests that varying environments might

contribute to the speed of natural evolution.

75

5.2. META-GRAMMARS AND GRAMMATICAL EVOLUTION

5.1.4 Automatically Defined Functions in GE

In many examples of problem solving, we humans use a divide-and-conquer approach by
constructing sub-solutions which may be reused and combined in a hierarchical fashion to
solve the problem as a whole. GP provides the ability to automatically create, modify and
delete modules, which can be used in a hierarchical fashion.

Some previous work with GE and modularity [113] has also been undertaken, where
functions were defined by the grammar, similarly to Automatically Defined Functions [81].
Functions were dynamically created using a dynamic grammar approach that allowed spec-
ification of multiple functions and a variable number of arguments for each function [52].
The newly created ADFs were dynamically appended onto the core grammar in such a
manner that it was possible to invoke them from the main function.

This section has reviewed the concept of modularity in EC and in particular modularity
in GE, as well as the studies of Automatically Defined Functions in GE. This has shown that
there are several ways to define and promote modularity. In the next section we introduce
a meta-grammar approach to define modules in the grammar and bias the search towards

these modules.

5.2 Meta-Grammars and Grammatical Evolution

This section presents meta-grammars in GE and one implementation, Grammatical Evo-
lution by Grammatical Evolution.

Adaptation, alterations of a solution from experience, which can be used by succeeding
solutions, can be seen as learning. Learning and adaptation are useful for problem solving
since they allow the search to progress towards a more optimal solution. The grammar
biases the search to different regions of the search space.

Problems can be modular. With modularity a solution might find an underlying struc-
ture of a problem. Moreover, the speed of the search can be improved if there are modules.

Altering all the parts of a module can be avoided, and only the connections between mod-

76

5.2. META-GRAMMARS AND GRAMMATICAL EVOLUTION

Universal
ffffffff Grammar

l

Solution + ‘
Grammar

Candidate
Solution

Solution Chromosome

Fig. 5.2: An overview of the meta-grammar approach to GE. The meta-grammar generates
a solution grammar, which is used to generate a candidate solution.

ules can be altered. The grammar can consist of modules as well as bias the search towards
modular solutions.
Having the ability to learn by modifying the grammar itself means that the grammar

can be used as a form of memory, for example to aid learning in a changing environment.

5.2.1 Grammatical Evolution by Grammatical Evolution

This section describes the Grammatical Evolution by Grammatical Evolution (GE?) algo-
rithm [114], which is in turn based on the GE algorithm [115]. In a meta-grammar GE
Algorithm the input grammar is used to specify the construction of another syntactically
correct grammar. The generated grammar is then used to generate a solution. This process
is illustrated in Fig. 5.2.

The proposed representation aims to improve identification of modules in a problem.
A variable length genotype is used to create a fixed length phenotype. In order to allow
evolution of a grammar, another grammar must be provided to specify the form a generated
grammar can take. By allowing an Evolutionary Algorithm to adapt its representation (in
this case through the evolution of the grammar, via the evolution of the genotype) it can
provide the population with enhanced robustness in an environment that changes over

time, as well as with an ability to automatically incorporate bias into the search process.

77

5.2. META-GRAMMARS AND GRAMMATICAL EVOLUTION

<g> ::= <function_definitions>
"<code> ::= <line>
| <code><line>"
"<line> ::= operation
| function_call"
<function_definitions> ::= <function_code>

| <function_code><function_definitions>
<function_line>
<function_line><function_code>
function_operation

<function_code>

<function_line>

Grammar 5.1: Simple meta-grammar example for evolving multiple functions. Note that
<code> and <line> are quoted.

Meta-Grammar Mapping

The GE? approach has two distinct grammars, the meta-grammar and the solution gram-
mar. The notion of a meta-grammar is adopted from a universal grammar in linguistics
and refers to a universal set of syntactic rules that hold for spoken languages [24]. The
meta-grammar dictates the construction of the solution grammar. In this study, the geno-
type consists of two separate, variable-length, binary chromosomes, the first chromosome
is used to generate the solution grammar from the meta-grammar and the second chro-
mosome generates the solution itself. In Ex. 8 an example of the mapping in GE? is

presented.

Example 8 (GE? mapping) In Grammar 5.1 a simple meta-grammar for evolving a
different number of functions is shown. This grammar allows the meta grammar to generate
one or more functions containing one or more function operation terminals. These
functions can then be called from the solution grammar by the function call. Terminals
in the meta-grammar that are “quoted” are non-terminals, or part of BNF syntax in the
solution grammar.

To generate a solution, using a meta-grammar and GE?, the genotype consists of
two chromosomes, the meta-chromosome C,, = (0,0) and the solution chromosome Cy =

(1,0,0,0,1) and the meta-grammar G,, in Grammar 5.1. The meta-chromosome and the

78

5.2. META-GRAMMARS AND GRAMMATICAL EVOLUTION

<g>

<function definitions> "<code> ::= <line> | <code><line>" "<line> ::= operation | function_call"
<function_code> "<code> ::= <line> | <code><line>" "<line> ::= operation | function_call"
<function_line> "<code> ::= <line> | <code><line>" "<line> ::= operation | function_call"
function_operation "<code> ::= <line> | <code><line>" "<line> ::= operation | function_call"

s w N e o

The derivation of the solution grammar given the solution chromosome is

function_operation <code>
function_operation <code><line>
function_operation <line><line>
function_operation operation <line>
function_operation operation function_call

S W N e O

Fig. 5.3: Derivation of meta-grammar and solution grammar from Grammar 5.1

meta-grammar give the following derivation of the solution grammar G in Fig. 5.3 Finally

the phenotype(solution) is function operation operation function_call. O

Operators in GE>

Crossover in GE? operates between homologous chromosomes, with the meta-grammar
chromosome from the first parent recombining with the meta-grammar chromosome from
the second parent, the same occurs for the solution chromosomes. In order for evolution to
be successful it must co-evolve both the meta-grammar and the structure of solutions based

on the evolved meta-grammar, and as such the search space is larger than in standard GE.

Background

There have been a number of studies of a meta-grammar approach to GE [114, 111, 33, 31].
The original meta-grammar study [114] investigated the feasibility of this approach and its
application in dynamic environments. In each of these the rate of evolutionary search was
equal for both the meta-grammar and solution chromosomes by using the same rates of
mutation and crossover. An observation of some solutions and solution grammars evolved
by meta-grammar GE has shown a tendency to generate grammars that did cannot to
produce many different strings [31]. 7 [? | looked at the size of the search space when
simultaneously evolving grammars and finds the meta-grammar search space quite large.

There have not been any studies combining ADFs in GE with GE?.

79

5.3. EXPERIMENTS & RESULTS

<g> L=
<def_fun_u>
"<prog> ::= public Test() { while(get_Energy_Left()) { <code>} } "
"<code> ::= <1line> | <code> <line>"
"<line> ::= <condition> | <op>"
"<condition> ::= if (food_ahead()==1) { <line> } else { <line>}"
"<op> ::= left(); | rightQ; | move(); | adfx();"
<def_fun_u> = <def_fun_s> | <def_fun_u> <def_fun_s>
<def_fun_s> ::= "public void adfx*() {" <adfcode> "}"
<adfcode> ::= <adfline> | <adfcode> <adfline>
<adfline> ::= <adfcondition> | <adfop>
<adfcondition> ::= if (food_ahead()==1) { <adfline> } else { <adfline> }
<adfop> c:= left(); | rightO; | move(Q);

Grammar 5.2: Example Ant trail meta-grammar, adf,,,, is a meta-grammar that can evolve
ant-trail solution grammars.

5.3 Experiments & Results

In this study we wish to determine if one of the three ADF representations for GE has a

performance advantage across a range of benchmark problems.

5.3.1 Meta-Grammar ADF

Grammar 5.2 is an example meta-grammar used for the Ant trails. adf*() is a function
call to a defined function, where a codon is used to select which function is called. In the
above example quotes are used to escape symbols, e.g. to avoid expanding non-terminals
in the meta-grammar and instead expanding them in the solution grammar. In a solution
grammar which contains multiple ADF definitions the grammar is post-processed to make

each function signature unique.

5.3.2 Setup

The representations are a GE grammar with the ability to define one method (adf), a GE
grammar that can define any number of methods (adf — dyn) and a novel meta-grammar

(adfny) approach. The control for the experiment is a standard GE grammar (std). None

80

5.3. EXPERIMENTS & RESULTS

Tab. 5.2: Parameter settings for the GE algorithm

Parameter Values

Fixed chromosome size 100, (200 for normal GE)
Initialization Random

Selection operation Tournament

Tournament size 3

Replacement Generational

Max wraps 1

Generations 50

Population Size 500

Elite Size 2

Crossover probability meta 0.9

Crossover probability solution | 0.9

Mutation probability meta 0.05

Mutation probability solution | 0.05, (0.05 for normal GE)

of the grammars allow ADFs to call ADFs. Unless noted 30 runs were made and the
significance of the results is tested by a t-test with p-value=0.05. The settings are shown
in Tab. 5.2.

The chromosomes were variable-length vectors of integers (4 byte integers) and had the
same initial length. We used one-point crossover, where the same crossover point is used
for both parents and integer boundaries are respected. The mutation was integer mutation,
where a new codon value was randomly chosen. The meta-grammar generates the content
of the ADFs and the number of ADFs that the solution grammar can use. Wrapping is
used on both chromosomes; if the mapping is still incomplete the individual is invalid and
is assigned the worst possible fitness.

Three different ant trails and a symbolic regression problem were tested. We will now

describe the problem and the grammars for each case.

5.3.3 Ant Trails

The goal of the ant trails is to find a program for controlling the movement of an artificial

ant in order to find all of the food lying on irregular trails on a two-dimensional toroidal

81

5.3. EXPERIMENTS & RESULTS

<prog> = <code>
<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if(food_ahead()==1) {<code>} else {<code>}
<op> c:= left(); | rightO; | move(Q);
Grammar 5.3: std - The standard GE grammar for the ant trails.
<prog> = "public Ant() { while(get_Energy() > 0) {"<code>"}} "
"public void adf0() {"<adfcode>"}"
<code> ::= <1line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if (food_ahead()==1) {<1line>} else {<line>}
<op> c:= left(); | right(); | move(); | adf0();
<adfcode> ::= <adfline> | <adfcode> <adfline>
<adfline> ::= <adfcondition> | <adfop>
<adfcondition> ::= if (food_ahead()==1) {<adfline>} else {<adfline>}
<adfop> c:= left(); | rightO; | move(Q);

Grammar 5.4: adf - GE grammar for the ant trails, with only one ADF.

grid. The ant can sense if there is food in the single square it is currently facing. The
potential actions of the ant are turning right, turning left, and moving forward one square,
all requiring one energy unit. There is a maximum amount of energy that the ant can use;
after the energy is used the number of food left on the trail is counted.

Three Ant trails, the Santa Fe Ant trail, Los Altos Trail from [82] and San Mateo Trail
[81] are tested. The Santa Fe trail is a 32 x 32 toroidal grid containing 89 pieces of food
and 600 time steps. The Los Altos trail is a 100 x 100 toroidal grid, 157 pieces of food and
2000 time steps.

The San Mateo trail consists of 9 parts, each made up of a 13 x 13 grid containing
different discontinuities in the food trails. The borders on each trail part are electrified,
if the ant goes over the edge the current fitness case is terminated. The total number of
food is 96 and it has 120 right or left turns and 80 moves on each part.

None of the ADF functions for the ant trails take any arguments. See Grammar 5.2 for

the meta-grammar used. Grammar 5.3 and 5.4 and 5.5 show the grammars used.

82

5.3. EXPERIMENTS & RESULTS

<prog> ::= "public Ant() { while(get_Energy() > 0) {"<code>"} }"<adfs>
<adfs> ::= <adf_def> | <adf_def> <adfs>

<adf_def> ::= " public void adfx() {"<adfcode>"}"

<code> ::= <1line> | <code> <line>

<line> ::= <condition> | <op>

<condition> ::= "if (food_ahead()==1) {"<1line>"} else {"<line>"}"

<op> c:= left(); | right(; | move(); | adf*x();

<adfcode> ::= <adfline> | <adfcode> <adfline>

<adfline> ::= <adfcondition> | <adfop>

<adfcondition> ::= "if (food_ahead()==1) {"<adfline>"} else {"<adfline>"}"
<adfop> c:= left(); | right(O; | move();

Grammar 5.5: adfgy, - The grammar for the ant trails, which allows multiple function
definition is shown below. adf*() is expanded to create unique signatures for the allowed
functions. Then the function adf*() function call is used to determine which of the
functions to call.

5.3.4 Results - Ant Trails

This section deals with the results from the different ant trails. For all the trails it is
beneficial to use ADF's. overline indicates average value between the runs. The results are

shown in Tab. 5.3

Santa Fe Ant Trail

A plot of the Santa Fe Ant trail is shown in Fig. 5.4. The average best fitness over
the runs of the last generation for the different grammars is std = 37.90, adf = 20.33,
adfqyn, = 18.63 and adf,,;, = 24.57. In order to test the significance of the results a t-test

on the last generation confirms that ADF's are significantly better.

Los Altos Ant trail

For the Los Altos Ant trail a plot is shown in Fig. 5.5. The average best fitness of the last
generation for the Los Altos trail for the different grammars is std = 33.46, adf = 12.38,
adf gy, = 16.47 and adf,,; = 17.57 Performing a t-test reveals that runs with ADFs are

performing significantly better in the last generation compared to the ones with no ADF's.

83

5.3. EXPERIMENTS & RESULTS

Tab. 5.3: p-values for the grammars compared to the standard grammar on the different
trails, the average best fitness and standard deviation is shown next to the grammar.

Underlined indicate a significant p-value.

San Mateo
Grammar Std(37.900 £+ 12.220)
adf (20.333 £ 8.222) 1.78¢ — 08
adf 4,,(18.633 £ 7.054) | 4.59¢ — 10
adfmg(24.567 £ 7.619) 4.34e — 06

Santa Fe
Grammar Std(33.461 4 12.747)
adf (12.381 £ 13.590) 0.00e + 00
adf 4 (16.470 & 14.934) | 0.00e + 00
adf s (17.567 £ 15.051) | 2.81e — 09

Los Altos
Grammar Std(90.900 £+ 7.411)
adf (82.233 £ 2.837) 1.46e — 07
adf 1, (82.967 = 2.953) | 1.09¢ — 06
adf,;,g(83.667 £ 3.604) 1.12e — 05

San Mateo Ant Trail

For the San Mateo trail, Fig. 5.6 the average best fitness of the last generation is std =

90.90, adf = 82.23, adfs,, = 82.67 and adf,, = 83.67. Also for this trail with slightly

different behavior it is significantly better in the last generation to use ADFs. For all the

Ant trails it beneficial to use ADFs.

5.3.5 Symbolic Regression

A number of fitness functions for symbolic regression were examined, they were inspired

by [81]. The statically defined grammar allows grammars which take one argument, while

84

5.3. EXPERIMENTS & RESULTS

Best Fitness, SantaFeTrail; - r16dogf,df;,ggr

Fitness

XXXX**%%

10 20

Generation

Fig. 5.4: Santa Fe Ant trail, average best fitness over the runs with error bars for each
generation

the meta-grammar allows the defined methods to take a variable number of arguments.

r+2?+2°+ 1t + 20 (5.1)
i (5.2)
r+2?+2® +at 42’ b 4o (5.3)

These are different degrees of a polynomial similar to the increase of function terms by
Koza [81], shown in Fig. 5.7. The 21 fitness cases are selected from [—1,—-0.9,....,1]. Fit-
ness is the sum of the squared error for each fitness case. The (GeneralRandomConstant)
generates 1000 samples in the range -1.000 to 1.000. All symbolic regression grammars use
a protected division operator (d), 0.0 was returned if the divisor equaled 0.

To create dynamic problems two Symbolic Regression problems that change periodically
are created. In the first the period is every 10 periods Eq. (5.1) switches between Eq. (5.2).

In the second problem every 10 generations a polynomial one degree higher than the

85

EXPERIMENTS & RESULTS

5.3.

Best Fitness, LosAltosTrail, - rS8ogf,df;,ggrj0sAltos

ssaully

60

40 |

20

50

40

0

3

20

10

Generation

average best fitness with error bars over generations

J

Fig. 5.5: Los Altos Ant trail

rsanMateo

adfmgg

mgogm,

- 15|

Best Fitness, SanMateoTrail;

ssaull-

50

40

30

20

10

Generation

Fig. 5.6: Average best fitness plot with error bars over the generations for the San Mateo
ant trail. A t-test confirms that the fitness differs significantly between standard GE and
86

the other grammars for all problems in the final generation.

5.3. EXPERIMENTS & RESULTS

(a) z + 22 + 23 + 2* + 25, Eq. (5.1) (b) z+ 22 + 23+ 2 + 25 + 2% 4+ 27, Eq. (5.3)

(c) x+a?+ 23+t + o +ab+ 2"+ 28+ 2% + 210,
Eq. (5.2)

Fig. 5.7: Symbolic regression polynoms, x € [—1, 1]

currently highest is added in Eq. (5.3) fo(z) = 2, fi(z) = fi_i(x) + adeoreelfizi@)+1
0 < t < generation/period. An added level of complexity occurs when not only the
solutions are changed, but the optimal solution of the problem itself changes as well, a
so called dynamic environment. This makes the task of finding a global optimum more
temporal, and might best be described as “survival”.

The meta-grammar approach for the symbolic regression problems allows creation of
any number of functions with variable numbers of function arguments. The ADFPARAM and
ADFUSE in Grammar 5.9 indicate where the grammar inserts and uses function arguments.
adf* (ADFARG) is expanded when the meta-grammar is processed to incorporate the defined

number of functions and their arguments. Grammar 5.6 and 5.7 and 5.8 and 5.9.

87

5.3. EXPERIMENTS & RESULTS

<expr> ::= (<op> <expr> <expr>) | <var>
<op> + =[]/
<var> x| (GeneralRandomConstant)

Grammar 5.6: Symbolic Regression meta-grammar, std - For the standard GE grammar

<prog> ::= <expr> " (define adf0 (lambda (x) ("<adfexpri>")))"
<expr> ::= (<op> <expr> <expr>) | <var> | (adfO <expr>)

<op> o= 4| =]/

<var> ::= x| (GeneralRandomConstant)

<adfexprl> ::= <op> <adfexpr> <adfexpr>

<adfexpr> ::= (<op> <adfexpr> <adfexpr>) | <adfvar>

<adfvar> ::= x| (GeneralRandomConstant)

Grammar 5.7: Symbolic Regression meta-grammar, adf - The GE grammar can define one
function with one argument.

5.3.6 Results - Symbolic Regression

For the symbolic regression problems there was no benefit from ADFs, results are in
Tab. 5.4

A plot of symbolic regression problems Eq. (5.1) is shown in Fig.5.8. The Fig. 5.8(a)
shows how the behaviour after a longer run.

The average best fitness of the last generation is for 50 generations std = 0.129, adf =
0.215, adfyy, = 0.333 and adf,,, = 0.714. The standard GE performs significantly better

<prog> 1:= <expr> " "<adfs>

<expr> i:= (<op> <expr> <expr>) | <var> | (adf* <expr>)
<op> si= |- x|/

<var> ::= x| (GeneralRandomConstant)

<adfs> ::= <adf_def> | <adf_def> <adfs>

<adf_def> ::= "(define adf*(lambda (x) ("<adfexpri>")))"
<adfexprl> ::= <op> <adfexpr> <adfexpr>

<adfexpr> ::= (<op> <adfexpr> <adfexpr>) | <adfvar>
<adfvar> ::= x| (GeneralRandomConstant)

Grammar 5.8: Symbolic Regression meta-grammar, adfg,, - The GE grammar for creating
any number of functions. Each function takes one argument.

88

5.3. EXPERIMENTS & RESULTS

<g> ::=
"<prog> 1= <expr> "
<adfs>
"<expr> = (<op> <expr> <expr>) | <var> | adf*x (ADFARG)"
"<adfarg> ::= (<op> <expr> <expr>) | <var>"
"<op> = +|=|x]|/"
"<var> = x| (GeneralRandomConstant)"
<adfs> ::= <adf_def>split<adfs> | <adf_def>
<adf_def> ::= "(define adf* (lambda ("<adfparam>") ("<adfexpri>")))"
<adfparam> ::= ADFPARAM <adfparam> | ADFPARAM
<adfexprl> ::= <adfop> <adfexpr> <adfexpr>
<adfexpr> ::= (<adfop> <adfexpr> <adfexpr>) | <adfvar>
<adfvar> ::= ADFUSE| (GeneralRandomConstant)
<adfop> si= =k /

Grammar 5.9: Symbolic Regression meta-grammars, adf,,, - meta-GE grammar multiple
parameters.

for the against adfqy, and adf,,,.
A plot of Eq. (5.2) is shown in Fig. 5.9 The average best fitness of the last generation is
for 50 generations std = 0.777, adf = 1.262, adfs,, = 1.349 and adf,,, = 1.590. Standard

GE is significantly better.

Plots of dynamic problems, switching between Eq. (5.1) and Eq. (5.2) and increasing
the polynomial by one term every 10 generations Eq. (5.3) are shown in Fig.5.10. The
average best fitness of the last generation is when switching between Eq. (5.1) and Eq. (5.2)
std = 3.655, adf = 2.337, adfsy, = 3.335 and adf,,, = 2.630.25. There is no significant
difference between any of the grammars. The average best fitness of the last generation
for Eq. (5.3) std = 0.089, adf = 0.101, adfsy, = 0.153 and adf,,, = 0.144, here there are
no significant differences. In conclusion, for the problems used here Symbolic Regression

does not show any clear benefits from the incorporation of ADFs.

5.3.7 Discussion

The results showed that there were benefits to be had by using ADFs on the Ant Trails,

but we could not distinguish any difference between the various grammars and algorithms.

89

5.3. EXPERIMENTS & RESULTS

Tab. 5.4: p-values for the grammars compared to the standard grammar on the different
problems, the average best fitness and standard deviation at the last generation is shown
next to the grammar. Underlined indicate a significant p-value.

v+a?+ad+ a2t + b

Grammar Std(0.129 £ 0.202)
adf (0.215 £ 0.348) 1.03e — 01

adf 4,,(0.333 = 0.549) | 7.99¢ — 03
adfmg(0.714 £ 0.719) | 7.18e — 08

r42? + 2%+t 42’ af a7 2% 4 2 420
Grammar Std(0.777 £+ 0.592)
adf(1.262 £ 0.574) | 2.08¢ — 03
adfayn(1.349 £ 0.919) | 5.72e — 03
adfiny(1.590 £ 1.661) | 1.33e — 02

Altering
Grammar Std(3.655 £+ 1.941)
adf (4.241 + 2.337) 2.95e — 01
adf 1, (4.890 % 3.335) | 8.50¢ — 02
adfyg(4.783 £2.630) | 6.38¢ — 02
Increasing

Grammar Std(0.089 £ 0.341)
adf (0.101 £ 0.369) 9.03e = 01
adf,,(0.153 £ 0.341) | 4.72¢ — 01
adfmg(0.144 +0.464) | 6.04e — 01

Thus it seems that the most important factor is the use of a module, the number of modules
is not important.

Example solutions of the San Mateo Trail see Appendix A. For the Symbolic Regression
problems investigated it seems there were no benefits to be had by using ADF's. This could
be dependent on several factors, the parameters used for the GE run, the fitness function
and the points chosen for function comparison. Koza [81] finds some symbolic regression
problems of a certain form do not benefit from the use of ADFs, with the solution being
found faster without ADFs.

The performance of the grammars differs for all the problems, it seems as if both the
type and the size of the problem are very influential. Harper and Blair [52] argued that
the meta-grammar approach would benefit from structure-preserving operators. Structure

preserving operators are outside the scope of this thesis, since our focus is the grammar.

90

5.4. SUMMARY

Best Fitness, SymbolicRegressionJScheme, - new,14r,dfy,ggr,P5in,0z,df,g

std —x—
van adf --—+-- |
adfyy ---o---
adf,g —-x

Fitness
X

X
% O Koixesg

N Yoo
XXtz ng

‘><»><><><><><><X

OG-
- \+?\O'O'O‘O~QO,OO 7 AR S SVRVEVEVEY
=k 09999000 000-00-
A 000
‘ ‘ B P A e A
10 20 30 40 50

Generation

(a) 50 Generations

Fig. 5.8: Plot over generations for Eq. (5.1).

5.4 Summary

This chapter presented an implementation of a meta-grammar GE for capturing modular-
ity by using dynamic definition of modules with fixed module signatures. Automatically
Defined Functions are a fundamental tool adopted in GP to allow problem decomposition
and leverage modules in order to improve scalability to larger problems. We examined a
number of function representations using GE. The problems investigated are variants of
the ant trail, static and dynamic Symbolic Regression instances. For the problems exam-
ined we find that irrespective of the function representation, the presence of Automatically
Defined Functions alone is sufficient to significantly improve performance for problems that
are complex enough to justify their use.

We will extend the study of meta-grammars in the following chapters, since there is
some benefit to be had by using meta-grammars to capture modules. In Chapter 6 the

meta-grammar approach to capture modules in the problem that can be reused later is

91

5.4. SUMMARY

Best Fitness, SymbolicRegressionJScheme, - new,14r,dfi,gr,P104in,0z,df,g

std —x—
18 v adf ——+— |
% adfdy -0
16 f\ adf,g x|
14 -
12 B
§ 10 -
L’%
8 -
6 -
-0,
4 K O-a. B
29
3
0 1 1 1 1 1
10 20 30 40 50
Generation

(a) 50 Generations

Fig. 5.9: Plot over generations for Eq. (5.2).

further studied. The ability to reuse modules will facilitate solving problems of different

scales which contain repetitive modules.

92

5.4. SUMMARY

Best Fitness, SymbolicRegressionJScheme, - new, 14r,df;,ggr,P5P104in,0z,df;,g
T T T
std —x—

adf --—+---
adfyy ---o--- 7
adf,g -

10 -

Fitness

Generation

(a) Eq. (5.1) and Eq. (5.2) switching

Best Fitness, xPincy - new,14r,dfy,ggr,Pincgingoz,df,g

T y
Y std —x—
adf ——+ -
25+ X : a:jdffdy °
QTG -
X
@, X X b
: X
% o .
2 - fi X B
X Q 0 % ‘ x
o- T RS ® .
% ; & K X X
i & : N Ty .
i L The. PR | ke X ~
\ " Q : RN | o XX X o} X
5 X N R | * @ .
o 15 =% 0o N AN X | +o O B
4 R N R %an] X %o Q X
S \ it \ N !l N ¢ |
T Q% Ity xQ i N S | \+\+ © ©-00-0.q
N\ i o ! % o% .
NI | o X \ 3
o % 1 Y \ ! N @
o ; N ' | Vo e
1 O ! X * ‘ -
3 3 i
!
@ :
05 i
K
0
20 30 40 50

Generation

(b) Eq. (5.3)

Fig. 5.10: Plot over generations for dynamic functions with a period of 10. Left periodic
switching between Eq. (5.1) and Eq. (5.2) and right Eq. (5.3).

93

Chapter 6

Meta-Grammar for Genetic

Algorithms - Scalability

This chapter studies an implementation of a meta-grammar for GE, called the meta-
grammar Genetic Algorithm (mGGA). The goal of this meta-grammar approach is scala-
bility, which is facilitated by capturing modules in the problem that can be reused later.
This property is beneficial when solving problems of different scales which can be broken
up into repetitive modules; by allowing the reuse of modules the representation can become
more compact. By using a simple problem the effects of the meta-grammar approach can
be analyzed more clearly. This chapter reports the scalability and behavior of the mGGA
on the Checkerboard, as investigated in Hemberg et al. [60].

Section 6.1 presents the meta-grammar algorithm, called the mGGA, used in the exper-
iments. The setup and results regarding experiments on the scalability of the mGGA are

given in Section 6.2. Finally, the chapter comes to an end with a summary in Section 6.3.

6.1 Meta-Grammar Genetic Algorithm

This section describes the mGGA algorithm, some examples of how it captures modularity,

as well as previous research regarding Grammatical Evolution (GE) and meta-grammars.

94

6.1. META-GRAMMAR GENETIC ALGORITHM

The purpose of the mGGA is to study modularity and more specifically to capture reg-
ularities in the problem by using building block structures in the grammar, and thereby
increasing its scalability. The mGGA approach to modularity adopts principles from GP,
variable length representations, and uses the declarative bias of the grammar to find struc-
tures able to represent a fixed-length problem efficiently. This differs from the fixed-length
GA approach to modularity which has examined links between the variables in the represen-
tation. An example of previous work on grammars and GAs is GAUGE, see Section 3.1.4.

The grammar-based GP approach upon which this study is based is the GE? algo-
rithm [114], see Section 5.2 on page 76, which is in turn based on the GE algorithm [115].
In a meta-grammar GE algorithm the input grammar is used to specify the construction of
another syntactically correct grammar. In the mGGA [111] the meta-grammar approach
was shown as an alternative binary string GA and the use of modules improved the per-
formance of the mGGA. The generated grammar is then used to generate a solution, this
process is illustrated in Fig. 5.2 on page 77. In this implementation the mGGA is allowed
to evolve bias towards different building block structures of varying sizes and content.

Crossover in the mGGA operates between homologous chromosomes, with the meta-
grammar chromosome from the first parent recombining with the meta-grammar chromo-
some from the second parent, the same occurs for the solution chromosomes. In order for
evolution to be successful it must co-evolve both the meta-grammar and the structure of
solutions based on the evolved meta-grammar, and as such the search space is larger than
in standard GE.

In Section 6.1.1 the description of the mGGA will focus on how a grammar might
be used to encode binary strings, and finally on how a meta-grammar can represent a

binary-string grammar.

6.1.1 Grammars for Bit Strings

A simple BNF grammar for a fixed-length (eight bits in the following examples) binary
string individual of a GA, called GEGA is shown in Grammar 6.1. In the generative

95

6.1. META-GRAMMAR GENETIC ALGORITHM

<bitstring> 1= <bit><bit><bit><bit><bit><bit><bit><bit>
<bit> ::=1
| 0

Grammar 6.1: GEGA grammar for producing a bitstring of length eight.

<bitstring> ::= <bbk4><bbk4>
| <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1lt><bbk1l><bbk1l><bbk1l><bbk1><bbk1l>

<bbk4> ::= <bit><bit><bit><bit>
<bbk2> ::= <bit><bit>
<bbk1> ::= <bit>
<bit> ::=1
| 0

Grammar 6.2: GE bit string grammar with building block structures <bbk4>, <bbk2>.
Le. the reuse of groups of bits (building block structures) into a more compact representa-
tion of the bit string.

grammar each bit position (denoted as the non-terminal <bit>) can become either of the
Boolean terminal values, 0 or 1. A standard variable-length GE individual can then be
allowed to specify what each bit value will be by selecting the appropriate <bit> production
rule for each position in the <bitstring>.

In order to have useful recombinations of building blocks the representation must be
such that the building blocks exist [2]. The grammar in Grammar 6.1 can be extended
to incorporate the reuse of groups of bits (building block structures) into a more compact
representation of the bit string, called GEGABB. In this grammar example, Grammar 6.2,
all building block structures that are multiples of two are provided. This allow a stronger
declarative bias towards these structures.

The grammars in Grammar 6.1 and Grammar 6.2 are static. Grammar 6.2 can only
allow one building block structure of size four and one of size two. The algorithm can
gain more freedom by allowing the search the potential to uncover a number of building
block structures of any size from which a GE individual could choose, for an example see

Grammar 6.3. This would facilitate the application of such a grammar-based GA to:

96

6.1. META-GRAMMAR GENETIC ALGORITHM

<bitstring> ::= <bbk4><bbk4>
| <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>

<bbk4> ::= <bbk4_0>
| <bbk4_1>
<bbk4_0> ::= <bit><bit><bit>0
<bbk4_1> ::= <bit><bit><bit><bit>
<bbk2> ::= <bbk2_0>
| <bbk_1>
<bbk2_0> ::= <bit>0
<bbk2_1> ::= <bit><bit>
<bbk1> ::= <bit>
<bit> ::=

Grammar 6.3: GE bit string grammar with choices between building block structures.
Rules differing from Grammar 6.4 are shown in italics

e problems with more than one building block structure type for each size

e the search for one building block structure while keeping a reasonable temporary

solution

e the ability to act as a building block structure memory and to switch between different

building block structures if the environment changes

The derivation tree generated from Grammar 6.4 is such that the rule <g> has five
branches, which generate number of repetitions, the number of different building block
structures and content and the <bit> bias, e.g. see Fig. 5.3. Each building block struc-
ture branch evolves the building block structure, where the <bit> is connected to the
last branch, and the availability of building block structures is determined by the first
branch. Exchange of these branches provide transfer of material between indviduals. In
Section 6.1.2 an example of the mGGA is provided along with grammars for generating

bit strings and capturing building block structures.

97

6.1. META-GRAMMAR GENETIC ALGORITHM

<g> ::= '"<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4t>
"<bbk2> ::=" <bbk2t>
"<bbk1> ::=" <bbklt>
"<bit> ::=" <val>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbklt> ::= <bit>
<reps> = <rept>
| <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>"
| "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>"
| 1
| 0
<val> ::= <valt>
| <valt> "|" <val>
<valt> ::=1
| 0

Grammar 6.4: Meta-grammar with building block structures example (nGGABB).

6.1.2 Examples of mGGA Grammars

An example of a meta-grammar for an individual generating an eight bit string called
mGGABB, is given in Grammar 6.4. The ability to specify which building block structures
to allow in the solution grammar comes from the use of recursion in <reps>, whereas the
recursion in <val> enables changes of the Boolean terminal bias.

In this case the grammar specifies the construction of another generative bit string
grammar. The subsequent bit string grammar that can be produced from the mGGABB
(Grammar 6.4) is restricted in such a way that it can contain building block structures of
size two and four. Some of the bits of the building block structures can be fully specified
as a Boolean value or may be left as unfilled for the second step in the mapping process.
An example of bit string grammar produced from the mGGABB meta-grammar is shown

in Grammar 6.5.

98

6.1. META-GRAMMAR GENETIC ALGORITHM

<bitstring> 1= <bit>11<bit>00<bit><bit>
| <bbk2><bbk2><bbk2><bbk2>
| 11011101
| <bbk4><bbk4>
| <bbk4><bbk4>
<bbk4> ::= <bit>11<bit>
<bbk2> ::= 11
<bbk1> ::= 1
<bit> ::=1
| 0
| 0
| 1

Grammar 6.5: Example of a solution grammar produced by mGGABB (Grammar 6.4)

The entire mapping process is illustrated in Fig. 6.1 on page 101 by the generation of

a binary string of size four, using a grammar similar to the one in Grammar 6.4.

99

6.1. META-GRAMMAR GENETIC ALGORITHM

<g> ::= '"<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1l>
"<bit> ::=" <val>
<bbk4> ::= <bbk4t>
| <bbk4t> "|" <bbk4>
<bbkz> ::= <bbk2t>
| <bbk2t> "|" <bbk2>
<bbk1l> ::= <bbkit>
| <bbkit> "|" <bbk1l>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbkl1t> ::= <bit>
<reps> <rept>
<rept> "|" <reps>

"<bbk2><bbk2><bbk2><bbk2>"

I
<rept> ::= "<bbk4><bbk4>"
|
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>"
| 1
| 0
<val> ::= <valt>
| <valt> "|" <val>
<valt> ::=1
| 0

Grammar 6.6: Meta-grammar with multiple building blocks (mGGAMBB). Rules differing
from Grammar 6.4 are shown in italics

To allow the creation of multiple building block structures of different sizes, the follow-
ing grammar could be adopted, called mGGAMBB (again shown for bit strings of length
eight), as shown in Grammar 6.6. The multiple building block structures in the solution
grammar are enabled by the use of recursive rules for <bbk4t>, <bbk2t> and <bbk1t>.

Grammar 6.7 shows an example of bit string grammar generated by mGGAMBB.

In the example of a bit string grammar, the solution grammar in Grammar 6.7 there are
five possible forms that a <bitstring> can take on, with two possible choices for building

block structures of size four and one, and three choices for building block structures of size

100

<HQ><q><NG><HG> | <pqg> =i <Busng>

T_
ol = <)g> < R <jdei>
1<)a>0<Hg> = <pqg> e /»\

Jewwels) uoyn|os

ol=x <yens
<[ea> . <leA> | <leas = <jeas
0l l.<ha>, <Hg>
W< NG><HA><HA><HG>, | ,<pAd>, =2 <jdeu>
<sdai> |, <idess | <idess = <sder>
1L | <G><HO><Hg><Ng> = <ipag>
<#ag> . <i0> | <ipag> = <pag>
<[BA> = <Ng>,
<¥aQ> =i <¥40>,
<sdas> =i <Buuysygs, = <b6>

JeWwwels) ejop

Diamonds are non- terminal

The numbers by the arrows are used to

101

META-GRAMMAR GENETIC ALGORITHM

6.1.

€
e M_V\NnV/;_W\/vmn\/ + 3
/Lm/ €z L PLELZLLLOLE 8 L 9 S ¥ € 2 L
- ofi]o lo of+]r]oo[z]o]+]ol0]o 0]]

induj Jewwels) uoyn|os ndu| Jewwels) ey

Fig. 6.1: An example of the mapping of a meta-grammar.

symbols and rectangles are terminal symbols.
denote which input chooses the production from the rule.

6.1. META-GRAMMAR GENETIC ALGORITHM

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bb2><bb2><bb2><bb2>
| 11011101
| <bb4><bbd>
| <bb4><bbd>
<bb4> ::= <bit>11<bit>
| 000<bit>
<bb2> ::= 11
| 00
| <bit>1
<bbl> ::= 0
| O
<bit> ::=1
| 0
| 1
| 1

Grammar 6.7: Example of a solution grammar from mGGAMBB (Grammar 6.6). In <bit>
a bias towards 1 can be seen.

102

6.2. SCALABILITY OF THE MGGA

two. The rule for generating a <bit> has four possible outcomes with a clear bias towards
a <bit> becoming a 1 with a probability of 0.75 (three out of the four production choices
will result in the terminal 1) .

To conclude, modularity exists in both the mGGABB and mGGAMBB grammars, in
their ability to specify the different sizes and contents (or partial contents) of building
block structures through their incorporation into the solution grammar. The building
block structures can then be reused repeatedly in the generation of the phenotype. This
can facilitate the search in some regular structures and make the mGGA suitable for finding
repeating patterns. The declarative bias in the grammar and properties like these would
make the mGGA suitable for problems of increasing size, since it has a representation
which is able to compress the solution.

The following sections describe a series of experiments involving the mGGA. In Sec-
tion 6.2 a scalability study is outlined, comparing the mGGA to the Modular Genetic
Algorithm (MGA).

6.2 Scalability of the mGGA

This section studies the performance of the mGGA on problems of increasing size. First we
define regularity in Section 6.2.1. Then an approach tailored to modularity and regularity
based on a GA, the MGA [40], which is also similar to the mGGA in its approach to
modules, is presented in Section 6.2.2. We also present a comparison of the mGGA and
MGA for different sizes of the Checkerboard problem and some noisy variants of it. The
benchmark Checkerboard problem is used to test the ability of the mGGA to capture
modules. Before detailing the experimental design and setup the Checkerboard problem

will be introduced.

103

6.2. SCALABILITY OF THE MGGA

6.2.1 Regularity

Here we define regularity as reuse of modules. This can reduce the information needed
to describe the design [88]. The connection between modularity and regularity leads to
enforcement of regularity to create modularity with different representations. Instead of
invoking regularity to enhance modularity, partial specification can be used, with explicit
definition of modules where the unit of selection is a partial solution that is represented
independently and the module is evaluated in the context of other modules. De Jong and
Thierens [29] introduces an algorithm for exploitation of modularity, hierarchy, and reuse.
That study indicates that the simultaneous exploitation of hierarchy and repetition will
require both position-specific module testing and position-independent module use.
Garibay et al. [40] approach regularities in GAs by using a run length encoding, i.e., one
symbol is used to indicate one or zero and a number is used to indicate multiple repetitions
of ones or zeros. The MGA introduced by Garibay et al. [40] was shown to significantly
outperform a standard GA on a scalable problem with regularities. Here we introduce a
meta-grammar approach that is able to capture regularities that are not only repetitions

of single pre-defined symbols.

6.2.2 Modular Genetic Algorithm

The MGA can be described as an encoding where more than one symbol is replaced by a
digit indicating the number of repetitions, the aim was to create an algorithm for automatic
module discovery.

The genome of an MGA individual is a section of a vector bundle of genes, g =
(g1,-..,9i), and each gene is a tuple, (n;, fi()), where n; is the number of times that

some function, f;() is repeated. This gives when expanded

9i = (ns, fi())
=fu (O, fi,0,0< 5 <my

104

6.2. SCALABILITY OF THE MGGA

For example, if there was a choice for f; € {e(),2z()} and 0 < n; < N, where function,
e() = 1 always returned the value 1 when called, and another z() = 0 returned the value
0 , this would be a representation that can generate binary strings. A sample individual
comprised of three genes might look like: g = ((2, 2()), (4, ¢()), (2, 2())), which would output
the binary string 00111100. The operators for the MGA are mutation, which changes both
values of the gene tuple, g;. Crossover acts only between genes, splitting genes related to
crossover is not allowed. The initialization is done using a uniform probability for the tuple

values.

6.2.3 Checkerboard Problem

Garibay et al. [40] identified a lack of suitable problems for the study of regularity and
modularity in GAs and thus proposed the Checkerboard pattern discovery problem. This
is a generalized OneMax pattern matching problem [39], where a pattern of states or colors
is imposed upon a two dimensional grid called the Checkerboard. There are two possible
states adopted for each square on the grid, i.e. white or black, which can be represented by
the values 0 and 1. Each candidate solution tries to recapture the pattern contained in the
target Checkerboard, with fitness being the Hamming distance between the Checkerboard
pattern and the candidate solution.

In this study the fitness is normalized to the range 0.0 to 1.0, and the problem is to
minimize the fitness, i.e. 0.0 is the best possible fitness, a complete match. It is easy to scale
the problem in terms of its complexity, modularity and regularity by increasing the size
of the Checkerboard, the number of patterns, and by changing the number of components
in each pattern respectively. The size of the search space is 2!, where [is the number of
squares on the board. Instances of the Checkerboard problem which are adopted in this
study and in Garibay et al. [40] are presented in Fig. 6.2(a), which illustrates scaled-up
versions, C'bse, Cbyas, and Cbsio. Another problem instance introduced and tackled in this
study is the Cbyos, Checkerboard pattern, also shown in Fig. 6.2(b).

A third set of problem instances is also examined, which adds noise to the state of each

105

6.2. SCALABILITY OF THE MGGA

(a‘) Cb325 Cb1280 and Cb512

Fig. 6.2: The original Checkerboard-pattern matching problem instances in Fig. 6.2(a)
(from the top Cbsa, Cbiag, and Cbhsio). Fig. 6.2(b) Cbas, shows a new Checkerboard-
pattern matching problem instance with a more fine-grained regularity.

square. These noisy instances are an extension of the original Checkerboard problem. The
noise is implemented by randomly flipping the state of a square with a uniform probability
for the patterns presented in Fig. 6.2(a). The addition of noise to the regular patterns
makes it more challenging to uncover the underlying patterns and thus adds an additional
element of real-world interest to this benchmark problem. The amount of noise can easily
be tuned by altering the probability for changing the state of a square. According to
Rohlfshagen et al. [134] it can be seen as an XOR dynamic function.

6.2.4 mGGA on the Checkerboard

The aim is to see if the mGGA has a better performance than the MGA on the Checker-
board, 30 runs were performed. The performance is how well the the solution matches

the target, ¢,,aga is the performance for the mGGA and ¢p;g4 is the performance for

the MGA. The number of fitness evaluations were the same for both mGGA and MGA.

106

6.2. SCALABILITY OF THE MGGA

Tab. 6.1: Parameters for the GE algorithm

Parameter Values

Checkerboard size 32, 128, 512

Fixed chromosome size | 90, 320, 1300
Initialization Random

Selection operation Tournament
Tournament size 3

Replacement Rank replacement

Max wraps 1

Population Size 1000

Generations 500, 1000, 2000
Crossover type Fixed one point
Crossover probability | 0.7 (Both chromosomes)
Mutation type Integer Flip

Mutation probability | 0.001 (Both chromosomes)

A major obstacle is that only the averages for the MGA are reported [40], and not the
standard deviations (only visually with 95% confidence interval), this makes it difficult to
perform a test for comparison.

When conducting the experiments both chromosomes were variable-length vectors of
integers (4 byte integers) and had the same initial length. Rank replacement is adopted
with a constant population size, where the new children are pooled with the current popula-
tion, ranked, and the worst individuals are removed. The mutation was done by uniformly
choosing a new integer value for the mutated codon. For crossover, which is homologous, a
one-point crossover with