Skip to main content

Genetic Programming Techniques for Glucose Prediction in People with Diabetes

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XX

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 115 Accesses

Abstract

Accurately predicting blood glucose levels in individuals with diabetes is essential for effectively managing and preventing complications. This paper explores the application of Grammatical Evolution, a genetic programming technique, for glucose prediction. It discusses how Grammatical Evolution has been employed in addressing various challenges related to glucose prediction, such as limited actual recorded data, prediction safety, interpretability of models, consideration of latent variables, and prognosis of hypoglycemia episodes. Building upon this research, the paper presents a comprehensive framework for glucose control that utilizes evolutionary techniques, primarily emphasizing structured grammatical evolution. The framework encompasses several stages, including data gathering, data augmentation, extraction of latent variability features, scenario clustering, structured grammatical evolution training, development of interpretable personal models, derivation of classification rules, glucose prediction, hypoglycemia alert, and glucose control. By harnessing the power of evolutionary algorithms, the framework optimizes model performance and adapts to individual patient characteristics. The proposed framework presents a promising approach to improve glucose monitoring and control, thereby contributing to better diabetes management and improved quality of life for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sapra, A., Bhandari, P.: Diabetes. In: StatPearls, StatPearls Publishing, Treasure Island (FL) (2023)

    Google Scholar 

  2. Amorosa, L.F., Lee, E.J., Swee, D.E.: Chapter 34—diabetes mellitus. In: Rakel, R.E., Rakel, D.P. (eds.) Textbook of Family Medicine, 8th edn., pp. 731–755. W.B. Saunders, Philadelphia (2011)

    Chapter  Google Scholar 

  3. W.H. Organization, Global report on diabetes. World Health Organization (2016)

    Google Scholar 

  4. American Diabetes Association, Diagnosis and classification of diabetes mellitus, Diabetes Care 33 Suppl 1 (Suppl 1) S62–9 (2010)

    Google Scholar 

  5. Michalek, D.A., Onengut-Gumuscu, S., Repaske, D.R., Rich, S.S.: Precision medicine in type 1 diabetes. J. Indian Inst. Sci. 103(1), 335–351 (2023)

    Article  Google Scholar 

  6. Castorani, V., Favalli, V., Rigamonti, A., Frontino, G., Di Tonno, R., Morotti, E., Sandullo, F., Scialabba, F., Arrigoni, F., Dionisi, B., Foglino, R., Morosini, C., Olivieri, G., Barera G., Meschi, F., Bonfanti, R.: A comparative study using insulin pump therapy and continuous glucose monitoring in newly diagnosed very young children with type 1 diabetes: it is possible to bend the curve of HbA1c, Acta Diabetol, Aug. 2023

    Google Scholar 

  7. Deshpande, A.D., Harris-Hayes, M., Schootman, M.: Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 88(11), 1254–1264 (2008)

    Article  Google Scholar 

  8. Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M., Edmonds, M.: Complications of diabetes 2017. J. Diabetes Res. 2018, 3086167 (2018)

    Article  Google Scholar 

  9. Cappon, G., Vettoretti, M., Sparacino, G., Facchinetti, A.: Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. Diabetes Metab. J. 43(4), 383–397 (2019)

    Article  Google Scholar 

  10. Thomas, A., Thevis, M.: Chapter three—recent advances in the determination of insulins from biological fluids. Advances in Clinical Chemistry, Vol. 93, pp. 115–167. Elsevier (2019)

    Google Scholar 

  11. Parkes, J.L., Slatin, S.L., Pardo, S., Ginsberg, B.H.: A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8), 1143–1148 (2000)

    Article  Google Scholar 

  12. Puftzner, A., Klonoff, D.C., Pardo, S., Parkes, J.L.: Technical aspects of the Parkes error grid. J. Diabetes Sci. Technol. 7(5), 1275–1281 (2013)

    Article  Google Scholar 

  13. Clarke, W.L., Cox, D., Gonder-Frederick, L.A., Carter, W., Pohl, S.L.: Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 10(5), 622–628 (1987)

    Article  Google Scholar 

  14. Cobelli, C., Mari, A.: Validation of mathematical models of complex endocrine-metabolic systems. A case study on a model of glucose regulation. Med. Biol. Eng. Comput. 21(4), 390–399 (1983)

    Google Scholar 

  15. Dalla Man, C., Rizza, R.A., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 54(10), 1740–1749 (2007)

    Google Scholar 

  16. Dalla Man, C., Rizza, R.A., Cobelli, C.: Mixed meal simulation model of glucose-insulin system. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 307–310 (2006)

    Google Scholar 

  17. Lobo, B., Farhy, L., Shafiei, M., Kovatchev, B.: A data-driven approach to classifying daily continuous glucose monitoring (CGM) time series. IEEE Trans. Biomed. Eng. 69(2), 654–665 (2022)

    Article  Google Scholar 

  18. Felizardo, V., Garcia, N.M., Pombo, N., Megdiche, I.: Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction—a systematic literature review. Artif. Intell. Med. 2021(102120), 102120–102120 (2021)

    Article  Google Scholar 

  19. Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Biomed. Eng. 59(6), 1550–1560 (2012)

    Article  Google Scholar 

  20. Hamdi, T., Ben Ali, J., Fnaiech, N., Di Costanzo, V., Fnaiech, F., Moreau, E., Ginoux, J.-M.: Artificial neural network for blood glucose level prediction. In: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), pp. 91–95 (2017)

    Google Scholar 

  21. Tena, F., Garnica, O., Lanchares, J., Hidalgo, J.I.: Ensemble models of cutting-edge deep neural networks for blood glucose prediction in patients with diabetes. Sensors 21(21) (2021)

    Google Scholar 

  22. Tena, F., Garnica, O., Davila, J.L., Hidalgo, J.I.: An LSTM-based neural network wearable system for blood glucose prediction in people with diabetes. IEEE J Biomed Health Inform, Aug 2023

    Google Scholar 

  23. Li, K., Daniels, J., Liu, C., Herrero, P., Georgiou, P.: Convolutional recurrent neural networks for glucose prediction. IEEE J. Biomed. Health Inf. 24(2), 603–613 (2019)

    Article  Google Scholar 

  24. Zhu, T., Li, K., Herrero, P., Chen, J., Georgiou, P.: A deep learning algorithm for personalized blood glucose prediction. In: KHD@IJCAI, pp. 64–78 (2018)

    Google Scholar 

  25. Contreras, I., Oviedo, S., Vettoretti, M., Visentin, R., í, J.: Personalized blood glucose prediction: a hybrid approach using grammatical evolution and physiological models. PLoS One 12(11), e0187754 (2017)

    Google Scholar 

  26. Liu, C., Vehí, J., Avari, P., Reddy, M., Oliver, N., Georgiou, P., Herrero, P.: Long-term glucose forecasting using a physiological model and deconvolution of the continuous glucose monitoring signal. Sensors (Basel) 19(19), 4338 (2019)

    Google Scholar 

  27. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905–920 (2004)

    Article  Google Scholar 

  28. Berger, M., Cüppers, H., Hegner, H., Jörgens, V., Berchtold, P.: Absorption kinetics and biologic effects of subcutaneously injected insulin preparations. Diabetes Care 5(2), 77–91 (1982)

    Article  Google Scholar 

  29. Garrett, E.R.: The bateman function revisited: a critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. J. Pharmacokinetics and Biopharm. 22(2), 103–128 (1994)

    Article  Google Scholar 

  30. O’Neil, M., Ryan, C.: Grammatical Evolution, pp. 33–47. Springer, US, Boston, MA (2003)

    Google Scholar 

  31. Hidalgo, J.I., Colmenar, J.M., Risco-Martin, J.L., Cuesta-Infante, A., Maqueda, E., Botella, M., Rubio, J.A.: Modeling glycemia in humans by means of grammatical evolution. Appl. Soft Comput. 20, 40–53 (2014)

    Article  Google Scholar 

  32. Hidalgo, J.I., Colmenar, J.M., Velasco, J.M., Kronberger, G., Winkler, S.M., Garnica, O., Lanchares, J.: Identification of models for glucose blood values in diabetics by grammatical evolution. Springer International Publishing. Ch. 15, 367–393 (2018)

    Google Scholar 

  33. Marling, C., Bunescu, R.: The OhioT1DM dataset for blood glucose level prediction: update 2020. CEUR Workshop Proc. 2675, 71–74 (2020)

    Google Scholar 

  34. Hidalgo, J.I., Botella, M., Velasco, J.M., Garnica, O., Cervigón, C., Martínez, R., Aramendi, A., Maqueda, E., Lanchares, J.: Glucose forecasting combining markov chain based enrichment of data, random grammatical evolution and bagging. Appl. Soft Comput. J. 88 (2020)

    Google Scholar 

  35. Contador, S., Colmenar, J.M., Garnica, O., Velasco, J.M., Hidalgo, J.I.: Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios. Gen. Program. Evol. Mach. 23(2), 161–192 (2022)

    Google Scholar 

  36. Contador, S., Velasco, J.M., Garnica, O., Hidalgo, J.I.: Glucose forecasting using genetic programming and latent glucose variability features. Appl. Soft Comput. 110, 107609 (2021)

    Article  Google Scholar 

  37. Lourenco, N., Hidalgo, J.I., Colmenar, J.M., Garnica, O.: Structured grammatical evolution for glucose prediction in diabetic patients. In: GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, pp. 1250–1257. Association for Computing Machinery, Inc (2019)

    Google Scholar 

  38. Parra, D., Joedicke, D., Gutiérrez, A., Velasco, J.M., Garnica, O., Colmenar, J.M., Hidalgo, J.I.: Obtaining difference equations for glucose prediction by structured grammatical evolution and sparse identification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13789, pp. 189–196. Springer Science and Business Media Deutschland GmbH, LNCS (2022)

    Google Scholar 

  39. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Nat. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MathSciNet  Google Scholar 

  40. Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, 2nd ed. Cambridge University Press (2022)

    Google Scholar 

  41. De La Cruz, M., Cervigon, C., Alvarado, J., Botella-Serrano, M., Hidalgo, J.: Evolving classification rules for predicting hypoglycemia events. In: 2022 IEEE Congress on Evolutionary Computation, CEC 2022—Conference Proceedings. Institute of Electrical and Electronics Engineers Inc. (2022)

    Google Scholar 

  42. Hidalgo, J.I., Maqueda, E., Risco-Martín, J.L., Cuesta-Infante, A., Colmenar, J.M., Nobel, J.: glucmodel: a monitoring and modeling system for chronic diseases applied to diabetes. J. Biomed. Inf. 48, 183–192 (2014)

    Article  Google Scholar 

  43. Hidalgo, I., Botella-Serrano, M., Lozano-Serrano, F., Maqueda, E., Lanchares, J., Martinez-Rodriguez, R., Aramendi, A., Garnica, O.: A web application for the identification of blood glucose patterns through continuous glucose monitoring and decision trees. In: Diabetes Technology & Therapeutics, vol. 22, Mary Ann Liebert, Inc 140 Huguenot Street, 3rd FL, New Rochelle, NY 10801 USA, pp. A64–A64 (2020)

    Google Scholar 

  44. Contador, S., Velasco, J.M., Garnica, O., Hidalgo, J.I.: Glucose forecasting using genetic programming and latent glucose variability features. Appl. Soft Comput. 110, 107609 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Spanish Government MINECO grants PID2021-125549OB-I00 and PDC2022-133429-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hidalgo, J.I., Velasco, J.M., Parra, D., Garnica, O. (2024). Genetic Programming Techniques for Glucose Prediction in People with Diabetes. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8413-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8412-1

  • Online ISBN: 978-981-99-8413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics