
Fault Tolerant Control using Cartesian Genetic
Programming

Yoshikazu Hirayama
University of York

York, UK
YO10 5DD

yh120@ohm.york.ac.uk

Tim Clarke
University of York

York, UK
YO10 5DD

tim@ohm.york.ac.uk

Julian Francis Miller
University of York

York, UK
YO10 5DD

jfm@ohm.york.ac.uk

ABSTRACT
The paper focuses on the evolution of algorithms for control
of a machine in the presence of sensor faults, using Carte-
sian Genetic Programming. The key challenges in creating
training sets and a fitness function that encourage a general
solution are discussed. The evolved algorithms are analysed
and discussed. It was found that highly novel, mathemati-
cally elegant and hitherto unknown solutions were found.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.9 [Artificial Intelligence]: Robotics—
Sensors; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Reliability

Keywords
cartesian genetic programming, evolutionary algorithms, sen-
sor fault tolerance, control

1. INTRODUCTION
Sensors on a physical system provide crucial information:

the status of the system and/or the environment in which it
is situated. However, they are fallible. A faulty sensor sig-
nal may lead to wrong control system behaviour and bring
about an undesirable situation for the system. A reason
[14] for little literature on sensor fault tolerant control is the
critical role of measured variables in a controlled system re-
quiring high reliability - often achieved through the use of
direct (hardware) redundancy; Multiple sensors are utilised
and majority voting used for the selection of healthy sen-
sors. Also, a faulty sensor can be replaced, physically, by
spare sensors, if they exist. In combination with direct re-
dundancy, or on its own, analytical redundancy can also be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

used as part of the fault tolerant control system (FTCS) de-
sign. Analytical redundancy is provided by a model of the
system variable of concern, and produces an estimated value
in lieu of the faulty sensor. For example, in a control system
with a sliding mode observer unit [5][3], faulty sensors are
replaced by their estimations.

In this paper, the authors offer a novel alternative method
for tolerating sensor failure in a control system, where multi-
ple sensors are required for measurement. It is done without
reconfiguring the control laws, or without having to esti-
mate the correct values from the faulty sensor values. This
is achieved by focusing on generating the correct inputs to
the controller which are normally calculated based on a full
set of working sensor values. A type of evolutionary al-
gorithm called Cartesian Genetic Programming (CGP) [11]
was used to evolve solutions which can generate the appro-
priate controller input values but using only the remaining,
working sensors. Using only the remaining sensors means
that spare sensors are not necessary, reducing the cost or in-
convenience in the system hardware design. However, they
could be used as an adjunct to direct redundancy for higher
reliability when all else has failed.

We built a generic demonstrator, Shaky Hand, to test the
evolved solutions in practice. The demonstrator utilises mul-
tiple sensors, the data from which are integrated to give
information about the status of the system. This integra-
tion process from data to information, means that Shaky
Hand represents a natural model of a real industrial ma-
chine. Shaky Hand is suitable for testing sensor fault tol-
erant and data fusion techniques due to its multiple sensor
environment and also because the quality of sensor data af-
fects the quality of the output information. One can com-
pensate or enhance the sensor data using these techniques
to improve the quality of the output information.

CGP has demonstrated its effectiveness in learning Boolean
functions over conventional GP [8] and has been applied
in variety of applications. These include digital circuit de-
signs [10], image filter and its implementation in FPGA [7][13],
artificial life [6], bio-inspired developmental models [9], and
evolutionary art [1][4]. However, the use of CGP in sen-
sor fault tolerant control application has not been explored
before. The CGP based sensor fault tolerant control is also
novel in the field of the sensor fault tolerance. Since the out-
come of CGP can be analysed, the system reliability can be
enhanced, and this can be considered practical. These are
the motivations for applying CGP for the sensor fault tol-
erant application. The work demonstrates that sensor fault
control applications can benefit from the use of CGP.

1523

1.1 Structure of the Paper
The Shaky Hand system is briefly introduced first includ-

ing its description of the control scheme and the plate sen-
sors. Secondly, we discuss the method used to allow CGP
to evolve generic solutions which have fault tolerant ability.
Thirdly, the evolved solutions are shown and analysed to
show why they work well. The last section concludes the
work.

2. THE SHAKY HAND SYSTEM
In this section, the novel laboratory demonstrator which

we named Shaky Hand is introduced.

2.1 The Shaky Hand Physical System
The Shaky Hand game was modelled on a village fête

game. In the original, as shown in Fig.1, the aim is to guide,
by hand, a wire loop along a meandering wire track from one
end to another, without touching the loop to the wire. When
the loop touches the wire an electrical circuit is made and
an alarm is set off.

start
end

wire

loopmove

Figure 1: Outline of the Shaky Hand game

Shaky Hand follows this model. However, the loop is
guided by a flat bed plotter arrangement with x and y trans-
lational drive motors as shown in Fig.2.

x_translate

y_translate

rotate

wireloop

start

end

Figure 2: Mechanising the Shaky Hand game

These are rotary DC motors, driving their load via lead-
screws. The loop can be rotated by a third DC motor to
keep the plane of the loop perpendicular to the wire. Four
inductor coils on a plate just below the wire allow the prox-
imity and orientation of the wire to be sensed (Fig.3).

The wire carries an alternating current of appropriate
magnitude and frequency. The magnitude of the induced
emf in each coil is inversely proportional to wire proximity.
The output voltages from the four coils are then amplified
and converted into DC signals and presented to a PC based
analogue data acquisition card. To make an interesting sce-
nario we define a set of game ‘rules’. The loop must be

inductors

wire

plate

loop

motion

Figure 3: The Shaky Hand game pickup plate

guided from one end of the wire to the other and should
never touch the wire. Loop size is defined by the sensor
positions, so the wire should never touch the sensors. We
define this as a catastrophic failure. We also add time con-
straints, otherwise the movement of the loop may stop as
the system decides what action to take next. So we define
another catastrophic failure condition: the speed of the loop
along the wire direction shall be kept at a defined constant
level which is non-zero.

2.2 Plate Sensors
The work described in this section focuses on the four coil

sensors mounted on the Shaky Hand plate. The four sensor
outputs are used directly to obtain a lateral offset error volt-
age, Vα, and an angle offset error voltage, Vφ, caused by the
misalignment between the centre of the plate and the track.
These voltage errors are used to control plate movement.
The wire is assumed to be locally straight. Fig.4 displays
the sensor arrangement on the plate. The wire track passes
between the top sensors (sensors A and B) and the bottom
sensors (sensors C and D).

Sensor A Sensor B

Sensor C Sensor D

Wire Track

Shaky Hand Plate

Centre of the Plate

Ö
á

Figure 4: Four sensors on the Shaky Hand plate and
the offset terms

The lateral offset, α is obtained in terms of the voltage
Vα:

Vα = (VA + VB)− (VC + VD) (1)

and the angle offset, φ is obtained in terms of the voltage
Vφ:

Vφ = (VA + VD)− (VB + VC) (2)

The terms VA, VB , VC and VD used in Equations 1 and
2 are the output voltages from the sensors A, B, C and D
on the plate respectively. The offset voltages are the in-
puts to the controllers which drive the appropriate motors
to compensate for the offsets.

1524

3. SENSOR FAULT TOLERANCE BY CGP
A novel evolutionary programming approach to generat-

ing offset error voltages in the presence of sensor coil failure
is now presented. This includes the exploitation of training
data sets that avoid over-fitting, which ensures that the re-
sultant algorithmic solutions are generic and therefore will
work with any wire track shape.

Equations 1 and 2 assume that all the sensors function
correctly and output appropriate signals. However, they
become invalid when one or more sensor fails. Now, CGP is
used to evolve the offset error sensing solutions which utilise
less than four sensor outputs yet still provide a reasonably
accurate estimation of the two offset errors. This is depicted
in Fig.5.

Reduced inputs

due to failure

of sensor(s)
CGP

VA

VB

VC

VD

Vá

VÖ

Figure 5: CGP for Shaky Hand

Assuming, for now, that Shaky Hand is able to detect the
faulty sensor(s) and subsequently select appropriate offset
error sensing solutions according to the sensor fault condi-
tion, Shaky Hand would then be able to continue to operate,
perhaps with degraded performance. The coil sensor outputs
are normally non-zero, positive values so we reasonably as-
sume that, under failure conditions, the sensor outputs are
reset to zero.

3.1 CGP and its application to the Sensor Fail-
ure Problem

Cartesian Genetic Programming, which developed from
the work of Miller and Thomson [12], represents programs
by directed acyclic graphs. CGP use a rectangular grid of
rows and columns of computational nodes. With nodes in
the same column not be allowed to connect to each other. It
also uses a connectivity parameter called levels-back which
determines how many columns on the left a node may con-
nect to. The genotype is a fixed length list of integers, which
encode the function of nodes and the connections of the di-
rected graph. It also has a number of output genes that
encode connection points in the graph where program out-
puts are taken from. When the number of rows is chosen to
be one and levels-back is set to the number of columns, the
genotype encodes an arbitrary acyclic graph. This means
nodes can take their inputs from either the output of a pre-
vious node or from a program input (terminal). We have
chosen this for the work in this paper. The number of in-
puts that a node has is dictated by the number of inputs
that are required by the function it represents. The pheno-
type is obtained by following the connected nodes from the
program outputs to the inputs. It is important to note that
in this process, some node outputs may not be used so that
their genes have no influence on the final decoded program.
Such non-coding genes have no effect on genotype fitness.

In this paper an evolutionary strategy [2] has been used
of the form 1 + λ, with λ set to 4, i.e. one parent with 4
offspring (population size 5). This is typical of many im-
plementations of CGP. In this evolutionary algorithm the
parent, or elite genotype, is preserved unaltered, whilst the

offspring are generated by mutation of the parent. While
best chromosome is always promoted to the next genera-
tion, if two or more chromosomes achieve the highest fitness
then the newest (genetically) is always chosen [10].

For Shaky Hand, the inputs to the CGP are the four plate
sensor signals, VA, VB , VC and VD and the outputs are the
two offset error voltages, Vα and Vφ. Mutation rate is de-
fined as the percentage of genes that are mutated. This was
chosen to be 1%. The number of generations was limited to
50,000. One hundred, two input, single output functional
blocks of the type depicted in Fig.6 were chosen. This al-
lowed a rich variety of multi-sensor inputs/single offset volt-
age output algorithms to be evolved. The number of func-
tional blocks determines the length of the integer represen-
tation. Each block contains three genes representing two
incoming node connections and one operator type, combin-
ing this with the output. There are 302 genes in total. This
genotype is sufficient to produce relatively complex solu-
tions.

String Representation = [(1) (2) (3)]

(1) Input Node 1

(2) Input Node 2

Output Node 1(3) Operator

Figure 6: A single CGP functional block represen-
tation

One hundred input sets are used and the fitness of the
evolved solutions are evaluated per generation using Equa-
tions 3 to 6.

JVα =| Vαideal − Vαevolved

Vαideal

| (3)

JVφ =| Vφideal − Vφevolved

Vφideal

| (4)

If (Vαideal = 0) or (Vφideal = 0), then the equations are
modified to:

JVα =| Vαideal − Vαevolved | (5)

JVφ =| Vφideal − Vφevolved | (6)

A normalised cost function was used because of its prop-
erty of forcing the evolution of good solution algorithms
when the actual offsets, α and φ, are very small. Since the
loop closure of the control system will tend to drive the off-
sets towards zero (good wire tracking), it is important that
the sensor failure algorithms should work best under tight
tracking. Fig.7 illustrates how the cost is evaluated using
the evolved and the original algorithm outputs. The output
sets from the original algorithms are defined as ideal output
sets in this figure.

To simulate a sensor failure, one member of the input sets
is forced to be zero. It is reasonably assumed that Shaky
Hand has a fault detection system such that when a failure is
detected the signals from the failed sensors are nulled. Using

1525

Input Sets
(Sensor Signals)

A B C D

Sensor A Signal is forced
to be 0 due to a failure

Evolved
CGP Algorithm

Evolved
Output Sets

OR

Ideal
Output Sets

OR

Cost
Evaluation

V
á

V
á

V
Ö

V
Ö

Original
Algorithm

Figure 7: Comparing the ideal and the evolved so-
lutions

these input sets, solutions are evolved. For each generation,
the output sets from all the solutions in the population are
compared with the ideal output sets to determine the best
one. The generation of the new population ends when a
stopping criterion set by the user is met. In theory, the best
possible cost value is 0, which would mean the successful
evolution of identical output sets to the fault-free originals.
However, the sensor failures are expected to cause deterio-
rations and 0% error may not be achieved. Therefore the
criterion for the convergence was initially set to 0.01. If
the cost is less than 0.01 the solution is considered to have
the equivalent response to the original algorithm. i.e. the
outputs produced by the current best solution in the pop-
ulation for 100 incoming data have less than 1% error. A
1% error in measurement would have negligible effect on the
tracking along the wire by the Shaky Hand plate. The neg-
ative feedback control would act on this error as if it was
a disturbance. The disturbance rejection properties of neg-
ative feedback are well known and documented in all good
elementary control engineering text books.

A wide range of operators is provided including primitive
and conditional operators so the evolutions would have vari-
ety of choice of the operators. They are described in Table 1.
X1 indicates the input node 1 of one functional block, X2 is
the input node 2. O is the output node of a functional block.
For the evaluation of the output of the solution, exception
handling is incorporated into some operators, such as a di-
vide by zero, as protected functions. Conditional operators
(operators 10 and 11) allow more complex solutions to be
evolved, providing solution choices according to the values
assigned to the input nodes. Depending on the situations, a
solution can therefore have totally different values and can
better adapt to dynamic changes in the environment.

3.2 Genericity
For the Shaky Hand CGP, the solutions are not evolved

through the physical environment but a virtual one. The en-
vironment for the Shaky Hand case is the wire track shape
provided by the training data sets. This environment must
be sufficiently open to avoid over-fitting. A closed environ-
ment would over-specify the system, shaping its behaviour
to that particular environment only, creating solutions that
work on a particular wire track only. This case had to be
avoided, so a virtual environment was designed to achieve
sufficiently rich interactions between the system and itself.
Methods used in the Shaky Hand CGP to achieve such an

Table 1: Operators used in the Shaky Hand CGP
Operator
indices

Operator types Protected func-
tions

1 Addition (O=X1+X2)
2 Subtraction (O=X1-X2)
3 Multiplication

(O=X1×X2)

4 Division (O=X1
X2

) if X2=0, O=0

5 Square (O=X2
1)

6 Square root (O=
√
|X1|) Use absolute

value
7 Reciprocal (O= 1

X1
) if X1=0, O=0

8 Natural log (O=lnX1) if X1 ≤ 0, O=0
9 log10 (O=log10X1) if X1 ≤ 0, O=0
10 Max (O=max(X1,X2))
11 Min (O=min(X1,X2))
12 Absolute value (O=|X1|)
13 Sine (O=sinX1)
14 Cosine (O=cosX1)
15 Tangent (O=tanX1) if X1=(n+ 1

2
π)

n=(0,l,2...), O=0

16 Power (O=XX2
1) if X1=0, O=0

17 Sign change (O=-X1)

open and rich environment are discussed below. There are
three major aspects; the special training set, sliding win-
dows, and the use of multiple virtual tracks.

3.2.1 Training Set
Input data sets to the program are the signal values from

sensors A, B, C and D on the plate. The sensor values should
be consistent with the correct operation of the Shaky Hand
system. The signals must be continuous and without repe-
tition, representing realistic input sets that do not present
a closed environment. In order to satisfy these criteria, a
model relating α and φ with the physical dimension of the
plate was created (Fig.8).

A B

C D

Wire Track

dy

d /2x

y1

dx

d /2y
y2

h

Ö

Ö
á

ä

ã

â

Figure 8: Plate model to create CGP input sets

By altering the wire position at the edge of the plate con-
tinuously, through y1 and y2, and without repetition, α and
φ are, in turn, altered continuously and without repetition.
The sensor signals are then generated as required. From

1526

Fig.8,

tan φ =
β

dx
(7)

Since

β = y2 − y1 (8)

The angle offset, φ, is

φ = arctan(
y2 − y1

dx
) (9)

By scaling,

γ =
β

2
=

y2 − y1

2
(10)

δ is defined as

δ =
dy

2
− γ − y1 (11)

Therefore,

δ =
dy − y2 − y1

2
(12)

and also,

α = δ cos φ (13)

α in Fig.8 has a negative sign by convention and from
Equations 12 and 13,

α = −dy − y2 − y1

2
cos φ (14)

Equation 14 can be further simplified.

h =
√

d2
x + β2 =

√
d2

x + (y2 − y1)2 (15)

cos φ =
dx

h
=

dx√
d2

x + (y2 − y1)2
(16)

Substituting Equation 16 into 14 gives

α = −dy − y2 − y1

2

dx√
d2

x + (y2 − y1)2
(17)

So,

α = − dx(dy − y2 − y1)

2
√

d2
x + (y2 − y1)2

(18)

The continuous and non-repeating y1 and y2 data are ob-
tained using the Matlab polyfit function. This generates
a polynomial of predefined order that fits data points pro-
vided by a user. In this case, two 9th order polynomials
were generated to express y1 and y2 variations as shown in
Fig.9. Data points were chosen so that both polynomials
vary within the range constrained by the physical size of the
plate. The order of the polynomials was chosen to provide

reasonably smooth curves. The term, ’sliding window’, on
this figure is explained later. Using the Matlab polyval func-
tion, 5000 data points each were extracted from the y1 and
y2 polynomials. They become the data bank for the input
sets of the Shaky Hand CGP. Equations 9 and 18 are then
used to convert the wire positions provided by the data bank
into the offset errors. The offset errors are then converted
into the sensor voltages. Continuous sequences of sensor
voltages become the input sets for the Shaky Hand CGP.

3.2.2 Sliding Windows
The Shaky Hand CGP takes in 100 consecutive input data

points per generation from each of the y1 and y2 data banks.
The program selects the starting data points at random for
both y1 and y2 data displayed as A0 and B0 in Fig.9. 100
consecutive data points from the starting data points, en-
closed by the Sliding Window are selected and then con-
verted into the sensor signals VA, VB , VC , and VD as shown
previously using α and φ. The combination of randomly
and independently selecting the start points A0 and B0 over
these two long data sets means that the training data sets
are realistic yet, to all intents and purposes, unrepeated over
very many experiments. The Sliding Window on y1 data
bank is shifted by 10 data points to the right every 1000
generations, and the window on y2 data bank is fixed. In
other words, the input sets are kept the same for 1000 gener-
ations and are then modified over 10% of their range. Using
the modified input sets, the solution is evolved again. This
gradual rather than an abrupt change in input sets, helps
the evolution to migrate towards generic solutions. The win-
dow on y2 data bank is fixed, yet, the variation in input sets
is still enormous.

3.2.3 Multiple Virtual Tracks
In a further effort to ensure the genericity of CGP solu-

tions, training sets were further modified. A generic solution
means it works on any given input set. Therefore, two differ-
ent input sets were selected and applied to the evolutionary
processes. i.e. the cost of a solution is evaluated using two
totally different virtual wire tracks. The two starting data
points are chosen from each of the y1 and y2 data bank as
shown in Fig.9.

3.2.4 Test Set
The stochastic nature of CGP meant that the obtained

solutions could be different at every run. The requirement
was for generic solutions, so a genericity test was devised as
follows; The test input sets were characterised from y1 and
y2 data in the data bank described in Section 3.2.1. Each
bank consisted of 5000 data points and, in this case, the
order of y1 data was reversed. All of the reversed y1 and non-
reversed y2 data were used as the test sets. Because of the
reversing, the test sets would look different from the training
sets. The 5000 test sets were applied to each solution and the
mean costs were analysed and compared with each other. A
solution with the best mean cost out of 60 obtained solutions
was selected as the best solution.

3.3 Evolved Solutions
CGP was used to evolve solutions for one sensor failure

cases and the obtained solutions are shown here. The sym-
metry of the plate means that if one good solution is ob-
tained then that solution can be modified to fit other equiv-

1527

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

45

Input Data Indices

y
1
/
m
m

y1 variation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

45

Input Data Indices

y
2
/
m
m

y2 variations

A 0 A 99

B B 0 99

1st Sliding Window

0 99

0 99

2nd Sliding Window

A’ A’

B’ B’

Figure 9: y1 and y2 data variations with two sliding
windows each

alent, complementary sensor failure cases.

1. Sensor A Failure

Vα = ln((
VB

VC
)2) (19)

Vφ =
VD

VC
− VC

VD
(20)

2. Sensor B Failure

Vα = ln((
VA

VD
)2) (21)

Vφ =
VD

VC
− VC

VD
(22)

3. Sensor C Failure

Vα = ln((
VA

VD
)2) (23)

Vφ =
VA

VB
− VB

VA
(24)

4. Sensor D Failure

Vα = ln((
VB

VC
)2) (25)

Vφ =
VA

VB
− VB

VA
(26)

Each Vα and Vφ solutions utilise only two sensor signals
rather than three. However, all the three sensor signals are
required to obtain full information for the position of the
center of the plate relative to the wire track.

4. ANALYSIS
The first analysis evaluates the mean fitness of each solu-

tions over 5000 test input sets to show their genericity. The
second analysis describes why the solutions work well.

4.1 Fitness Measurement
Using the validation data sets, the mean costs, JVα and

JVφ , over the test input set (5000 input sets) for the best

Table 2: Summary of the cost and the standard de-
viations of the evolved solutions

Failure case JVα(STD) JVφ(STD)

Sensor A failure 0.312(0.222) 0.206(0.215)
Sensor B failure 0.241(0.256) 0.206(0.215)
Sensor C failure 0.241(0.256) 0.299(0.297)
Sensor D failure 0.312(0.222) 0.299(0.297)

evolved Vα and Vφ solutions and their standard deviations
are summarised in Table 2.

The one sensor failure cases have mean costs of less than
0.5. This indicates that for every input set used, an error of
less than 50% is made on the estimation of the wire position
on the plate relative to the sensor positions. Looking into
the physical size of the plate (45mm by 45mm), if the cost
is relatively low, for example less than 0.5, the centre of
the plate will be close to the wire track, e.g. if α is 5mm,
then the error would be approximately 2.5mm. An error-
driven control algorithm will drive the plate to reduce this
error, provided that the sense of the error is in the correct
direction. So, as long as the motors move correctly and α
and φ are small, then Shaky Hand should operate correctly
but with degraded tracking performance. If the offsets are
large and/or of the wrong sense, combined with high cost
then there would be a serious problem.

4.2 Why Do the Algorithms Work So Well?
The solutions for the one sensor failure cases (Equations 19

to 26), are elegant. Analytical reasonings behind these so-
lutions are discussed here.

4.2.1 Analysis of Vα Case
The Vα solutions utilise diagonal sensor pair outputs. Let

us look into Equation 19, where sensor A (or D) has failed.
If the wire track is situated in the centre of the plate then
VB and VC are equal, giving Vα = 0. If the wire is closer
to sensor B than to sensor C, then VB is larger than VC .
So, VB/VC is greater than 1. Taking natural logarithmic of
the value provides positive value. If VC is larger than VB ,
then, the solution provides a negative value as VB/VC is a
fraction. So, the natural logarithmic term gives the correct
polarity of α. A square term in the equation gives an am-
plification effect, providing greater penalty in the presence
of α, which drives the plate back into the correct position
quickly through control action.

During the evolution of the solution, the program identi-
fied the natural logarithmic function rather than the log10

function which could also provide the correct polarity. How-
ever, the natural logarithmic function generates a stronger
penalty effect in the presence of α.

4.2.2 Analysis of Vφ Case
Let us look into Equation 20 (Sensor A or B failure case)

for the Vφ solution. It uses two adjacent sensors to evaluate
the output. VD is normalised to VC by the term VD/VC and
VC is normalised to VD by the term VC/VD. The difference
is taken as Vφ. It gives correct polarity at all times. So, how
does the evolved solution differ from the original solution?
Fig.10 illustrates the plate configuration.

Initially, we assume the presence of φ, with α=0. So,
4C = 4D. The voltage induced in the coil is inversely
proportional to its proximity to the wire track and has a

1528

ÄC

ÄD

L ÄC-

L
L+ÄD

Centre of the plate

Wire track

Sensor C Sensor D

Figure 10: Plate configuration for the Vφ solution
analysis

constant proportionality which we denote K. So,

VC =
K

L−4C
=

K

L−4D
(27)

VD =
K

L +4D
(28)

The evolved solution (Equation 20) can be represented as

Vφ =
K

L +4D

L−4D

K
− K

L−4D

L +4D

K
(29)

= − 4L4D

L2 −4D2
(30)

Let us now add an offset α, so, L→L+α,

Vφ = − 4(L + α)4D

(L + α)2 −4D2
(31)

The evolved solution (Equation 31) is now compared with
the original solution:

Vφ = (VA + VD)− (VB + VC) (32)

In Fig.10, VA and VB are the same as VD and VC respec-
tively. Therefore, using substitution and simplification, the
original solution (Equation 32) becomes

Vφ = − 4K4D

L2 −4D2
(33)

Equation 33 is very similar to Equation 30 which is the
evolved solution. In fact, fortuitously, K and L do have
the same value. Therefore these solutions are exactly the
same when there is no lateral offset. When α is present,
Equation 33 becomes

Vφ = − 4K4D

(L + α)2 −4D2
(34)

So the term (L+α) in Equation 31 no longer matches K
in Equation 34, which does not change in the presence of α.
The graphs plotted based on Equations 34 and 31 are shown
in Figs. 11 and 12 respectively. The graphs plot the curves
of Vφ over a range of φ under the influence of α. The dashed
line in each plot represent the Vφ values when α=0.

Graphs for the original and the evolved solutions show
similar pattern. However, the magnitude of Vφ is different.
The magnitude of Vφ from the evolved solution is smaller

0 5 10 15 20 25
0

5

10

15

20

25
ideal case

phi /degrees

V
Φ
/
V

α more negative

α more positive

α = 0

Figure 11: Vφ against φ with different α values using
the original solution

0 5 10 15 20 25
0

2

4

6

8

10

12
evolved case

phi /degrees

V
Φ
/
V

Figure 12: Vφ against φ with different α values using
the evolved solution

when α is negative, and is larger when α is positive. The
fitness is higher (i.e. the difference between the original and
the evolved solution becomes less) when α becomes smaller.
The evolved solution can compute exactly the same Vφ as
the original solution when α=0. Therefore, as long as α is
kept small, Vφ from the evolved solution is kept close to the
ideal value. So, the evolved solution works best under tight
tracking which is achieved through the control system which
drives the offsets towards zero. This behaviour coincides
with the intention of the use of the relative fitness evaluation
method (Equations 3 to 6) during the CGP evolution. In
conclusion, the evolved solution as shown in Equation 20
may possibly be found manually, but, the CGP evolution
found this solution without any information about the plate
geometry, and only the four sensor voltage values.

5. CONCLUSIONS
A novel way to evolve a fault tolerant generic solution

was established using special training sets. A virtual envi-
ronment which achieves suitably complex dynamics to allow
rich interactions between Shaky Hand and the environment

1529

was carefully constructed. Analytical reasoning behind the
evolved solutions was presented. The solutions were applied
to a real Shaky Hand system (Figs.13) to confirm the results
in practice. Successful runs without failure were achieved.
Operation with one sensor failure could not be distinguished
from the ideal fully functional case, proving that this CGP
approach can be applied to practical sensor fault tolerant ap-
plications. CGP is a proven, powerful tool for searching for
reliable, practical solutions which would be difficult to find
manually. In conclusion, this work has produced a final,
fall-back system which will provide safe, if degraded, per-
formance of a system when all other fault tolerance mech-
anisms, based upon multiple redundancy of sensors, cease
to be available. Both the method of generating the so-
lutions and the solutions themselves are completely novel.
This work opens the door to a different and complementary
scheme to achieving sensor fault tolerance.

6. REFERENCES
[1] L. Ashmore. An investigation into cartesian genetic

programming within the field of art. Final year project
2000, Department of Computer Science, University of
Birmingham, 2000.

[2] H. F. S. H. Bäck, T. A survey of evolution strategies.
volume 1802 of Proceedings of the 4th International
Conference on Genetic Algorithms, pages 2–9. Morgan
Kaufmann, 1991.

[3] A. Chamseddine, H. Noura, and M. Ouladsine. Sensor
fault-tolerant control for active suspension using
sliding mode techniques. In Workshop on networked
control systems and fault-tolerant control, Ajaccio,
Corsica, France, October 2005. COSI.

[4] S. DiPaola. Evolving ’portrait painter programs’ using
genetic programming (Darwinian evolution) and a
portrait of Darwin. website, School of Interactive Arts
& Technology, Faculty of Applied Sciences, Simon
Fraser University. http://www.dipaola.org/evolve/,
August 2007.

[5] C. Edwards and C. Tan. Sensor fault tolerant control
using sliding mode observers. Control Engineering
Practice, 14:897–908, 2006.

[6] S. Harding and J. Miller. Evolution of robot controller
using cartesian genetic programming. In Proceedings
of the 6th European Conference on Genetic
Programming (EuroGP 2005), LNCS 3447, pages
62–72. Springer, 2005.

[7] T. Martinek and L. Sekanina. An evolvable image
filter: experimental evaluation of a complete hardware
implementation in fpga. In J. Moreno, J. Madrenas,
and J. Cosp, editors, Evolvable Systems: From Biology
to Hardware. Proceedings Lecture Notes in Computer
Science, volume 3637 of 6th International Conference,
ICES 2005, pages 76–85, Sitges, Spain, September
2005. Springer-Verlag, Berlin, Germany.

[8] J. Miller. An empirical study of the efficiency of
learning boolean functions using cartesian genetic
programming approach. volume 2 of Proc. of GECCO,
page 1135-1142. Morgan Kaufmann, 1999.

[9] J. Miller. Evolving developmental programs for
adaptation, morphogenesis, and self-repair. Seventh
European Conference on Artificial Life, 2801:256–265,
September 2003.

[10] J. Miller, D. Job, and V. Vassilev. Principles in the
evolutionary design of digital circuits – part i. Journal
of Genetic Programming and Evolvable Machines,
1(2):259–288, 2000.

[11] J. Miller and P. Thompson. Cartesian genetic
programming. volume 1802 of Proceedings of the 3rd
European Conference on Genetic Programming, pages
121–132. Springer-Verlag, 2000.

[12] J. F. Miller, P. Thomson, and T. C. Fogarty.
Designing electronic circuits using evolutionary
algorithms. arithmetic circuits: a case study.
booktitle= Genetic Algorithms and Evolution
Strategies in Engineering and Computer Science, year
= 1997, pages = 105-131, publisher = Wiley.

[13] K. Slany and L. Sekanina. Fitness landscape analysis
and image filter evolution using functional-level cgp.
In M. Ebner, M. O’Neill, A. Ekart, L. Vanneschi, and
A. Esparcia, editors, Proceedings Lecture Notes in
Computer Science, volume 4445 of Genetic
Programming. 10th European Conference, EuroGP
2007., pages 311–320, Valencia, Spain, April 2007.
Springer-Verlag.

[14] N. Wu. Sensor fault masking of a ship propulsion
system. Control Engineering Practice, 14(11):1337–45,
November 2006.

APPENDIX
A. PICTURES OF SHAKY HAND

Figure 13: General View of Shaky Hand

Figure 14: Top View of Shaky Hand

1530

