Skip to main content

Regenerating Soft Robots Through Neural Cellular Automata

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12691))

Included in the following conference series:

Abstract

Morphological regeneration is an important feature that highlights the environmental adaptive capacity of biological systems. Lack of this regenerative capacity significantly limits the resilience of machines and the environments they can operate in. To aid in addressing this gap, we develop an approach for simulated soft robots to regrow parts of their morphology when being damaged. Although numerical simulations using soft robots have played an important role in their design, evolving soft robots with regenerative capabilities have so far received comparable little attention. Here we propose a model for soft robots that regenerate through a neural cellular automata. Importantly, this approach only relies on local cell information to regrow damaged components, opening interesting possibilities for physical regenerable soft robots in the future. Our approach allows simulated soft robots that are damaged to partially regenerate their original morphology through local cell interactions alone and regain some of their ability to locomote. These results take a step towards equipping artificial systems with regenerative capacities and could potentially allow for more robust operations in a variety of situations and environments. The code for the experiments in this paper is available at: http://github.com/KazuyaHoribe/RegeneratingSoftRobots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackiston, D.J., Levin, M.: Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J. Exp. Biol. 216(6), 1031–1040 (2013). https://doi.org/10.1242/jeb.074963

    Article  Google Scholar 

  2. Blackiston, D.J., Shomrat, T., Levin, M.: The stability of memories during brain remodeling: a perspective. Communicative Integr. Biol. 8(5), e1073424, September 2015. https://doi.org/10.1080/19420889.2015.1073424. https://www.tandfonline.com/doi/full/10.1080/19420889.2015.1073424

  3. Carlson, B.M.: Principles of Regenerative Biology. Elsevier, Amsterdam (2011)

    Google Scholar 

  4. Cellucci, D., MacCurdy, R., Lipson, H., Risi, S.: One-dimensional printing of recyclable robots. IEEE Robot. Autom. Lett. 2(4), 1964–1971 (2017). https://doi.org/10.1109/LRA.2017.2716418

    Article  Google Scholar 

  5. Cenek, M., Mitchell, M.: Evolving cellular automata. Comput. Complexity: Theory Tech. Appl. 9781461418, 1043–1052 (2013)

    Google Scholar 

  6. Chatzilygeroudis, K., Vassiliades, V., Mouret, J.B.: Reset-free trial-and-error learning for robot damage recovery. Robot. Auton. Syst. 100, 236–250 (2018). https://doi.org/10.1016/j.robot.2017.11.010

    Article  Google Scholar 

  7. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference - GECCO 2013, New York, New York, USA, p. 167. ACM Press (2013). https://doi.org/10.1145/2463372.2463404. http://dl.acm.org/citation.cfm?doid=2463372.2463404

  8. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015). https://doi.org/10.1038/nature14422

    Article  Google Scholar 

  9. Dellaert, F., Beer, R.D.: A developmental model for the evolution of complete autonomous agents. In: On Growth, Form and Computers, pp. 377–391. Elsevier (2003). https://doi.org/10.1016/B978-012428765-5/50053-0. https://linkinghub.elsevier.com/retrieve/pii/B9780124287655500530

  10. Eggenberger-Hotz, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proceedings of the 4th European Conference on Artificial Life (ECAL97), pp. 205–213 (1997). http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.5045

  11. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1. http://link.springer.com/10.1007/978-3-662-05094-1

  12. El-Atab, N., et al.: Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2(10), 2000128, October 2020. https://doi.org/10.1002/aisy.202000128. https://onlinelibrary.wiley.com/doi/10.1002/aisy.202000128

  13. Gilpin, W.: Cellular automata as convolutional neural networks. Phys. Rev. E 100(3), 032402, September 2019. https://doi.org/10.1103/PhysRevE.100.032402. https://link.aps.org/doi/10.1103/PhysRevE.100.032402

  14. Hallundbæk Óstergaard, E., Hautop Lund, H.: Co-evolving complex robot behavior. In: Tyrrell, A.A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 308–319. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36553-2_28

    Chapter  Google Scholar 

  15. Hiller, J.D., Lipson, H.: Multi material topological optimization of structures and mechanisms. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation - GECCO 2009, New York, New York, USA, p. 1521. ACM Press (2009). https://doi.org/10.1145/1569901.1570105. http://portal.acm.org/citation.cfm?doid=1569901.1570105

  16. Hochreiter, S.: Long short-term memory. Neural Comput. 1780, 1735–1780 (1997)

    Article  Google Scholar 

  17. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  18. Hornby, G.S., Lipson, H., Pollack, J.B.: Evolution of generative design systems for modular physical robots. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 4, pp. 4146–4151 (2001). https://doi.org/10.1109/ROBOT.2001.933266

  19. Howison, T., Hauser, S., Hughes, J., Iida, F.: Reality-assisted evolution of soft robots through large-scale physical experimentation: a review. arXiv (2020). http://arxiv.org/abs/2009.13960

  20. Kano, T., Sato, E., Ono, T., Aonuma, H., Matsuzaka, Y., Ishiguro, A.: A brittle star-like robot capable of immediately adapting to unexpected physical damage. Royal Soc. Open Sci. 4(12), 171200 (2017). https://doi.org/10.1098/rsos.171200

    Article  MathSciNet  Google Scholar 

  21. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: A scalable pipeline for designing reconfigurable organisms. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 4, pp. 1853–1859 (2020). https://doi.org/10.1073/pnas.1910837117

  22. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide evolution. Sci. Rep. 8(1), 1–10 (2018). https://doi.org/10.1038/s41598-018-31868-7. http://dx.doi.org/10.1038/s41598-018-31868-7

  23. Kriegman, S., Cheney, N., Corucci, F., Bongard, J.C.: A minimal developmental model can increase evolvability in soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 131–138. ACM, New York, NY, USA, July 2017. https://doi.org/10.1145/3071178.3071296. https://dl.acm.org/doi/10.1145/3071178.3071296

  24. Kriegman, S., et al.: Scalable sim-to-real transfer of soft robot designs. In: 2020 3rd IEEE International Conference on Soft Robotics, RoboSoft 2020, pp. 359–366, November 2020. http://arxiv.org/abs/1911.10290

  25. Kriegman, S., Walker, S., S. Shah, D., Levin, M., Kramer-Bottiglio, R., Bongard, J.: Automated shapeshifting for function recovery in damaged robots. In: Robotics: Science and Systems XV. Robotics: Science and Systems Foundation, June 2019. https://doi.org/10.15607/RSS.2019.XV.028. http://www.roboticsproceedings.org/rss15/p28.pdf

  26. Kwiatkowski, R., Lipson, H.: Task-agnostic self-modeling machines. Sci. Robot. 4(26), eaau9354, January 2019. https://doi.org/10.1126/scirobotics.aau9354. https://robotics.sciencemag.org/lookup/doi/10.1126/scirobotics.aau9354

  27. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Phys. D: Nonlinear Phenomena 42(1–3), 12–37 (1990). https://doi.org/10.1016/0167-2789(90)90064-V

    Article  MathSciNet  Google Scholar 

  28. Levin, M., Pezzulo, G., Finkelstein, J.M.: Endogenous bioelectric signaling networks: exploiting voltage gradients for control of growth and form. Ann. Rev. Biomed. Eng. 19, 353–387 (2017). https://doi.org/10.1146/annurev-bioeng-071114-040647

    Article  Google Scholar 

  29. Levin, M., Selberg, J., Rolandi, M.: Endogenous bioelectrics in development, cancer, and regeneration: drugs and bioelectronic devices as electroceuticals for regenerative medicine. iScience. 22, 519–533 (2019). https://doi.org/10.1016/j.isci.2019.11.023

    Article  Google Scholar 

  30. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978, August 2000. https://doi.org/10.1038/35023115. http://www.nature.com/articles/35023115

  31. McLaughlin, K.A., Levin, M.: Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev. Biol. 433(2), 177–189 (2018). https://doi.org/10.1016/j.ydbio.2017.08.032

    Article  Google Scholar 

  32. Miller, J.F.: Evolving a self-repairing, self-regulating, French flag organism. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_12

    Chapter  Google Scholar 

  33. Mordvintsev, A., Randazzo, E., Niklasson, E., Levin, M.: Growing neural cellular automata. Distill 5(2), e23 (2020). https://doi.org/10.23915/distill.00023. https://distill.pub/2020/growing-ca/

  34. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv, pp. 1–15 (2015). http://arxiv.org/abs/1504.04909

  35. von Neumann, J.: Theory of Self-Reproducing Automata. University of illinoi Press (1966). https://doi.org/10.2307/2005041. https://www.jstor.org/stable/2005041?origin=crossref

  36. Wulff, N.H., Hertz, J.A.: Learning cellular automaton dynamics with neural networks. In: Proceedings of the 5th International Conference on Neural Information Processing Systems, pp. 631–638. Morgan Kaufmann Publishers Inc. (1992). https://doi.org/10.5555/2987061.2987139

  37. Nichele, S., Ose, M.B., Risi, S., Tufte, G.: CA-NEAT: evolved compositional pattern producing networks for cellular automata morphogenesis and replication. IEEE Trans. Cogn. Dev. Syst. 10(3), 687–700 (2018). https://doi.org/10.1109/TCDS.2017.2737082

    Article  Google Scholar 

  38. Packard, N.H., Wolfram, S.: Two-dimensional cellular automata. J. Stat. Phys. 38(5–6), 901–946 (1985)

    Article  MathSciNet  Google Scholar 

  39. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 1–17 (2016). https://doi.org/10.3389/frobt.2016.00040

    Article  Google Scholar 

  40. Radhakrishna Prabhu, S.G., Seals, R.C., Kyberd, P.J., Wetherall, J.C.: A survey on evolutionary-aided design in robotics. Robotica 36, 1804–1821 (2018). https://doi.org/10.1017/S0263574718000747

    Article  Google Scholar 

  41. Ren, G., Chen, W., Dasgupta, S., Kolodziejski, C., Wörgötter, F., Manoonpong, P.: Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation. Inf. Sci. 294(May), 666–682 (2015). https://doi.org/10.1016/j.ins.2014.05.001. http://dx.doi.org/10.1016/j.ins.2014.05.001

  42. Risi, S., Cellucci, D., Lipson, H.: Ribosomal robots. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 263–270 (2013). https://doi.org/10.1145/2463372.2463403

  43. Shah, D., Yang, B., Kriegman, S., Levin, M., Bongard, J., Kramer-Bottiglio, R.: Shape changing robots: bioinspiration, simulation, and physical realization. Adv. Mater. 2002882, 1–12 (2020). https://doi.org/10.1002/adma.202002882

    Article  Google Scholar 

  44. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1994, vol. 4, pp. 15–22. ACM Press, New York, USA (1994). https://doi.org/10.1145/192161.192167. http://portal.acm.org/citation.cfm?doid=192161.192167

  45. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007). https://doi.org/10.1007/s10710-007-9028-8

    Article  Google Scholar 

  46. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv, December 2017. http://arxiv.org/abs/1712.06567

  47. Thompson, D.M., Koppes, A.N., Hardy, J.G., Schmidt, C.E.: Electrical stimuli in the central nervous system microenvironment. Ann. Rev. Biomed. Eng. 16, 397–430 (2014). https://doi.org/10.1146/annurev-bioeng-121813-120655

    Article  Google Scholar 

  48. Vieira, W.A., Wells, K.M., McCusker, C.D.: Advancements to the axolotl model for regeneration and aging. Gerontology 66(3), 212–222 (2020). https://doi.org/10.1159/000504294

    Article  Google Scholar 

  49. Vogg, M.C., Galliot, B., Tsiairis, C.D.: Model systems for regeneration: hydra. Development (Cambridge) 146, 21 (2019). https://doi.org/10.1242/dev.177212

    Article  Google Scholar 

  50. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601, March 1983. https://doi.org/10.1103/PhysRev.113.1178. https://link.aps.org/doi/10.1103/PhysRev.113.1178

Download references

Acknowledgements

This work was supported by the Tobitate! (Leap for Tomorrow) Young Ambassador Program, a Sapere Aude: DFF-Starting Grant (9063-00046B), and KH’s Academist supporters (https://academist-cf.com/projects/119?lang=en) (Takaaki Aoki, Hirohito M. Kondo, Takeshi Oura, Yusuke Kajimoto, Ryuta Aoki).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horibe, K., Walker, K., Risi, S. (2021). Regenerating Soft Robots Through Neural Cellular Automata. In: Hu, T., Lourenço, N., Medvet, E. (eds) Genetic Programming. EuroGP 2021. Lecture Notes in Computer Science(), vol 12691. Springer, Cham. https://doi.org/10.1007/978-3-030-72812-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72812-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72811-3

  • Online ISBN: 978-3-030-72812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics