Evolution of Generative Design Systems for Modular Physical
Robots

Gregory S. Hornby

DEMO Lab. Computer Science Dept.

Abstract

Recent research has demonstrated the ability for au-
tomatic design of the morphology and control of real
physical robots using techniques inspired by biological
evolution. The main criticism of the evolutionary de-
sign approach, however, is that it is doubtful whether it
will reach the high complezities necessary for practical
engineering. Here we claim that for automatic design
systems to scale in complexity the designs they produce
must be made of re-used modules. Qur approach is
based on the use of a generative design grammar sub-
ject to an evolutionary process. Unlike o direct encod-
ing of a design, a generative design specification can
re-use components, giving it the ability to create more
complex modules from simpler ones. Re-used modules
are also valuable for improved efficiency in testing and
construction. We describe a system for creating gener-
ative specifications capable of hierarchical modularity
by combining Lindenmayer systems with evolutionary
algorithms. Using this system we demonstrate for the
first time a gemerative system for physical, modular,
2D locomoting robots and their controllers.

1 Introduction

Recent research has demonstrated the ability for auto-
matic design of engineering products using techniques
inspired by biological evolution, [1], [2], [3], [4], [5]
and [6]. The main criticism for the use of evolutionary
computation for design is that it is doubtful whether it
will reach the high complexities necessary for practical
engineering. Since the search space grows exponen-
tially with the size of the problem, search algorithms
that use a direct encoding for designs will not scale
to large designs. An alternative to a direct encoding
is a generative specification, which is a grammatical
encoding that specifies how to construct a design, [7]
and [8]. Similar to a computer program, a genera-
tive specification can allow the definition of re-usable

Hod Lipson

Brandeis University

Jordan B. Pollack

Waltham, MA 02454

sub-procedures allowing the design system to scale to
more complex designs than can be achieved with a
direct encoding [9].

Ideally an automated design system would start with
a library of basic parts and would iteratively create
new, more complex modules, from ones already in
its library. The principle of modularity is well ac-
cepted as a general characteristic of good design, as
it typically promotes decoupling and reduces com-
plexity [10]. In contrast to a design in which every
component is unique, a design built with a library of
standard modules requires less time to verify and test
each unique component in the design because there are
fewer unique components. Reduced complexity makes
manufacturing easier because there are fewer unique
components to construct, which also leads to a smaller
stockpile of spare parts necessary for maintenance and
repair. Similarly, decoupling leads to higher ease of
adaptability.

In the following section we outline the design space
and describe the components of our generative design
system. We then demonstrate both virtual and physi-
cal working robots whose morphology and control has
been designed by the system.

2 Method

Our design space consists of a Tinker-Toy?™ like
world where robots are built from bars of regular
length and both fixed and actuated joints, figure 1.
Actuated joints cycle through 60° with variable fre-
quency and relative phase offset. Static joints accom-
modate bars at fixed 60° angles.

A Lindenmayer system (L-system) is used as the gen-
erative specification language for designs and is opti-
mized by an evolutionary algorithm (EA). Using this
system we produce 2D mechanisms and their con-
trollers for locomotion in simulation. Designs pro-
duced by our system start with a basic library of sin-

Figure 1: Basic building blocks of the system: bars of
regular length and fixed and actuated joints.

gle bars and actuated joints with which they create,
and use, more complex modules. The resulting robots
are easily constructed from our basic Tinker-Toy-like
components.

EAs are a stochastic search and optimization tech-
nique inspired by natural evolution [11] and [12]. An
EA maintains a population of candidate solutions from
which it performs search by iteratively replacing poor
members of the population with individuals generated
by applying variation to good members of the popu-
lation.

L-systems are a grammatical rewriting system intro-
duced to model the biological development of multi-
cellular organisms [13]. Rules are applied in parallel to
all characters in the string just as cell divisions hap-
pen in parallel in multicellular organisms. Complex
objects are created by successively replacing parts of
a simple object by using the set of rewriting rules.
L-systems and EAs have been used both on their own
and together to create designs. L-systems have been
used mainly to construct tree-like plants, [14]. How-
ever, it is difficult to hand-make an L-system to pro-
duce a desired form. EAs have been used to evolve
bridges [4], wing shapes [3], flywheel designs and oth-
ers [5]. Although useful for creating good and novel
solutions to problems, the results are strongly de-
pendent on the representation being evolved, with
most representations directly parameterizing a pre-
specified model. L-systems have been combined with
EAs in previous work — such as the evolution of plant-
like structures [14], [15], and [16] and architectural
floor designs [17] — but only limited results have been
achieved. Except for [4], only a shape rendered on a
computer was created.

Automatic creation of robot morphology and con-

trollers has been done previously by [18], [19] and
[6], all of which used EAs to simultaneously create
the morphology and a neural controller in simulation.
Whereas [18] and [19] were not concerned with the fea-
sibility of their creations in reality, the focus of [6] was
to show that creatures created through evolution in
simulation could be successfully transferred to reality.
This work extends the latter results by using a design
encoding to achieve mechanisms with a higher piece-
count and a more complex regularity of form. This
demonstrates that our system is re-using discovered
modules thereby allowing it to scale to more complex
designs. We show that this method is feasible for the
production of real robots by successfully transferring
an evolved design to reality.

The system for creating generative designs consists of
the design builder and simulator, the L-system module
and the evolutionary algorithm. L-systems are evolved
by the evolutionary algorithm. Individual L-systems
are scored for their goodness by the design builder
and simulator. These modules are described in the
following sections.

2.1 Design Builder and Simulator

The design constructor builds a model from a sequence
of build commands. Once built, a model is simulated
and evaluated.

Table 1: Design Language

| Command | Description |
[] push/pop orientation to stack
{ block }(n) | repeat enclosed block n times
forward(n) add bar of length n
backward(n) | move up n levels of parents
joint(n) forward, end with an actuated
joint which moves at speed n
clockwise(n) | rotate heading clockwise n x 60°
counter- rotate heading counterclock-
clockwise(n) | wise n x 60°
increase- increase phase offset by n x 25%
offset(n)
decrease- decrease phase offset by n x25%
offset(n)

The command string consists of a sequence of build
commands that give instructions to a LOGO-style tur-
tle that is used to construct a creature from bars.
Commands are listed in table 1. [and] push and pop

the current state - consisting of the current bar, the
orientation and joint oscillation offset - to and from a
stack. Forward moves the turtle forward in the current
direction, creating a bar if none exists or traversing to
the end of the existing bar. Backward goes back up
the parent of the current bar. Clockwise and counter-
clockwise rotate the orientation in steps of 60°. And
joint is the same as forward except that if a new bar
is created, it ends with an actuated joint which os-
cillates over a range of 60°. The parameter to this
commands specifies the speed at which the joint oscil-
lates, using integer values from 1 to 5, and the relative
offset of the oscillation cycle is taken from the turtle’s
state. increase-offset and decrease-offset change the
offset value in the turtle’s state by +25% of a total
cycle. Command sequences enclosed by { } are re-
peated a number of times specified by the brackets’
argument.

Once an L-system specification is executed and the re-
sulting creature is constructed in simulation, its move-
ments are evaluated in a quasi-static kinematics sim-
ulator, similar to that used by Lipson and Pollack [6].
The kinematics are simulated by computing successive
frames, differing by small angular increments of actu-
ators. An update consists of moving each actuated
joint by joint-speed x0.024°, and then re-settling the
structure to a stable orientation.

(2) (b)

Figure 2: Sample L-creature.

For example, the string,

{ joint(1) [joint(1) forward(l)] clockwise(2) }(3),
is interpreted as: joint(1) [joint(1) forward(1)] clock-
wise(2) joint(1) [joint(1) forward(1) | clockwise(2)
joint(1) [joint(1) forward(1)] clockwise(2) and pro-
duces the creature in figure 2. X’s are used to show
the location of actuated joints. The left image shows

the creature with all actuated joints in their starting
orientation and the image on the right shows the same
creature with all actuated joints at the other extreme
of their actuation cycle. In this example all actuated
joints are moving in phase.

2.2 Parametric OL-Systems

The class of L-systems used as the encoding is a
parametric, context-free L-system (POL-system). For-
mally, a POL-system is defined as an ordered quadru-
plet, G = (V, X, w, P) where,
V is the alphabet of the system,
¥ is the set of formal parameters,
w € (V x ®*)T is a nonempty parametric word
called the axiom, and
PC(VxE)xCE)x(VxEE))* is a finite set
of productions.
The symbols : and — are used to separate the three
components of a production: the predecessor, the con-
dition and the successor. For example, a production
with predecessor A(n0, nl), condition n1>5 and suc-
cessor B(nl+1)cD(n1+40.5, n0-2) is written as:

A(n0,nl) :nl >5— B(nl+1)eD(n1+40.5,n0—2)

A production matches a module in a parametric word
iff the letter in the module and the letter in the produc-
tion predecessor are the same, the number of actual
parameters in the module is equal to the number of
formal parameters in the production predecessor, and
the condition evaluates to true if the actual parameter
values are substituted for the formal parameters in the
production.

For implementation reasons we add constraints to our
POL-system. The condition is restricted to be compar-
isons as to whether a production parameter is greater
than a constant value. Parameters to design com-
mands are either a constant value or a production pa-
rameter. Parameters to productions are equations of
the form: [production parameter | constant | [+ | —
| x | \'][production parameter | constant |. The
following is a POL-system using the language defined
in table 1 and consists of two productions with each
production containing two condition-successor pairs:

PO(n): n>2—{P0(n—-1) }(n)
n >0 — joint(1) Pl(n x 2) clockwise(2)
Pl(n): n>2—[Pl(n/4)]

n >0 — joint(1) forward(n)

If the POL-system is started with PO(3), the resulting

sequence of strings is produced:

PO(3)

{ PO(2) }(3)

{ joint(1) P1(4) clockwise(2) }(3)

{ joint(1) [P1(1)] clockwise(2) }(3)

{ joint(1) [joint(1) forward(1l)]| clockwise(2) }(3)

This produces the creature in figure 2.

2.3 Evolutionary Algorithm

An evolutionary algorithm is used to evolve individual
L-systems. The initial population of L-systems is cre-
ated by making random production rules. Evolution
then proceeds by iteratively selecting a collection of in-
dividuals with high fitness for parents and using them
to create a new population of individual L-systems
through mutation and recombination.

Mutation creates a new individual by copying the
parent individual and making a small change to it.
Changes that can occur are: replacing one com-
mand with another; perturbing the parameter to a
command by adding/subtracting a small value to it;
changing the parameter equation to a production;
adding/deleting a sequence of commands in a succes-
sor; or changing the condition equation.

Recombination takes two individuals, pl and p2, as
parents and creates one child individual, ¢, by making
it a copy of pl and then inserting a small part of p2
into it. This is done by replacing one successor of
¢ with a successor of p2, inserting a sub-sequence of
commands from a successor in p2 into ¢, or replacing
a sub-sequence of commands in a successor of ¢ with
a sub-sequence of commands from a successor in p2.

3 Experiments and Results

We now describe how our system has been used to
create modular designs that locomote in simulation
and were shown to work in reality.

To create designs we run our evolutionary algorithm
with 100 individuals for a maximum of 500 genera-
tions. The POL-systems used have fifteen productions
with each production having two parameters and three
sets of condition-successor pairs. Fitness is a function
of the distance moved by the creature’s center of mass
after 10 simulated seconds.

Evolutionary runs were similar in many ways. The
first individuals would mainly move their center of
mass while remain in a fixed location. Typically indi-

viduals with a repeating locomotion cycle would ap-
pear by generation 30 and these would compete to
be the dominant design in the population. Once con-
verged to one design the EA would try many variations
of it making slow and steady improvements. Periodi-
cally a new version would have a significantly greater
fitness and then the population would converge to this
variant.

Figure 3: The locomotion cycle of a walking star crea-
ture, built from 43 bars and 24 actuated joints. Notice
the regularity of structure.

Each evolutionary run was different, resulting in a va-
riety of different creatures, but all creatures could be
classed into one of the following families: crawlers who
would use one appendage to drag the rest of the body
forward; walkers who used legs to move with little
dragging; inch-worms that inched along; and rollers
that rotated their whole body to move, see figures 3
and 4.

Finally, we construct an actual robot from an evolved
design, the walking M in figure 4. Figure 5 shows two
parts of the locomotion cycle of a walking-M creature.
With its two outer arms 25% out of phase it moves
by bringing them together to lift its middle arm and
then to shift its center of mass to the right. One mod-
ification to the constructed robot is the addition of
sandpaper on the feet of the two outer arms to com-
pensate for the friction modeled by our simulator and
that of the actual surface used.

(©) (d)

Figure 4: Evolved creatures: a, a multi-legged walker
with 24 bars and 12 actuated joints; b, a rolling circle
with 23 bars and 6 actuated joints; ¢, an inch-worm
built from 143 bars and 16 actuated joints; and d,
an undullating serpent with 164 bars and 61 actuated
joints; Notice the re-use of components.

4 Discussion

The main difference between this and previous work is
that this work combines for the first time an evolution-
ary algorithm with a generative grammatical encoding
for the evolution of working robots. By acting as a
kind of program — complete with variables, loops and
subroutines — the generative encoding allows for the
same part of the encoding to be re-used, which makes
certain types of design changes easier. For example,
early versions of the star-creature, figure 3, used three
actuated joints in the legs instead of four. For EAs, or
any optimization algorithm, to move to legs with four
actuated joints only one change to the leg-building
code needed to occur. With a direct encoding, this
change would need to take place in all six uses of the
leg simultaneously.

Carrying over the notion of modularity from the vir-
tual to the physical world, our work uses modular
building blocks that are hand-assembled to produce
actual robots. Robots constructed with these parts
can later be disassembled so that the parts can be re-
used to build other robots. In principle, we are also
capable of automatic manufacture of these robots in

Figure 5: Two parts of the locomotion cycle of a walk-
ing creature — a and b are from simulation, ¢ and d
from the physical robot. Notice the repetition and
the symmetry.

addition to our automated design using rapid proto-
typing techniques (although motors and circuits would
still need to be hand-assembled).

This system also has applications for reconfigurable
robots. Using a single robot module as a basic building
block, group morphology and control strategies can be
developed.

5 Conclusion

A system for automatically producing generative de-
sign systems with repeated components was achieved
by using evolutionary algorithms to optimize para-
metric Lindenmayer-systems. Using this system 2D
robots for locomotion with regular forms were de-
signed consisting of more than 100 components. An
evolved robot was successfully transferred to the real
world.

Acknowledgements

This research was supported in part by the De-
fense Advanced Research Projects Administration
(DARPA) Grant No. DASG60-99-1-0004. The au-
thors would like to thank the members of the DEMO
Lab: A. Bucci, E. DeJong, S. Ficici, P. Funes, S. Levy,
O. Melnik, S. Viswanathan and R. Watson.

References

[1] Couro Kane and Marc Schoenauer. Genetic opera-
tors for two-dimentional shape optimization. In J.-
M. Alliot, E. Lutton, E. Ronald, M. Schoenauer,
and D. Snyers, editors, Artificiale Evolution - EA95.
Springer-Verlag, 1995.

[2] P. J. Bentley. Generic Evolutionary Design of Solid
Objects Using a Genetic Algorithm. PhD thesis, Uni-
versity of Huddersfield, 1996.

[3] P. Husbands, G. Germy, M. Mcllhagga, and R. Ives.
Two applications of genetic algorithms to component
design. In T. Fogarty, editor, Evolutionary Comput-
ing. LNCS 1143, pages 50—-61. Springer-Verlag, 1996.

[4] P. Funes and J. Pollack. Computer evolution of build-
able objects. In Phil Husbands and Inman Harvey, ed-
itors, Proceedings of the Fourth European Conference
on Artificial Life, pages 358-367, Cambridge, MA,
1997. MIT Press.

[5] P. J. Bentley, editor. Ewvolutionary Design by Com-
puters. Morgan Kaufman, 1999.

[6] H. Lipson and J. B. Pollack. Automatic design and
manufacture of robotic lifeforms. Nature, 406:974—
978, 2000.

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Marc Schoenauer. Shape representations and evo-
lution schemes. In L. J. Fogel, P. J. Angeline, and
T. Béck, editors, Evolutionary Programming 5. MIT
Press, 1996.

Peter Bentley and Sanjeev Kumar. Three ways to
grow designs: A comparison of embryogenies of an
evolutionary design problem. In Banzhaf, Daida,
Eiben, Garzon, Honavar, Jakiel, and Smith, editors,
Proc. Genetic and Evolutionary Computation Confer-
ence, pages 35-43, 1999.

Gregory S. Hornby and Jordan B. Pollack. The advan-
tages of generative grammatical encodings for physi-
cal design. In Congress on Evolutionary Computation,
2001.

Nam P. Suh. The Principles of Design. Oxford Uni-
versity Press, 1990.

J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

Thomas Bick, Frank Hoffmeister, and Hans-Paul
Schwefel. A survey of evolution strategies. In Richard
K. Belew; Lashon B. Booker, editor, Proc. of the
Fourth Int. Conf. on Genetic Algorithms, pages 2-9.
Morgan Kaufmann, 1991.

A. Lindenmayer. Mathematical models for cellular
interaction in development. parts i and ii. Journal of
Theoretical Biology, 18:280-299 and 300-315, 1968.

P. Prusinkiewicz and A. Lindenmayer. The Algorith-
mic Beauty of Plants. Springer-Verlag, 1990.

Christian Jacob. Genetic l-system programming. In
Y. Davidor and P. Schwefel, editors, Parallel Prob-
lem Solving from Nature, Lecture Notes in Computer
Science, volume 866, pages 334-343. Springer-Verlag,
1994.

G. Ochoa. On genetic algorithms and lindenmayer
systems. In A. Eiben, T. Baeck, M. Schoenauer, and
H. P. Schwefel, editors, Parallel Problem Solving from
Nature V, pages 335—-344. Springer-Verlag, 1998.

Paul Coates, Terence Broughton, and Helen Jackson.
Exploring three-dimensional design worlds using lin-
denmayer systems and genetic programming. In Pe-
ter J. Bentley, editor, Evolutionary Design by Com-
puters. Morgan Kaufmann, 1999.

Karl Sims. Evolving 3d morphology and behavior by
competition. In R. Brooks and P. Maes, editors, Pro-
ceedings of the Fourth Workshop on Artificial Life,
pages 28-39, Boston, MA | 1994. MIT Press.

Maciej Komosinski and Adam Rotaru-Varga. From
directed to open-ended evolution in a complex sim-
ulation model. In Bedau, McCaskill, Packard, and
Rasmussen, editors, Artificial Life 7, pages 293—299.
Morgan Kaufmann, 2000.

