
Explainable A.I.: the promise of Genetic
Programming Multi-run Subtree Encapsulation

Daniel Howard
Mark A. Edwards

Howard Science Ltd, Malvern, UK
dr.daniel.howard@gmail.com

Abstract— Deep Learning and other Artificial Neural
Network based solutions are rarely transparent, and white-box
solutions are often called for. This paper explains how Multi-
run Subtree Encapsulation can provide equivalent white box
solutions to facilitate Explainable Artificial Intelligence.

Keywords— Explainable Artificial Intelligence, A.I., Genetic
Programming, Evolutionary Computation, modularization,
Subtree Encapsulation, Automatically Defined Functions,
Software Evolution, white box, black box, expression
simplification, Deep Learning, Artificial Neural Networks, Multi-
run Subtree Encapsulation, subtree database.

I. MULTI-RUN SUBTREE ENCAPSULATION
Howard Science software achieves an equivalent white-

box solution to an existing black-box or neuromorphic
solution such as by Deep Learning to a commercial or
industrial problem. Although performance against test data
may validate the black-box model, for some requirements,
this validation is insufficient – there is a need to understand
how inputs combine to get to outputs and why. There is a
need for Explainable Artificial Intelligence.

This paper describes a capability of Howard Science
based on an algorithm first introduced in 2001 by the author
of the present paper, D. Howard, and his then co-authors S.
C. Roberts and J. R. Koza [1-3]. Known as Multi-Run
Subtree Encapsulation (MRSE) this atomizes encapsulated
subtrees (ESTs) as terminals (building blocks) across runs.
MRSE is a less well-known strategy of modularization in
Genetic Programming (GP) [4] than Automatically Defined
Functions (ADFs) [5]. While ADFs can be thought of as
subroutines, ESTs are function subprograms.

 MRSE is the first successful EST scheme [2-3] since
earlier efforts at ESTs did not demonstrate clear advantages
over standard GP. It was not until the multi-run idea was
paired with ESTs that real benefit was discovered for
problems such as parity problems which standard GP could
not solve but that both MRSE GP and ADFs GP could
indeed solve efficiently [2].

While, GP experiments in [4-5] adopt the practice of
taking random test points such that GP delivers a robust
result, an important note about MRSE is that it only holds if
the test points for the GP fitness function cannot change
during the MRSE runs. This is not generally allowed as the
equivalence between subtrees relies on the constancy of test
points. For many problems of practical interest, however,
this restriction is inconsequential.

II. DEVELOPMENT OF MRSE: ORIGINAL MOTIVATION
Development of MRSE followed from an idea to use

ESTs to save compute time in evaluating evolving GP trees.

Crossover is important in standard GP. Figure 1 illustrates a
crossover operation. Two GP individuals (left of figure row
above) participate in crossover with two possible offspring
(left of figure row below). If the result of evaluating the
subtrees below the cross over points, over all of the problem
test points (could be thousands of points in Computer Vision
[1]) are stored in a database (right of figure) as soon as these
subtrees should appear in the population, then the evaluation
of the offspring takes fewer floating point operations because
the pre-computed values are available from storage.

Figure 1 Crossover subtree database calculation savings.

In practice, however, this scheme does not guarantee

faster computation because it depends on how big the
database is and how long it takes to search it and to retrieve
stored evaluations for the subtrees. Several variables that
depend on problem; coding; OS and hardware render the use
of the database to assist with computation advantageous or
not as compared to recalculating the subtrees for the new
offspring.

Another use of the subtree database that was posited at
that time gave rise to MRSE: that is to encapsulate/atomize
and use ESTs across contiguous GP runs/computations. For
simplicity, the following describes an MRSE with a multi-
run hierarchy of two runs:

 Run GP on the problem for 5 generations.

 Select several ESTs and atomize them (name them
as new GP terminals).

 Add these to the original GP terminals to initialize
another brand-new run of GP.

 Rely on a terminal mutation operator during this
second GP run to ensure this large number of new
terminals makes its presence felt in many GP trees
as they evolve. Run GP to completion.

158

2018 International Conference on Machine Learning and Data Engineering (iCMLDE)

978-1-7281-0404-1/19/$31.00 ©2019 IEEE
DOI 10.1109/iCMLDE.2018.00037

III. ENCAPSULATED SUBTREES AND MRSE
The original motivation for using EST had been to store

partial computations into a database during a GP run such
that subtrees could be obtained from memory on the fly and
not having to be re-computed when a new individual created
by a genetic operation, typically crossover involved
computing the subtree. As part of that database registration
process, subtrees of different sizes appeared that had the
same exact (or extremely close) evaluation vector as shown
in Figure 2, see [1].

As far as the computational problem is concerned subtrees
of different makeup but with the same evaluation vector are
the same subtree! This is important.

Figure 2 Subtree Database illustration.

Figure 2 provides more detail by means of an illustration.

The presence of subtrees in all GP trees in the run is on the
left. Subtrees that evaluate to the same result vector are
assumed to be the same subtree. If we were to try to
algebraically simplify these subtrees there is a good chance
that this would be so, but they are equal or almost equal only
at the test points.

On the right of Figure 2 is a count for each subtree type.
Frequency is a sign of a common building block. There is
ambiguity as to which subtrees constitute useful material,
useful building blocks. This is important as MRSE must
select a number of these ESTs as terminals for the next run.
Should one select the most frequent subtrees? Should one
select those who emanate from GP trees of high frequency.
How should the ESTs for atomization for the next run of
MRSE be selected? Strategies that have proved successful
have chosen these randomly or by their frequency [1-3]. In
figure 2 one subtree type has a count (frequency) of 5 and is
circled.

Arguably, the success of MRSE at solving the parity
problem [2-3] is owed to the mobility and diversity that is a
property of such encapsulations and atomization into GP
terminals. The secret to solving the parity problem is to
discover the XOR building block and so this atomization
assists greatly in this. Standard GP is inefficient at solving
the parity problems, indeed it usually fails while GPs that use
ADFs or MRSE do solve the parity problems [2].

Another advantage of MRSE over standard GP is
compute- time. MRSE stops each run only after 5 or so
generations One of the fundamental problems of GP is bloat
but this becomes a problem as the code gets very big. EST as
terminals pack a punch as they embody significant algebraic
expressions decreasing the need for large GP trees. Arriving
at the answer is quicker, evolution is quicker than with
standard GP [1].

IV. MRSE’S ROLE IN EXPLAINABLE A. I.
Notice in Figure 2, that the simplest subtree structure is

selected to represent the subtree class. Thus, when the
solution is obtained that contains ESTs these are
computationally simple, and, in principle, the resulting
overall expression can be computed efficiently: the
evaluation is organized for the EST terminals can be
computed once on the data and applied wherever they should
appear (as terminals) and also the ESTs themselves are if not
the simplest, the simplest of the GP discovered algebraic
expressions.

This has the potential to reduce computational time but
more importantly for Explainable A.I. it also eases the
understandability of the resulting expressions. Either by
direct use of GP or by reverse engineering a neuromorphic
solution, any process that eases simplification of the resulting
GP expressions is of great benefit to Howard Science as it
sheds light on the workings of black-box approaches that are
based on Artificial Neural Networks such as Deep Learning.

REFERENCES
[1] Roberts S.C., Howard D., Koza J.R. (2001), “Evolving modules in

Genetic Programming by subtree encapsulation”. In Julian F. Miller
and Marco Tomassini and Pier Luca Lanzi and Conor Ryan and
Andrea G. B. Tettamanzi and William B. Langdon editors, Genetic
Programming, Proceedings of EuroGP'2001, volume 2038, pages
160-175, Lake Como, Italy, 2001. Springer-Verlag.

[2] Roberts S.C., Howard D., Koza J.R. (2001), "Subtree encapsulation
versus ADFs in GP for parity problems". In Lee Spector and Erik D.
Goodman and Annie Wu and W. B. Langdon and Hans-Michael
Voigt and Mitsuo Gen and Sandip Sen and Marco Dorigo and
Shahram Pezeshk and Max H. Garzon and Edmund Burke editors,
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), page 186, San Francisco, California,
USA.

[3] Daniel Howard (2003). "Modularization by Multi-Run Frequency
Driven Subtree Encapsulation". In Rick L. Riolo and Bill Worzel
editors, Genetic Programming Theory and Practice, chapter 10, pages
155-171. Kluwer, 2003.

[4] Koza J. (1992), Genetic Programming: On the Programming of
Computers by Means of Natural Selection: v. 1 (Complex Adaptive
Systems), MIT Press, Cambridge.

[5] Koza J. (1994), “Genetic Programming II: Automatic Discovery of
Reusable Subprograms”, MIT Press.

159

