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Abstract— Deep Learning and other Artificial Neural 
Network based solutions are rarely transparent, and white-box 
solutions are often called for.  This paper explains how Multi-
run Subtree Encapsulation can provide equivalent white box 
solutions to facilitate Explainable Artificial Intelligence.  
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I. MULTI-RUN SUBTREE ENCAPSULATION 
Howard Science software achieves an equivalent white-

box solution to an existing black-box or neuromorphic 
solution such as by Deep Learning to a commercial or 
industrial problem.  Although performance against test data 
may validate the black-box model, for some requirements, 
this validation is insufficient – there is a need to understand 
how inputs combine to get to outputs and why.  There is a 
need for Explainable Artificial Intelligence. 

This paper describes a capability of Howard Science 
based on an algorithm first introduced in 2001 by the author 
of the present paper, D. Howard, and his then co-authors S. 
C. Roberts and J. R. Koza [1-3].  Known as Multi-Run 
Subtree Encapsulation (MRSE) this atomizes encapsulated 
subtrees (ESTs) as terminals (building blocks) across runs.  
MRSE is a less well-known strategy of modularization in 
Genetic Programming (GP) [4] than Automatically Defined 
Functions (ADFs) [5]. While ADFs can be thought of as 
subroutines, ESTs are function subprograms. 

 MRSE is the first successful EST scheme [2-3] since 
earlier efforts at ESTs did not demonstrate clear advantages 
over standard GP.  It was not until the multi-run idea was 
paired with ESTs that real benefit was discovered for 
problems such as parity problems which standard GP could 
not solve but that both MRSE GP and ADFs GP could 
indeed solve efficiently [2]. 

While, GP experiments in [4-5] adopt the practice of 
taking random test points such that GP delivers a robust 
result, an important note about MRSE is that it only holds if 
the test points for the GP fitness function cannot change 
during the MRSE runs.  This is not generally allowed as the 
equivalence between subtrees relies on the constancy of test 
points.  For many problems of practical interest, however, 
this restriction is inconsequential. 

II. DEVELOPMENT OF MRSE: ORIGINAL MOTIVATION  
Development of MRSE followed from an idea to use 

ESTs to save compute time in evaluating evolving GP trees.  

Crossover is important in standard GP.  Figure 1 illustrates a 
crossover operation.  Two GP individuals (left of figure row 
above) participate in crossover with two possible offspring 
(left of figure row below).  If the result of evaluating the 
subtrees below the cross over points, over all of the problem 
test points (could be thousands of points in Computer Vision 
[1]) are stored in a database (right of figure) as soon as these 
subtrees should appear in the population, then the evaluation 
of the offspring takes fewer floating point operations because 
the pre-computed values are available from storage. 

 
Figure 1 Crossover subtree database calculation savings. 

 
In practice, however, this scheme does not guarantee 

faster computation because it depends on how big the 
database is and how long it takes to search it and to retrieve 
stored evaluations for the subtrees.  Several variables that 
depend on problem; coding; OS and hardware render the use 
of the database to assist with computation advantageous or 
not as compared to recalculating the subtrees for the new 
offspring. 

Another use of the subtree database that was posited at 
that time gave rise to MRSE: that is to encapsulate/atomize 
and use ESTs across contiguous GP runs/computations. For 
simplicity, the following describes an MRSE with a multi-
run hierarchy of two runs: 

 Run GP on the problem for 5 generations. 

 Select several ESTs and atomize them (name them 
as new GP terminals). 

 Add these to the original GP terminals to initialize 
another brand-new run of GP. 

 Rely on a terminal mutation operator during this 
second GP run to ensure this large number of new 
terminals makes its presence felt in many GP trees 
as they evolve.  Run GP to completion. 
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III. ENCAPSULATED SUBTREES AND MRSE 
The original motivation for using EST had been to store 

partial computations into a database during a GP run such 
that subtrees could be obtained from memory on the fly and 
not having to be re-computed when a new individual created 
by a genetic operation, typically crossover involved 
computing the subtree.  As part of that database registration 
process, subtrees of different sizes appeared that had the 
same exact (or extremely close) evaluation vector as shown 
in Figure 2, see [1].   

As far as the computational problem is concerned subtrees 
of different makeup but with the same evaluation vector are 
the same subtree!  This is important.   

 
Figure 2 Subtree Database illustration. 

 
Figure 2 provides more detail by means of an illustration.  

The presence of subtrees in all GP trees in the run is on the 
left.  Subtrees that evaluate to the same result vector are 
assumed to be the same subtree.  If we were to try to 
algebraically simplify these subtrees there is a good chance 
that this would be so, but they are equal or almost equal only 
at the test points.  

On the right of Figure 2 is a count for each subtree type.  
Frequency is a sign of a common building block.  There is 
ambiguity as to which subtrees constitute useful material, 
useful building blocks.  This is important as MRSE must 
select a number of these ESTs as terminals for the next run.  
Should one select the most frequent subtrees?  Should one 
select those who emanate from GP trees of high frequency.  
How should the ESTs for atomization for the next run of 
MRSE be selected?  Strategies that have proved successful 
have chosen these randomly or by their frequency [1-3].  In 
figure 2 one subtree type has a count (frequency) of 5 and is 
circled. 

Arguably, the success of MRSE at solving the parity 
problem [2-3] is owed to the mobility and diversity that is a 
property of such encapsulations and atomization into GP 
terminals.  The secret to solving the parity problem is to 
discover the XOR building block and so this atomization 
assists greatly in this.  Standard GP is inefficient at solving 
the parity problems, indeed it usually fails while GPs that use 
ADFs or MRSE do solve the parity problems [2]. 

Another advantage of MRSE over standard GP is 
compute- time. MRSE stops each run only after 5 or so 
generations One of the fundamental problems of GP is bloat 
but this becomes a problem as the code gets very big. EST as 
terminals pack a punch as they embody significant algebraic 
expressions decreasing the need for large GP trees.  Arriving 
at the answer is quicker, evolution is quicker than with 
standard GP [1]. 

IV. MRSE’S ROLE IN EXPLAINABLE A. I. 
Notice in Figure 2, that the simplest subtree structure is 

selected to represent the subtree class.  Thus, when the 
solution is obtained that contains ESTs these are 
computationally simple, and, in principle, the resulting 
overall expression can be computed efficiently: the 
evaluation is organized for the EST terminals can be 
computed once on the data and applied wherever they should 
appear (as terminals) and also the ESTs themselves are if not 
the simplest, the simplest of the GP discovered algebraic 
expressions.  

This has the potential to reduce computational time but 
more importantly for Explainable A.I. it also eases the 
understandability of the resulting expressions.  Either by 
direct use of GP or by reverse engineering a neuromorphic 
solution, any process that eases simplification of the resulting 
GP expressions is of great benefit to Howard Science as it 
sheds light on the workings of black-box approaches that are 
based on Artificial Neural Networks such as Deep Learning. 
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