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Abstract— Nature likely implements modularization in 
multicellular developmental biology using the chemical context 
of the cell, cell division generational distance, and genetic 
triggers. Inspired in this, Evomorph is a proposed heuristic 
method of Artificial Intelligence that pairs these concepts with 
Evolutionary Computation. It is described here as a flexible 
template matching for object detection in Machine Vision. 
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I. INTRODUCTION 
An apparent code reuse is observed in many repeated 

patterns in Nature.  In particular, one sees repetition of shape 
in a multicellular life form such as our eyes, ears and limbs.  

Biological research has confirmed that Turing’s diffusion 
driven instability [1] specializes this modularity resulting in 
slight differences between modular shapes. Complex patterns 
can be established by slow activation and faster inhibition 
altering the re-used component. Although these ideas are not 
yet comprehensively adopted, in future, they have scope to 
greatly enhance the method that is proposed in this paper. 

II. INSPIRED IN EMBRYOLOGY 
Figure 1 illustrates a simplistic model of developmental 

biology that inspires the method.  It consists of three 
elements: (1) cell DNA, (2) communicated chemistry and (3) 
external stimuli. It encompasses basic ideas from [2]. 

A single cell produces a daughter cell, and the daughter 
cell then produces a grandchild cell and so on.  Defining cell 
division generational distance as a count of the divisions that 
took place from the initial cell, the chemical context of each 
cell is a function of the chemical context of the parent cell 
and becomes altered with distance.  Both intracellular 
chemicals and external stimuli will determine the activated 
instruction of the DNA, which gene is invoked or fired. 

 
Figure 1. Cell division that achieves modularization 

The changing chemical context is inspired in the Biology 
of Gap Junctions, intercellular connections that directly 
bridge the cytoplasm of two cells. These allow various 
molecules, ions and electrical impulses to directly pass 
through a regulated gate here between adjoining cells. 

The dark cells in Figure 1 represent one start and two 
stop cells.  The initiator cell is in the centre of this diagram. 
This cell is special in that it produces two or more daughter 
cells. A multicellular structure emerges by cell division.  To 
simplify the presentation, assume that the external stimuli is 
absent.  As the organism grows, the chemical context of 
distant relatives becomes different from that of the 
progenitor cell.  Under no external stimuli, and if 
maintaining symmetry then at some generational distance a 
different gene is triggered to alter the direction of growth.  
In this diagram cells that change the direction of growth are 
shown as clear (not shaded).  

Two symmetrical structures, equivalent to limbs in a real 
multicellular organism emerge from this process.  Note that 
this is unlike methods of Artificial Intelligence such as 
Genetic Programming (GP) that evolve the implicit or 
explicit modularizations and their reuse [5-12]. In the 
proposed model the modularization concerns shape and 
morphology of the organism.  In Figure 1, it is cell division 
distance dictated by the chemical context of the cell that 
determines when and where to invoke reuse. 

This computational model is but a gross simplification 
of the true mechanics of cell differentiation from stem cells 
into non-stem cells and related symmetric and asymmetric 
cell division. In Figure 1, the clear (not shaded) cells 
indicate a point of differentiation between cells.  It is the 
point at which sufficiently altered DNA expression 
represents a significant change, a change that exceeds a 
threshold, a trigger.  An enriched version of this model 
would permanently change DNA expression in the daughter 
cells. The algorithm is inspired in the mechanics of cell 
biology and embryonic development as described by 
(Trosko, personal communication, [2]): 

“Pursuant to exogenous factors, the normal organ 
specific stem cell can divide symmetrically or 
asymmetrically, with cancer cells having lost this ability to 
respond to those exogenous factors, dividing only 
symmetrically.  If the body needs more stem cells, then the 
stem cell divides symmetrically.  If the body needs more 
differentiated cells, then the stem cell divides 
asymmetrically upon receiving a critical signal.  The 
“initiated stem cell”, the normal cell that is altered when a 
critical gene is mutated as a response to the asymmetrical 
division inducing exogenous signal can, from then on, only 
divide symmetrically.  There is still a lot of mystery 
regarding the identity of the exogenous signal and its 
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receptor, the critical gene and what it codes for: the 
Biochemical pathway triggered by the gene. 

A theory I currently favor is that several exogenous 
factors control whether stem cell division is asymmetric or 
symmetric: (a) extra-cellular or cell adhesion molecules 
found in stem cell niches and (b) oxygen levels, for which 
the niche emerged by natural selection to control oxygen 
tension. A reason for (a) is that this critical gene must code 
for an extra-cellular protein, possibly a cell adhesion 
molecule in the stem cell niche. Why? Because when stem 
cells grow on feeder layers or irradiated stromal cells, they 
divide symmetrically, but when grown on specific 
extracellular matrices they can divide either symmetrically 
or asymmetrically pursuant of the nature of the matrix.  
Moreover, with respect to (b), all other factors held 
constant, if oxygen levels are low then stem cells divide 
symmetrically for longer, but if oxygen levels are high then 
stem cells divide asymmetrically. 

More interestingly, if you put senesced cells on the 
extracellular matrix of young cells then they regain the 
ability to become non-senesced young cells, but if you 
instead place young cells on the extracellular matrix of 
senescent cells then they senesce.  This may be explained as 
follows.  When a stem cell sets down on its niche 
extracellular matrix it receives a signal via that interaction, 
setting off an intracellular pathway, a biochemical reaction, 
but it also receives signals from the physiological micro-
environment: oxygen; amino acids; ions, vitamin growth 
factors; hormones; etc.  Each of these signals sets off 
different intracellular signaling pathways.  There must be 
an interaction between these and the pathway triggered by 
the extracellular matrix with a resulting sending of 
intracellular signals to the cell nucleus to turn on or off 
certain genes.  This signaling also turns on and off the 
connexin or gap function genes, and concurrently also 
enacts either a vertical or horizontal plane of cell division. 

This means that the cell which receives the signals 
corresponding to low oxygen and a given extracellular 
matrix in the niche now divides in a vertical plane and 
symmetrically.  Both daughter cells are now attached to the 
matrix to receive the same extracellular signals.  Both will 
have the exact same interior physiology, same gene 
expression and same methylation of DNA patterns.  In the 
low oxygen “regime” and quiescent niche the stem cell will 
not experience gap junction communication. 

A horizontal plane of cell division, however, is obtained 
when the cell is placed on a different extracellular niche 
matrix and it receives the extracellular signal 
corresponding to high oxygen or a specific growth factor. 
Now the mother cell which is attached to the niche 
extracellular matrix obtains as net effect of all these 
endogenous signals that it should remain a stem cell, but the 
daughter on top of her no longer receives the signal from 
the extracellular matrix, and its new micro-environment 
driven signals turn on the gap junction communication 
channels required for differentiation.” 

This knowledge from Biology inspires involving these 
three model elements towards Figure 1: (1) immutable 
DNA, (2) a cytoplasm context altered by the gap function 
communication and (3) the exogenous factor inputs. 

The idea of the black stop cells of Figure 1 can be 
justified and understood with respect to a related Biological 

explanation, again from (James E. Trosko, personal 
communication, [2]): 

Stem cells have only a few mitochondria, metabolizing 
glucose via glycolysis. As soon as they are exposed to 
oxygen, the Oct4 gene (the ultimate stem cell gene) is shut 
off and mitochondriogenesis occurs and the cell starts to 
metabolize glucose with abundant mitochondria via 
oxidative phosphorylation. It starts to multiply the 
mitochondria to the thousands, that is when it starts to lose 
its “stemness”, starts to differentiate, and turns on its gap 
junction genes.  It goes from a stem cell producing only a 
few ATP molecules from the glycolytic metabolism of 
glucose to producing about 17 ATP molecules per 
metabolism of glucose from oxidative phosphorylation. That 
means the stem cell has little excess energy to do anything 
besides staying alive, but the differentiated cell with tons of 
energy can use that energy to do many more adaptive tasks 
like make muscle, eye, brain, and liver cells. 

When technology should become available to study the 
aforementioned transition from a low oxygen existing, 
quiescent stem cell with a few mitochondria, expressed Oct4 
gene but no expressed gap junction gene, and only a few 
ATP molecules being produced during glycolysis, to a 
physiologically different state where high oxygen is present, 
oxidative phosphorylation is producing many ATP 
molecules in the presence of hundreds of mitochondria, no 
expressed Oct4 gene but expressed gap junction gene, then 
that is when one can identify the “new physiological state” 
that determines the new complex pathways between 
induction of intracellular signals that start to turn off and 
on genes, which, in turn, alters the physiological state of 
differentiated cells and the loss of “stemness”. It would be 
the state by which the stem cell loses its “virginity” and, in 
my opinion, there is no reverting back to that virgin state. 

When differentiated cells metabolize glucose via 
oxidative phosphorylation with their many mitochondria, 
they not only produce lots of ATP, but also many free 
radicals that can damage their cellular macromolecules, 
such as proteins, nucleic acids and membranes. That is why 
these differentiated cells usually have different kinds of 
protective mechanisms that salvage free radicals or to 
repair enzymes. However, even with these, the 
mitochondrial DNA is prone to mitochondrial (not genomic) 
DNA damage. If the cell losses one, two or a couple 
hundred mitochondria, it still can function and survive. 
When it loses too many, that is the signal for the cell to 
commit suicide or “apoptosis”. 

The simple model of Figure 1 could not only be further 
enhanced by a more faithful implementation of all of the 
above discussion but also, as already mentioned, by yet 
other thinking in Mathematical Biology [1] [3-4].   

III. ALTERNATIVE MACHINE VISION EXAMPLE 
The problem of machine vision considered is the 

problem of detecting an object of large variability and poor 
definition, a class of object.  Let us look at an existing 
solution to this challenge [5-8] [12] and examine similarities 
and differences between it and a proposed bio-inspired 
method that draws upon the ideas of Figure 1.  

As a post processor to a more standard object detection 
method, a computational ant explores the context of this 
detection to try to eliminate false alarms through exploration 
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of the context of the identification, e.g. which look like 
vehicle features but turn out to be pieces of the road or air 
vents on buildings as illustrated in Infrared IRLS sensor data 
from a Tornado fighter aircraft, Figure 2.  

 
Figure 2  Multi-stage GP discovered vehicle detector [7]. 
Context becomes necessary to rule out false positives. 

 
Starting at a suspected target, points in Figure 2, this 

computational ant meanders and at times becomes excited 
and deposits flags [5-6].  Figure 3 illustrates typical paths.   

 
Figure 3 Paths taken by the computational ant [5-6]. 

 
An evolved function that takes for its input statistics 

about the distribution of these deposited flags (see [6] and 
RPB of Figure 4) uses this flag evidence to make the 
determination on whether the starting point was a genuine 
target or a false alarm. 

How is this computational ant and flag placing algorithm 
discovered by GP?  It was deliberately designed in what 
John Koza once described as “the principle of prospective 
analysis” [9].  That is, it enforces a helpful solution 
architecture.  It is some way to incorporate analytical 
knowledge leaving GP to fill the details. Here, it implements 
a strategy reminiscent of foveation in animal vision.   

Figure 4 reveals four branches to the ant algorithm, each 
evolving independently from an image truth to reject false 
alarms and retain true positives.  The first branch, labelled 
M, moves the ant. It consults the second and third branch T? 
and F? which decide whether to turn the ant and whether to 
plant a flag at the location of the ant respectively.  Once the 
ant ends its walk, statistics derived from the location of the 
flags are drawn and used in the result producing branch, 
labelled RPB.  A positive evaluation of the RPB indicates 
the ant believes this to be an object, while a negative 
evaluation of the RPB means the starting point is a false 
alarm.  The ant carries sensors that measure averages and 
standard deviations of pixel values in four directions and on 
concentric rings and textural statistics of a pixel area.  
Details can be found in [6]. 

 
Figure 4  Genetic Programming implementation of ant. 

 

IV.  MODULARIZATION 
GP does implement modularization and code re-use. For 

example, the M branch in Figure 4 explicitly re-uses or 
invokes the results of branches T? and F?: subroutines 
called by branch M.  However, this re-use is dissimilar to 
that of Figure 1.  What transpires in Figure 1 is that the same 
exact gene (all cells carry all genes) is fired in two cells at 
some distance from each other, thus producing symmetry, a 
type of modularized re-use, though not necessarily an 
identical but perhaps a congruent pattern, e.g., consider our 
human hands or ears, which are similar but indeed reflected. 

Imagine a machine vision scheme where pattern re-use 
could be exploited in the detection of chairs from other 
objects in an image.  Figure 5 shows some possible chairs.   

 
Figure 5  e.g. chair concept to be detected in imagery 

   

In the discussed GP machine vision [5-8] [12] scheme 
code gets reused in GP trees, or as a subroutine: 
Automatically Defined Function [10] or as a function sub-
program or encapsulated subtree [11-12]. GP could in 
principle reuse the “leg” pattern but in practice, a uniquely 
representative module is seldom obtained by evolution that 
corresponds to the sub-object [11].  Dividing runs into 
explicit stages [7], resembling bagging and boosting prior to 
the popularity of such nomenclature, does achieve a type of 
sub-object identity as in Figure 6, but not as a module, as 
here, multirun GP drives unspecific data splitting [7-8]. 

 
Figure 6  Vehicle detection with separate runs of GP [7]. 
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V. SUGGESTED SCHEME: EVOMORPH 
GP can implement modularization and code re-use. For 

example, M branch in Figure 4 explicitly re-uses/invokes 
the output of branches T? and F?: subroutines that it calls.  
Yet, Figure 1 suggests an alternative algorithm, a powerful 
scheme which reminds of a function-like flexible image 
morphological template matching-like scheme endowed 
with pixel location-controlled modularization. It could also 
enjoy other Mathematical Biology properties [1][3-4]. It is 
proposed for the first time here as seed for further research. 

As with the computational ant scheme, a starting point is 
needed and, as in the ant scheme, this is taken from a pre-
processor - a cruder quicker detector that also produces false 
alarms.  The idea is to use GP to evolve: (1) the DNA (a 
memory); (2) the makeup of the “chemistry” in the 
progenitor (starting) cell (a computer program); (3) the rate 
of transmission of “chemistry” from mother to daughter via 
gap functions (computer program with a memory that 
accounts for cell generational distance).; (4) the function 
that takes this intracellular chemistry and exogenous inputs 
(pixel values of the image sensed) to fire the gene that tells 
how to divide and when to slow down or stop. (5) that 
function that takes all inputs to compute a small template at 
cell location.  Once the organism is built, templates are 
checked against each localized pixel-based statistics. GP 
fitness measures the degree of overall template matching.  If 
matched considerably then the object is detected else not.   

Consider Figure 7.  The scheme needs to detect “chair” 
as distinct from everything else, for example, a chandelier. 

 
Figure 7  Detect the concept chair as distinct from other 
objects such as chandelier. 

 
Cells should be bigger than m pixels, e.g. m = 20, 

because pixel jumps are necessary for speed and because 
template matching must work on a pixel patch.  Figure 8 
shows an evaluation in progress. It may be that the template 
matches the image exactly or not. Even so, the fitness is 
driven by the evaluation of the template matching! The 
scheme should work learning to detect an object class of 
large variability and of poor definition such as “chair” as 
distinct from everything else.  It may prove sufficiently 
powerful to also discover the partially occluded object. 

Finally, a big challenge will be to decide where to place 
the progenitor cell?  This may be achieved with a multi-
resolution strategy, an exploratory strategy that seeks a 
unique feature typical of the object as the starting point, or a 
strategy that grows more than one organism at different 
proximate locations.  Considerable research effort will need 
to go into this aspect of implementation. 
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Figure 8  Evomorph growing the organism. 
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