
Metaheuristics for Black-Box Robust

Optimisation Problems

Martin Hughes

A thesis presented for the degree of

Doctor of Philosophy

Department of Management Science

Lancaster University

United Kingdom

May 2020

Abstract

Our interest is in the development of algorithms capable of tackling robust black-box

optimisation problems, where the number of model runs is limited. When a desired

solution cannot be implemented exactly (implementation uncertainty) the aim is to find

a robust one. Here that is to find a point in the decision variable space such that the

worst solution from within an uncertainty region around that point still performs well.

This thesis comprises three research papers. One has been published, one accepted for

publication, and one submitted for publication. We initially develop a single-solution

based approach, largest empty hypersphere (LEH), which identifies poor performing

points in the decision variable space and repeatedly moves to the centre of the region

devoid of all such points. Building on this we develop population based approaches using

a particle swarm optimisation (PSO) framework. This combines elements of the LEH

approach, a local descent directions (d.d.) approach for robust problems, and a series

of novel features. Finally we employ an automatic generation of algorithms technique,

genetic programming (GP), to evolve a population of PSO based heuristics for robust

problems. We generate algorithmic sub-components, the design rules by which they are

combined to form complete heuristics, and an evolutionary GP framework. The best

performing heuristics are identified.

With the development of each heuristic we perform experimental testing against

comparator approaches on a suite of robust test problems of dimension between 2D

and 100D. Performance is shown to improve with each new heuristic. Furthermore the

generation of large numbers of heuristics in the GP process enables an assessment of the

best performing sub-components. This can be used to indicate the desirable features of

an effective heuristic for tackling the problem under consideration. Good performance

is observed for the following characteristics: inner maximisation by random sampling, a

small number of inner points, particle level stopping conditions, a small swarm size, a

Global topology, and particle movement using a baseline inertia formulation augmented

by LEH and d.d. capabilities.

1

Declaration

This thesis is my original work and has not been submitted, in whole or in part, for a

degree at this or any other university. To the best of my knowledge this thesis does not

contain any material published or written by another person, other than as acknowledged

in the text. A statement of authorship for the three papers is given in Section 1.4.2.

2

Acknowledgements

I would like to thank my three supervisors, Prof. Marc Goerigk, Dr. Vikram Dokka,

and Prof. Michael Wright.

I am extremely grateful to Marc for the level of support he has given me. I could

not have asked for better supervision, which was at exactly the right level to allow me

to pursue areas of interest whilst keeping on course – both technically and in terms of

completing my research.

I would also thank Vikram and Mike for their supervision and support, as well as

for their critical input and positive guidance.

Thank you to everyone in the Lancaster University Department of Management

Science whose involvement, encouragement and input has made this possible. Finally,

thank you to the Engineering and Physical Sciences Research Council who funded this

work.

3

Contents

1 Introduction 14

1.1 Overview . 14

1.2 Problem description . 16

1.3 Literature review . 20

1.3.1 Metaheuristics . 20

1.3.2 Optimisation under uncertainty . 21

1.3.3 Metaheuristics for robust optimisation 23

1.3.4 Descent directions . 24

1.3.5 Particle swarm optimisation . 28

1.4 Description and status of papers . 29

1.4.1 Published and submitted papers 29

1.4.2 Statement of authorship . 32

2 Paper 1: A Largest Empty Hypersphere Metaheuristic for Robust

Optimisation with Implementation Uncertainty 34

2.1 Introduction . 35

2.2 Literature review . 36

2.2.1 Robust optimisation . 36

2.2.2 Metaheuristic for robust optimisation 37

2.3 Notation and previous results . 39

2.3.1 Problem description . 39

2.3.2 Local robust search using descent directions 41

2.4 A new largest empty hypersphere approach 42

2.4.1 Algorithm overview . 42

2.4.2 Outer search methods . 45

2.4.2.1 Randomly sampled LEH algorithm 45

2.4.2.2 Genetic Algorithm for LEH 45

2.4.2.3 Voronoi based LEH . 45

2.4.3 Inner search methods . 46

2.4.4 Algorithm summary . 47

2.4.5 Example LEH application . 49

4

2.5 Computational experiments . 50

2.5.1 Set up . 50

2.5.2 Comparator heuristics . 52

2.5.3 Test functions . 53

2.5.4 Results . 55

2.6 Conclusions and further work . 59

2.7 Appendices . 60

2.7.1 Test functions . 60

2.7.2 Radii due to alternative LEH algorithms 62

2.7.3 Additional results . 63

2.7.4 Heuristic parameter values . 67

3 Paper 2: Particle Swarm Metaheuristics for Robust Optimisation with

Implementation Uncertainty 68

3.1 Introduction . 69

3.1.1 Contributions and outline . 72

3.2 State of the art . 73

3.2.1 Literature review . 73

3.2.2 Local robust search using descent directions 75

3.2.3 Global robust search using largest empty hyperspheres 76

3.3 Particle swarm optimisation . 77

3.3.1 Motivation . 77

3.3.2 Nominal PSO . 79

3.3.3 Inner maximisation . 80

3.3.4 Baseline robust PSO . 82

3.4 Comparison of baseline heuristics . 83

3.5 Enhanced robust particle swarm optimisation 84

3.5.1 New capabilities . 84

3.5.1.1 rPSO d.d. capability . 86

3.5.1.2 rPSO LEH capability . 86

3.5.2 Enhanced capability: d.d. sub-algorithm 87

3.5.3 Enhanced capability: LEH sub-algorithm 90

3.5.4 Full enhanced capability . 93

3.6 Computational experiments . 95

3.6.1 Experimental set up . 95

3.6.2 Parameter tuning . 98

3.6.3 Results . 99

3.7 Conclusions and further work . 102

3.8 Appendices . 104

3.8.1 List of Abbreviations . 104

5

3.8.2 Test functions . 104

3.8.3 Box plots . 107

3.8.4 Heuristic parameter values . 111

4 Paper 3: Automatic Generation of Algorithms for Robust Optimisa-

tion Problems using Grammar-Guided Genetic Programming 115

4.1 Introduction . 116

4.1.1 Contributions and outline . 117

4.2 Robust optimisation . 118

4.2.1 Problem description . 118

4.2.2 State of the art . 119

4.2.2.1 Particle swarm optimisation 120

4.2.2.2 Descent direction . 122

4.2.2.3 Largest empty hypersphere 123

4.3 The automatic generation of heuristics . 124

4.4 The genetic programming of metaheuristics for robust problems 125

4.4.1 Genetic programming . 125

4.4.2 Grammar . 126

4.4.2.1 Structure . 126

4.4.2.2 Building blocks: Particle swarm framework 130

4.4.2.3 Building blocks: Mutation 130

4.4.2.4 Building blocks: Networks 130

4.4.2.5 Building blocks: Additional movement capability 131

4.4.2.6 Building blocks: Inner maximisation 132

4.4.2.7 Building blocks: Dormancy – use of neighbourhood in-

formation . 133

4.4.2.8 Building blocks: Supplement xxxj∗ – neighbourhood infor-

mation . 133

4.4.2.9 Building blocks: Stopping condition 133

4.4.3 Tree-based representation and evolutionary operators 134

4.5 Computational experiments . 136

4.5.1 Experimental set up . 136

4.5.2 Results for the best performing heuristics 137

4.5.3 Component analysis . 141

4.5.3.1 Analysis of best performing heuristics 141

4.5.3.2 Form and extent of inner maximisation 145

4.5.3.3 Baseline and extended movement capabilities 147

4.5.3.4 Network topology . 149

4.5.3.5 Group size . 149

4.5.3.6 Use of a stopping condition 151

6

4.5.3.7 Use of neighbourhood information for dormancy 151

4.5.3.8 Use of neighbourhood information for xxxj∗ 152

4.5.3.9 Particle level mutation 152

4.5.3.10 Extended movement capability: relocation by LEH . . . 153

4.5.3.11 Extended movement capability: descent directions rrr3 vec-

tor . 153

4.5.4 Summary of experimental analysis 154

4.6 Conclusions and further work . 154

4.7 Appendix . 155

4.7.1 Test functions . 155

4.7.2 Heuristic parameter-component values 159

5 Conclusion 163

5.1 Summary . 163

5.2 Further Work . 165

Bibliography 166

7

List of Figures

1.1 With black-box models no assumptions are made about the model struc-

ture. For optimisation, decision variable values are input and outputs

generated for interpretation as an objective. 15

1.2 One dimensional problem due to [Kru12]. The global optimum for the

nominal problem is at xxx0. 17

1.3 With the consideration of uncertainty only a ‘close’ solution may be re-

alised, which is of particular concern in the region of xxx0; problem due to

[Kru12]. 18

1.4 The worst case cost curve (dashed grey) is generated by determining the

maximum objective value in the uncertainty neighbourhood around all

points xxx on the nominal (solid black) curve. Due to the uncertainty the

global optimum shifts to xxx′0; problem due to [Kru12]. 19

1.5 Description of the descent direction robust local search approach [BNT10b]. 25

2.1 Nominal and worst case cost for (poly2D) from [BNT10b]. Marked in

purple are the respective optima. 40

2.2 Description of the descent direction robust local search approach [BNT10b]. 41

2.3 Description of largest empty hypersphere (LEH) approach. 43

2.4 Contour plots of example searches of the 2-dimensional problem (poly2D),

for Γ=0.5. Plots on the left show all points evaluated. Plots on the right

show the progress of the current best robust solution. The heuristics used

are: (top) outer PSO, (middle) outer descent directions with re-start, and

(bottom) outer LEH using the Voronoi based approach. 51

2.5 Contour plots of nominal (top 8) and worst case (bottom 8) 2D test

functions. Left to right, top to bottom: Ackley, Multipeak F1, Multipeak

F2, Rastrigin, Sawtooth, Sphere and Volcano. 54

2.6 Box plots of robust objective values due to multiple sample runs for the

2-dimensional polynomial function (poly2D) due to [BNT10b]. 55

2.7 Box plots of robust objective values due to multiple sample runs. Left to

right: Ackleys, Multipeak F1, Multipeak F2, Rastrigin; Top to bottom:

2D, 4D, 7D, 10D, 100D. 57

8

2.8 Box plots of robust objective values due to multiple sample runs. Left to

right: Rosenbrock, Sawtooth, Sphere, Volcano; Top to bottom: 2D, 4D,

7D, 10D, 100D. 58

2.9 Alternative LEH approaches applied to the same problem: variation in

empty hypersphere radius with numbers of candidates evaluated for ro-

bustness. 62

3.1 One dimensional problem due to [Kru12]. 71

3.2 Example searches of the 2D version of the Pickelhaube problem (see Fig-

ures 3.5i and 3.5j) with Γ = 1, for the baseline metaheuristics. Evaluated

points are shown on the left, with the path of the improving current ro-

bust best on the right. The outer heuristics are (top to bottom): d.d.

with re-start, LEH, and robust PSO. The nominal global optimum is at

(−35,−35), and the robust global optimum is at ∼ (−25,−25). 85

3.3 Example searches of the 2D version of the Pickelhaube problem Fig-

ures 3.5i and 3.5j with Γ=1, for the new rPSO framework. Evaluated

points are shown on the left, with the path of the improving current ro-

bust best on the right. The outer framework settings are: enhanced d.d

capability only (rPSOdd), enhanced LEH capability only (rPSOleh), and

full enhanced capability (rPSOlehdd). The nominal global optimum is at

(−35,−35), and the robust global optimum is at ∼ (−25,−25). 94

3.4 Plots of 2D Polynomial test function [BNT10b] in the rPSO test suite. . . 96

3.5 Plots of 2D versions of the 10 multi-dimensional problems in the rPSO

test suite. 97

3.6 Box plots of 2D Polynomial test function [BNT10b] robust objective val-

ues for 200 sample runs. 99

3.7 Box plots of 2D and 5D robust objective values for 200 sample runs. . . . 108

3.8 Box plots of 10D and 30D robust objective values for 200 sample runs. . . 109

3.9 Box plots of 60D and 100D robust objective values for 200 sample runs. . 110

4.1 The worst case cost curve (dashed grey) is generated by determining the

maximum objective value in the uncertainty neighbourhood around all

points xxx on the nominal (solid black) curve. Due to the uncertainty the

global optimum shifts to xxx′0. 119

4.2 Context-free grammar employed here for the construction of metaheuris-

tics for robust problems. The symbol | designates a choice of one of the

alternatives. 128

4.3 Solution representation: high level tree-based representation of the heuris-

tic generated by following the CFG-GP grammar production rules in Fig-

ure 4.2. 129

9

4.4 GA and GP applied to a metaheuristic for robust problems, consisting of

an outer minimisation search and inner maximisation search operating on

a black-box model. 135

4.5 High level tree-based representation of the heuristic generated by the

grammar production rules in Figure 4.2, with cut points for combination

and mutation operations. 136

4.6 30D individual bests box plots. 200 sample runs with a budget of 2,000

function evaluations. The comparators are taken from [HGD20b], where

the budget was 5,000 evaluations. 139

4.7 100D individual bests box plots. 200 sample runs with a budget of 2,000

function evaluations. The comparators are taken from [HGD20b], where

the budget was 5,000 evaluations. 139

4.8 30D best general box plots. 200 sample runs with a budget of 2,000

function evaluations. The comparators are taken from [HGD20b], where

the budget was 5,000 evaluations. 140

4.9 100D best general box plots. 200 sample runs with a budget of 2,000

function evaluations. The comparators are taken from [HGD20b], where

the budget was 5,000 evaluations. 140

4.10 Component – decile breakdowns for the form of inner search, across all

GGGP heuristics at 30D. Components: Random (red), PSO (green), GA

(blue). 145

4.11 Component – decile breakdowns for the form of inner search, across all

GGGP heuristics at 100D. Components: Random (red), PSO (green), GA

(blue). 145

4.12 Component – decile breakdowns for the form of inner search, across all

GGGP heuristics at 30D and 100D for the general heuristics. Compo-

nents: Random (red), PSO (green), GA (blue). 146

4.13 Component – decile breakdowns for the extent (size) of the inner maximi-

sation search, across all GGGP heuristics at 30D. Components: [2 – 10]

(red), [11 – 20] (green), [21 – 30] (blue), [31 – 40] (orange), > 40 (black). . 146

4.14 Component – decile breakdowns for the extent (size) of the inner maximi-

sation search, across all GGGP heuristics at 100D. Components: [2 – 10]

(red), [11 – 20] (green), [21 – 30] (blue), [31 – 40] (orange), > 40 (black). . 147

4.15 Component – decile breakdowns for the extent (size) of the inner max-

imisation search, across all GGGP heuristics at 30 D and 100D for the

general heuristics. Components: [2 – 10] (red), [11 – 20] (green), [21 – 30]

(blue), [31 – 40] (orange), > 40 (black). 147

4.16 Component – decile breakdowns for the form of movement capability,

across all GGGP heuristics at 30D. Components: Baseline (red), DD

(green), LEH (blue), LEH+DD (orange). 148

10

4.17 Component – decile breakdowns for the form of movement capability,

across all GGGP heuristics at 100D. Components: Baseline (red), DD

(green), LEH (blue), LEH+DD (orange). 148

4.18 Component – decile breakdowns for the form of movement capability,

across all GGGP heuristics at 30D and 100D for the general heuristics.

Components: Baseline (red), DD (green), LEH (blue), LEH+DD (orange). 148

4.19 Component – decile breakdowns for the form of network for particle infor-

mation sharing, across all GGGP heuristics at 30D. Components: Global

(red), Focal (green), Ring (size=2) (blue), von Neumann (orange), Clan

(black), Cluster (brown), Hierarchy (purple). 149

4.20 Component – decile breakdowns for the form of network for particle infor-

mation sharing, across all GGGP heuristics at 100D. Components: Global

(red), Focal (green), Ring (size=2) (blue), von Neumann (orange), Clan

(black), Cluster (brown), Hierarchy (purple). 150

4.21 Component – decile breakdowns for the form of network for particle infor-

mation sharing, across all GGGP heuristics at 30D and 100D for the gen-

eral heuristics. Components: Global (red), Focal (green), Ring (size=2)

(blue), von Neumann (orange), Clan (black), Cluster (brown), Hierarchy

(purple). 150

4.22 Component – decile breakdowns for the group (swarm) size, across all

GGGP heuristics at 30D. Components: [2 – 10] (red), [11 – 20] (green),

[21 – 30] (blue), [31 – 40] (orange), > 40 (black). 150

4.23 Component – decile breakdowns for the group (swarm) size, across all

GGGP heuristics at 100D. Components: [2 – 10] (red), [11 – 20] (green),

[21 – 30] (blue), [31 – 40] (orange), > 40 (black). 151

4.24 Component – decile breakdowns for the group (swarm) size, across all

GGGP heuristics at 30D and 100D for the general heuristics. Compo-

nents: [2 – 10] (red), [11 – 20] (green), [21 – 30] (blue), [31 – 40] (orange),

> 40 (black). 151

4.25 Component – decile breakdowns for the form of PSO mutation, across

all GGGP heuristics at 30D. Components: None (red), Uniform (green),

Gaussian (blue). 152

4.26 Component – decile breakdowns for the form of PSO mutation, across

all GGGP heuristics at 100D. Components: None (red), Uniform (green),

Gaussian (blue). 153

4.27 Component – decile breakdowns for the form of PSO mutation, across all

GGGP heuristics at 30D and 100D for the general heuristics. Compo-

nents: None (red), Uniform (green), Gaussian (blue). 153

4.28 Plots of 2D versions of the functions used in our experimental testing. . . 158

11

List of Tables

2.1 Mean results due to 50 sample runs for the 2-dimensional polynomial

function (poly2D) due to [BNT10b]. 55

2.2 Mean results due to 50 sample runs. 56

2.3 Standard deviations of results, average number of candidate points visited,

and average number of points evaluated for the 50 sample runs for the

2-dimensional polynomial function (poly2D) due to [BNT10b]. 63

2.4 Standard deviations of results due to 50 sample runs. 64

2.5 Average number of candidate points visited across 50 sample runs. 65

2.6 Average number of points evaluated in the 50 sample runs. For all test

problems of dimension 7 or higher the full budget of 10,000 function eval-

uations was used in all sample runs. 66

2.7 Tuned parameter values for the d.d. Re heuristic. 67

2.8 Tuned parameter values for the PSO heuristic. 67

2.9 Tuned parameter values for the LEH GA heuristic. 67

3.1 Test functions. 96

3.2 Mean results for 200 sample runs for the 2D polynomial function due to

[BNT10b]. Statistically equivalent best heuristics are highlighted. Brack-

eted numbering on rPSO based heuristics refers to the outer minimisation

algorithms used. 99

3.3 Mean results for 200 sample runs for the 10 multi-dimensional problems.

Statistically equivalent best heuristics are highlighted. Bracketed number-

ing on rPSO based heuristics refers to the outer minimisation algorithms

used. 100

3.4 Summary of the proportion of best or statistically equivalent to the best

results for each heuristic. Bracketed numbering on rPSO based heuristics

refers to the outer minimisation algorithms used. 101

12

3.5 Results of one-to-one statistical tests between the new framework and

baseline heuristics. Each cell shows the percentage of test problem in-

stances where: (top) the new heuristic is best, (middle) the new and

baseline heuristics are equivalent, and (bottom) the baseline heuristic is

best. Bracketed numbering on rPSO based heuristics refers to the outer

minimisation algorithms used. 102

3.6 Commonly used abbreviations. 104

3.7 Tuned parameter values for the d.d. heuristic. 111

3.8 Tuned parameter values for the LEH heuristic. 112

3.9 Tuned parameter values for the baseline rPSO heuristic. 112

3.10 Tuned parameter values for the rPSOdd heuristic. 114

3.11 Tuned parameter values for the rPSOleh heuristic. 114

3.12 Tuned parameter values for the rPSOlehdd heuristic. 114

4.1 Test functions. 136

4.2 Mean estimates of the optimum robust values for the best performing

heuristics, due to 200 sample runs and using a budget of 2,000 functions

evaluations. Comparators are taken from [HGD20b] and use a budget of

5,000 functions evaluations. Best results are shown in bold. 138

4.3 30D components of best heuristics. 143

4.4 100D components of best heuristics. 143

4.5 Proportions of component make ups over all heuristics. Here ‘top’ refers

to the top one third of heuristics when sorted best to worst. 144

4.6 Parameter-component values for the best performing heuristics at 30D:

part 1. 159

4.7 Parameter-component values for the best performing heuristics at 30D:

part 2. 160

4.8 Parameter-component values for the best performing heuristics at 100D:

part 1. 161

4.9 Parameter-component values for the best performing heuristics at 100D:

part 2. 162

13

Chapter 1

Introduction

1.1 Overview

A model is an imitation of a real life problem, an approximation of reality. Models

are extensively used to improve understanding, aid investigation or support informed

decision making in a wide range of situations. One important application of such models

is the identification of optimal solutions, that is the identification of the model input

variable values that produce the best outputs. However the size and nature of the

decision variable solution space, and the model run time, may make a comprehensive

– exhaustive or simply extensive – evaluation of the problem space, and so a direct

identification of optima, computationally infeasible. In such cases an efficient approach

is required to search for global optima.

Mathematical programs such as linear or mixed-integer programs, are one form of

model that are explicitly formulated as optimisation problems: the model representation

imposes assumptions on the structure of the decision variable space and objective func-

tion. Such models are well suited to efficient solution, and identification of global optima

may be theoretically guaranteed when feasible solutions exist. However many real-world

problems are not suited to expression as a mathematical program, for example a solution

may be evaluated by a simulation tool. It is this form of model, where no assumptions

are made about the model structure, that is of concern here.

From an optimisation perspective such a model can be thought of as a black-box,

where decision variable values are input and outputs generated for interpretation as an

objective, see Figure 1.1. For this reason optimisation search techniques that can be

applied to such general problems, or indeed to large computationally infeasible mathe-

matical programs, are of interest here. Specifically our concern is with metaheuristics,

a class of general, rule-based search techniques.

An additional widespread feature of many real-world problems is the consideration

of uncertainty which may impact on model outputs, and so on corresponding objective

function values. One strategy is to simply ignore any uncertainty and perform a stan-

dard search, possibly assessing and reporting on the sensitivity of the optimum after it

14

Black-box
model

Decision variable
input values

Outputs Objective

Metaheuristic

Figure 1.1: With black-box models no assumptions are made about the model structure. For

optimisation, decision variable values are input and outputs generated for interpretation as an

objective.

has been identified. However it has been established that optimal solutions which are

sensitive to parameter variations within known bounds of uncertainty may substantially

degrade the optimum objective function value, meaning that solutions sought without

explicitly taking account of uncertainty are susceptible to significant sub-optimality, see

[BTEGN09, GS16]. In the face of uncertainty the focus of attention for an optimisation

analysis shifts from the identification of a solution that just performs well in the expected

case, to a solution that performs well over a range of scenarios.

When considering uncertainty in decision making problems a frequent distinction is

made between model, or parameter, uncertainty (where the problem data is not known

exactly) and implementation uncertainty (where a decision cannot be put into practice

with full accuracy). Implementation uncertainty is also known as decision uncertainty,

and implementation errors can be thought of as perturbations or changes that could

effect a solution after it has been identified. Therefore it can be recognized that an

optimal solution that is somewhat insensitive to such perturbations is desirable, see

[BTEGN09, Tal09, BNT10b]. Only implementation uncertainty is considered explicitly

here.

Specifically we develop new algorithms for black-box global optimisation problems

taking account of implementation uncertainty. A situation where an ideal solution cannot

be achieved exactly is common in many real-world applications. For example in engineer-

ing, manufacturing or construction it may not be possible to meet design specifications

exactly, in which case a solution is sought which is tolerant of some variation in the design

variables. In scheduling, timetabling, logistics, queuing or supply chain management it

is desirable to be able to tolerate some deviation in resource levels and transportation or

processing times. See, for example, [PBJ06, BNT07, BNT10b, Kru12, GMT14, GS16].

In Section 1.2 we formalise the problem of concern here. Section 1.3 is a literature

15

review with specific focus on metaheuristics for robust optimisation. This includes an ex-

planation of two techniques that play recurring roles in the heuristics developed here, the

local robust descent directions approach [BNT07, BNT10b, BNT10a] and the ‘standard’

(non-robust) particle swarm optimisation heuristic [KE95, KES01, Tal09], Sections 1.3.4

and 1.3.5.

The focus of the work described in this thesis is the development of new metaheuris-

tics for robust problems, which are tested and shown to exhibit improved performance.

In Section 1.4 we provide overviews of the three papers setting out this work, including

an explanation of the author contributions. The three papers are presented in Chapters 2

to 4. Whilst all three papers focus on developing new improved metaheuristics, the third

uses genetic programming to evolve populations of heuristics for robust problems and

so enables an additional assessment of those algorithmic sub-elements of a heuristic in-

cluded in the most effective search approaches. We end with a summary and conclusions

in Chapter 5.

It should be noted that whilst within each chapter the notation used is consistent,

due to the three-paper format of this thesis the notation across chapters may vary. For

example, whilst the min max problem which is the focus of our work uses the reference

(MinMax) both here in Chapter 1 and in Chapter 4, in Chapter 2 the reference is (ROP)

and in Chapter 3 it is (MM).

1.2 Problem description

We consider a general optimisation problem of the form:

min f(xxx)

s.t. xxx ∈ X

Here xxx = (x1, x2, . . . , xn)T denotes the n-dimensional vector of decision variables,

f : Rn → R is the single objective function, and X ⊆ Rn is the set of feasible solutions.

Writing [n] := {1, . . . , n}, we assume that problems are box-constrained, i.e. the decision

variable space is contained within lower and upper bounds: X =
∏
i∈[n][li, ui]. We further

assume that any other potential feasibility constraints are ensured through a penalty in

the objective.

Such a problem, without any consideration of uncertainty, is designated the nominal

problem here. Consider for example the non-convex one dimensional problem due to

16

[Kru12]:

f(x) = 1 + f1(x) + f2(x),

f1(x) =

(x−4
5)2 if x < 4,

1 otherwise

f2(x) = −1.8 exp

(
− (x− 5)2

0.2

)
− 2 exp

(
− (x− 7)2

0.1

)

For the nominal problem shown in Figure 1.2, some standard metaheuristic could be used

to search for the global minimum at xxx0 – recognising that metaheuristic approaches may

not be able to precisely locate that global minimum. However if the solution that a

decision maker wants to implement, xxx, may be somewhat perturbed in practice, the

potential impact on the identification of the global minimum needs to be taken into

consideration. The sensitivity of the objective to variations in xxx in the region of xxx0 is of

particular concern, as highlighted in Figure 1.3.

1

1.5

2

O
bj

ec
ti

v
e

Nominal: f(x)

0

0.5

0 2 4 6 8 10

O
bj

ec
ti

v
e

Decision variable

x0

Figure 1.2: One dimensional problem due to [Kru12]. The global optimum for the nominal

problem is at xxx0.

Uncertainty can be included in the problem formulation as:

min f(xxx,ξξξ)

s.t. xxx ∈ X (ξξξ)

where ξξξ represents the uncertainty in the problem.

If this problem is to be tackled using stochastic optimisation techniques, the prob-

ability distributions over all possible scenarios ξξξ must be known. However if it is only

assumed that some set U is identified containing all possible uncertainty scenarios (po-

tentially infinite in number), the problem is one of robust optimisation. Here only the

17

1

1.5

2

O
bj

ec
ti

v
e

Nominal: f(x)

0

0.5

0 2 4 6 8 10

O
bj

ec
ti

v
e

Decision variable

x0

Unc: ±0.5

Figure 1.3: With the consideration of uncertainty only a ‘close’ solution may be realised, which

is of particular concern in the region of xxx0; problem due to [Kru12].

robust setting is of interest, and we consider the case where instead of being able to put

a desired solution xxx into practice with full accuracy, only a ‘close’ solution x̃xx = xxx+ ∆xxx

may be realised.

Specifically the focus here is the classic robust approach, that is to find a robust

solution xxx such that for any such x̃xx from the uncertainty neighbourhood of xxx, the worst

case performance is optimised. Here we further follow the setting of [BNT10b] and

assume that ∆xxx lies in the so-called uncertainty set:

U := {∆xxx ∈ Rn | ‖∆xxx‖ ≤ Γ}

where Γ > 0 defines the magnitude of the uncertainty, specifically the radius of the

uncertainty neighbourhood around a point. ‖ · ‖ refers to the Euclidean norm.

Using a local maximisation to find a robust solution xxx, the worst case value g(xxx) is

optimised for any x̃xx in the uncertainty neighbourhood of xxx:

g(xxx) := max
∆xxx∈U

f(xxx+ ∆xxx)

Making the complete robust problem one of finding the outer minimum objective in X ,

where that objective is itself an inner maximisation in the uncertainty neighbourhood

around each solution xxx ∈ X for the nominal objective function:

min
xxx∈X

g(xxx) = min
xxx∈X

max
∆xxx∈U

f(xxx+ ∆xxx) (MinMax)

This type of problem is known as min max and it is the solution of this problem (MinMax)

that is the focus of our work.

Applying this to the 1D non-convex problem [Kru12], Figure 1.4 shows the worst case

cost or min max value (dashed grey) at any individual point xxx as determined by assessing

the uncertainty neighbourhood around that point, in order to identify the maximum

18

value within that uncertainty neighbourhood. Then within the global minimisation

search the nominal objective is superseded by the worst case cost. That is we seek the

global minimum for the worst case cost due to implementation uncertainty of ±0.5 on

the corresponding nominal curve.

1

1.5

2

O
b

je
ct

iv
e

Nominal: f(x)

Worst: g(x)

0

0.5

0 2 4 6 8 10

O
b

je
ct

iv
e

Decision variable

x0x'0

Figure 1.4: The worst case cost curve (dashed grey) is generated by determining the maximum

objective value in the uncertainty neighbourhood around all points xxx on the nominal (solid black)

curve. Due to the uncertainty the global optimum shifts to xxx′0; problem due to [Kru12].

In Figure 1.4 it can be observed that the global optimum has shifted to xxx′0, and that

there is a reduction in the optimum objective. The difference between the nominal and

robust optimal objective function values is the ‘price of robustness’, see [BS04]. It should

also be noted that if we were to ignore the implementation uncertainty and simply accept

xxx0 as the global optimum, we risk the possibility of a very poor outcome: the worst case

cost (dashed grey) objective function value at xxx0. Whilst f(xxx′0) > f(xxx0), g(xxx′0) < g(xxx0).

Note that xxx+∆xxx may not be in X , for which reason we assume that the definition of

f is not limited to X . However, if it is desired that xxx+ ∆xxx ∈ X for all ∆xxx ∈ U (strictly

robust), then this can be ensured by reducing the size of the feasible search space by Γ.

One further restriction will be assumed to apply here in a general sense. It is as-

sumed that due to practical issues there will be some limitation on the number of func-

tion evaluations (model runs) that can be employed in a robust search. Within the

experimental testing in the research described in Chapters 2 to 4, budget limitations

are assumed on the number of test function evaluations that can be undertaken in a

single global robust search. Such budgetary restrictions lead to some implicit trade-off

between the extent of each inner search and the performance of the outer global search,

see [MLM15, BL15, LBR16, EDHX17].

19

1.3 Literature review

1.3.1 Metaheuristics

One way to tackle hard optimisation problems is to start with a baseline solution and

try to improve on it. Metaheuristics involve the application of problem independent

heuristics to iteratively improve one or many solution candidates. A good metaheuristic

both explores the search space in the neighbourhood of already-identified good solu-

tions and stochastically examines unvisited regions. Such an approach forestalls mis-

convergence to local rather than global optima, see [Tal09, Luk13, BLS13]. Although

metaheuristics are not guaranteed to find globally optimal solutions they have been

widely shown to find good solutions in a reasonable amount of time, even in large search

spaces [EHG05, Luk13].

The field of metaheuristics is extensive. One high-level categorisation is between

single-solution based and population based approaches. Single-solution approaches move

from a single initial solution, following some to-be-determined trajectory through the

search space. At each step the objective function evaluation is undertaken, and based

on the information gained it is determined where in the decision variable space to move

to next. A number of such approaches and variations exist, including hill-climbing

and gradient descent techniques, local search techniques, tabu search, and simulated

annealing; see [Tal09, Luk13, BLS13].

The search for global optima is enhanced by population based algorithms, which

explore the solution space in multiple locations at a time. Two high-level categories

of population approaches are evolutionary algorithms and swarm intelligence based al-

gorithms. Evolutionary algorithms simulate natural evolution, with a population of

individuals evolving over time. Each individual represents a solution, a point in the

decision variable space. The objective function for each individual is evaluated and then

interpreted as a measure of the relative fitness of the individual. A new population (gen-

eration) is constructed through fitness-based selection of individuals from the current

population and some combination and modification of those individuals. This develop-

ment from one generation to another repeats. In this way individuals are evolved that

are well-adapted to their environments, that is they are good (fit, optimal) solutions.

Amongst the most commonly cited evolutionary optimisation algorithms are genetic

algorithms (GAs) and differential evolution, see [Mit98, SP97, EHG05, Tal09].

Swarm intelligence algorithms simulate interactions between individuals and with

their environment, with gained information contributing to the collective intelligence of

the group. Again each individual represents a position in the decision variable space. The

evaluated objective function values provide information on the effectiveness of individual

solutions, which feeds into a pool of information to be accessed by some or all of the

individuals. The network topologies through which such information is shared forms an

20

important component of swarm based optimisation heuristics. Based on a combination

of their own and the collective information, individuals move to new locations in the

decision variable space. This process is applied to each individual and repeats for the

entire population over a number of iterations. Established algorithms include particle

swarm optimisation (PSO) and ant colony optimisation, see [KE95, KES01, RC13].

These techniques mimic complex, self-organising systems of individuals. What emerges

from their interactions corresponds to an efficient exploration of a solution space [KES01].

Many methods and hybrids-variants have been developed, see [KE95, SP97, Mit98,

EHG05, RC13]. Each algorithm has its strengths and weaknesses. Often the use of a

specific technique may be somewhat problem and context dependent. There is no single

algorithm that can solve all problems better than all other algorithms [Luk13, PHP12].

1.3.2 Optimisation under uncertainty

Stochastic optimisation is a commonly used approach to the incorporation of uncertainty

for black-box problems, when there is a knowledge of the probability distributions of the

uncertain parameters. There some statistical measure of the fitness of a solution is

assessed in the neighbourhood of a point in the decision variable space, e.g. using Monte

Carlo simulation. The optimisation search is based on the use of that measure as the

objective value. The estimated statistical measure may be the expected value, or a

more elaborate model such as the variance in the fitness of a solution, or may even

take the form of more than one measure in a multi-objective optimisation setting, see

[PBJ06, HdMB14].

A substantial amount of work has been undertaken on the development of meta-

heuristics for stochastic optimisation, including, for example on the recognition of and ex-

ploitation of the inherent stochasticity of evolutionary algorithms, [TG97, Bra98, BSS01,

PBJ06, BS07, Kru12]. A common feature of such approaches is that they are general,

and can be applied to any situation where knowledge of the uncertain parameters’ prob-

ability distributions is assumed and objective functions can be evaluated.

Here, however, the focus is robust optimisation. As described in Section 1.2, in

this case it is only assumed that some set can be identified which contains all possible

uncertainty scenarios. Specifically our focus is the classic robust approach of finding a

solution across all scenarios that is always feasible (strictly robust) and optimises its

performance in the worst case: that is min max as defined by (MinMax).

Robust optimisation is a relatively young field, whose modern form was first de-

veloped in [KY97] and [BTN98]. Overviews of the field can be found in [BTEGN09,

ABV09, GS16]. The definition of the uncertainty set U and the measure of performance

(optimal in the worst case for min max) are the critical components of a robust opti-

misation analysis. Two basic ways of describing U are explicitly, in the discrete case,

and in terms of a parameter interval such that any value between a lower and an upper

21

bound is feasible, [ABV09]. [BBC11] consider several classes of uncertainty, raising the

notion of a ‘budget of uncertainty’ for trading-off robustness and performance.

The field of robust optimisation has been primarily aligned with mathematical pro-

gramming approaches. There the methodology is based around the definition of reason-

able uncertainty sets and the reformulation of computationally tractable mathematical

programming problems. For specific forms of convex optimisation problems the problem

incorporating uncertainty can be re-formulated to another tractable, convex problem,

see [BNT07, GS10].

To overcome concerns that the strictly robust worst case approach may be overly con-

servative, the concept of robustness can be expanded in terms of both the uncertainty

set considered and the robustness measure [GS16]. On the assumption that it is overly

pessimistic to assume that all implementation errors take their worst value simultane-

ously [BS04] consider an approach where the uncertainty set is reduced, and a robust

model defined where the optimal solution is required to remain feasible for uncertainty

applied to only a subset of the decision variables at any given time. Min max regret,

see [ABV09], is an alternative to min max, seeking to minimise the maximum deviation

between the value of the solution and the optimal value of a scenario, over all scenar-

ios. [BTBB10] considers soft robustness, which utilises a nested family of uncertainty

sets. The distributionally robust optimisation approach, see [GS10], attempts to bridge

robust and stochastic techniques by utilising uncertainty defined as a family of proba-

bility distributions, seeking optimal solutions for the worst case probability distribution.

[CG16] use a bi-objective approach to balance average and worst case performance by

simultaneously optimising both.

A number of authors have also developed approaches based around the recogni-

tion that decisions in the face of uncertainty, rather than being static one-off events

resulting in fully determined outcomes, may actually provide some opportunity for re-

course. [BTGGN03] and [CZ09] developed approaches based on the recognition that

for multiple-stage problems a subset of the decisions could be made after some or all

of the uncertainties had been realised, see [GS10]. [BTGGN03] introduced adjustable

robustness which divides the variables into separate sets of those that have to be eval-

uated immediately in the face of uncertainty and those that can be evaluated once the

uncertainty has been resolved. A similar two-stage approach, recovery robustness is

considered for example in [Goe12].

Robust optimisation in a mathematical programming context has been application-

driven, so considerable work has been undertaken in applying robustness techniques to

specific problems or formulations, see [BS07, GS16]. But it is robust optimisation as ap-

plied to general black-box problems that is of interest here, where the model is not simply

defined through algebraic functions. There has been some cross-over into the application

of specific heuristics, for example see [GLT97, AVCMSdCM11]. However application to

general problems has been less well addressed [GS16]. Robust approaches applied to

22

black-box models are much less widely considered than approaches for mathematical

programming problems, see [MWPL13, GS16, MWPL16]. Relatively recently, robust

optimisation with implementation uncertainty has also been extended to multi-objective

optimisation, see [EKS17].

1.3.3 Metaheuristics for robust optimisation

Given a situation where a mathematical programming approach does not apply, the solu-

tion of (MinMax) can be tackled with standard metaheuristic techniques applied to both

the inner maximisation and outer minimisation problems. In co-evolutionary approaches

two populations (or swarms) evolve separately but are linked, so the fitness of individ-

uals in one group is informed by the individuals in the other, see [CSZ09]. Techniques

include two-population genetic algorithm approaches [Her99, Jen04], and two-swarm co-

evolutionary particle swarm optimisation approaches [SK02, MKA11]. However while a

brute force co-evolutionary approach is technically acceptable, in practice using complete

inner maximisation searches to generate robust values for each individual in each gener-

ation of the outer minimisation is likely to be expensive in terms of model runs (function

evaluations), see [MWPL16]. Instead more practical co-evolutionary approaches require

the application of additional simplifications and assumptions, for example using only

small numbers of populations for the outer search and the inner (uncertainty) search

which share information between populations from generation to generation, or follow-

ing several generations, see [CSZ09, MKA11].

One general area of research is the use of emulation (surrogates or meta-models)

alongside true objective function evaluations to reduce the potential burden of computa-

tional run times and the number of model-function evaluations, see [BS07, KVDHL16].

[ZZ10] use a surrogate-assisted evolutionary algorithm to tackle the inner search for

black-box min max problems. [MWPL13, MWPL16] employs Kriging meta-modelling

coupled with an expected improvement (EI) metric, as well as a relaxation of the inner

maximisation search. The EI metric is used to efficiently choose points in the decision

variable space where nominal (expensive) function evaluation should be undertaken, here

with a view to most efficiently improving the estimate of the robust global minimum.

This is known as Efficient Global Optimisation (EGO), see [JSW98]. The relaxation

involves iteratively performing the outer minimisation on a limited inner uncertainty

neighbourhood followed by an extensive inner maximisation search in the region of the

identified outer minimum. This continues whilst the inner search sufficiently deterio-

rates the outer solution, with the inner maximum point being added to the limited inner

uncertainty set with each iteration.

A second approach due to [uRLvK14, uRL17] also uses Kriging and an EI metric,

building on a meta-model of the expensive nominal problem by applying a robust anal-

ysis directly to the Kriging model and exploiting the fact that many more inexpensive

23

function evaluations can be performed on this meta-model. This therefore requires the

determination of the robust global minimum of the Kriging meta-model. A modified

EI metric is then calculated for the worst case cost function of the meta-model, to ef-

ficiently guide the search in the nominal expensive function space to the identification

of the global maximum value of the modified EI metric – which is itself a function of

the worst case cost function of the meta-model. The algorithm iterates, given a new

nominal function evaluation the meta-model is recalculated, its global robust minimum

determined, and the maximum EI value identified, up to some stopping criteria. On the

basis that a highly accurate meta-model is a requirement, and that both the calculation

of the robust global minimum for the meta-model and the associated identification of

the EI maximum feed in to the evolution of the meta-model, it is reasonable to assume

that both of these stages are themselves required to produce results to some degree of

accuracy.

One alternative emulation approach is to employ Bayesian techniques. For example

[CLSS17] is an approach designed to be applicable to general problems and actually

uses a mathematical programming approach. However the mathematical program is not

applied directly to general problems but rather to an emulated version of the problem, an

approximate Bayesian oracle. Alternatively [SEFR19] employ a Bayesian approach for

very expensive-to-evaluate functions, applying it to test problems of up to 10 dimensions

using only small numbers of function evaluations.

However the primary challenge with current emulation based approaches is their

application to problems other than those of relatively low dimension. This is due to

an inability to generate accurate emulation models, and so the emulation based papers

discussed here have either been restricted to low dimensional non-convex problems, or

simpler convex and convex-concave problems. Or in the case of [CLSS17] it is simply

assumed that a Bayesian oracle is available.

We end the literature section with some more detailed descriptions of two exist-

ing techniques which have informed our work, and which are used as both comparator

heuristics in the experimental testing and as a basis for elements of our novel heuristics.

The first is descent directions (d.d.) [BNT07, BNT10b, BNT10a], a local technique for

robust problems which addresses (MinMax) and can be applied to black-box problems

with no explicit additional restrictions. The second heuristic is particle swarm optimi-

sation (PSO) [KE95, KES01, Tal09]. This is not a robust approach, although it can be

extended to one through the inclusion of an inner maximisation layer.

1.3.4 Descent directions

Descent directions [BNT07, BNT10b, BNT10a] is an individual based approach whereby

a search progresses by iteratively moving along ‘descent directions’. Uncertainty around

individual points is assessed (e.g. by using local gradient ascents in [BNT10b]), based on

24

which undesirable ‘high cost points’ (hcps) are identified. Steps are taken in directions

which point away from these hcps, until no direction can be found. At that stage

it is assumed that a robust local minimum has been reached. The approach can be

simplistically extended to a proxy global search by using random re-starts: once the

heuristic stops at a robust local minimum, a new local search is started from a randomly

selected start point. This may repeat until some budget of function evaluations has been

exhausted.

The description of the d.d. heuristic given below is taken from [BNT10b]. In the

research described in Chapters 2 to 4 a randomly re-starting version of this heuristic

is used as a comparator, in conjunction with stated budgets of function evaluations.

The form and extent of the inner maximisation search and other parameter settings,

typically determined by tuning for the comparator d.d. employed in Chapters 2 to 4,

are described there. In the description of the heuristic here it can be assumed that

some inner maximisation heuristic is used to approximate uncertainty neighbourhood

worst case costs. Parameter values stated below are as in [BNT10b], and are given as

indicative.

x

(a) Candidate point x̂xx (centre), and

points evaluated for the inner maximisa-

tion problem (blue).

x

(b) Subset H(x̂xx) of critical high cost

points.

x

(c) A descent direction is identified by

solving a second order cone problem.

x

(d) The step size is determined.

Figure 1.5: Description of the descent direction robust local search approach [BNT10b].

The heuristic is initialised by randomly sampling a first candidate point xxx(0) at

25

step t = 0. Around any given candidate xxx(t) at step t, and starting with xxx(0), an inner

maximisation is performed. See Figure 1.5a. From then on all function evaluations up to

and including the current step (candidate point) t are recorded in a history set H(t). The

combination of the function evaluations undertaken in the inner maximisation around

any given candidate xxx(t), plus any additional points in the Γ-uncertainty neighbourhood

of xxx(t) previously recorded in H, provide a knowledge of the uncertainty neighbourhood

N(xxx(t)) = {xxx(t) + ∆xxx(t) | ∆xxx(t) ∈ U} around candidate xxx(t). The maximum value in

N(xxx(t)), in practice approximated by some inner maximisation heuristic, is used as an

estimate of the worst case cost g̃(xxx(t)) at xxx(t).

Next we wish to identify a set of so called high cost points Hσ(t)(xxx(t)) in N(xxx(t)),

containing the points with the largest objective values in the uncertainty neighbourhood

of xxx(t), see Figure 1.5b. Using a threshold value σ(t) that is dynamically adjusted as

the algorithm iterates, Hσ(t)(xxx(t)) is defined as:

Hσ(t)(xxx(t)) := {xxx′ ∈ H ∩N(xxx(t)) | f(xxx′) ≥ g̃(xxx(t))− σ(t)}

For t = 0, σ(t) is set to:

σ(0) = σinit ∗ (g̃(xxx(0))− f(xxx(0)))

[BNT10b] set σinit to 0.2. In subsequent steps σ(t) uses the final value of σ(t− 1).

It is from the next stage of the algorithm that the descent directions approach gets its

name, as the aim is to identify a descent direction vector ddd which optimally points away

from all points in Hσ(t)(xxx(t)) , see Figure 1.5c. A mathematical programming approach

is used to maximise the angle θ between the vectors connecting the points in Hσ(t)(xxx(t))

to the current candidate xxx(t), and ddd. This is achieved using the following second order

cone problem (SOCP):

min
ddd,β

β (Soc)

s.t. ‖ddd‖ ≤ 1 (Con1)

dddT

(
hhh− xxx(t)

‖hhh− xxx(t)‖

)
≤ β ∀hhh ∈ Hσ(t)(xxx(t)) (Con2)

β ≤ −ε (Con3)

Here ε is a small positive scalar, so from (Con3) β is negative. The left hand side of

constraint (Con2) is the multiplication of cos θ and ‖ddd‖, for all hcps in Hσ(t)(xxx(t)) and

a feasible direction ddd. (Con2) therefore relates β to the maximum value for cos θ across

all hcps. As the objective (Soc) is to minimise β, and β is negative, the angle θ will

be greater than 90o and maximised. Also minimising β in combination with (Con1)

normalises ddd. A standard solver such as CPLEX can be used to solve this SOCP. When

an optimal direction cannot be found, that is the SOCP cannot be solved, the algorithm

stops: a local robust minimum has been reached.

26

Given a set of hcps the attempt to solve the SOCP is deterministic, however if no

such solution can be found the algorithm does not simply stop on the assumption that no

such point exists. The current candidate xxx(t) might actually be surrounded by hcps. The

points in Hσ(t)(xxx(t)) are dependent on the definition of ‘high cost’: f(xxx′) ≥ g̃(xxx(t))−σ(t),

and it may be the case that the classification of hcps is too generous. This can be

corrected by adaptingHσ(t)(xxx(t)) through the setting of the σ(t) value. [BNT10b] suggest

that when the SOCP is infeasible σ(t) is reduced by dividing it by a factor α, which

[BNT10b] set to 1.05. This increases the threshold for membership of Hσ(t)(xxx(t)). The

reduction of σ(t), re-determination of Hσ(t)(xxx(t)), and attempt to solve the SOCP can

be repeated multiple times, up to some lower threshold for σ(t), σα which [BNT10b] set

to 0.001. The terminating criteria for the algorithm is when the SOCP is infeasible and

σ(t) is less than σα. Only at this stage it is assumed that a local robust minimum has

been reached.

The final component of the algorithm is the calculation of the size of step to be taken

in the descent direction ddd, see Figure 1.5d. A step size ρ∗(t) just large enough to ensure

that all of the points in Hσ(t)(xxx(t)) are at least on the boundary of the Γ-uncertainty

neighbourhood of the next candidate solution is used: xxx(t+ 1) = xxx(t) + ρ∗(t) ·ddd. Where

ρ∗(t) = min
ρ(t)

ρ(t),

for:

ρ(t) = dddT (hhh− xxx(t)) +

√
(dddT (hhh− xxx(t)))2 − ‖hhh− xxx(t)‖2 + Γ2, ∀hhh ∈ Hσ(t)(xxx(t)).

This can be solved by simply evaluating over all members of Hσ(t)(xxx(t)). In order

to ensure that the heuristic makes reasonable progress with every step t, a minimum

step size ρmin(t) is enforced. Nominally ρmin(0) is set to Γ · 0.01, with ρmin(t) further

decreasing with every step t by multiplication with a factor ρred: ρmin(t+1) = ρmin(t) ·
ρred. A value of 0.99 is used for ρred in [BNT10b].

However prior to finalising the step to be taken and moving to the next candidate

point: xxx(t + 1) = xxx(t) + ρ∗(t) · ddd, one final direction-distance check is performed. The

uncertainty neighbourhood high cost set is temporarily extended by increasing the can-

didate’s neighbourhood radius. The step size to be taken is added to Γ:

Hσ(t)(xxx(t))updated := {xxx′ | xxx′ ∈ H , ‖xxx′ − xxx(t)‖ ≤ Γ + ρ∗(t) , f(xxx′) ≥ g̃(xxx(t)) − σ(t)}

Now a check is made to ensure that the descent direction ddd still points away from the

modified high cost set Hσ(t)(xxx(t))updated. This is achieved by calculating the dot product

of all points in Hσ(t)(xxx(t))updated and ddd. If all dot products are negative the descent

direction points away from all points in Hσ(t)(xxx(t))updated. In this case the step to the

next candidate point is taken and the search continues: xxx(t+ 1) = xxx(t) + ρ∗(t) · ddd.

This additional check is an attempt to avoid the upcoming step to the next candidate

point xxx(t + 1) being a mis-step into a region containing undesirable hcps. If the check

27

fails and ddd is deemed no longer a valid direction, the algorithm returns to the SOCP

cycle, this time using Hσ(t)(xxx(t))updated in place of Hσ(t)(xxx(t)). This may involve further

reductions in σ(t), by dividing it by the factor α up to the threshold σα.

Due to the potentially multiple attempts to identify a descent direction ddd and to

ensure that this direction is valid for points in the neighbourhood of the current candidate

xxx(t), d.d. is quite comprehensive in its identification of the appropriate steps to take

from an initial start point. For full details of the descent directions algorithm refer to

[BNT10b].

The inner maximisation component of the min max search that is employed by d.d.

in [BNT10b] involves n+ 1 two-stage gradient ascent searches within the Γ-uncertainty

neighbourhood of a given candidate point. However such an approach is likely to be

impractical in many real-world situations, both in the face of some budget on num-

bers of function evaluations and with increasing dimension n. In our work the outer

minimisation d.d. search is fed by an inner maximisation consisting of either uniform

random sampling in a Γ-radius hypersphere around each candidate point, or in the work

described in Chapter 4 a choice of inner search methods is available.

1.3.5 Particle swarm optimisation

PSO is a population based approach which moves a ‘swarm’ of particles through points

in the decision variable space, performing function evaluations and iterating particle

positions through the use of particle level ‘velocity’ vectors [KE95, KES01, Tal09]. Ve-

locities are based on particle histories, shared information from the swarm, scaling, and

randomisation. The intention is for the behaviour of this complex systems of particles to

approximate a global optimisation search of the solution space. A standard PSO can be

extended to a brute force robust PSO (rPSO) through the addition of some form of inner

maximisation at a particle level. As with d.d., in the first instance this is achieved in our

work using uniform random sampling in a Γ-radius hypersphere around each candidate

point, however in Chapter 4 this is extended to include explicit inner search methods.

In a basic non-robust PSO formulation, the swarm (population) of N particles start

at iteration t = 0 randomly located at points xxxj(0) in X , where the function is evaluated;

here j = 1, . . . , N . Each particle stores information on the best position it has visited in

its history, xxxj∗, where best refers to the lowest objective function value g̃(xxxj∗).

Information sharing is a key element of PSO, with each particle associated with a

neighbourhood of other particles. Within a neighbourhood information about the best

point visited by any particle in the neighbourhood within their entire histories, x̂xx∗, is

shared. Again best refers to the lowest objective function value g̃(x̂xx∗). A variety of neigh-

bourhood topologies are available [EK95, KE95, KM02, MKN03, JM05, dCBF09, MP17].

Possibly the simplest information sharing approach employs a single neighbourhood with

all particles having access to the current global best location information.

28

A particle is moved to a location xxxj(t) at iteration t, through the addition of that

particle’s current velocity vector vvvj to its previous position:

xxxj(t) = xxxj(t− 1) + vvvj(t) (PSOmove)

Again there are a number of alternative velocity formulations. For example a common

basic formulation includes a so-called inertia [SE98, KES01] coefficient:

vvvj(t) = ω · vvvj(t− 1) + C1 · rrr1 · (xxxj∗ − xxxj(t− 1)) + C2 · rrr2 · (x̂xx∗ − xxxj(t− 1)) (Inertia)

Here particle velocities vvvj(0) are initialised by uniform random sampling ∼ U(0 , 0.1)n

[Eng12]. Each component of the random vectors rrr is typically randomly sampled indi-

vidually, rrr1 , rrr2 ∼ U(0 , 1)n. Vector multiplication is component wise. The scalar terms

C1 and C2 represent weightings that a particle puts on its xxxj∗ (C1) versus x̂xx∗ (C2) location

data, whilst the inertia scalar ω moderates the significance of the preceding velocity.

As particles move through X their individual xxxj∗ values and the global x̂xx∗ are updated.

If at any stage the next candidate position for any particle lies outside of X , an invisible

boundary condition is adopted [RR04] in the formulations employed here. Particles are

allowed to leave the feasible region to naturally return to feasibility due to the pull of

the xxxj∗ and x̂xx∗ information. Note that when a candidate moves outside of the feasible

region no function evaluations are undertaken. Rather the velocity equation is updated

by the particle’s new location, with the xxxj∗ information remaining unchanged.

In its application here, when the budget of available function evaluations is exhausted

the current global best x̂xx∗ location is accepted as the estimate of the position of the robust

global minimum.

This completes the literature review. In Section 1.4 we give a brief overview of the

development of novel metaheuristics for robust problems as described in Chapters 2 to 4,

including the current status of publications and statements of authorship.

1.4 Description and status of papers

1.4.1 Published and submitted papers

Chapters 2 to 4 comprise the following papers:

� A Largest Empty hypersphere metaheuristic for robust optimisation with implementa-

tion uncertainty [HGW19]. This was published in the journal Computers & Operations

Research in 2019.

A novel global metaheuristic for robust problems is developed and tested on a suite

of multi-dimensional test problems. The new technique, the largest empty hypersphere

approach extends the d.d. idea of moving away from identified high cost points locally,

to a global perspective. This is an individual based approach which starts from some

29

random candidate point in the decision variable space where a neighbourhood uncer-

tainty analysis is performed. All function evaluations are recorded in a history set. A

high cost threshold equal to the current estimate of the robust global minimum is used

to differentiate hcps in the history set from all other points. Given the set of hcps the

largest region in the feasible solution space that contains no hcps is identified. The

search then moves to the centre of this empty region. This is the new candidate point.

This repeats until no region empty of hcps can be identified or some other limiting factor

is reached, e.g. the budget of function evaluations is exceeded.

Several approaches to identifying the largest empty hypersphere (LEH) devoid of all

hcps are considered, and it is established that the use of a genetic algorithm is most

appropriate. A suite of eight multi-dimensional test problems, employed across five di-

mensions between 2D and 100D, are used to test the effectiveness of LEH against a brute

force robust PSO (rPSO) and a re-starting d.d.. In all cases the inner maximisation is by

random sampling, and a budget of 10,000 function evaluations is used. Parameter tuning

is applied to each heuristic. LEH is shown to outperform the comparator techniques,

particularly for problems of higher dimension.

� Particle Swarm Metaheuristics for Robust Optimisation with Implementation Uncer-

tainty [HGD20b]. This was accepted for publication in the journal Computers &

Operations Research in May 2020.

Here a new robust metaheuristic framework is developed encompassing two new

capabilities which can be used in combination or individually. Building on the d.d. and

LEH approaches, a population based approach is developed which incorporates elements

of both local exploitation and global exploration. From the d.d. approach we take the

notion of calculating a local vector pointing away from the worst points within the Γ-

uncertainty neighbourhood of a candidate point. In a PSO setting we use the calculation

of a descent direction vector at an individual particle’s candidate location and add it to

the baseline velocity formulation (Inertia), weighted by a scalar C3 term and randomised

vector rrr3.

From LEH we take the concept of a stopping condition and relocation to the centre

of the largest hypersphere devoid of hcps. The stopping condition terminates an inner

maximisation search prematurely if it is determined that the robust value of the candi-

date cannot improve on the current estimate of the robust global minimum. This has

the potential for significant efficiency savings in terms of function evaluations, enabling

greater exploration. In a PSO setting it is recognised that this can be applied at a

particle level using particle best information for the stopping threshold. This can also

be taken a step further.

In a standard LEH setting candidate points will not be located near hcps. However

in a PSO setting a particle may move to a point such that its Γ-uncertainty neighbour-

hood already contains hcps, relative to that particle. In such a situation no function

30

evaluations are required. This introduces the concept of ‘dormancy’ whereby individual

particles may repeatedly require no function evaluations over multiple iterations of the

swarm. A second form of dormancy, where particles repeatedly move outside of the fea-

sible region is also considered. In either case, after some number of dormant iterations

a new capability is introduced, that of relocating the dormant particle to the centre of

the LEH devoid of all hcps greater than the current estimate of robust global minimum.

Ten multi-dimensional test problems are used over six dimensions between 2D and

100D, to test the effectiveness of the new framework employed in its three settings:

an rPSO + d.d. capability, an rPSO + LEH capability, and an rPSO + d.d. + LEH

capabilities. A brute force rPSO and a re-starting d.d. are used as comparators, along

with LEH. In all cases inner maximisation is by random sampling, a budget of 5,000

function evaluations is applied, and parameters are tuned for each heuristic at each

dimension. The new framework is shown to outperform the comparator techniques,

although LEH also performs well at 100D.

� Automatic Generation of Algorithms for Robust Optimisation Problems using Grammar-

Guided Genetic Programming [HGD20a]. This was submitted to the journal Applied

Soft Computing in April 2020.

Here new metaheuristics for robust problems are automatically generated using ge-

netic programming (GP). From an initial random population of heuristics, new genera-

tions of heuristics are evolved. On completion of the GP process the fittest is deemed

the best heuristic. This work requires the generation of a number of sub-algorithmic

building blocks from which complete heuristics can be constructed, along with the de-

sign rules by which they are combined. This is our grammar. In addition we must

generate an evolutionary GP framework which can operate on heuristics constructed

from the sub-components. By generating a context free grammar and using a common

GP representation of an algorithm (heuristic) as a tree, we are able to use standard

tree-based combination and mutation operators within the GP process.

Here all heuristics are based on an rPSO formulation, but a number of different

network topologies, movement formulations based on elements of the LEH and d.d.

capabilities developed in [HGD20b], inner maximisation search techniques, and other

features are available in component form within the grammar.

A series of GP runs are conducted using an experimental test suite comprising ten

multi-dimensional test problems across two dimensions, 30D and 100D. Ten separate

GP runs are undertaken, one for each test problem individually, plus one combined run

using all ten problems simultaneously. This is repeated for 30D and 100D. A budget of

2,000 function evaluations is assumed for all runs.

For the general (ten case) best performing heuristics identified in the GP analysis,

a direct comparison can be made against the best performing heuristics from our paper

[HGD20b]. This is notwithstanding the use in the GP runs of a budget of just 40% of

31

that used in the comparator results. There is a strong improved performance by the best

new general heuristics, including substantial outperformance for some problems. For the

individual case results the assessment against the comparators can be taken as indicative

only, as the comparators were not specifically designed to tackle individual problems.

Nevertheless the improved performance of the new best heuristics for individual test

cases is encouraging.

In addition the population of heuristics generated by each GP run give us a large

number of heuristics on which we can undertake some assessment of heuristic component

breakdown against performance. The features which can be associated with good per-

formance include inner maximisation by random sampling on a small number of points,

particle level stopping conditions, a small swarm size, a Global topology, and particle

movement using an inertia formulation plus LEH and d.d. components.

� In addition to the three papers [HGW19, HGD20b, HGD20a] I am a co-author of the

paper: Representative scenario construction and preprocessing for robust combinato-

rial optimization problems [GH19]. This was published in the journal Optimization

Letters in 2019.

This work employs a genetic algorithm to evolve heuristics for robust problems,

specifically to optimise combinatorial problems. The robust approaches developed and

analysed are mathematical programs targeted at a specific form of problem. Due to the

use of a fairly simple grammar of components and design rules, a GA is used here as

opposed to a more complex evolutionary approach such as GP.

My contribution relates to the conceptualisation of employing an automatic gen-

eration of algorithms approach, including the background work on how this could be

achieved and writing relevant sections of text. I also undertook some document reviews.

1.4.2 Statement of authorship

The following describes my contribution as lead author on [HGW19, HGD20b, HGD20a],

and the contributions of the co-authors:

� My contribution is consistent across all three papers:

– Conceptualization: Formulating and developing research goals and aims.

– Methodology: Development of the methods employed and analysis undertaken.

– Designing and developing the algorithms in Java, including the evolutionary tuning

and genetic programming frameworks. Also developing the R code for conducting

analysis.

– Performing experimental runs.

– Testing, verification and validation of code and the results of experimental testing.

32

– Application of statistical techniques, and other forms of analysis to the results of

the experimental testing.

– Preparation and writing of the text of the papers, including responding to reviewer’s

comments and undertaking amendments.

– Preparation and generation of the tables and figures.

� Marc Goerigk: Marc’s contribution is consistent across all three papers:

– Supervising the research, including planning and execution.

– Conceptualization: Formulating and developing research goals and aims.

– Methodology: Development of the methods employed and analysis undertaken.

– Performing experimental runs.

– Reviewing and editing the paper, including critical review and commentary.

� Michael Wright: Mike’s contribution to the paper [HGW19] is:

– Supervising the research, including planning and execution.

– Reviewing and editing the paper, including critical review and commentary.

� Trivikram Dokka: Vikram’s contribution to the papers [HGD20b, HGD20a] is:

– Supervising the research, including planning and execution.

– Reviewing and editing the paper, including critical review and commentary.

33

Chapter 2

Paper 1: A Largest Empty Hypersphere

Metaheuristic for Robust Optimisation

with Implementation Uncertainty

Published in Computers & Operations Research in 2019 [HGW19].

Partially funded through EPSRC grants EP/L504804/1 and EP/M506369/1.

Author 1: Martin Hughes, Lancaster University, United Kingdom.

Author 2: Marc Goerigk, University of Siegen, Germany.

Author 3: Michael Wright, Lancaster University, United Kingdom.

Abstract: We consider box-constrained robust optimisation problems with implemen-

tation uncertainty. In this setting, the solution that a decision maker wants to implement

may become perturbed. The aim is to find a solution that optimises the worst possible

performance over all possible perturbances.

Previously, only few generic search methods have been developed for this setting.

We introduce a new approach for a global search, based on placing a largest empty

hypersphere. We do not assume any knowledge on the structure of the original objec-

tive function, making this approach also viable for simulation-optimisation settings. In

computational experiments we demonstrate a strong performance of our approach in

comparison with state-of-the-art methods, which makes it possible to solve even high-

dimensional problems.

34

2.1 Introduction

The use of models to support informed decision making is ubiquitous. However, the size

and nature of the decision variable solution space, and the model run time, may make

a comprehensive – exhaustive or simply extensive – evaluation of the problem space

computationally infeasible. In such cases an efficient approach is required to search for

global optima.

Mathematical programs are one form of model that are explicitly formulated as

optimisation problems, where the model representation imposes assumptions on the

structure of the decision variable space and objective function. Such models are well

suited to efficient solution, and identification of global optima may be theoretically

guaranteed when feasible solutions exist. However many real-world problems are not

suited to expression as a mathematical program (e.g., a solution is evaluated by using

a simulation tool). From an optimisation perspective models where no assumptions

are made about the model structure can be thought of as a black-box, where decision

variables values are input and outputs generated for interpretation as an objective. In

this case optimisation search techniques such as metaheuristics are required, i.e., general

rule-based search techniques that can be applied to any model.

An additional widespread feature of many real-world problems is the consideration

of uncertainty which may impact on model outputs, and so on corresponding objective

function values. One strategy is to simply ignore any uncertainty and perform a stan-

dard search, possibly assessing and reporting on the sensitivity of the optimum after it

has been identified. However it has been established that optimal solutions which are

sensitive to parameter variations within known bounds of uncertainty may substantially

degrade the optimum objective function value, meaning that solutions sought without

explicitly taking account of uncertainty are susceptible to significant sub-optimality, see

[BTEGN09, GS16]. In the face of uncertainty the focus of attention for an optimisation

analysis shifts from the identification of a solution that just performs well in the expected

case, to a solution that performs well over a range of scenarios.

In this paper we develop a new algorithm for box-constrained robust black-box global

optimisation problems taking account of implementation uncertainty, i.e., the solution

that a decision maker wants to implement may be slightly perturbed in practice, and

the aim is to find a solution that performs best under the worst case perturbation.

Our method is based on an exploration technique that uses largest empty hyperspheres

(LEHs) to identify regions that can still contain improving robust solutions. In a compu-

tational study we compare our method with a local search approach from the literature

(see [BNT10b]) and a standard particle swarm approach. We find that our approach

considerably outperforms these methods, especially for higher-dimensional problems.

Structure of this paper. We begin with a review of the literature on metaheuris-

tics for robust optimisation in Section 2.2 before outlining the formal description of

35

robust min max problems in Section 2.3. We also consider some of the details of the

established local robust search technique due to [BNT10b]. In Section 2.4 we introduce a

novel approach, an exploration-focused movement through the search space identifying

areas that are free of previously identified poor points. We include a discussion and

descriptions of the algorithms used to identify empty regions of the decision variable

search space. The approach is then tested against alternative heuristics in Section 2.5,

on test problems of varying dimension. The experimental set up is described and the

results of this analysis presented. Finally we summarise and consider further extensions

of this work in Section 2.6.

2.2 Literature review

2.2.1 Robust optimisation

Different approaches to model uncertainty in decision making problems have been ex-

plored in the literature. Within robust optimisation, a frequent distinction is made

between parameter uncertainty (where the problem data is not known exactly) and

implementation uncertainty (where a decision cannot be put into practice with full ac-

curacy). Implementation uncertainty is also known as decision uncertainty [BTEGN09,

Tal09, BNT10b].

A common approach to the incorporation of uncertainty for black-box problems is

stochastic optimisation. Here knowledge of the probability distributions of the uncertain

parameters is assumed and some statistical measure of the fitness of a solution assessed,

e.g. using Monte Carlo simulation to estimate the expected fitness. This may be the

expected value, or a more elaborate model such as the variance in the fitness of a solution,

or even a multi-objective optimisation setting, see [PBJ06, HdMB14].

An alternative to a stochastic approach is robust optimisation, whose modern form

was first developed in [KY97] and [BTN98]. Whereas with stochastic optimisation a

knowledge of probability distributions over all possible scenarios is typically assumed, in

robust optimisation it is only assumed that some set is identified containing all possible

uncertainty scenarios (potentially infinite in number). A classic robust approach is then

to find a solution across all scenarios that is always feasible (strictly robust) and optimises

its performance in the worst case. This is known as min max. For a given point in the

decision variable space there is an ‘inner’ objective to identify the maximal (worst case)

function value in the local uncertainty neighbourhood, and an overall ‘outer’ objective

to identify the minimum such maximal value.

The field of robust optimisation has been primarily aligned with mathematical pro-

gramming approaches. There the methodology is based around the definition of reason-

able uncertainty sets and the reformulation of computationally tractable mathematical

programming problems. For specific forms of convex optimisation problems, the problem

36

incorporating uncertainty can be re-formulated to another tractable, convex problem,

see [BNT07, GS10]. To overcome concerns that the strictly robust worst case approach

may be overly conservative, the concept of robustness can be expanded in terms of both

the uncertainty set considered and the robustness measure [GS16]. On the assumption

that it is overly pessimistic to assume that all implementation errors take their worst

value simultaneously [BS04] consider an approach where the uncertainty set is reduced,

and a robust model defined where the optimal solution is required to remain feasible for

uncertainty applied to only a subset of the decision variables at any given time. Min

max regret, see [ABV09], is an alternative to min max, seeking to minimise the maxi-

mum deviation between the value of the solution and the optimal value of a scenario,

over all scenarios. [BTBB10] considers soft robustness, which utilises a nested family

of uncertainty sets. The distributionally robust optimisation approach, see [GS10], at-

tempts to bridge robust and stochastic techniques by utilizing uncertainty defined as a

family of probability distributions, seeking optimal solutions for the worst case probabil-

ity distribution. [CG16] use a bi-objective approach to balance average and worst case

performance by simultaneously optimising both.

Robust optimisation in a mathematical programming context has been application-

driven, so considerable work has been undertaken in applying robustness techniques to

specific problems or formulations, see [BS07, GS16]. There has also been some cross-over

into the application of specific heuristics, for example see [GLT97, AVCMSdCM11]. How-

ever application to general problems has been less well addressed [GS16]. Furthermore

robust approaches applied to black-box models are much less widely considered than

approaches for mathematical programming problems, see [MWPL13, GS16, MWPL16].

Recently, robust optimisation with implementation uncertainty has also been extended

to multi-objective optimisation, see [EKS17].

2.2.2 Metaheuristic for robust optimisation

The min max approach has been tackled with standard metaheuristic techniques applied

to both the inner maximisation and outer minimisation problems. In co-evolutionary

approaches two populations (or swarms) evolve separately but are linked. The fitness of

individuals in one group is informed by the performance of individuals in the other, see

[CSZ09]. [Her99, Jen04] use such a two-population genetic algorithm (GA) approach,

whilst [SK02, MKA11] consider two-swarm co-evolutionary particle swarm optimisation

(PSO) techniques for min max problems. A brute force co-evolutionary approach is to

employ complete inner maximisation searches to generate robust values for each individ-

ual in each generation of the outer minimisation, however this is expensive in terms of

model runs (i.e., function evaluations), see [MWPL16]. More practical co-evolutionary

approaches, for example using only small numbers of populations for the outer search

and the inner (uncertainty) search which share information between populations from

37

generation to generation, or following several generations, require the application of

additional simplifications and assumptions, see [CSZ09, MKA11].

One general area of research is the use of emulation to reduce the potential burden of

computational run times and the number of model-function evaluations, see [KVDHL16].

[ZZ10] use a surrogate-assisted evolutionary algorithm to tackle the inner search for

black-box min max problems. [MWPL13, MWPL16] employs Kriging meta-modelling

coupled with an expected improvement (EI) metric, as well as a relaxation of the inner

maximisation search. The EI metric is used to efficiently choose points in the decision

variable space where nominal (expensive) function evaluation should be undertaken, see

[JSW98], here with a view to most efficiently improving the estimate of the robust global

minimum. The relaxation involves iteratively performing the outer minimisation on a

limited inner uncertainty neighbourhood followed by an extensive inner maximisation

search in the region of the identified outer minimum. This continues whilst the inner

search sufficiently deteriorates the outer solution, with the inner maximum point being

added to the limited inner uncertainty set with each iteration.

A second approach due to [uRLvK14, uRL17] also uses Kriging and an EI met-

ric, building on a meta-model of the expensive nominal problem by applying a robust

analysis directly to the Kriging model and exploiting the fact that many more inexpen-

sive function evaluations can be performed on this meta-model. A modified EI metric

is calculated for the worst case cost function of the meta-model, to efficiently guide

the search in the nominal expensive function space. In [uRL17] the approach is ap-

plied to a constrained non-convex 2 dimensional problem due to [BNT10b, BNT10a],

the unconstrained version of which is also considered here. The Kriging-based ap-

proach is shown to significantly outperform the approaches outlined here, in terms

of the number of expensive function evaluations required to converge towards the ro-

bust optimum. In general we would expect the approach from [uRLvK14, uRL17] to

outperform the approaches considered here, in terms of efficiency when applied to low

dimensional non-convex problems. However the primary challenge with meta-model

based approaches is their application to higher dimensional problems. The test cases

considered in [MWPL13, MWPL16, uRLvK14, uRL17] have either been restricted to

low dimensional non-convex problems, or simpler convex and convex-concave problems

of up to 10 dimensions.

One local black-box min max approach is due to [BNT07, BNT10b, BNT10a]. Here a

search is undertaken by iteratively moving along ’descent directions’. Uncertainty around

individual points is assessed using local gradient ascents, based on which undesirable

’high cost points’ (hcps) are identified. Steps are taken in directions which point away

from these hcps, until no direction can be found.

Our approach is inspired by both elements of the descent directions technique and

the concept of relaxation of the inner maximisation search. We extend the idea of locally

moving away from identified hcps to a global perspective, seeking regions of the solution

38

space currently empty of such undesirable points. Furthermore the nature of our outer

approach enables the curtailing of an inner maximisation search if it is determined that

the current point under consideration cannot improve on the current best robust global

solution.

2.3 Notation and previous results

2.3.1 Problem description

We consider a general optimisation problem of the form

min f(xxx)

s.t. xxx ∈ X

where xxx = (x1, x2, . . . , xn)T denotes the n-dimensional vector of decision variables, f :

Rn → R is the objective function, and X ⊆ Rn is the set of feasible solutions. We write

[n] := {1, . . . , n}. In this paper, we assume box constraints X =
∏
i∈[n][li, ui]. Any

other potential feasibility constraints are assumed to be ensured through a penalty in

the objective.

In implementation uncertainty, we assume that a desired solution xxx might not be

possible to put into practice with full accuracy. Instead, a ”close” solution x̃xx = xxx+ ∆xxx

may be realised. The aim is to find a robust xxx such that for any such solution x̃xx from

the neighbourhood of xxx, the worst case performance is optimised.

More formally, we follow the setting of [BNT10b] and consider the so-called uncer-

tainty set

U := {∆xxx ∈ Rn | ‖∆xxx‖ ≤ Γ}

where Γ > 0 defines the magnitude of the uncertainty, and ‖ · ‖ refers to the Euclidean

norm. The worst case costs of a solution xxx ∈ X are then given as

g(xxx) := max
∆xxx∈U

f(xxx+ ∆xxx)

and so the robust optimisation problem is given by:

min
xxx∈X

g(xxx) = min
xxx∈X

max
∆xxx∈U

f(xxx+ ∆xxx) (ROP)

We therefore have an inner maximisation and outer minimisation problem, such that

the identification of the robust global optimum is based on finding the (outer) minimum

worst case cost objective function value in the decision variable space, and that objective

is determined by the (inner) maximisation of the nominal objective function in the

uncertainty neighbourhood around each point in the decision variable space. This type

of problem is also known as min max.

39

Note that xxx+ ∆xxx may not be in X , for which reason we assume that the definition

of f is not limited to X . However, if it is desired that xxx+ ∆xxx ∈ X for all ∆xxx ∈ U , then

this can be ensured by reducing the size of the feasible search space by Γ.

As an example for our problem setting, consider the 2-dimensional polynomial func-

tion due to [BNT10b]:

f(x, y) =2x6 − 12.2x5 + 21.2x4 + 6.2x− 6.4x3 − 4.7x2 − y6

−11y5 + 43.3y4 − 10y − 74.8y3 + 56.9y2 − 4.1xy

−0.1y2x2 + 0.4y2x+ 0.4x2y (poly2D)

For a feasible solution space within bounds [−1, 4] in each dimension, and uncertainty

defined by a Γ-radius value of 0.5, the nominal and worst case plots for (poly2D) are

shown in Figure 2.1. In min max the problem is one of finding the global minimum

for the worst case cost function. If uncertainty is ignored the problem is just one of

finding the global minimum of the (nominal) objective as shown in Figure 2.1a, whereas

including uncertainty the problem becomes one of finding the (worst case cost) objective

as shown in Figure 2.1b. In both cases the search proceeds based on generating nominal

objective values but for the worst case cost we must further undertake some assessment

of the impact of uncertainty on those objective outputs.

 −15 −5

 0

 0

 0

 5

 5

 5 10

 10

 10

 15

 15

 20 25

 25

 30

 30

 35

 35

 40

 4
0

 45

 4
5

 50

 5
0

 55

 5
5

 60 65

 7
0

 75

 8
0

 85 90

 9
5

 1
0

0

 105

 1
1

0

 115

 1
2

0

 1
2

5

 1
3

0

 135 140
 145 160 185

 1
9
0

 1
9
5

 2
2

0

 2
2

5

 255

 2
6

5

 2
7

0

 2
8

5

 3
70

 4

1
0

 4

3
5

 4

4
0

 4
4

5

 5
1

0

 5
2
0

 5
5

0

 6
65

−1 0 1 2 3 4

−
1

0
1

2
3

4

(a) Nominal problem

 10

 20

 20 20 30

 30

 40

 50
 60 70 80 90 100 110

 1
2
0

 130
 140

 1
5
0

 1
60

 1
7
0

 180 190 200

 2
1

0

 2
2

0

 2
3

0

 2
3

0

 240

 2
4
0

 2
5

0

 2
5

0

 2
6

0

 270 280 290 3
00

 3
1

0

 3
2

0

 3
3
0

 370 420 430

 4
6

0

 4
7

0

 4
9

0

 5
1

0

 530

 5
40

 570 580 590 600

 6
1

0

 6
2

0

 6
3

0

 710 720

 8
0

0

 8
5

0

 8
8

0

 9
10

 9

2
0

 1

0
6

0

 1
1

0
0

 1

3
5

0

 1
4

5
0

 1
4

8
0

 1
5

4
0

 1

7
3
0

 1
8

1
0

−1 0 1 2 3 4

−
1

0
1

2
3

4

(b) Worst case problem with Γ=0.5

Figure 2.1: Nominal and worst case cost for (poly2D) from [BNT10b]. Marked in purple are the

respective optima.

Here the global optimum value for the nominal problem is -20.8 at (2.8, 4.0). The

worst case plot is estimated by randomly sampling large numbers of points in the Γ-

uncertainty neighbourhood around each plotted point. The worst case cost at each point

is then approximated as the highest value of f(x) identified within each Γ-uncertainty

neighbourhood. The global optimum for the worst case problem is approximately 4.3 at

(-0.18, 0.29). The significant shift in the nominal versus robust optima, both in terms of

its location and the optimum objective, emphasises the potential impact of considering

40

uncertainty in decision variable values. The difference between the nominal and robust

optimal objective function values is the ‘price of robustness’, see [BS04].

2.3.2 Local robust search using descent directions

We briefly summarise the local search approach for (ROP) that was developed in [BNT10b].

Here, (ROP) is solved using a local robust optimisation heuristic illustrated by Figure 2.2.

An initial decision variable vector x̂xx is randomly sampled. Then a series of gradient as-

cent searches are undertaken within the Γ-uncertainty neighbourhood of this candidate

solution to identify hcps, see Figure 2.2a. This approximates the inner maximisation

problem max∆xxx f(x̂xx+ ∆xxx). Using a threshold value that is dynamically adjusted during

the algorithm, a subset H(x̂xx) of all evaluated points is identified, see Figure 2.2b.

x

(a) Candidate point xxx (centre), and

points evaluated for the inner maximisa-

tion problem (blue).

x

(b) Subset H(xxx) of critical high cost

points.

x

(c) A descent direction is identified by

solving a second order cone problem.

x

(d) The step size is determined.

Figure 2.2: Description of the descent direction robust local search approach [BNT10b].

In the next step, a descent direction is identified that points away from the set H(x̂xx),

see Figure 2.2c. To this end, a mathematical programming approach is used, minimising

the angle between the hcps and the candidate solution. This leads to the following

41

second order cone problem.

min
ddd,β

β (2.1)

s.t. ‖ddd‖ ≤ 1 (2.2)

dddThhh ≤ β ∀hhh ∈ H(x̂xx) (2.3)

β ≤ −ε (2.4)

Here, ddd is the descent direction, which is normalised by Constraint (2.2). Constraints (2.3)

ensure that β is the maximum angle between ddd and all high cost points hhh. Through Con-

straint (2.4), we require a feasible descent direction to point away from all points in H(x̂xx).

When an optimal direction cannot be found, the algorithm stops – a robust minimum

has been reached.

Next the size of the step to be taken is calculated, see Figure 2.2d. A step size just

large enough to ensure that all of the hcps are outside of the Γ-uncertainty neighbourhood

of the next candidate solution is used. Using the identified descent direction and step size

the algorithm moves to a new candidate point, and so the heuristic repeats iteratively

until a robust minimum has been identified.

2.4 A new largest empty hypersphere approach

2.4.1 Algorithm overview

Building on the notion of a search that progresses locally by moving away from already

identified poor (high cost) points, we develop a global approach that iteratively moves

to the region of the decision variable solution space furthest away from recognised hcps.

This is an exploration-focused approach, although rather than concentrating on exam-

ining unvisited regions the intention here is to identify and visit regions devoid of hcps.

Assuming uncertainty as considered previously in terms of a single value Γ that defines a

radius of uncertainty in all decision variables, we associate the idea of the largest empty

region (empty of hcps) with the idea of the largest empty hypersphere (LEH), or largest

empty circle in 2D. The approach is then to locate the next point in the search at the

centre of the identified LEH, and to iteratively repeat this as more regions are visited

and hcps identified. The approach is described in Figure 2.3.

We start by randomly sampling one or more points and evaluating the objective

function f at each. From these start points a candidate point is selected and an in-

ner analysis undertaken in the candidate’s Γ-uncertainty neighbourhood with a view to

identifying the local maximum, Figure 2.3a. This local worst case cost for the candi-

date is the first estimate of a robust global minimum, that is a global min max, and is

located at the candidate point. The aim is now to move to a point whose uncertainty

neighbourhood has a lower worst case cost than the current global value. We seek to

achieve this by identifying the largest hypersphere of radius at least Γ within the defined

42

(a) The decision variable space is seeded randomly.

Perform an inner search around one candidate

point.

(b) The current high cost set, including one point

from the previous inner search and some of the

seed points.

(c) Identify the largest empty hypersphere, the

centre of which is the next candidate point.

(d) Inner search around the new candidate. The

robust value here is less than the current global

minimum.

(e) The current high cost set, including more pre-

viously evaluated points due to the reduced high

cost threshold.

(f) Identify the largest empty hypersphere, the

centre of which is the next candidate point.

Figure 2.3: Description of largest empty hypersphere (LEH) approach.

43

feasibility bounds which is completely empty of hcps, and moving to the centre of that

LEH, see Figures 2.3b - 2.3c.

All points evaluated are recorded in a history set, a subset of which forms the high cost

set. The high cost set contains a record of all points evaluated so far with an objective

function value greater or equal to a high cost threshold, and here the high cost threshold

is set as the current estimate of the robust global minimum. Both the history set and the

high cost set are updated as more points are visited and the high cost threshold reduces,

see Figures 2.3d - 2.3e. On performing all inner searches after the first candidate, a

candidate’s robust value may be no better than the current estimate of the robust global

minimum (and therefore the current high cost threshold), in which case at least one point

will be added to the high cost set. Alternatively if a candidate’s robust value is better

than the current estimate of the robust global minimum, this current recorded optimum

is overwritten and the high cost threshold reduced accordingly. Again this introduces

at least one high cost point to the high cost set, but the reducing threshold may also

introduce additional points from the history set; this is suggested in Figure 2.3e.

The search stops when no LEH of radius greater than Γ exists or some pre-defined

resource limit has been reached. Then the candidate point around which the current

estimate of the robust global minimum has been determined is deemed the robust global

minimum. Otherwise the search repeats, performing analysis in the Γ-uncertainty neigh-

bourhood around candidates to estimate the local (inner) max, updating the global min-

imum worst case cost if appropriate, and moving to the next identified LEH, Figure 2.3f.

The critical feature of such an approach is the identification of regions of the solution

space that are currently empty of, and furthest from, the undesirable hcps. As defined

here this corresponds to identifying the largest hypersphere devoid of all hcps.

Given a discrete history set H of all points evaluated so far, high cost points are those

members of H with objective value which is at least the current high cost threshold τ ,

i.e.,

Hτ := {hhh ∈ H | f(hhh) ≥ τ}

We denote Nτ = |Hτ | as the cardinality of Hτ , and write Hτ = {hhh1, . . . ,hhhNτ }. The

identification of a point ppp ∈ X which is furthest from all Nτ high cost points in Hτ is a

max min problem:

max
ppp∈X

min
i∈[Nτ]

d(ppp,hhhi), (LEHP)

where d(ppp,qqq) is the Euclidean distance between two points ppp and qqq, see [OS97].

In the following, we specify this general LEH approach by considering two aspects

in more detail: The outer search is concerned with placing the next candidate point xxx

by solving (LEHP). The inner search then evaluates this candidate by calculating g(xxx)

approximately.

44

2.4.2 Outer search methods

Here we will introduce different approaches to identifying the largest empty hypersphere,

given a set of high cost points Hτ . It should be noted that none of these approaches

requires additional function evaluations, which is usually considered the limiting resource

in black-box settings.

2.4.2.1 Randomly sampled LEH algorithm

A very simple approach is to generate potential candidates randomly within the feasible

region, then determine whether they are more than Γ away from all hcps. If so they are a

valid candidate, if not re-sample up to some defined maximum number of times beyond

which it is assumed that no such candidate point can be found and the solution has

converged on a robust global minimum. Rather than being a largest empty hypersphere

approach this is just a valid empty hypersphere approach, and the size of the identified

empty hypersphere might vary considerably from one candidate to the next.

2.4.2.2 Genetic Algorithm for LEH

The solution of (LEHP) is an optimisation problem. Furthermore, given a point ppp

which is a potential candidate for the centre of the largest empty hypersphere, the inner

minimisation calculation in (LEHP) involves just an enumeration over the Nτ Euclidean

distance calculations between each hcp and ppp to identify the minimum distance d(ppp,hhhk),

where hhhk is the closest hcp. Therefore the focus for the solution of (LEHP) is the outer

maximisation, for which we may consider an approximate heuristic approach. We employ

a genetic algorithm (GA), a commonly cited evolutionary algorithm (EA) [Tal09]. Here

each individual represents a point ppp in the decision variable space, and the objective

function fLEH(ppp) := minhhh∈Hτ d(ppp,hhh) is the minimum distance between a given point ppp

and all hcps in Hτ . We seek to maximise this minimal distance by evolving a population

of points starting from randomly selected feasible points in the decision variable space

X . The best point generated by the GA is the next candidate point – that is estimated

centre of the LEH, for the current H, τ and Hτ .

2.4.2.3 Voronoi based LEH

Within the literature a widely referenced approach for tackling low dimensional LEH

problems is due to [Tou83], and is based on the geometric Voronoi diagram approach,

see [Cha93, OS97]. The Voronoi approach partitions a space into regions (cells). For a

given set of points each cell corresponds to a single point such that no point in the cell

is closer to any other point in the set. Points on the edges between cells are equidistant

between the set points which lie on either side of that edge. For our LEH problem the

set of points is Hτ , and the Voronoi diagram approach corresponds to segmenting the

45

feasible space X into Nτ separate cells, one for each hcp. The (Voronoi) vertices that lie

at the intersection of these cell (Voronoi) edges maximise the minimum distance to the

nearby set points, see [Cha93, OS97]. So for a given Hτ if we can determine the Voronoi

diagram we can use the identified Voronoi vertices as potential candidate points ppp. The

solution of (LEHP) is then simply a matter of enumeration, for each ppp calculating the

(inner) minimum Euclidean distance to all hcps, and then selecting the (outer) maximum

such minimal distance.

The original approach due to [Tou83] includes the identification of vertices (candidate

centres of LEHs) that can be sited outside of defined boundaries, in infeasible regions.

This is not exactly as required here. To deal with this edges that cross feasibility

boundaries are identified and the associated vertices which are outside of X are relocated

to an appropriate point on the boundary of X . Here any coordinate i ∈ [n] of such an

external vertex that is either less than li or greater than ui is re-set to li or ui as

appropriate.

However the Voronoi approach has exponential dependence on n, as constructing

the Voronoi diagram of Nτ points requires O(Nτ logNτ + N
dn/2e
τ) time [Cha93]. This

suggests that such an approach is not computationally viable for anything other than

low dimensional problems. On the basis that a Voronoi diagram based approach is the

primary recognised heuristic for identifying the largest empty circle we will consider a

Voronoi based robust LEH heuristic here only in the context that for 2D problems in

our experimental analysis this approach will serve as a good direct comparator for our

other robust LEH heuristics.

2.4.3 Inner search methods

Discussions of the LEH approach have so far focussed on the outer minimisation search,

assuming some form of inner search that provides the inner robust maximum for each

candidate point in the minimisation search. In [BNT10b] a two-stage gradient ascent

search is recommended for each inner search around a candidate point. This assumes

gradient information is available and proposes (n + 1) individual two-stage gradient

ascents for each candidate. For a 100-dimensional problem this would require several

thousand function evaluations around each candidate point. In practical terms both the

number of function evaluations required to undertake a global search and the requirement

for gradient information may make such extensive inner searches prohibitive. Given, for

example, budgetary restrictions on the number of function evaluations, some trade-off

must be achieved between the extent of each inner Γ-radius uncertainty neighbourhood

search and globally exploring the search space. But this trade-off between robustness

in terms of the extent of the inner searches, and performance in terms of the outer

global search, is complex, see [MLM15, EDHX17]. For example the determination of an

appropriate inner approach – type of search, extent of search and parameter settings –

46

may be both instance (problem and dimension) dependent and dependent on the outer

approach.

Here we do not propose to recommend a definitive inner search approach. From a

theoretical point of view we assume the information is provided by some oracle. From an

experimental point of view in the algorithm testing and comparisons below we assume

the same basic inner Γ-radius uncertainty neighbourhood analysis for all heuristics, to

ensure a consistency when comparing results for alternative search approaches.

There is, however, an aspect of our LEH approach that enables an additional feature,

the forcing of an early end to an inner search. The LEH approach is exploration-led,

the objective being to locate and move to the candidate point in the decision variable

space furthest from all hcps. Hcps are designated based on the determination of a high

cost threshold τ , set here as the current estimate of the robust global minimum (min

max) value. The nature of this approach enables (inner) uncertainty neighbourhood

searches around each candidate point to be restricted when appropriate. If an inner

search identifies a local point with objective function value above τ the inner search

can be immediately curtailed on the basis that the candidate is not distant from hcps.

This equates to the recognition that the candidate point is not an improvement on the

current estimated robust optima. Such regulating of inner searches has the potential to

significantly reduce the number of function evaluations expended on local neighbourhood

analysis. In the case of budgetary limitations on numbers of function evaluations this

further enables more exploration of the decision variable space.

2.4.4 Algorithm summary

Given one of our three approaches to identifying the LEH devoid of hcps, random, GA

or Voronoi, the overarching algorithm for the robust exploratory LEH heuristic is given

in Algorithm 1. Here one of these three approaches to the outer search is applied in

line 16 as LEH Calculator(Hτ), for a defined high cost set Hτ . It is assumed that this

routine will return a candidate point xxxLEH and an associated radius rLEH , that is the

minimal distance between xxxLEH and all points in Hτ . The heuristic will halt if rLEH is

not greater than Γ.

For a defined number of initialisation points, random points in X are selected and

the function f evaluated at these points. The points and their function evaluations are

recorded in history sets H and FH , lines 1 - 6. Having randomly selected a candidate

point xxxc from H we perform an inner maximisation in the Γ-uncertainty neighbourhood

around xxxc, see line 10. The description of the inner maximisation is given below as

Algorithm 2. If this is the first candidate point, or the local robust value for this

candidate g̃(xxxc) is less than the current best solution τ , this minimum is updated and

the associated global minimum point xxxOp replaced by xxxc, see lines 11 - 14.

Next the high cost set Hτ is established as all members of H with corresponding

47

function values in FH that are greater than or equal to the current high cost threshold

τ , see line 15. Based on Hτ , the next candidate point is identified via one of the outer

search approaches, see line 16. If the heuristic is halted at this stage due to an inability

to identify a valid LEH or at any stage due to the budget being exceeded, the extant

estimate for the robust global minimum xxxOp is returned.

Algorithm 1 Robust global exploration using Largest Empty Hyperspheres

Input: f , X , Γ

Parameters: Num Initial, Budget, Max Search

1: for all i in [Num Initial] do

2: Choose random point xxxi ∈ X
3: Calculate f(xxxi) and store in FH

4: Budget← Budget− 1

5: H ← H ∪ {xxxi}
6: end for

7: Select random point xxxc ∈ H
8: rLEH ←∞; τ ←∞
9: while rLEH > Γ do

10: g̃(xxxc)← CALL Algorithm 2

11: if g̃(xxxc) < τ then

12: xxxOp ← xxxc

13: τ ← g̃(xxxc)

14: end if

15: Hτ ← {xxx ∈ H : FH(xxx) ≥ τ}
16: Find (xxxLEH , rLEH) by calling LEH Calculator(Hτ)

17: xxxc ← xxxLEH

18: end while

19: return A robust solution xxxOp and robust objective estimate τ

Algorithm 2, the Γ-uncertainty neighbourhood inner maximisation called in line 10

of Algorithm 1, requires several inputs: Budget the current count of function evaluations

completed, Max Search the maximum number of function evaluations permitted in an

inner search, xxxc the current candidate point (centre of an LEH) around which the inner

search is to be performed, Γ to define the uncertainty neighbourhood of xxxc, and τ the

high cost threshold for stopping the inner search if appropriate.

Algorithm 2 proceeds by looping through up to Max Search inner search points,

identifying a point in the Γ-uncertainty neighbourhood of xxxc and evaluating the func-

tion at each point visited, lines 10 - 22. Here the point to be evaluated is determined

by random sampling in the Γ-radius hypersphere centred on xxxc, line 11. Under other

inner maximisation rules this would be determined by some explicit maximisation search

48

heuristic. As the function is evaluated at the inner search points the local robust value

(inner maximum) Local Robust is updated as appropriate, line 18. If Local Robust

exceeds the high cost threshold τ the inner maximisation is immediately terminated,

lines 19 - 21. Algorithm 2 ends by returning an estimate for the worst case cost value

at xxxc, g̃(xxxc) into Algorithm 1.

Algorithm 2 Γ-uncertainty neighbourhood inner maximisation

Input: Budget, Max Search, xxxc, Γ, τ

1: if τ <∞ then

2: Calculate f(xxxc) and store in FH

3: H ← H ∪ {xxxc}
4: Budget← Budget− 1

5: if Budget == 0 then

6: GOTO line 19 of Algorithm 1

7: end if

8: end if

9: Set Local Robust← f(xcxcxc)

10: for all i in [Max Search] do

11: Choose ∆xxxic ∈ U , set xxxi ← xxxc + ∆xxxic

12: Calculate f(xxxic) and store in FH

13: H ← H ∪ {xxxic}
14: Budget← Budget− 1

15: if Budget == 0 then

16: GOTO line line 19 of Algorithm 1

17: end if

18: Local Robust← max{Local Robust, f(xxxic)}
19: if Local Robust > τ then

20: GOTO line 23

21: end if

22: end for

23: g̃(xxxc)← Local Robust

24: return g̃(xxxc): estimated worst case cost at xxxc

2.4.5 Example LEH application

In order to give some indication of the nature of our LEH search we have applied it to the

2-dimensional problem (poly2D) and plotted the points evaluated and associated search

path of the current estimate of the robust global minimum in Figures 2.4e and 2.4f. Here

the LEH Voronoi algorithm is used. For comparison we have also plotted corresponding

results for two alternative heuristics, a robust Particle Swarm Optimisation (PSO) ap-

49

proach shown in Figures 2.4a and 2.4b, and the local descent directions approach from

Section 2.3.2 shown in Figures 2.4c and 2.4d. Here the robust PSO is used as a proxy

to a brute force or co-evolutionary approach. The basic global PSO formulations have

been used, as described in [SE98]. The descent directions approach has been extended

by using random re-starts, as a proxy to extending it to a global approach. In all cases

inner random sampling in a hypersphere of 100 Γ-uncertainty neighbourhood points is

used, and a maximum budget of 10,000 function evaluations employed.

The plots shown in Figure 2.4 are for only a single run of each heuristic, and as

such should only be seen as exemplars intended to give some indication of the different

natures of these outer search approaches. It can be seen that whilst the robust PSO

explores the decision variable space somewhat, and the re-starting descent directions

follows (exploits) a series of local paths, the LEH approach features both considerable

exploration globally and more intense analysis of promising points. It is clear that the

curtailing of the inner searches in the LEH approach enables much wider exploration

for fewer function evaluations. In this example less than 1,000 function evaluations have

been required before the LEH heuristic has stopped because an LEH of radius greater

than Γ cannot be found, but for larger (dimensional) problems such stopping prior to

reaching the budgetary limit will not apply. One striking feature of Figure 2.4e is how

many of the inner searches stop immediately on the evaluation of a candidate point. This

is because the objective value at these candidate points exceeds the current threshold τ .

The Voronoi based search exemplified by Figures 2.4e and 2.4f is a good indicator of

the nature of the searches due to all three LEH approaches, random, GA and Voronoi.

However the radii of the LEH identified for each candidate will vary with the use of

each of these algorithms. Figure 2.9 in Appendix 2.7.2 gives some indication of how

the radii of the hyperspheres generated by each of these LEH heuristics progress as the

exploration proceeds.

2.5 Computational experiments

2.5.1 Set up

In order to assess the effectiveness of the LEH approach the heuristic has been applied to

eight test problems, and results compared against the two alternative search heuristics

described in Section 2.5.2. Experiments have been performed on 2D, 4D, 7D, 10D and

100D instances of these test problems; results have also been generated for (poly2D).

Both the genetic algorithm and random forms of the LEH heuristic have been assessed

for all instances. The LEH Voronoi has additionally been applied to the 2D instances,

with the intention of giving some indication of the differences due to a ‘best’ LEH

identifier algorithm (Voronoi) versus the alternatives. All LEH approaches are initialised

by randomly sampling a single point in X . Assuming that for most real-world problems

50

 −15 −5

 0

 0

 0

 5

 5

 5 10

 10

 10

 15

 15

 20 25

 25

 30

 30

 35

 35

 40

 4
0

 45

 4
5

 50

 5
0

 55

 55

 60 65

 7
0

 75

 8
0

 85 90

 9
5

 1
0

0

 105

 1
1

0

 115

 1
2

0

 1
2

5

 1
3

0

 135 140
 145 160 185

 1
90

 1

95

 2
20

 2

2
5

 255

 2
6

5

 2
7

0

 2
8

5

 3
70

 4

10

 4
3

5

 4
4

0

 4
4

5

 5
1

0

 5
20

 5
5

0

 6
65

−1 0 1 2 3 4

−
1

0
1

2
3

4

(a) PSO points

 10

 20

 20 20 30

 30

 40

 50
 60 70 80 90 100 110

 120

 130
 140

 1
50

 1

60

 1
70

 180 190 200

 2
1

0

 2
2

0

 2
3

0

 230

 240

 240

 2
5

0

 2
5

0

 2
6

0

 270 280 290 3
00

 3
1

0

 3
2

0

 3
30

 370 420 430

 4
6

0

 4
7

0

 4
9

0

 5
1

0

 530

 5
40

 570 580 590 600

 6
1

0

 6
2

0

 6
3

0

 710 720

 8
0

0

 8
5

0

 8
8

0

 9
10

 9

2
0

 1

06
0

 1

1
0

0

 1
3

5
0

 1

4
5

0

 1
4

8
0

 1
5

4
0

 1

73
0

 1
8

1
0

−1 0 1 2 3 4

−
1

0
1

2
3

4

●

●

●●

●●●●●●●●

●●
●●

(b) PSO search

 −15 −5

 0

 0

 0

 5

 5

 5 10

 10

 10

 15

 15

 20 25

 25

 30

 30

 35

 35

 40

 4
0

 45

 4
5

 50

 5
0

 55

 55

 60 65

 7
0

 75

 8
0

 85 90

 9
5

 1
0

0

 105

 1
1

0

 115

 1
2

0

 1
2

5

 1
3

0

 135 140
 145 160 185

 1
90

 1

95

 2
2

0
 2

2
5

 255

 2
6

5

 2
7

0

 2
8

5

 3
70

 4

10

 4
3

5

 4
4

0

 4
4

5

 5
1

0

 5
20

 5
5

0

 6
65

−1 0 1 2 3 4

−
1

0
1

2
3

4

(c) DD points

 10

 20

 20 20 30

 30

 40

 50
 60 70 80 90 100 110

 120

 130
 140

 1
50

 1

60

 1
70

 180 190 200

 2
1

0

 2
2

0

 2
3

0

 230

 240

 240

 2
5

0

 2
5

0

 2
6

0

 270 280 290 3
00

 3
1

0

 3
2

0

 3
30

 370 420 430

 4
6

0

 4
7

0

 4
9

0

 5
1

0

 530

 5
40

 570 580 590 600

 6
1

0

 6
2

0

 6
3

0

 710 720

 8
0

0

 8
5

0

 8
8

0

 9
10

 9

2
0

 1

0
60

 1

1
0

0

 1
3

5
0

 1

4
5

0

 1
4

8
0

 1
5

4
0

 1

73
0

 1
8

1
0

−1 0 1 2 3 4

−
1

0
1

2
3

4

●●●●●● ●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●
●●
●
●

●
●●

●●●●●●

(d) DD search

 −15 −5

 0

 0

 0

 5

 5

 5 10

 10

 10

 15

 15

 20 25

 25

 30

 30

 35

 35

 40

 4
0

 45

 4
5

 50

 5
0

 55

 55

 60 65

 7
0

 75

 8
0

 85 90

 9
5

 1
0

0

 105

 1
1

0

 115

 1
2

0

 1
2

5

 1
3

0

 135 140
 145 160 185

 1
90

 1

95

 2
20

 2

2
5

 255

 2
6

5

 2
7

0

 2
8

5

 3
70

 4

10

 4
3

5

 4
4

0

 4
4

5

 5
1

0

 5
20

 5
5

0

 6
65

−1 0 1 2 3 4

−
1

0
1

2
3

4

(e) LEH Vor points

 10

 20

 20 20 30

 30

 40

 50
 60 70 80 90 100 110

 120

 130
 140

 1
50

 1

60

 1
70

 180 190 200

 2
1

0

 2
2

0

 2
3

0

 230

 240

 240

 2
5

0

 2
5

0

 2
6

0

 270 280 290 3
00

 3
1

0

 3
2

0

 3
30

 370 420 430

 4
6

0

 4
7

0

 4
9

0

 5
1

0

 530

 5
40

 570 580 590 600

 6
1

0

 6
2

0

 6
3

0

 710 720

 8
0

0

 8
5

0

 8
8

0

 9
10

 9

2
0

 1

06
0

 1
1

0
0

 1

3
5

0

 1
4

5
0

 1
4

8
0

 1
5

4
0

 1

73
0

 1
8

1
0

−1 0 1 2 3 4

−
1

0
1

2
3

4

●●●●●

●●●●●

●

●●●

(f) LEH Vor search

Figure 2.4: Contour plots of example searches of the 2-dimensional problem (poly2D), for Γ=0.5.

Plots on the left show all points evaluated. Plots on the right show the progress of the current

best robust solution. The heuristics used are: (top) outer PSO, (middle) outer descent directions

with re-start, and (bottom) outer LEH using the Voronoi based approach.

51

the optimisation analysis will be limited by resources, a fixed budget of 10,000 function

evaluations (model runs) is assumed. The same inner approach is employed for all

heuristics. A simple random sampling in a hypersphere of 100 points in a point’s local

Γ-uncertainty neighbourhood is used for all instances, and the local robust maximum is

estimated as the maximum due to this sampling. For the LEH approaches this inner

sampling is curtailed if a point is identified in the uncertainty neighbourhood that has

objective value exceeding the current high cost threshold τ .

All experiments have have been performed using Java, on an HP Pavilion 15 Note-

book laptop computer, with 64 bit operating system, an Intel Core i3-5010U, 2.10GHz

processor, and 8GB RAM. Each heuristic search has been applied to each test problem-

dimension instance 50 times to reduce variability. For the solution of the Second Order

Cone Problem as part of the descent directions algorithm [BNT10b], the IBM ILOG

CPLEX Optimization Studio V12.6.3 package is called from Java.

2.5.2 Comparator heuristics

Our experiments have been conducted on LEH, a re-starting descent directions, and

robust PSO metaheuristics. We have applied parameter tuning to 3 of the 5 comparator

heuristics – LEH Voronoi and LEH Random do no have tunable parameters – employing

an evolutionary tuning approach using a genetic algorithm to generate a single set of

parameters for each heuristic, for all test problems. For each of the 3 tuned heuristics the

same subset of the test instances was used, running each member of an evolving popula-

tion on each of these instances multiple times to generate mean result for each member

of a population on each test instance. The performance of each individual in a popula-

tion was ranked separately for each test instance, across the members of the population,

leading to mean overall ranks which were used as the utility measure in tournament

selection; see e.g. [ES12]. Tuned parameter values are given in Appendix 2.7.4.

The effectiveness of the local descent directions approach [BNT10b] suggests that

extending this to a global search by using random re-starts will provide a reasonable

comparator. A local descent directions search is undertaken from a random start point,

and when this is complete it is repeated from another random start point. This is

repeated until the function evaluations budget is reached. In descent directions a set

of high cost points leads to the identification of an optimal stepping direction and step

size, if a valid direction exists. However the algorithm includes a number of dynamically

changing parameters which adapt the high cost set and enforce a minimum step size.

Here we have tuned 5 parameters relating to these stages of the heuristic; see [BNT10b]

for further information. Labelled ‘d.d. Re’ in the results section.

As a proxy to a brute force or co-evolutionary approach an outer particle swarm

search is considered. The basic formulations for the global PSO approach have been

used as described in [SE98] and 5 parameters have been tuned: swarm size, number

52

of iterations, and for the velocity equation the C1 and C2 acceleration parameters and

inertia weight parameter ω. The combined swarm size times number of iterations was

limited to 100 in order to align with the budget of 10,000 function evaluations and the

level of inner sampling. Labelled ‘PSO’ in the results section.

Our robust LEH metaheuristic is considered for the three alternative ways of identi-

fying the largest hypersphere that is empty of hcps:

� Randomly sampled valid empty hypersphere, see Section 2.4.2.1. This includes re-

sampling up to 1,000 potential candidates in an attempt to identify a valid empty

hypersphere, otherwise it is assumed that a valid point cannot be found and a robust

global minimum has been reached. Labelled ‘LEH Rnd’ in the results section.

� Genetic algorithm LEH, see Section 2.4.2.2. Here we have tuned 6 parameters: the

size of the population, number of generations, number of elites, tournament size, and

mutation probability and size; we have fixed the use of tournament selection and

the choice of mid-point crossover. The combined population size times number of

generations was limited to 100, which is somewhat based on run time considerations

associated with the large value of Nτ , the number of candidate points visited with a

budget of 10,000 function evaluations. Labelled ‘LEH GA’ in the results section.

� Voronoi based [Tou83] LEH, see Section 2.4.2.3. Here the construction of the Voronoi

diagram for the input points Hτ is performed using the Java library due to [Nah17].

This generates geometric data, Voronoi vertices and edges, which are used to determine

a set of potential candidate points – Voronoi vertices, including those originally outside

of X relocated to the boundary of X – for the centre of the LEH. Labelled ‘LEH Vor’

in the results section.

2.5.3 Test functions

A large number of test functions are available for benchmarking optimisation algorithms,

and posing a variety of difficulties, see [Kru12, JY13]. Here eight are considered, plus

(poly2D) as outlined in Section 2.3.1. In each case a single Γ-uncertainty value is used:

� Ackleys: feasible region [-32.768, 32.768]; Γ=3.0.

� Multipeak F1: feasible region [0, 1]; Γ=0.0625.

� Multipeak F2: feasible region [0, 10]; Γ=0.5.

� Rastrigin: feasible region [-5.12, 5.12]; Γ=0.5.

� Rosenbrock: feasible region [-2.048, 2.048]; Γ=0.25.

� Sawtooth: feasible region [-1, 1]; Γ=0.2.

53

� Sphere: feasible region [-5, 5]; Γ=1.0.

� Volcano: feasible region [-10, 10]; Γ=1.5.

The full description of these eight test functions is given in Appendix 2.7.1. To give

some indication of the nature of these functions contour plots of the 2D instances are

shown in Figure 2.5, for both the nominal and worst cases.

 5

 9 9
.5

 1
0

 11

 13

 14

 14.5 15 15.5

 16 16.5

 17

 17.5

 18

 18.5
 19

 19.5

 20

 20.5

 21

 21.5

 21.5

 21.5

 21.5

−30 −20 −10 0 10 20 30

−
3

0
−

2
0

−
1

0
0

1
0

2
0

3
0

 −0.6

 −0.6

 −0.6 −0.6 −0.5

 −
0
.5

 −
0
.5

 −
0
.5

 −0.5

 −0.5

 −0.5

 −0.5

 −0.5

 −0.4

 −0.4

 −0.4

 −
0
.4

 −0.4

 −0.4
 −0.4

 −0.4 −0.4

 −0.3

 −0.3

 −
0.

3
 −0.3

 −
0

.3

 −0.3

 −0.3

 −0.3

 −
0

.3

 −0.3

 −0.3

 −0.3
 −0.3

 −0.3

 −0.2

 −0.2

 −
0
.2

 −0.2

 −
0.2

 −0.2

 −
0

.2

 −0.2

 −0.2

 −0.2

 −
0

.2

 −0.2

 −0.2

 −0.2

 −
0

.2

 −0.2

 −0.2

 −0.2
 −0.2

 −
0.

1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 −
1

 −
1

 −
1

 −1

 −1

 −1

 −
0
.5

 −0.5

 −
0
.5

 −0.5

 −0.5

 −0.5

 0

 0

 0
 0

 0
 0

 0

 0

 0

 0

 0 0
.5

 0.5
 0

.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 1

 1

 1

 1

0 2 4 6 8 10

0
2

4
6

8
1

0

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 20

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 3
0

 30

 30

 3
0

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 30

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 40

 4
0

 40

 50

 50

 50

 50

 50

 5
0

 50

 50 50

 50 50 50

 50

 50

 5
0

 50

 5
0

 50

 50

 60

 60

 6
0

 60

 60

 60

 60

 60

 60

 60

 60

 60

−4 −2 0 2 4

−
4

−
2

0
2

4

 200

 200

 400

 600 6
00

 800 8
00

 1000 1
00

0

 1200 1
20

0

 1400 1
40

0

 1
6
0
0
 1

6
0
0

 1
8
0
0
 1

8
0
0

 2
2
0
0
 2

2
0
0

 2
4
0
0
 2

4
0
0

 3
2
0
0
 3

2
0
0

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.1

 0.1

 0.2

 0.2 0.25

 0.3

 0.35

 0.35

 0.4

 0
.4

 0.45

 0.45 0.5

 0.55

 0.55

 0.55

 0.55

 0
.6

 0
.6

 0.6

 0.6

 0.65

 0
.6

5

 0.65

 0.65

 0
.7

 0
.7

 0.7

 0.7

 0.75

 0
.7

5

 0.75

 0.75

 0
.8

 0
.8

 0.8

 0
.8

 0.85

 0
.8

5

 0.85

 0
.8

5

 0
.9

 0
.9

 0.9

 0
.9

 0.95

 0
.9

5

 0.95

 1

 1

 1

 1

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2
0

 20

 20

 20

 20

 20
 22

 24

 26

 26

 26 26

 26

 26
 28

 28

 28

 28

 30

 30

 30

 30

 32

 32

 32

 32

 34

 34

 3
4

 34

 36

 36

 3
6

 36

 38

 3
8

 38

 38

 40 40

 42
 42

−4 −2 0 2 4

−
4

−
2

0
2

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2
 2.2

 2.2

 2.2

 2.2

 2.4

 2.4

 2.4

 2.4

 2.6

 2.6

 2.6

 2.6

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

 12

 13 13.8

 1
4
.8

 1
5

 15.8

 16.6

 1
6
.8

 17

 1
7
.2

 17.6
 18

 18.2

 18.4

 18.6 18.8

 19
 19.2

 19.4

 19.6

 19.8

 20
 20.2

 20.4
 20.6

 20.8

 21

 21.2

 21.4

−30 −20 −10 0 10 20 30

−
3

0
−

2
0

−
1

0
0

1
0

2
0

3
0

 −0.4

 −0.3
 −0.25

 −0.25
 −0.25

 −0.25
 −0.2

 −0.2

 −0.2
 −0.2

 −0.15

 −
0
.1

5

 −
0.

15

 −0.15

 −0.1

 −0.1

 −0.1

 −0.1

 −
0

.0
5

 −
0

.0
5

 −
0

.0
5

 −

0
.0

5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 −0.4 −0.2 0

 0

 0.2

 0.4

 0
.4

 0.4 0.6

 0.8

 0.8

 0.8

 1

 1

 1

 1

 1.2 1.4

 1.6

 1.6
 1.8

0 2 4 6 8 10

0
2

4
6

8
1

0

 40

 40

 40

 40

 42

 42

 44 46

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66 66

 66

 6
6

 68

 6
8

 68

 68
 68

 68

 6
8

 70

 7
0

 70

 70

 70

 7
0

 7

0

 72

 7
2

 72

 72

 72

 72

 74

 74

 74

 74

 76

 76

 76

 76

 7
6

 7
8
 78

 8
0

 8
0

 8
0

 80

 82

 82

 82

−4 −2 0 2 4

−
4

−
2

0
2

4

 200

 200

 400

 400

 600 6
00

 800 8
00

 1000 1
00

0

 1200 1
20

0

 1400 1
40

0

 1
6
0
0
 1

6
0
0

 1
8
0
0
 1

8
0
0

 2
0
0
0

 2
0
0
0

 2
2
0
0
 2

2
0
0

 2
4
0
0
 2

4
0
0

 2
6
0
0

 2
8
0
0

 2
8
0
0

 3
0
0
0
 3

0
0
0

 3
2
0
0
 3

2
0
0

 4
0
0
0
 4

0
0
0

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.4

 0.45

 0.5

 0.55

 0.6 0.65 0.7

 0.75

 0.75

 0.75

 0.75

 0.8

 0.8

 0.8

 0.8

 0
.8

5

 0
.8

5

 0.85

 0.85

 0.9

 0
.9

 0.9

 0.9

 0
.9

5

 0
.9

5

 0.95

 0.95

 1

 1

 1

 1

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

 5

 10

 15

 20

 25

 30

 35

 40

 40

 40

 40

 45

 45

 45

 45

 50

 50

 50

 50

 55

 55

 55

 55

−4 −2 0 2 4

−
4

−
2

0
2

4

 0.5

 0.6 0
.7

 0.8

 0.9

 1
 1.1

 1.2

 1.3
 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3
 2.4

 2.4

 2.4

 2.4

 2.5

 2.5

 2.5

 2.5

 2.6

 2.6

 2.6

 2.6

 2.7

 2.7

 2.7

 2.7

 2.8

 2.
8

 2.8

 2.8

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

Figure 2.5: Contour plots of nominal (top 8) and worst case (bottom 8) 2D test functions. Left

to right, top to bottom: Ackley, Multipeak F1, Multipeak F2, Rastrigin, Sawtooth, Sphere and

Volcano.

54

2.5.4 Results

Results of the 50 sample runs for each heuristic applied to each test problem-dimension

instance are presented here. In each run the best solution as identified by the heuristic

is used. However the points in the decision variable space that have been identified as

best have robust values generated using the simple inner random sampling approach,

with a budget of up to 100 sample points. To better approximate the true robust values

at these points their robust values have been re-estimated based on randomly sampling

a large number of points (nominally 1,000,000) in the Γ-uncertainty neighbourhood of

the identified robust point. This is a post processing exercise and does not affect the

min max search.

Mean results due to each set of 50 sample runs are shown in Tables 2.1 and 2.2.

We have applied the Wilcoxon rank-sum test with 95% confidence to identify the sta-

tistically best approaches. Results highlighted in bold indicate the approaches that are

statistically equivalent to the best one observed, for a given problem-dimension instance.

Corresponding box plots, giving some indication of how the results are distributed across

the 50 samples, are shown in Figures 2.6, 2.7 and 2.8. Additional results, the standard

deviations due to each set of 50 sample runs, the average number of candidate points vis-

ited and average number of function evaluations undertaken, are given in Appendix 2.7.3.

(poly2D)

2D

PSO 5.57

d.d. Re 5.11

LEH Vor 5.52

LEH GA 5.50

LEH Rnd 5.26

Table 2.1: Mean results due to 50 sample runs for the 2-dimensional polynomial function (poly2D)

due to [BNT10b].

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

4

6

8

10

12

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

O
bj

ec
tiv

e

Figure 2.6: Box plots of robust objective values due to multiple sample runs for the 2-dimensional

polynomial function (poly2D) due to [BNT10b].

55

A
ck

le
y
’s

M
u

lt
ip

ea
k
F

1
M

u
lt

ip
ea

k
F

2
R

as
tr

ig
in

R
os

en
b

ro
ck

S
aw

to
ot

h
S

p
h

er
e

V
ol

ca
n

o

2
D

P
S

O
1
1
.4

4
-0

.3
6

-0
.4

9
38

.0
4

10
.0

0
0
.4
9

1.
4
7

0.
3
9

d
.d

.R
e

1
2
.7

8
-0

.4
0

-0
.4

4
36

.4
2

7
.7
1

0.
5
4

1
.0
1

0
.2
4

L
E

H
V

or
9
.3
6

-0
.6
1

-0
.6
8

3
4
.6
7

7
.7
1

0.
5
9

1.
0
5

0
.2
4

L
E

H
G

A
9.

62
-0

.6
0

-0
.6

5
3
5
.1
7

7
.6
8

0
.4
8

1.
1
4

0.
2
7

L
E

H
R

n
d

9.
77

-0
.5

9
-0

.6
5

35
.5

2
7
.9

2
0
.4
7

1.
2
1

0.
2
9

4
D

P
S

O
1
3
.5

0
-0

.3
0

-0
.3

6
65

.9
1

34
.2

0
0.

5
0

3.
3
5

0.
7
5

d
.d

.R
e

1
7
.3

2
-0

.3
3

-0
.3

2
60

.4
3

1
1
.9
4

0.
6
0

1
.0
2

0
.4
6

L
E

H
G

A
8
.7
3

-0
.6
4

-0
.6
8

5
4
.3
4

12
.1

7
0
.4
5

1.
3
9

0
.3
4

L
E

H
R

n
d

1
2
.2

1
-0

.5
0

-0
.5

7
61

.3
9

23
.1

8
0.

4
6

1.
7
0

0.
5
7

7
D

P
S

O
1
5
.3

6
-0

.2
9

-0
.2

3
10

2.
35

12
3.

4
2

0.
5
1

8.
2
1

1.
2
7

d
.d

.R
e

1
9
.7

2
-0

.3
0

-0
.2

4
8
8
.4
4

1
7
.4
7

0.
6
3

1
.0
3

1.
2
1

L
E

H
G

A
1
2
.3
5

-0
.5
1

-0
.5
7

8
8
.0
7

48
.7

5
0
.4
2

2.
9
4

0
.7
7

L
E

H
R

n
d

1
6
.1

9
-0

.4
2

-0
.4

8
10

4.
31

12
6.

2
8

0.
5
2

9.
4
9

1.
3
7

10
D

P
S

O
1
6
.1

7
-0

.3
1

-0
.1

5
14

2.
99

23
8.

3
6

0.
5
1

14
.6

6
1.

6
3

d
.d

.R
e

2
0
.6

9
-0

.3
0

-0
.1

9
1
1
2
.6
1

4
1
.1
2

0.
6
3

1
.4
0

1.
9
3

L
E

H
G

A
1
4
.0
8

-0
.4
8

-0
.5
6

1
1
5
.0
6

10
3.

3
1

0
.4
3

7.
3
4

1
.1
9

L
E

H
R

n
d

1
8
.1

1
-0

.3
9

-0
.4

3
14

5.
52

32
2.

2
7

0.
5
5

20
.6

2
1.

9
2

10
0
D

P
S

O
1
9
.0

2
-0

.3
5

-0
.1

7
1,

21
5.

34
7,

9
89

.7
7

0.
4
9

2
26

.6
6

4.
4
5

d
.d

.R
e

2
1
.3

8
-0

.3
2

-0
.3

2
1,

38
6.

77
36

,1
41

.8
0

0.
7
0

6
56

.8
6

6.
1
8

L
E

H
G

A
1
7
.3
0

-0
.4
4

-0
.4
2

1
,0
6
5
.4
4

3
,2
6
4
.4
9

0
.4
3

1
3
6
.1
8

3
.7
9

L
E

H
R

n
d

2
1
.1

2
-0

.3
6

-0
.2

8
1,

57
7.

84
26

,5
26

.4
2

0.
6
6

5
88

.0
3

5.
9
3

T
ab

le
2
.2

:
M

ea
n

re
su

lt
s

d
u

e
to

5
0

sa
m

p
le

ru
n

s.

56

●

●

●●●
●
●
●

●●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●●

●

●

●

●●●●
●●

●

●

Ackley MultipeakF1 MultipeakF2 Rastrigin

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

32.5

35.0

37.5

40.0

42.5

−0.7

−0.6

−0.5

−0.4

−0.6

−0.5

−0.4

−0.3

9

12

15

18

21
D

im
en

si
on

: 2

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Ackley MultipeakF1 MultipeakF2 Rastrigin

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

50

60

70

80

−0.6

−0.4

−0.2

0.0

−0.6

−0.5

−0.4

−0.3

−0.2

10

14

18

22

D
im

en
si

on
: 4

●

●

●●

●
●

●

●

●

●

●

●

Ackley MultipeakF1 MultipeakF2 Rastrigin

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

70

90

110

−0.6

−0.4

−0.2

0.0

−0.6

−0.5

−0.4

−0.3

−0.2

10

15

20

D
im

en
si

on
: 7

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Ackley MultipeakF1 MultipeakF2 Rastrigin

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

75

100

125

150

−0.6

−0.4

−0.2

0.0

−0.5

−0.4

−0.3

−0.2

12

14

16

18

20

22

D
im

en
si

on
: 1

0

●
●●

●

●
●

●●
●

●

●

●●

●

●

●
●

Ackley MultipeakF1 MultipeakF2 Rastrigin

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

1000

1200

1400

1600

−0.4

−0.3

−0.2

−0.1

−0.45

−0.40

−0.35

−0.30

17

18

19

20

21

D
im

en
si

on
: 1

00

Figure 2.7: Box plots of robust objective values due to multiple sample runs. Left to right:

Ackleys, Multipeak F1, Multipeak F2, Rastrigin; Top to bottom: 2D, 4D, 7D, 10D, 100D.

57

●

●

●

●

●●

●

●

●

●

●

●
●●●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

Rosenbrock Sawtooth Sphere Volcano

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(V
)

LE
H

(G
)

LE
H

(R
)0.2

0.3

0.4

0.5

0.6

0.7

1.00

1.25

1.50

1.75

2.00

0.4

0.5

0.6

0.7

0.8

7.5

10.0

12.5

15.0

D
im

en
si

on
: 2

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●●●●

●

●

Rosenbrock Sawtooth Sphere Volcano

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

0.25

0.50

0.75

1.00

1

2

3

4

5

0.3

0.4

0.5

0.6

0.7

0.8

20

40

60

D
im

en
si

on
: 4

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

Rosenbrock Sawtooth Sphere Volcano

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

0.5

1.0

1.5

2.0

4

8

12

0.4

0.5

0.6

0.7

0.8

50

100

150

200

250

D
im

en
si

on
: 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

Rosenbrock Sawtooth Sphere Volcano

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

1.0

1.5

2.0

2.5

0

10

20

30

0.4

0.5

0.6

0.7

0

100

200

300

400

500

D
im

en
si

on
: 1

0

●

●

●

●
●

●

●

●

●●

●

●

Rosenbrock Sawtooth Sphere Volcano

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

P
S

O

D
D

LE
H

(G
)

LE
H

(R
)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

200

400

600

0.4

0.5

0.6

0.7

0

10000

20000

30000

40000

50000

D
im

en
si

on
: 1

00

Figure 2.8: Box plots of robust objective values due to multiple sample runs. Left to right:

Rosenbrock, Sawtooth, Sphere, Volcano; Top to bottom: 2D, 4D, 7D, 10D, 100D.

58

From Table 2.2 we see that for 100D instances the LEH GA approach is best for all

test problems, and in several cases the mean value for LEH GA is substantially lower

than for all of the alternative heuristics. From Tables 2.1 and 2.2 the LEH approach is

among the best in at least 6 of the instances for all other dimensions.

For 2D instances the LEH Voronoi approach is among the best results for 7 of the 9

problems, whilst LEH GA and LEH Rnd are each amongst the best results for 3 and 2

problems respectively. It should also be noted that in 5 of the 7 instances where LEH

Voronoi is among the best, LEH GA is either statistically equivalent or the mean value is

second best. For the 2D Sphere instance d.d. Re is best with LEH Voronoi second best,

whilst d.d. Re and LEH heuristics are statistically equivalent for the (poly2D) and 2D

Volcano and Rosenbrock instances. The robust PSO approach is statistically equivalent

to LEH heuristics for the 2D Sawtooth instance.

For the 4D – 10D instances d.d. Re is statistically equivalent to LEH GA in the 4D

Volcano problem and the 7D and 10D instances of the Rastrigin problem. For the 4D

– 10D Rosenbrock and Sphere instances d.d. Re is best and LEH GA second best, with

the mean value for d.d. Re substantially lower in the 7D and 10D cases. Considering the

shape of the Rosenbrock and Sphere functions it can be expected that a local search will

perform particularly well for these problems.

LEH GA is better than LEH Rnd for all instances excluding (poly2D). In a number

of instances the mean value for LEH GA is substantially lower than the mean value for

LEH Rnd. The number of candidate points that LEH can visit is substantially increased

by the early stopping of inner searches as soon as the high cost threshold is exceeded,

see Tables 2.3 and 2.5 in Appendix 2.7.3. Although this feature must unquestionably

play a role in the success of the LEH GA approach, the fact that LEH Rnd visits a

comparable number of candidate points indicates that the additional pro active seeking

of the largest hypersphere devoid of high cost points is also a significant factor in the

success of LEH GA.

2.6 Conclusions and further work

We have introduced a new metaheuristic for box-constrained robust optimisation prob-

lems with implementation uncertainty. We do not assume any knowledge on the struc-

ture of the original objective function, making the approach applicable to black-box and

simulation-optimisation problems. We do assume that the solution is affected by uncer-

tainty, and the aim is to find a solution that optimises the worst possible performance

in this setting. This is the min max problem. Previously, few generic search methods

have been developed for this setting.

We introduce a new approach for a global search based on distinguishing undesirable

high cost – high objective value – points (hcps), identifying the largest hypersphere in

the decision variable space that is completely devoid of hcps, and exploring the decision

59

variable space by stepping between the centres of these largest empty hyperspheres.

We demonstrated the effectiveness of the approach using a series of test problems,

considering instances of varying dimension, and comparing our LEH approach against

one metaheuristic that employs an outer particle swarm optimisation and one from the

literature that uses multiple re-starts of the local descent directions approach. For low

and moderate dimensional instances the approach shows competitive performance; for

high-dimensional problems the LEH approach significantly outperforms the comparator

heuristics for all problems.

There are several ways in which this work can be developed. Further consideration

can be given to the inner maximisation search approach in order to better understand

the trade-off between expending function evaluations on the local Γ-radius uncertainty

neighbourhood search versus globally exploring the search space, in the context of our

LEH approach.

The repeated calculation of large numbers of Euclidean distances each time a new

LEH needs to be identified within the LEH GA heuristic is computationally expensive.

Rather than only calculating a single next candidate point each time the GA is per-

formed, identifying multiple points could speed up computation or alternatively enable

the use of larger population-generation sizes to improve the estimation of the largest

empty hypersphere.

Results of the mid-dimension experiments on the Rosenbrock and Sphere test prob-

lems suggest that an exploitation based approach works well in these instances, indicating

a direction for extending our exploration focussed LEH approach.

It is clear that within the LEH algorithm the early stopping of the inner searches

when it is established that the current robust global value cannot be improved upon has

significant advantages. It is worth considering whether alternative search approaches

could take advantage of this feature.

In addition to the test problems considered here, as further research it would be

beneficial to apply our LEH GA approach to a real-world problem.

2.7 Appendices

2.7.1 Test functions

Functions used to assess the effectiveness of the Largest Empty Hypersphere robust

metaheuristics taken from [Kru12, JY13].

Ackleys

f(xxx) = −20 exp

(
− 0.2

√√√√ 1

n

n∑
i=1

x2
i

)
− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + exp(1)

60

The feasible region is the hypercube xi ∈ [-32.768, 32.768].

MultipeakF1

f(xxx) = − 1

n

n∑
i=1

g(xi) , g(xi) =

exp(2 ln 2(xi−0.1
0.8)2)

√
|sin(5πxi)| if 0.4 < xi ≤ 0.6 ,

exp(2 ln 2(xi−0.1
0.8)2) sin6(5πxi) otherwise

The feasible region is the hypercube xi ∈ [0, 1].

MultipeakF2

f(xxx) =
1

n

n∑
i=1

g(xi) , g(xi) = 2 sin(10 exp(−0.2xi)xi) exp(−0.25xi)

The feasible region is the hypercube xi ∈ [0, 10].

Rastrigin

f(xxx) = 10n+
n∑
i=1

[x2
i − 10 cos(2πxi)]

The feasible region is the hypercube xi ∈ [-5.12, 5.12].

Rosenbrock

f(xxx) =
n−1∑
i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2]

The feasible region is the hypercube xi ∈ [-2.048, 2.048].

Sawtooth

f(xxx) = 1− 1

n

n∑
i=1

g(xi) , g(xi) =

xi + 0.8 if − 0.8 ≤ xi < 0.2 ,

0 otherwise

The feasible region is the hypercube xi ∈ [-1, 1].

61

Sphere

f(xxx) =
n∑
i=1

x2
i

The feasible region is the hypercube xi ∈ [-5, 5].

Volcano

f(xxx) =


√
‖xxx‖ − 1 if ‖xxx‖ > 1 ,

0 otherwise

The feasible region is the hypercube xi ∈ [-10, 10].

2.7.2 Radii due to alternative LEH algorithms

Whilst the Voronoi based search exemplified by Figures 2.4e and 2.4f in Section 2.4.5 is a

good indicator of the nature of the searches due to all three alternative LEH approaches,

random, GA and Voronoi, the radii of the LEH identified for each candidate will vary

across these approaches. Here Figure 2.9 gives some indication of how the radii of the

hyperspheres generated by each these three LEH heuristics progress as the exploration

proceeds. The three curves represent separate runs of the LEH algorithm when applied

to (poly2D),and should be considered indicative.

0.8

1

1.2

1.4

1.6

1.8

R
ad

iu
s

o
f

h
yp

e
rs

p
h

e
re

Voronoi

GA

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

R
ad

iu
s

o
f

h
yp

e
rs

p
h

e
re

Candidate

GA

Random

Figure 2.9: Alternative LEH approaches applied to the same problem: variation in empty hy-

persphere radius with numbers of candidates evaluated for robustness.

As would be expected the general nature of the size of the radius of the LEH steadily

decreases with increasing numbers of candidate points evaluated. However superimposed

on this overall decrease are the indicative patterns due to the alternative heuristics. For

62

the random algorithm the size of the LEH is quite variable, whilst for Voronoi the curve

is smooth. The GA algorithm sits somewhere between the two.

2.7.3 Additional results

The standard deviations due to each set of 50 sample runs, the average number of

candidate points visited and average number of function evaluations undertaken, are

shown in Tables 2.3, 2.4, 2.5 and 2.6 here respectively. Labelling of comparator heuristics

in the tables is as follows:

� PSO: particle swarm optimisation.

� d.d. Re: Multi re-start descent directions.

� LEH Vor: LEH using a Voronoi [Tou83] approach; applied to 2D problems only.

� LEH GA: LEH using a genetic algorithm.

� LEH Rnd: LEH using random sampling.

Std. dev. Candidates Evaluations

poly2D

PSO 0.83 100 10,000

d.d. Re 1.27 100 10,000

LEH Vor 1.60 35 995

LEH GA 0.56 30 727

LEH Rnd 1.07 35 1,037

Table 2.3: Standard deviations of results, average number of candidate points visited, and average

number of points evaluated for the 50 sample runs for the 2-dimensional polynomial function

(poly2D) due to [BNT10b].

63

A
ck

le
y
’s

M
u

lt
ip

ea
k
F

1
M

u
lt

ip
ea

k
F

2
R

as
tr

ig
in

R
os

en
b

ro
ck

S
aw

to
ot

h
S

p
h

er
e

V
o
lc

an
o

2D

P
S

O
1
.3

5
0.

09
0.

08
2.

04
2
.1

7
0.

1
2

0
.3

0
0
.1

1

d
.d

.R
e

4
.1

4
0.

10
0.

08
2.

26
0
.6

2
0.

1
4

0
.0

2
0
.0

2

L
E

H
V

o
r

0
.1

5
0.

00
0.

01
1.

23
0
.3

4
0.

1
0

0
.0

3
0
.0

1

L
E

H
G

A
0
.3

5
0.

01
0.

02
1.

53
0
.3

1
0.

1
4

0
.0

9
0
.0

3

L
E

H
R

n
d

0
.4

5
0.

01
0.

02
1.

43
0
.4

7
0.

1
3

0
.1

1
0
.0

4

4D

P
S

O
1
.6

6
0.

06
0.

13
5.

79
1
4.

2
1

0.
0
8

0
.8

9
0
.1

8

d
.d

.R
e

3
.5

5
0.

06
0.

06
7.

29
4
.1

7
0.

1
1

0
.0

1
0
.2

5

L
E

H
G

A
0
.3

8
0.

01
0.

03
4.

04
0
.8

4
0.

0
2

0
.1

3
0
.0

3

L
E

H
R

n
d

1
.1

9
0.

05
0.

04
4.

47
5
.3

0
0.

0
3

0
.2

6
0
.0

8

7D

P
S

O
1
.5

4
0.

05
0.

10
10

.7
0

4
9.

5
1

0.
0
6

2
.6

6
0
.2

1

d
.d

.R
e

2
.2

1
0.

05
0.

07
11

.0
8

7
.1

9
0.

0
8

0
.0

3
0
.4

7

L
E

H
G

A
1
.0

6
0.

03
0.

03
6.

58
9
.9

0
0.

0
4

0
.4

4
0
.1

0

L
E

H
R

n
d

1
.2

6
0.

04
0.

05
8.

20
3
1.

1
5

0.
0
7

2
.0

5
0
.1

3

10
D

P
S

O
1
.4

3
0.

05
0.

13
10

.0
6

8
9.

7
4

0.
0
6

3
.3

6
0
.1

9

d
.d

.R
e

0
.8

3
0.

04
0.

09
16

.4
8

5
3.

5
6

0.
0
6

1
.6

3
0
.2

9

L
E

H
G

A
0
.8

2
0.

03
0.

02
7.

95
2
0.

7
3

0.
0
4

1
.0

8
0
.1

3

L
E

H
R

n
d

0
.7

9
0.

03
0.

06
7.

93
8
0.

9
2

0.
0
4

3
.7

7
0
.1

4

1
00

D

P
S

O
0
.2

0
0.

01
0.

03
44

.6
9

12
84

.2
4

0.
0
2

2
0.

8
4

0
.1

3

d
.d

.R
e

0
.0

6
0.

01
0.

01
97

.0
2

65
18

.2
9

0.
0
2

5
9.

5
9

0
.1

1

L
E

H
G

A
0
.2

0
0.

01
0.

01
27

.8
7

25
1.

6
8

0.
0
1

9
.1

5
0
.0

8

L
E

H
R

n
d

0
.0

6
0.

01
0.

02
26

.4
9

12
89

.9
6

0.
0
1

1
6.

8
3

0
.0

6

T
ab

le
2.

4:
S

ta
n

d
a
rd

d
ev

ia
ti

o
n

s
o
f

re
su

lt
s

d
u

e
to

5
0

sa
m

p
le

ru
n

s.

64

A
ck

le
y
’s

M
u

lt
ip

ea
k
F

1
M

u
lt

ip
ea

k
F

2
R

as
tr

ig
in

R
os

en
b

ro
ck

S
aw

to
ot

h
S

p
h

er
e

V
o
lc

an
o

2D

P
S

O
1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

d
.d

.R
e

1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

L
E

H
V

o
r

2
45

10
7

20
5

30
9

1
29

26
2
4

6
3

L
E

H
G

A
1
47

78
11

7
16

0
9
0

36
3
3

5
7

L
E

H
R

n
d

2
13

98
18

3
25

6
1
09

26
2
3

5
3

4D

P
S

O
1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

d
.d

.R
e

1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

L
E

H
G

A
9,

05
4

7,
54

3
8,

35
5

3,
62

4
8
,4

3
3

1
,3

0
4

1
,3

3
4

3,
8
90

L
E

H
R

n
d

8,
79

9
7,

07
2

7,
77

0
5,

35
8

8
,6

4
4

6
,2

6
4

6
,4

0
8

8,
6
46

7D

P
S

O
1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

d
.d

.R
e

1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

L
E

H
G

A
9,

09
7

7,
95

8
8,

75
4

5,
52

2
9
,0

6
2

7
,7

7
2

9
,1

6
4

9,
1
84

L
E

H
R

n
d

8,
79

9
7,

34
1

7,
81

9
6,

82
1

8
,7

8
1

8
,2

2
9

8
,7

8
9

8,
8
16

10
D

P
S

O
1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

d
.d

.R
e

1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

L
E

H
G

A
9,

06
3

7,
82

2
8,

71
6

6,
52

6
9
,0

3
9

7
,9

7
7

9
,0

3
7

9,
0
86

L
E

H
R

n
d

8,
74

6
7,

67
4

7,
67

9
7,

36
7

8
,8

7
4

8
,2

7
9

8
,7

3
4

8,
7
73

1
00

D

P
S

O
1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

d
.d

.R
e

1
00

10
0

10
0

10
0

1
00

10
0

10
0

10
0

L
E

H
G

A
8,

90
2

8,
77

9
8,

76
5

8,
61

5
8
,8

4
8

8
,5

5
1

8
,9

0
7

8,
8
77

L
E

H
R

n
d

7,
80

5
8,

67
9

8,
53

3
8,

70
8

8
,9

5
4

8
,7

0
8

8
,8

8
9

8,
8
27

T
ab

le
2.

5:
A

v
er

ag
e

n
u

m
b

er
o
f

ca
n

d
id

a
te

p
o
in

ts
v
is

it
ed

a
cr

o
ss

5
0

sa
m

p
le

ru
n

s.

65

A
ck

le
y
’s

M
u

lt
ip

ea
k
F

1
M

u
lt

ip
ea

k
F

2
R

as
tr

ig
in

R
os

en
b

ro
ck

S
aw

to
ot

h
S

p
h

er
e

V
o
lc

an
o

2D

P
S

O
1
0
,0

00
10

,0
00

10
,0

00
10

,0
00

10
,0

0
0

10
,0

0
0

1
0,

0
00

1
0,

0
00

d
.d

.R
e

1
0
,0

00
10

,0
00

10
,0

00
10

,0
00

10
,0

0
0

10
,0

0
0

1
0,

0
00

1
0,

0
00

L
E

H
V

o
r

94
5

99
6

1,
16

4
2,

65
5

1,
1
02

8
07

54
6

57
7

L
E

H
G

A
83

0
89

0
95

8
1,

83
5

87
1

7
80

68
6

69
6

L
E

H
R

n
d

1,
25

5
1,

25
0

1,
30

6
2,

52
1

1,
0
98

1
,1

1
0

93
4

1,
0
21

4D

P
S

O
1
0
,0

00
10

,0
00

10
,0

00
10

,0
00

10
,0

0
0

10
,0

0
0

1
0,

0
00

1
0,

0
00

d
.d

.R
e

1
0
,0

00
10

,0
00

10
,0

00
10

,0
00

10
,0

0
0

10
,0

0
0

1
0,

0
00

1
0,

0
00

L
E

H
G

A
1
0
,0

00
9,

19
8

10
,0

00
10

,0
00

9,
8
22

2
,8

9
9

2,
2
79

4,
8
66

L
E

H
R

n
d

1
0
,0

00
10

,0
00

10
,0

00
10

,0
00

10
,0

0
0

8
,4

7
7

8,
0
31

1
0,

0
00

T
ab

le
2.

6:
A

v
er

ag
e

n
u

m
b

er
of

p
oi

n
ts

ev
al

u
at

ed
in

th
e

50
sa

m
p

le
ru

n
s.

F
o
r

a
ll

te
st

p
ro

b
le

m
s

o
f

d
im

en
si

o
n

7
o
r

h
ig

h
er

th
e

fu
ll

b
u

d
g
et

o
f

1
0
,0

0
0

fu
n

ct
io

n
ev

a
lu

a
ti

o
n

s

w
as

u
se

d
in

al
l

sa
m

p
le

ru
n

s.

66

2.7.4 Heuristic parameter values

As described in Section 2.5.2 the parameter values for 3 of the heuristics – d.d. Re, PSO

and LEH GA – have been tuned in order to generate a single set of parameters for each,

which were then used in the generation of the experimental results given in Section 2.5.4.

The values of those tuned parameters are given below in Tables 2.7 to 2.9.

For the d.d. Re heuristic 5 parameters were tuned: σinit the initialisation factor

for the high cost set threshold σ(t), the σ(t) reduction factor α used to adapt the

threshold value, σα a lower threshold for σ(t), a factor initρMin which is multiplied by

the uncertainty parameter Γ in order to establish a minimum step size for the search,

and ρred a reduction factor for reducing this minimum step size with every step t. See

[BNT10b] for a full description of these parameters. The tuned parameter values are

given in Table 2.7.

σα α σinit ρred initρMin

d.d. Re 0.0065 1.059 0.1979 0.9456 0.0396

Table 2.7: Tuned parameter values for the d.d. Re heuristic.

For the PSO heuristic 5 parameters were also tuned: the C1 and C2 acceleration

parameters, the inertia weight parameter ω, and the swarm size and number of iterations

over which the swarm moves. See [SE98] for a further description of these parameters.

The tuned parameter values are given in Table 2.8.

C1 C2 ω swarm iterations

PSO 1.845 0.975 0.189 20 5

Table 2.8: Tuned parameter values for the PSO heuristic.

For the LEH GA heuristic which employs a genetic algorithm to search for the centre

of the largest empty hypersphere, 6 parameters associated with the GA were tuned: the

size of the population, number of generations, number of elites, tournament size, and

mutation probability and size. Here mutation ‘size’ is actually a percentage value which

is subsequently multiplied by the dimensional range of the decision variable space X in

order to specify the actual amount by which any value is adjusted due to mutation. The

tuned parameter values are given Table 2.9.

population generations elites tour size mut prob mut size

LEH GA 20 5 0 3 0.2624 0.175

Table 2.9: Tuned parameter values for the LEH GA heuristic.

67

Chapter 3

Paper 2: Particle Swarm Metaheuristics

for Robust Optimisation with

Implementation Uncertainty

Accepted for publication in the journal Computers & Operations Research in May 2020

[HGD20b].

Partially funded through EPSRC grants EP/L504804/1 and EP/M506369/1.

Author 1: Martin Hughes, Lancaster University, United Kingdom.

Author 2: Marc Goerigk, University of Siegen, Germany.

Author 3: Trivikram Dokka, Lancaster University, United Kingdom.

Abstract: We consider global non-convex optimisation problems under uncertainty. In

this setting, it is not possible to implement a desired solution exactly. Instead, any other

solution within some distance to the intended solution may be implemented. The aim is

to find a robust solution, i.e., one where the worst possible solution nearby still performs

as well as possible.

Problems of this type exhibit another maximisation layer to find the worst case

solution within the minimisation level of finding a robust solution, which makes them

harder to solve than classic global optimisation problems. So far, only few methods

have been provided that can be applied to black-box problems with implementation

uncertainty. We improve upon existing techniques by introducing a novel particle swarm

based framework which adapts elements of previous methods, combining them with new

features in order to generate a more effective approach. In computational experiments,

we find that our new method outperforms state of the art comparator heuristics in almost

80% of cases.

68

3.1 Introduction

Decision making in the face of uncertainty is a widespread challenge. In many real-world

situations it is common practice to use models to support informed decision making.

However model run times and the extent of the decision variable solution space may

render an extensive assessment of the problem space computationally impractical. In

such circumstances an efficient global optimisation search approach is needed. The

consideration of uncertainty in the modelling process, reflecting uncertainty in the real-

world problem, may impact model outputs and therefore the optimum objective function

value. Thus uncertainty adds an additional feature into any global optimisation search.

Whilst simply ignoring the uncertainty is one strategy, such an approach has been shown

to produce sub-optimal results, see [BTEGN09, GS16]. An approach is required that

can identify a solution that performs well over a range of scenarios as opposed to simply

in the expected case.

The use of a model in the form of a mathematical program is preferable from an

optimisation standpoint, as such models may be solved efficiently with the determination

of global optima guaranteed. However such an approach necessitates that the problem at

hand can be adequately expressed in the form of a mathematical program. In many real-

world situations this is not possible. Rather some more general form of simulation model

will be used, which from an optimisation perspective, may be considered a black-box:

decision variables values are input and an objective value is output. For such black-box

problems a more general search technique that can be applied to any model is required,

such as a metaheuristic. Such an approach accommodates a complete lack of knowledge

of the structure of the model and of the nature of the corresponding objective function

surface.

Optimisation under uncertainty is typically approached using either stochastic or ro-

bust techniques. In stochastic optimisation the probability distributions of the uncertain

parameters are assumed to be known and the fitness of any solution is determined by

some statistical measure, see [PBJ06, HdMB14]. By contrast robust optimisation only

assumes that all uncertainty scenarios can be described by some set [BTN98]. A classic

robust approach finds a solution that optimises its performance in the worst case. This is

known as min max: at any point in the decision variable space an inner objective is em-

ployed to identify the maximal function value in the point’s uncertainty neighbourhood,

with an outer objective employed to identify the minimum maximal value.

Here we develop a new metaheuristic framework for the robust global optimisation

of black-box problems, including non-convex problems. We assume no knowledge of

the structure of the underlying model. The algorithm accommodates implementation

uncertainty, where a desired solution may be somewhat perturbed in a real-world setting.

We adopt the classic robust worst case approach. More formally, the general optimisation

69

problem to be considered here is:

min f(xxx)

s.t. xxx ∈ X

where f : Rn → R is the objective function, xxx = (x1, x2, . . . , xn)T is the n-dimensional

vector of decision variables, and X ⊆ Rn is the set of feasible solutions. We use the

notation [n] := {1, . . . , n} and assume box constraints X =
∏
i∈[n][li, ui]. A penalty in

the objective is assumed in the case of other feasibility constraints. Such a problem,

without any consideration of uncertainty, is designated the nominal problem here.

As an example, consider a non-convex one-dimensional problem due to [Kru12]. For

the nominal problem, shown in Figure 3.1a, some standard metaheuristic could be used to

locate the global minimum at xxx0. However if the solution that a decision maker wants to

implement is somewhat perturbed in practice, the potential impact on the identification

of the global minimum needs to be taken into consideration. The sensitivity of the

objective to variations in the region of xxx0 is of particular concern, as highlighted in

Figure 3.1b.

We assume only a solution similar to the desired solution xxx, x̃xx = xxx + ∆xxx may be

achieved. The classic robust approach is then to find a robust solution xxx such that for

any x̃xx from the uncertainty neighbourhood of xxx, the worst performance is optimised. As

common in the literature (see, e.g., [BNT10b]), we consider the following uncertainty

neighbourhood (also known as uncertainty set):

U := {∆xxx ∈ Rn | ‖∆xxx‖ ≤ Γ}

where Γ > 0 defines the radius of the uncertainty neighbourhood around a solution

xxx ∈ X and ‖ · ‖ represents the Euclidean norm. The worst case costs of a solution xxx are:

g(xxx) := max
∆xxx∈U

f(xxx+ ∆xxx)

The min max robust optimisation problem is then:

min
xxx∈X

g(xxx) = min
xxx∈X

max
∆xxx∈U

f(xxx+ ∆xxx) (MM)

Finding the robust global optimum is based on an outer minimum worst case cost ob-

jective function value in X , such that that minimum objective is based on an inner max-

imisation of the nominal objective function in the uncertainty neighbourhood around

each solution xxx ∈ X .

Note that we assume that f is not restricted to X , as xxx+ ∆xxx may be outside of X .

Alternatively xxx+ ∆xxx ∈ X for all ∆xxx ∈ U could be achieved through a reduction in the

size of the original X by Γ.

In Figure 3.1c the worst case cost g(xxx) (dashed grey curve) at any individual point

xxx can be determined by assessing the uncertainty neighbourhood around that point,

70

1

1.5

2

O
b

je
ct

iv
e

Nominal: f(x)

0

0.5

0 2 4 6 8 10

O
b

je
ct

iv
e

Decision variable

x0

(a) The nominal global optimum is at xxx0.

1

1.5

2

O
bj

ec
ti

v
e

Nominal: f(x)

0

0.5

0 2 4 6 8 10

O
bj

ec
ti

v
e

Decision variable

x0

Unc: ±0.5

(b) With uncertainty only a ‘close’ solution may be realised, which is of particular concern in the region

of xxx0.

1

1.5

2

O
b

je
ct

iv
e

Nominal: f(x)

Worst: g(x)

0

0.5

0 2 4 6 8 10

O
b

je
ct

iv
e

Decision variable

x0x'0

(c) The worst case cost curve (dashed grey) is generated by determining the maximum objective value

in the uncertainty neighbourhood around all points xxx on the nominal (solid black) curve. Due to the

uncertainty the global optimum shifts to xxx′0.

Figure 3.1: One dimensional problem due to [Kru12].

71

in order to identify the maximum value within that uncertainty neighbourhood. Then

within the global minimisation search the nominal objective is superseded by the worst

case cost. It can be observed that the global optimum has shifted to xxx′0. It should also

be noted that if we were to ignore the implementation uncertainty and simply accept

xxx0 as the global optimum, which is a common approach in practice, then we risk the

possibility of a very poor outcome, i.e., g(xxx′0) < g(xxx0), whereas f(xxx′0) > f(xxx0).

Finally one additional assumption is made here for practical purposes when consider-

ing approaches to solving (MM), for example due to run-time considerations. This is the

imposition of some limit (budget) on the number of model runs or function evaluations

that can be undertaken.

3.1.1 Contributions and outline

In this paper we propose a particle swarm optimisation (PSO) framework encompass-

ing a new robust metaheuristic capability for black-box problems under implementation

uncertainty. The approach can be applied to general problems of reasonable dimension,

where little if anything is known about the nature of the objective function surface, and

under restrictions on the number of function evaluations (the budget). The framework

developed here is based on an extension of PSO, see [KE95, KES01, Tal09]. Specifically

we employ a PSO frame, augmenting it with adapted elements of the robust local search

descent directions (d.d.) approach due to [BNT07, BNT10b, BNT10a], and the robust

global largest empty hypersphere (LEH) approach due to [HGW19], as well as introduc-

ing original features. Whilst the resulting framework encompasses two new capabilities,

due to the ability to employ each one independently our framework effectively has three

alternative settings: the complete capability combining both features plus the option to

switch off either of the new d.d. or LEH based sub-algorithms. We undertake a series of

computational experiments comparing these new methods with a baseline robust PSO

(rPSO), a global version of d.d. and LEH, see [BNT10b, HGW19]. We find that our new

framework considerably outperforms these approaches on a large number of problem

instances.

In Section 3.2 we review the current state of the art by discussing the relevant lit-

erature in Section 3.2.1 and details of the d.d. and LEH algorithms in Sections 3.2.2

and 3.2.3. We discuss PSO in Section 3.3, including an extension of the nominal formu-

lation to a baseline rPSO formulation. In Section 3.4 we provide an illustrative example.

We then outline our new robust framework in Section 3.5, including descriptions of our

heuristic sub-algorithms. In Section 3.6 we describe the experimental set up used to test

our new framework, and present our results. We end with a summary and considera-

tion of potential further work in Section 3.7. The appendices cover descriptions of our

experimental test functions, box plots of results, and a list of abbreviations.

72

3.2 State of the art

3.2.1 Literature review

The modern form of robust optimisation was first developed in [KY97] and [BTN98],

since when the field has been strongly associated with mathematical programming

through the use of appropriate uncertainty sets and the reformulation of mathemati-

cal programming problems, see e.g. the surveys [BBC11, GMT14, GS16]. In this setting

the focus is on identifying a good formulation of the problem at hand, along with a

tractable corresponding robust counterpart. This is not possible for black-box problems,

where no knowledge of the problem structure is available.

In general, two types of uncertainty can be distinguished: parameter uncertainty,

where the problem data is unknown; and implementation uncertainty, where the decision

is subject to change during its implementation. In a mathematical programming con-

text robust optimisation with parameter uncertainty has been widely applied to specific

problems and formulations, while robust optimisation of black-box problems with imple-

mentation uncertainty is much less widely addressed, see [MWPL13, GS16, MWPL16].

A worst case analysis can be approached by applying standard global metaheuris-

tics to both the inner maximisation and the outer minimisation. In a co-evolutionary

approach inner and outer populations evolve separately, but the fitness of individuals

in the outer minimisation is determined by individuals in an inner maximisation, see

[Her99, SK02, Jen04, CSZ09, MKA11]. However a completely brute force approach

using full inner maximisation searches to inform the outer minimisation involves large

numbers of function evaluations, see [MWPL16]. Additional simplifications or assump-

tions are required to reduce the number of function evaluations in a co-evolutionary

approach, see [CSZ09, MKA11].

An alternative robust evolutionary approach, introduced by [TG97], is based around

the idea of ‘genetic algorithms with a robust solution searching scheme’ (GAs/RS3)

[BS07]. Uncertainty is added to the individuals in the population prior to the deter-

mination of the next generation; the next generation is then determined based on an

assessment of the fitness of the extended (uncertain) population. [ONL06] adopts such

an approach in a min max robust design analysis. This work also employs an ap-

proach that can be considered more generally in robust analyses, the use of emulation

(surrogates or meta-models) alongside true objective function evaluations to reduce the

potential burden of computational run times and the number of model-function evalu-

ations, see [BS07, KVDHL16]. [ONL06] use surrogates for the inner optimisation local

search. In [ZZ10] the inner maximisation is tackled using a surrogate-assisted evolu-

tionary algorithm, whilst [MWPL13, uRLvK14, MWPL16, uRL17] all employ Kriging

meta-modelling techniques. By contrast [CLSS17, SEFR19] employ Bayesian emula-

tion approaches. [CLSS17] uses a mathematical programming approach assuming the

73

availability of a valid Bayesian oracle, whilst [SEFR19] employ a Bayesian approach for

very expensive-to-evaluate functions, applying it to test problems of up to 10 dimensions

using only small numbers of function evaluations. However current emulation based ap-

proaches suffer from the same limitation, in that they struggle when applied to problems

other than those of relatively low dimension.

Of particular interest here are the single-solution descent directions [BNT07, BNT10a,

BNT10b] and largest empty hypersphere [HGW19] robust (min max) metaheuristics, and

standard (i.e. not robust) population based metaheuristic, particle swarm optimisation

[KE95, KES01, Tal09].

The d.d. approach is actually a robust local search. Given a start point in the

decision variable space an inner maximisation is undertaken in the point’s uncertainty

neighbourhood. From this neighbourhood search undesirable ’high cost points’ (hcps)

are identified, and a direction which optimally points away from all of these hcps is

determined by solving a quadratic program. A step is taken in this descent direction,

to a new point where the process is repeated until no such direction can be found.

This approach is considered in more detail in Section 3.2.2. This work also informs

the global approach outlined in [BN10] where similar techniques are applied to the

inner maximisation, but the outer minimization is tackled by simulated annealing. In

[HGW19] d.d. has been simplistically extended to a global search through the use of

random re-starts.

The LEH metaheuristic is a relatively new robust global approach which extends

the idea of locally moving away from undesirable hcps to a global setting by identifying

regions of the feasible region devoid of hcps and moving to the centres of such regions.

Hence this approach is exploration-focussed. This approach is considered in more detail

in Section 3.2.3.

The PSO approach is a population based metaheuristic inspired by swarm intelli-

gence; the description given here is based on [KE95, KES01, Tal09]. A swarm consists

of multiple particles, moving through the solution space. The position of each particle

represents a point visited in the decision variable space, and the objective function value

at that location. An additional attribute of a particle is its velocity, which here repre-

sents the vector (direction and step size) of the particle’s movement. Based on some

combination of an individual particle’s own information and the collective information

from other particles in the swarm, each particle moves to new locations as the algorithms

iterates. It is the intention that what emerges from such complex, self-organising sys-

tems of particles approximates an efficient search of the solution space to identify global

optima.

In terms of a robust PSO approach, [SK02, MKA11] consider two-swarm co-evolutionary

PSO techniques while [HGW19] employs a baseline rPSO approach as a comparator test

heuristic. [Dip10] develops several PSO formulations, and includes material on topolo-

gies, memory (archive) and test functions, however the approaches considered are essen-

74

tially stochastic and only very low-dimensional problems are used in the testing. PSO

and a baseline rPSO are considered in more detail in Section 3.3.

3.2.2 Local robust search using descent directions

Descent directions [BNT07, BNT10b, BNT10a] is a local search technique for solving

the robust optimisation problem (MM), which uses the points evaluated in each inner

maximisation local uncertainty neighbourhood analysis to inform a gradient descent

approach. At a given point xxx an inner maximisation search is performed to approximate

the worst case cost g̃(xxx) ≈ g(xxx). In [BNT10b] an extensive two-stage gradient ascent

search is employed for inner maximisations. All function evaluations are recorded in a

history set H. From within the uncertainty neighbourhood N(xxx) = {xxx+ ∆xxx | ∆xxx ∈ U}
around a candidate point xxx, the points with the greatest objective function values are

identified as high cost points. The high cost set Hσ(xxx) at any given point xxx is defined

as:

Hσ(xxx) := {xxx′ ∈ H ∩N(xxx) | f(xxx′) ≥ g̃(xxx)− σ}

where σ is a threshold value for identifying hcps.

The intention is then to identify the descent direction ddd projecting from candidate

point xxxk at iteration k, which optimally points away from the points in Hσ(xxxk). This is

achieved by maximising the angle θ between ddd and the vectors connecting the points in

Hσ(xxxk) to xxxk. This is a second order cone problem and can be tackled using mathematical

programming:

min
ddd,β

β (Soc1)

s.t. ‖ddd‖ ≤ 1 (Soc2)

dddT

(
xxxi − xxxk

‖xxxi − xxxk‖

)
≤ β ∀xxxi ∈ Hσ(xxxk) (Soc3)

β ≤ −ε (Soc4)

Setting ε as a small positive scalar makes β negative in (Soc4). The left hand side of

(Soc3) equates to ‖ddd‖ cos θ, and is calculated for all points in Hσ(xxxk). (Soc3) therefore

states that β will correspond to the maximum value for cos θ across all hcps. The

objective (Soc1) is to minimise β. As β is negative the angle θ will be greater than 90o

and maximised. Finally, minimising β in combination with (Soc2) normalises ddd.

The final component of the algorithm is the calculation of the step size to be taken

once a descent direction ddd has been determined. At iteration k in the local search a

step size ρk just large enough to ensure that all of the points in Hσ(xxx) are at least on

the boundary of the Γ-uncertainty neighbourhood of the next candidate solution at step

75

k + 1 is used. We set xxxk+1 = xxxk + ρkddd, where ρk can be calculated using:

ρk = min

{
dddT (hhh− xxxk) +

√
(dddT (hhh− xxxk))2 − ‖hhh− xxxk‖2 + Γ2 | hhh ∈ Hσ(xxxk)

}
(Rho)

In the original formulation from [BNT10b] several loops are potentially applied in the

algorithm, in order to try to identify a valid direction and to ensure that that direction

is reasonable. The parameter σ is incrementally changed up to some limit, if (Soc)

cannot be solved initially. Also given a valid direction vector ddd, a further check is used

to ensure that the step to be taken does not immediately encounter additional hcps from

H beyond N(xxxk).

This local stepping continues until no descent direction can be identified, and it is

assumed that a robust local minimum has been reached. The approach can be extended

to approximate a global search by randomly re-starting a new search each time the

previous one completes. In [HGW19] this is employed within the constraint of a fixed

budget of function evaluations.

3.2.3 Global robust search using largest empty hyperspheres

The largest empty hypersphere metaheuristic [HGW19] is a global method where the

search progresses by moving to locations in the feasible region that are furthest away

from all ‘bad’ points previously visited. Using the d.d. idea of identifying high cost points

in a global sense, LEH uses a history set H of points evaluated and a high cost set Hτ

which is a subset of H containing all points with nominal objective function value f(xxx)

greater than a threshold τ , which is set to the current estimated robust global minimum

value. Note that with this notation, Hσ(xxx) = Hg̃(xxx)−σ ∩N(xxx).

Given Hτ , LEH uses a genetic algorithm (GA) to estimate a point xxxk ∈ X which

is furthest from all hcps in Hτ . The search then moves to this point. This is repeated

until the budget of available function evaluations is exhausted or no point xxxk ∈ X can

be identified which is at least Γ away from all hcps. In either case the current estimate

for the global robust minimum is accepted.

At each candidate point xxxk an inner maximisation analysis is undertaken, however

beyond the initial (random) start point each point in an inner maximisation analysis is

compared to τ such that the Γ-radius uncertainty neighbourhood search can be stopped

prematurely if any objective function value f(xxxk + ∆xxxk) is greater than τ . This is a

recognition of the fact that the current point xxxk cannot improve on the current estimate

of the robust global optimum. This stopping condition potentially enables the LEH

approach to explore X more efficiently.

76

3.3 Particle swarm optimisation

3.3.1 Motivation

The overarching motivation for our work is the development of improved robust meta-

heuristics for black-box problems under implementation uncertainty. Of particular in-

terest are approaches that can be applied to general problems of moderate dimension,

where run-time issues limit the numbers of function evaluations or model runs that

can be undertaken, and no knowledge of the underlying problem or associated objec-

tive function surface is assumed. Whilst some work has been undertaken in this area,

compared to optimisation without any consideration of uncertainty, stochastic optimi-

sation, or robust optimisation for mathematical programming problems, this remains a

less developed field.

Of the techniques currently applicable in this setting, the local d.d. [BNT07, BNT10b,

BNT10a] and global LEH [HGW19] approaches offer considerable insight into some key

issues. This is not least because whilst d.d. is locally exploitation focussed, LEH is

exploration focussed in its targeting of regions of the decision variable space devoid of

‘poor’ points. That is these techniques span the exploitation versus exploration divide.

In particular these two approaches offer alternative stances on how to contend with

what might be considered the additional ‘burden’ of a robust analysis under limitations

on the number of function evaluations, i.e. the need to expend evaluations in the uncer-

tainty neighbourhood analysis around individual points in the decision variable space in

order to determine the robust value (the inner maximisation). Under budgetary restric-

tions we must therefore add the balancing of better estimating a candidate point’s robust

value versus the extent of the outer minimisation search, into the mix of exploration ver-

sus exploitation. This trade-off is complex, see for example [MLM15, EDHX17].

The d.d. approach explicitly uses the additional information gained from an uncer-

tainty neighbourhood inner maximisation search to direct a local search, by identifying

the direction that optimally points away from the worst neighbourhood points. By con-

trast a key component of the LEH approach is what is termed a ’stopping condition’,

that is the ability to terminate an inner maximisation search prior to completion due to

a recognition that the current global robust best cannot be improved upon at a given

candidate point. This has the potential to introduce significant efficiencies when expend-

ing function evaluations, thereby enabling a more extensive outer minimisation search.

In fact we recognise the contrast in exploitation (d.d.) versus exploration (LEH) as an

echo of the contrast between enhancing a search through the exploitation of the inner

maximisation information (d.d.) versus attempting to limit inner maximisation searches

in order to expend function evaluations more efficiently (LEH).

Here we are interested in the potential benefits of both the better use of the in-

formation gained from previous function evaluations, and of efficiency savings in terms

77

of numbers of function evaluations. In particular we are interested in addressing these

elements within a single framework. Compared to the individual-based d.d. and LEH

techniques, we consider a population based approach more able to encompass these fea-

tures under a single structure. In order to identify a suitable population based framework

here, consideration must be given to the features necessary to enable both the use of

the stopping condition component of LEH, and the use of uncertainty neighbourhood

directional information generated by the calculation of some form of descent direct at a

given candidate point.

The inclusion of a stopping condition requires that an inner maximisation search can

be terminated early. Consider for example, how this might work in a fitness-based ap-

proach such as a genetic algorithm (GA). In order to effectively determine robust fitness

at a candidate point, an inner maximisation must be complete. Early termination would

not generate adequate fitness information: given a stopping threshold multiple members

of the GA population could terminate their inner maximisation when an uncertainty

neighbourhood point has been identified that exceeds that threshold, potentially leading

to each being designated a similar fitness level close to the threshold objective function

value. However by contrast if each inner maximisation were to complete, individual

fitnesses could vary substantially. These two cases could lead to substantially different

next generations due to the discrepancies in estimated fitnesses for members of the pop-

ulation. Therefore any such fitness-based approach does not suit a stopping condition

of the kind under consideration here.

However considering a swarm-based approach such as PSO, each particle already has

an in-built feature that can be exploited for stopping purposes, the best historic robust

objective function value for each particle j. In the PSO case, stopping an inner max-

imisation prematurely if any Γ-radius uncertainty neighbourhood function evaluation

exceeds that personal best threshold, τ j , has no negative impact as movement in a stan-

dard PSO formulation is based on some combination of personal and neighbourhood best

information. Neither of these pieces of information are affected by particle-level stop-

ping. For a particle j, a function evaluation exceeding τ j establishes that neither the

historic best particle level information nor the current neighbourhood (e.g. global) best

can be improved upon by the particle’s current location. In such a situation terminating

an inner search and moving on is appropriate, and desirable.

Furthermore, the primary component of the d.d. approach is the determination of a

direction vector, therefore an approach that already uses a vector-based approach is best

placed to accommodate further vector information. Individual particle level movement

in a swarm-based approach such as PSO is vector-based. In addition, in considering

how a d.d. vector and particle level stopping features might be incorporated into a PSO

formulation, it can be recognised that both features might be incorporated into the same

algorithm independently, thus allowing them to be considered – and their performance

assessed – individually or in combination. Therefore, whilst amongst the substantial

78

number of population based metaheuristics available, see e.g. [Tal09], there may be

other suitable frameworks, a PSO approach clearly meets our requirements.

Here, therefore, we seek to develop an enhanced robust PSO-based framework, based

on adapting key elements of the d.d. and LEH approaches, combined with novel features.

To that end we first consider PSO in more detail.

3.3.2 Nominal PSO

There are many formulations of PSO, see [KES01, Kam09, ZWJ15, SBP18]. Here we

describe one of the simplest, original formulations [KE95, KES01, Tal09]. This will form

the basis of the robust framework to be developed here. We will first consider a ‘stan-

dard’, non-robust approach. A problem of the form (MM) can be considered in terms of

its two constituent components: an inner maximisation and an outer minimisation. The

PSO formulation described here should be appreciated as performing the outer minimi-

sation component of (MM). We will return to the inner maximisation component when

we discuss extending PSO to a baseline robust approach, rPSO.

PSO starts at iteration t = 0 with a population of N particles at randomly selected

points xxxj(0) in X , where j = 1, . . . , N . The function is evaluated at these points. For

each particle the best position it has visited is designated xxxj∗, that is the position with

the lowest objective function value g̃(xxxj∗).

Particles are interconnected for information sharing, so each particle has an associ-

ated neighbourhood of other particles within which information can be shared. Different

PSO formulations employ different neighbourhood strategies. Here we use global PSO

as described in [SE98]. In global PSO the neighbourhood is the entire swarm and the

information shared within the swarm is the global best position, that is the position x̂xx∗

in X with the lowest objective function value of all the points visited by all particles

over all iterations.

From a particle’s position xxxj(t) at iteration t the particle’s position is updated by

the addition of its velocity vector vvvj :

xxxj(t) = xxxj(t− 1) + vvvj(t) (Move)

Following the recommendation of [Eng12] to initialize particle velocities at zero or at

random values close to zero, here we consider the approach where each vvvj(0) is separately

initialised using uniform random sampling ∼ U(0 , 0.1)n. Beyond initialisation the

following velocity formulation is used:

vvvj(t) = ω · vvvj(t− 1) + C1 · rrr1 · (xxxj∗ − xxxj(t− 1)) + C2 · rrr2 · (x̂xx∗ − xxxj(t− 1)) (Vel1)

Here rrr1 , rrr2 ∼ U(0 , 1)n, that is each component of the random vectors rrr are randomly

sampled individually, and multiplication between vectors is meant component wise. C1,

C2 and ω are scalar terms. C1 and C2 represent ‘learning’ factors that weight the priority

79

that a particle puts on its own (C1) versus the global (C2) historic success (that is over

all iterations, to date). ω is an inertia term which moderates the effect of the preceding

velocity on the current velocity.

As the particles move through X their individual xxxj∗ values and the global x̂xx∗ are

updated as appropriate. If at any stage the next candidate position for any particle

lies outside of the lower and upper bounds li and ui of X , here an invisible boundary

condition is assumed, see [RR04]. Particles are allowed to leave the feasible region

to naturally return to feasibility due to the pull of the xxxj∗ and x̂xx∗ information. Note

that when a candidate moves outside of the feasible region no function evaluations are

undertaken. Rather the velocity equation is updated by the particle’s new location, with

the xxxj∗ information remaining unchanged.

A standard PSO search can be extended to a baseline robust PSO search by adding

an inner maximisation search component to the outer PSO minimisation search. Indeed

it should be recognised that d.d. and LEH as described in Sections 3.2.2 and 3.2.3 focus

on the outer minimisation component of the min max search (MM), so we will now give

some consideration to inner maximisation.

3.3.3 Inner maximisation

The key requirement of any inner maximisation approach is the ability to accurately

identify the maximum objective function value within the Γ-radius uncertainty neigh-

bourhood around any given candidate point. However when dealing with real-world

problems we must additionally take account of practical considerations. For simulation

problems a common limiting feature is the number of model runs that can be performed,

primarily due to simulation run times. In such a situation it is common to be restricted

to an upper budget Bmax on the number of model runs, which would in turn impact on

the ability to accurately perform inner maximisation searches.

Where there are budgetary restrictions on the number of function evaluations, some

trade-off must be achieved between the extent of each inner maximisation search (ro-

bustness) and the overall global search performance. However the trade-off between ro-

bustness and performance is not straightforward, see [MLM15, EDHX17]. In [BNT10b]

the inner maximisation involves a series of two-stage gradient ascent searches within the

Γ-uncertainty neighbourhood of a given candidate point, and assumes the availability

of gradient information. Such an approach to the inner maximisation is comprehensive,

but is in practice likely to prove prohibitive with increasing number of dimensions, even

assuming the availability of gradient information.

In [HGW19] uniform random sampling is used in the Γ-radius hypersphere that

forms the uncertainty neighbourhood around a candidate point, with the maximum

value sampled taken as an approximation to the inner maximum. It is this approach

that we adopt here for the inner maximisation in all heuristics considered.

80

The PSO framework introduced here comprises a main outer algorithm and three sub-

algorithms. The inner maximisation sub-algorithm along with the outer minimisation

frame constitute a baseline robust PSO metaheuristic, with additional d.d. and LEH sub-

algorithms representing novel enhanced capabilities. Pseudo-code for inner maximisation

by uniform random sampling in a Γ-radius hypersphere is shown in Algorithm 3. The

outer minimisation (Algorithm 4), additional d.d. (Algorithm 5) and LEH (Algorithm 6)

components are given subsequently. In the following, we do not explicitly list f , X , or

Γ as algorithm inputs, as they are always implied.

Algorithm 3 Γ-uncertainty neighbourhood inner maximisation inc. STOPPING option

Input: xxxc, B
max, Bin, stopping, τ

1: Calculate f(xxxc) and store in FH

2: H ← H ∪ {xxxc}
3: g̃(xxxc)← f(xcxcxc)

4: Bmax ← Bmax − 1

5: if (stopping) AND (g̃(xxxc) > τ) then goto line 17 end if

6: if (Bmax = 0) then break: goto end of Outer Min algorithm end if

7: for all i in (1, . . . , Bin − 1) do

8: Choose ∆xxxic ∈ U uniformly at random

9: xxxic ← xxxc + ∆xxxic

10: Calculate f(xxxic) and store in FH

11: H ← H ∪ {xxxic}
12: g̃(xxxc)← max{g̃(xxxc), f(xxxic)}
13: Bmax ← Bmax − 1

14: if (stopping) AND (g̃(xxxc) > τ) then goto line 17 end if

15: if (Bmax = 0) then break: goto end of Outer Min algorithm end if

16: end for

17: return g̃(xxxc): estimated worst case cost at xxxc

Within any robust heuristic, given a candidate point xxxc around which we want to

perform a Γ-uncertainty neighbourhood inner maximisation, we call Algorithm 3. As

input this requires the point information xxxc, a maximum number of function evaluations

that can be undertaken in the entire search budget Bmax, the defined number of points

to be evaluated within the inner maximisation analysis Bin (in the case of stopping this

is the maximum number of points that could be evaluated), a boolean specifying whether

or not the stopping condition is to be invoked stopping, and if required the stopping

threshold τ .

It should be noted that Bin is a parameter that is tuned for all heuristics, within

the experimental testing here, see Section 3.6.2. This supports the determination of an

appropriate trade-off between the inner and outer searches, in the context of a budget

81

on function evaluations.

The sub-algorithm starts by evaluating the function at the candidate point xxxc (line 1),

prior to moving on to uniformly randomly sample points in the Γ-uncertainty neighbour-

hood of xxxc and evaluating the function at each of these points (lines 8 to 10). Function

evaluations are recorded in the set FH associated with H. When a function evaluation

is performed the budget counter is reduced by 1 and a check is performed to ensure that

Bmax has not been exceeded. Note, however, that when the inner maximisation analysis

has been prematurely ended due to Bmax being exhausted, we do not want to return an

estimate for g̃(xxxc), but instead return to the end of the outer minimisation algorithm

where the extant estimate for the robust global minimum is accepted (lines 6 and 15).

As the inner sampling proceeds the estimate for g̃(xxxc) is updated as appropriate

(lines 3 and 12). If the input value for stopping is TRUE and a function evaluation

is detected which exceeds τ , the inner maximisation is terminated with the current

estimate for g̃(xxxc) returned (lines 5 and 14). Otherwise the full inner maximisation is

completed, at which point the estimate for g̃(xxxc) is returned to the outer minimisation

sub-algorithm (line 17).

3.3.4 Baseline robust PSO

The easiest way to extend a PSO approach to an rPSO version and tackle the problem

(MM) is to perform an inner maximisation search around any point in X visited by

a particle, in order to replace the nominal objective function value f(xxx) at any given

point with the corresponding worst case cost value g̃(xxx). With this approach the PSO

formulation would remain unchanged. This is a baseline rPSO, which is used as the

starting point for developing an enhanced rPSO metaheuristic framework here.

Pseudo-code for this baseline outer rPSO frame is given in Algorithm 4 for defined

input parameter values N , C1, C2, ω, and Bin. In the experimental testing, and for

all rPSO based heuristics, these five parameters are tuned, see Section 3.6.2. Note that

we do not need to define the number of iterations over which the swarm is progressed,

as this will be controlled by Bmax within the inner maximisation Algorithm 3, which is

called from line 13 of Algorithm 4. In addition we must input information for Bmax.

The PSO algorithm loops over iterations i until the budget Bmax is exceeded (line 1),

and over the N particles in the swarm (line 3). At the first iteration the particles

are randomly initialised (line 6), but for subsequent iterations the particle positions,

velocities, and personal best information are updated according to equations (Vel1)

and (Move) (lines 8 and 9). Prior to performing any inner maximisation function

evaluations the feasibility of the candidate point xxxj(i) is confirmed. Here we use the

boolean ToBeEvaluated (lines 4 and 10) to flag feasibility. Note that the use of the flag

ToBeEvaluated is exploited further subsequently in the LEH capability sub-algorithm,

Algorithm 6.

82

If xxxj(i) is not in X the inner maximisation, and associated function evaluations, are

skipped (line 12). This means that the particles personal best information xxxj∗ will not be

updated, but otherwise the subsequent movement of particle xxxj will continue according

to equations (Vel1) and (Move).

Particle’s xxxj∗ and the estimate of the robust global optimum x̂xx∗ are updated as appro-

priate (lines 14 and 15). At the end of the swarm-iterations loops the extant estimate

of the robust global optimum x̂xx∗ is returned (line 20).

Algorithm 4 A baseline robust particle swarm optimisation algorithm

Input: Bmax

Parameters: N , C1, C2, ω, Bin

1: while (Bmax > 0) do

2: i← 0

3: for all (j in 1, . . . , N) do

4: ToBeEvaluated← TRUE

5: if (i = 0) then

6: Choose xxxj(i) ∈ X uniformly at random

7: else

8: Update particle velocity vvvj(i) according to (Vel1)

9: Update particle position xxxj(i) according to (Move)

10: if (xxxj(i) /∈ X) then ToBeEvaluated← FALSE end if

11: end if

12: if (ToBeEvaluated) then

13: g̃(xxxj(i))← CALL Algorithm 3(xxxj(i), Bmax, Bin, FALSE, 0)

14: if (i = 0) OR (g̃(xxxj(i)) < g̃(xxxj∗)) then xxxj∗ ← xxxj(i) end if

15: if (i = 0 AND j = 0) OR (g̃(xxxj(i)) < g̃(x̂xx∗)) then x̂xx∗ ← xxxj(i) end if

16: end if

17: end for

18: i← i+ 1

19: end while

20: return A robust solution x̂xx∗

3.4 Comparison of baseline heuristics

When it comes to the testing of new heuristics in Section 3.6 we require comparator

robust heuristics against which to assess performance. Here we use the three baseline

approaches already discussed: re-starting d.d., LEH and the baseline rPSO. In order

to give some indication of the different natures of the searches due to each compara-

tor robust metaheuristic considered we introduce a two-dimensional problem and plot

83

exemplar searches due to each heuristic.

Consider one of the test problems to be used in our experimental test suite Sec-

tion 3.6.1, the multi-dimensional Pickelhaube problem. A full description of this func-

tion is given in Appendix 3.8.2, and plots of the nominal and worst case (Γ=1) 2D

Pickelhaube problem are shown in Figures 3.5i and 3.5j. In our formulation for the 2D

problem the nominal global optimum is at (−35,−35), whilst the robust global optimum

is at (−25,−25).

Contour plots of individual example searches for each of the three baseline approaches

applied to this 2D problem are shown in Figure 3.2. These plot should be seen as

indicative exemplars. Plots on the left indicate all points evaluated and the underlying

contour is the nominal plot. Plots on the right show the improving search path of the

currently identified global robust optima, over the underlying worst case contour.

For the d.d. search in Figures 3.2a and 3.2b the inner maximisation groupings of

evaluated points can be seen to follow a series of paths, each towards a robust local

optimum and based on a series random re-starts at the completion of the previous local

search. It can be seen that two such local searches successfully hone in on the robust

global optimum.

The nature of the LEH search in Figures 3.2c and 3.2d is very different to the d.d.

search, and two obvious features are apparent. First is the extensive exploration of the

solution space as the search jumps to centres of regions devoid of poor points. Second is

that in many cases the inner maximisation groupings of evaluated points are sparse, and

in fact are often just single point evaluations as the stopping condition recognises that

the current location cannot improve on the existing estimate of a global robust optima

– and so the algorithm immediately moves on without undertaking a full Γ-uncertainty

neighbourhood search. The location of the robust global optima is successfully identified.

Finally for the baseline rPSO search in Figures 3.2e and 3.2f, the combined exploratory-

exploitation nature of a PSO search can be observed. The approximate location of each

particle within each iteration is identifiable by the cluster of points evaluated within that

particle’s Γ-uncertainty neighbourhood. Again the location of the robust global optima

is successfully identified.

3.5 Enhanced robust particle swarm optimisation

3.5.1 New capabilities

In both d.d. and LEH approaches the additional function evaluations required to cal-

culate robust, as opposed to nominal, values are used to direct the search. In the case

of d.d. this points the search towards the optimal local direction to avoid hcps, whilst

for LEH this points the search towards the location which is globally furthest from all

existing hcps. Here we seek to exploit both of these local and global search directions.

84

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7
 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1
 1.1

 1.2

 1.2

 1.2

 1.3 1.3

 1.3

 1.4
 1.4

 1.4

 1.5

 1.5

 1.6

 1.6

 1.7

 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

(a) d.d. points

 0.5

 0.6

 0.7 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1

 1.2

 1.2

 1.3

 1.3

 1.3

 1.4

 1.4

 1.4

 1.5
 1.5

 1.5

 1.6 1.6

 1.6

 1.7
 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●
●●●●
●●●●●●
●●●●●

●●●●●● ●●●●●●●

●

●
●●●●●●●●●●

●
●●●●●●

●
●

(b) d.d. current best

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7
 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1
 1.1

 1.2

 1.2

 1.2

 1.3 1.3

 1.3

 1.4
 1.4

 1.4

 1.5

 1.5

 1.6

 1.6

 1.7

 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

(c) LEH points

 0.5

 0.6

 0.7 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1

 1.2

 1.2

 1.3

 1.3

 1.3

 1.4

 1.4

 1.4

 1.5
 1.5

 1.5

 1.6 1.6

 1.6

 1.7
 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0
●●

●●●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

(d) LEH current best

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7
 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1
 1.1

 1.2

 1.2

 1.2

 1.3 1.3

 1.3

 1.4
 1.4

 1.4

 1.5

 1.5

 1.6

 1.6

 1.7

 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

(e) rPSO points

 0.5

 0.6

 0.7 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1

 1.2

 1.2

 1.3

 1.3

 1.3

 1.4

 1.4

 1.4

 1.5
 1.5

 1.5

 1.6 1.6

 1.6

 1.7
 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

●

●●●●●

●

●●●●●●

●●●●●●●●●●●●●●●●
●●●

(f) rPSO current best

Figure 3.2: Example searches of the 2D version of the Pickelhaube problem (see Figures 3.5i and

3.5j) with Γ = 1, for the baseline metaheuristics. Evaluated points are shown on the left, with the

path of the improving current robust best on the right. The outer heuristics are (top to bottom):

d.d. with re-start, LEH, and robust PSO. The nominal global optimum is at (−35,−35), and the

robust global optimum is at ∼ (−25,−25).

85

The rPSO framework introduced here allows for the d.d. and LEH enhancements to

be employed in combination, or individually. This framework employs a baseline rPSO

comprising the outer and inner layers described in Algorithms 4 and 3 respectively, in

conjunction with new sub-algorithms to execute the features described below.

3.5.1.1 rPSO d.d. capability

The basic PSO movement formulation involves a weighted combination of two direc-

tion vectors, added to a particle’s current position, generating the movement to a new

location. The two weighted direction vectors are based on the differences between a

particle’s current location and its historic personal best and, here, the current estimated

global best. An obvious approach, given a third piece of vector information – a local

uncertainty neighbourhood d.d. vector – is to simply add the weighted d.d. vector to

the original vector calculation. Here each d.d. vector can be calculated at the particle

level at each candidate point, given an inner maximisation at that point. Furthermore

parameter tuning including all three weighting parameters will enable identification of

the best combination of vector information.

3.5.1.2 rPSO LEH capability

In the LEH formulation at each new candidate point an inner maximisation begins but

can terminate early if an uncertainty neighbourhood point exceeds the currently esti-

mated robust global minimum. At its most efficient this may frequently mean only a

single function evaluation is undertaken at a candidate, if it is immediately determined

that that evaluation exceeds the global best. Incorporating this into PSO at a particle

level, using particle best information as a stopping threshold, will introduce the desired

inner maximisation efficiency savings. However this can be taken further. For LEH in a

restricted budget on function evaluations setting, the historic record of function evalua-

tions is unlikely to include any points in the uncertainty neighbourhood of a candidate

location, as the very nature of LEH is to move to previously unexplored regions. In

a population based approach however this may not be the case, and in fact it may be

desirable that there is some convergence of members of the population in the decision

variable space. This introduces the potential that no function evaluations may need to be

undertaken at an individual particle’s candidate location if the historic record identifies

a previously evaluated point in the candidate uncertainty neighbourhood with objective

function value greater than the particle’s threshold. This is an additional efficiency, but

also opens up the possibility of a further feature.

The non-requirement to perform even a single function evaluation at an individual

particle’s current candidate location allows for the consideration of a particle becoming

’dormant’. Not requiring any function evaluations at a location could be due to moving

into an already visited region of the decision variable space and identifying neighbour-

86

ing points in the historic record exceeding the particle’s threshold, as discussed above.

However alternatively this could be due to the particle moving outside of the feasible

region. That is the invisible boundary condition [RR04] employed here also means that

individual particles may become dormant in the sense that they move outside of the

feasible region, necessitating no function evaluations and under the expectation of sub-

sequent movements ultimately returning the particle to feasibility, driven by personal

and neighbourhood best information.

If either of the situations described above were to repeat over several swarm itera-

tions it would be reasonable to consider an approach that interrupts individual particles

that have become dormant: ‘stuck’ either in previously visited or infeasible areas. By

introducing a dormancy threshold representing the number of iterations before a particle

is deemed truly dormant and requiring further action, that dormancy threshold can be

parameter-tuned.

Given a particle’s dormancy it seems reasonable to consider some action, so here

we introduce an exploratory component. Taking the other main element of the LEH

approach, the calculation of the largest empty region devoid of all previously evaluated

points with objective value greater than some defined threshold, we relocate-reinitialise

the particle at the centre of that LEH. Here we set the ’high cost’ threshold, identifying

which points from the historical record of function evaluations to avoid in the calculation

of the largest empty region, equal to the current robust global minimum.

3.5.2 Enhanced capability: d.d. sub-algorithm

We start by considering the use of d.d. information to enhance the PSO velocity equation

(Vel1) through the addition of a further velocity component of the form:

C3 · rrr3 · ddddddj(t− 1) (ddVel)

For each particle j at each iteration t we perform a single-step d.d. calculation using

the uncertainty neighbourhood points around the particle’s position. Given a valid unit

length direction vector dddj(t− 1) as a result of solving (Soc), a final vector ddddddj(t− 1) is

calculated by scaling using the term ρj(t− 1), which is calculated as in equation (Rho)

in Section 3.2.2:

ddddddj(t− 1) = ρj(t− 1) · dddj(t− 1)

If no such direction can be calculated then ddddddj(t− 1) is set to the zero vector. Incorpo-

rating this additional velocity component into the original velocity formulation (Vel1),

beyond the initialisation of the particles at iteration 0 the following velocity formulation

is used:

vvvj(t) = ω·vvvj(t−1)+C1·rrr1·(xxxj∗−xxxj(t−1))+C2·rrr2·(x̂xx∗−xxxj(t−1)+C3·rrr3·ddddddj(t−1) (Vel2)

Pseudo-code for the calculation of the additional d.d. velocity component (ddVel) is

given in Algorithm 5. In terms of the overarching framework, Algorithm 4 is still valid

87

but with a single change: in line 8 the enhanced velocity equation (Vel2) now replaces

equation (Vel1).

Algorithm 5 requires input information for the candidate point of interest xxxc, the

history set H and the associated set of function evaluation values FH . In addition d.d.

calculation parameter values are required: the initial σ value, the lowest value this can

take σlimit, and the number of reduction-steps which can be applied in reducing σ from

its initial value down to σlimit, in repeated attempts to solve (Soc) when the previous

attempts have failed, σno – see Section 3.2.2. Also a factor, initρMin, is required to

ensure that any calculated d.d. vector achieves a minimum size. Finally the new input

scalar parameter value C3 is required for the final calculation of the ddddddc vector.

In the experimental testing the σ, σlimit, initρMin and C3 parameters are tuned,

see Section 3.6.2. This is in addition to the tuned baseline rPSO parameters, see Sec-

tion 3.3.4. σno could be tuned but is pre-set in the experimental testing here in order to

better control heuristic run times.

The sub-algorithm begins with a feasibility check for the input candidate point xxxc

(line 2). If no function evaluations are undertaken at a given candidate point due to it

lying outside of X (line 18) then we instead set ddddddj(t− 1) to include only values in the

dimensions which are infeasible (in all feasible dimensions the vector component retains

the initialisation setting of 0, see line 1). The non-zero vector components are all set to

magnitude Γ, with the sign for each dimension determined in order to point back into

the feasible region (lines 19 to 25). As with all d.d. vectors this is then multiplied by

a scalar C3 value and a random vector r3r3r3 (line 26). The intention here is to promote a

return to X , beyond the existing draw of a particle’s xxxj∗ and the global x̂xx∗ information

(which are both in X).

The high cost set Hσ and associated set of function evaluation values FHσ are ini-

tialised (line 3). Next is the attempt to solve the second order cone problem (Soc) and

identify a valid descent direction based on the high cost set Hσ, see lines 5 to 16. As

this is a mathematical programming problem in practice this is achieved by a call to an

optimisation software package.

As described in Section 3.2.2, if (Soc) cannot be solved immediately it may be re-

tried multiple times with reducing values of σ and hence with Hσ containing fewer

points (lines 13 and 14). Flagging of the solution to (Soc) is controlled by the boolean

SolvedSOCP . If (Soc) is solved the original normalised direction vector is re-scaled

according to equation (Rho) (line 9) or the defined minimum distance (initρMin ∗ Γ)

(line 10), prior to the rPSO velocity equation update due to equation (ddVel) (line 17).

If ultimately (Soc) cannot be solved the initialisation setting of ddddddc to 000 is retained

(line 1).

Contour plots of an example search using the framework operating with only the en-

hanced d.d. capability applied to the 2D Pickelhaube problem are shown in Figures 3.3a

and 3.3b on page 94, to give an indication of the nature of an enhanced search. In

88

Algorithm 5 Calculating the additional d.d. velocity component (ddVel)

Input: xxxc, H, FH

Parameters: σ, σlimit, σno, initρMin, C3

1: ddddddc ← 000

2: if (xxxc ∈ X) then

3: Initialise Hσ and FHσ

4: SolvedSOCP ← FALSE

5: while (!SolvedSOCP) AND (σ ≥ σlimit) do

6: Try: dddc ← Solve (Soc) for xxxc and Hσ

7: if (Solve (Soc) is successful) then SolvedSOCP ← TRUE end if

8: if (SolvedSOCP) then

9: Calculate ρ according to (Rho)

10: if (ρ < (initρMin ∗ Γ)) then ρ← (initρMin ∗ Γ) end if

11: dddc ← ρ · dddc
12: else

13: σ ← σ − (σ − σlimit)/σno
14: Update Hσ and the associated FHσ

15: end if

16: end while

17: if (SolvedSOCP) then ddddddc ← C3 · r3r3r3 · dddc end if

18: else

19: for all (i in 1, . . . , n) do

20: if ((xxxc)i ≤ li) then

21: (ddddddc)i ← Γ

22: else if ((xxxc)i ≥ ui) then

23: (ddddddc)i ← −Γ

24: end if

25: end for

26: ddddddc ← C3 · rrr3 · ddddddc
27: end if

28: return Additional d.d. velocity component ddddddc

89

these plots and subsequently when discussing results for this capability we will use the

nomenclature ‘rPSOdd’. Unsurprisingly the nature of these plots is somewhat similar

to the baseline rPSO search seen in Figures 3.2e and 3.2f. However in addition the new

Γ-uncertainty neighbourhood descent directions component in the velocity function, for

each particle at each location, does appear to add elements of robust local search at the

particle level. The extent of any d.d. component will be heavily influenced by the d.d.

sub-algorithm parameter value settings.

3.5.3 Enhanced capability: LEH sub-algorithm

Our second enhancement to the rPSO formulation involves augmenting the baseline

rPSO Algorithm 4 with an additional sub-algorithm to perform elements of the LEH

approach due to [HGW19]. Here we incorporate two LEH-based components into our

enhanced capability: the stopping condition, and the calculation of the largest empty

hypersphere devoid of high cost points and placement of candidates at the centre of

the calculated LEH. This further leads to an increased role for the use of the historic

function evaluation information from the history set H.

We have already included the stopping condition when developing the Γ-uncertainty

neighbourhood inner maximisation Algorithm 3. That sub-algorithm is set up to ac-

cept boolean input information stopping to flag whether or not the inner maximisation

stopping condition should be invoked, plus the associated stopping threshold value τ

if stopping is TRUE. Whereas in the baseline rPSO Algorithm 4 stopping was set to

FALSE (Algorithm 4 line 13), here the stopping condition is invoked at the particle level

by setting stopping to TRUE and using the candidate particle j personal best value g̃(xxxj∗)

for the stopping threshold τ . So for the LEH sub-algorithm (Algorithm 6), in line 13 of

the outer minimisation (Algorithm 4) the call to the inner maximisation (Algorithm 3)

becomes:

g̃(xxxj(i))← CALLAlgorithm 3 (xxxj(i), Bmax, Bin, TRUE, g̃(xxxj∗)) (call 3)

In addition, however, within Algorithm 6, we introduce a pre-inner maximisation check of

the history set H. Again this sub-algorithm requires input information for the candidate

point of interest xxxc, and the history set H and associated set FH . Further, Algorithm 6

needs to access the full particle information for particle j(i) associated with the current

candidate point xxxc, and the global best value g̃(x̂xx∗). Also Algorithm 6 uses the counter

dormancyjcount and the parameters ToBeEvaluated and dormancylimit; the latter is

tuned in our experiments along with the baseline rPSO parameters, Section 3.6.2. A

further parameter placementlimit is also introduced here but is not tuned, and instead

pre-set to control heuristic run times. dormancyjcount, dormancylimit and placementlimit

are described below.

The pre-inner maximisation check of H is to identify if there are existing points in

the uncertainty neighbourhood of the candidate location xxxc. If there are, we then check

90

if any such points already have nominal objective function value f(xxx) greater than the

particle threshold g̃(xxxj∗). If so we determine that we do not need to perform any inner

maximisation search for candidate location xxxc. We have already seen the use of boolean

ToBeEvaluated to flag the need to undertake inner maximisation function evaluations,

due to feasibility issues, in Algorithm 4. Here we extend the use of ToBeEvaluated to

also flag when there is no need to undertake inner maximisation function evaluations

due to the the pre-inner maximisation check (lines 1 to 4). In a similar fashion to the

case of xxxc being infeasible the particle j velocity information is updated by the particle

j location xxxc, but xxxj∗ remains unchanged.

Algorithm 6 Re-locating particles using elements of the LEH heuristic

Input: Particle j(i), xxxc, H, FH , x̂xx∗

Parameters: ToBeEvaluated, dormancyjcount, dormancylimit, placementlimit

1: if (xxxc /∈ X) OR (max{g̃(hhh) | hhh ∈ N(xxxc)} > g̃(xxxj∗)) then

2: ToBeEvaluated← FALSE

3: dormancyjcount ← dormancyjcount + 1

4: end if

5: if (dormancyjcount > dormancylimit) then

6: lehComplete← FALSE

7: countLEHtry ← 0

8: while (!lehComplete) AND (countLEHtry < placementlimit) do

9: ppp← solution to (lehMM)

10: Calculate f(ppp) and store in FH

11: H ← H ∪ {ppp}
12: countLEHtry ← countLEHtry + 1

13: if (f(ppp) < g̃(x̂xx∗)) then lehComplete← TRUE end if

14: end while

15: Re-set all particle j(i) details to initialisation values

16: dormancyjcount ← 0

17: xxxj(i)← ppp

18: else

19: Update particle position xxxj(i) according to (Move)

20: end if

21: return ToBeEvaluated and input particle j(i) updated if appropriate

The second feature of LEH that we exploit here is the exploration-based locating of

new candidates at points furthest away from all previously visited ‘bad’ high cost points

– which equates to placing candidates at the centre of the LEH (empty of hcps). Here we

apply such an approach to relocate individual particles j based on a determination that

particle j is ‘dormant’. Dormancy is based on a count of the number of swarm iterations

91

over which no function evaluations have been performed for particle j, which may either

be due to an infeasible candidate location, or due to the pre-inner maximisation check

described (lines 1 to 4). To this end we introduce a particle level count of the num-

ber of dormant iterations dormancyjcount, and the dormancy count level which triggers

the relocation of a particle dormancylimit. The counter is incremented as appropriate

(line 3).

For a particle j, given the exceeding of the dormancy count level (line 5), an LEH

calculation is undertaken to re-position particle j to the centre of the identified LEH. If,

however, particle j is not identified as being dormant, the original update rule for the

particle is used (line 19).

In the original LEH algorithm, see Section 3.2.3, the high cost set is defined as Hτ ,

a subset of the history set H containing all points with nominal objective function value

f(xxx) greater than a threshold τ . Within that algorithm the same threshold τ is employed

for the stopping condition and for the identification of an LEH. Here we employ τ = g̃(x̂xx∗)

with the intention of trying to re-locate particle j away from points that we already know

cannot improve on our current estimate for the robust global minimum x̂xx∗.

We seek to estimate the point ppp ∈ X furthest from all designated high cost points

hhh ∈ Hg̃(x̂xx∗). This is the max min problem:

max
ppp∈X

min
hhh∈Hg̃(x̂xx∗)

‖ppp− hhh‖, (lehMM)

where ‖ · ‖ is the Euclidean norm.

We use the approach due to [HGW19] to estimate the solution to (lehMM), employing

a genetic algorithm (line 9). As is the case for the baseline LEH comparator heuristic,

within our experimental testing the parameters controlling the GA applied to solving

problem (lehMM) are tuned, see Section 3.6.2.

There is a final element of this particle relocation. In a further attempt to enhance

the exploratory nature of the rPSOleh heuristic, at the potential new candidate point ppp

we perform a single point function evaluation (line 10). If this value is less than g̃(x̂xx∗)

we accept the new candidate point (line 13), however if not we perform further LEH

calculations up to some input number of times placementlimit that this retry can occur

(lines 8 to 14). This process is controlled by a counter, lines 7 and 12, and success flag in

line 6. If the number of retries is exhausted the final potential candidate ppp is accepted.

Note that with each LEH calculation an additional point is added to H, impacting

subsequent LEH calculations.

As this LEH calculation effectively re-initialises particle j, the previous particle j

information including initial velocity and xxxj∗ need to be re-set to the particle initialisa-

tion settings, overwriting the existing information (lines 15 and 16). Subsequently new

particle information will be established as the outer minimisation search (Algorithm 4)

progresses. Particle j is then re-located to ppp (line 17). This relocation could happen to

the same particle j more than once over the course of the heuristic search.

92

The LEH sub-algorithm (Algorithm 6) can then be accessed from the baseline rPSO

Algorithm 4 by replacing lines 9 and 10 there with the single line reference to Algorithm 6:

Update particle position xxxj(i) according to Algorithm 6 (relocateLEH)

In addition, to use Algorithm 4 dormancyjcount values need to be introduced and ini-

tialised (set to zero) in Algorithm 4. The addition of a line within the IF statement,

lines 5 to 7, achieves this:

dormancyjcount ← 0 (addCounter)

Also dormancylimit and placementlimit would need to be defined as additional input

parameters in Algorithm 4.

Contour plots of an example search using the framework operating with only the en-

hanced LEH capability applied to the 2D Pickelhaube problem are shown in Figures 3.3c

and 3.3d. In these plots and subsequently when discussing results for this capability we

will use the nomenclature ‘rPSOleh’. The nature of these plots is primarily a combina-

tion of the example rPSO and LEH searches seen in Figure 3.2. There are some inner

maximisation groupings of evaluated points for each particle, as the particles iterate,

plus some limiting of the extent of these inner searches – moving on without undertak-

ing a full Γ-uncertainty neighbourhood search, plus the extensive LEH exploration of

the solution space as the search moves to regions devoid of hcps.

3.5.4 Full enhanced capability

The operation of the full enhanced capability within our rPSO framework employs both

of the two new sub-algorithms: we augment the baseline outer minimisation (Algo-

rithm 4) and inner maximisation (Algorithm 3) with Algorithms 5 and 6. In combination

the new sub-algorithms require input information for xxxc, H, FH , full particle information

for particle j(i), x̂xx∗ and dormancyjcount. Parameter values for σ, σlimit, σno, initρMin,

C3, ToBeEvaluated, dormancylimit and placementlimit are also required.

In the experimental testing the σ, σlimit, initρMin, C3 and dormancylimit parameters

are tuned, see Section 3.6.2, in addition to the tuned baseline rPSO parameters (Sec-

tion 3.3.4) and the parameters controlling the GA applied to solving problem (lehMM)

(Section 3.5.3).

Algorithm 4 still requires a single change to accommodate the d.d. component: in

line 8 the enhanced velocity equation (Vel2) replaces equation (Vel1). To accommodate

the LEH components Algorithm 4 requires several minor updates. The call to the inner

maximisation Algorithm 3 must be updated in accordance with (call 3). Plus the up-

dates to include (relocateLEH) and (addCounter), and the addition of input parameters

dormancylimit and placementlimit to Algorithm 4, as described in Section 3.5.3.

These updates and calls to Algorithms 3, 5 and 6 from the baseline rPSO Algorithm 4

complete the full capability within our rPSO framework.

93

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7
 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1
 1.1

 1.2

 1.2

 1.2

 1.3 1.3

 1.3

 1.4
 1.4

 1.4

 1.5

 1.5

 1.6

 1.6

 1.7

 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

(a) rPSOdd points

 0.5

 0.6

 0.7 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1

 1.2

 1.2

 1.3

 1.3

 1.3

 1.4

 1.4

 1.4

 1.5
 1.5

 1.5

 1.6 1.6

 1.6

 1.7
 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

●●

●●●●

●●●●
●●●●●●

●●

(b) rPSOdd current best

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7
 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1
 1.1

 1.2

 1.2

 1.2

 1.3 1.3

 1.3

 1.4
 1.4

 1.4

 1.5

 1.5

 1.6

 1.6

 1.7

 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

(c) rPSOleh points

 0.5

 0.6

 0.7 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1

 1.2

 1.2

 1.3

 1.3

 1.3

 1.4

 1.4

 1.4

 1.5
 1.5

 1.5

 1.6 1.6

 1.6

 1.7
 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

●

●●●●●●●●

●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

(d) rPSOleh current best

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7
 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1
 1.1

 1.2

 1.2

 1.2

 1.3 1.3

 1.3

 1.4
 1.4

 1.4

 1.5

 1.5

 1.6

 1.6

 1.7

 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

(e) rPSOlehdd points

 0.5

 0.6

 0.7 0.8

 0.9

 0.9

 1

 1

 1.1

 1.1

 1.2

 1.2

 1.3

 1.3

 1.3

 1.4

 1.4

 1.4

 1.5
 1.5

 1.5

 1.6 1.6

 1.6

 1.7
 1.7

 1.8

 1.8

−40 −35 −30 −25 −20

−
4

0
−

3
5

−
3

0
−

2
5

−
2

0

●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

(f) rPSOlehdd current best

Figure 3.3: Example searches of the 2D version of the Pickelhaube problem Figures 3.5i and 3.5j

with Γ=1, for the new rPSO framework. Evaluated points are shown on the left, with the path of

the improving current robust best on the right. The outer framework settings are: enhanced d.d

capability only (rPSOdd), enhanced LEH capability only (rPSOleh), and full enhanced capability

(rPSOlehdd). The nominal global optimum is at (−35,−35), and the robust global optimum is

at ∼ (−25,−25).

94

Contour plots of an example search using the full capability applied to the 2D Pick-

elhaube problem are shown in Figures 3.3e and 3.3f. In these plots and subsequently

when discussing results for this capability we will use the nomenclature ‘rPSOlehdd’.

The nature of these plots is somewhat similar to the plots combining just the PSO and

LEH search elements, shown in Figures 3.3c and 3.3d. Also, however, the additional par-

ticle level d.d. component in the velocity function appears to introduce some elements of

robust local search, although the extent of any such d.d. component will be influenced

by the d.d. sub-algorithm parameter value settings.

3.6 Computational experiments

3.6.1 Experimental set up

In Section 3.4 we introduced three global robust metaheuristics as a baseline against

which to test our three new approaches:

1. Baseline: largest empty hypersphere (LEH) [HGW19].

2. Baseline: repeating descent direction (d.d.) based on [BNT10b].

3. Baseline: robust particle swarm optimisation (rPSO) based on ‘standard’ PSO for-

mulation [KE95, KES01, Tal09].

Our new framework allows for three alternative settings: the complete capability

(rPSOlehdd), the use of the enhanced d.d. capability alone (rPSOdd), or the use of the

enhanced LEH capability alone (rPSOleh). This enables us to generate three sets of new

results for consideration against the three comparators.

Recall that all inner maximisation analysis is undertaken exclusively using uniform

random sampling in the Γ-radius hypersphere that forms the uncertainty neighbourhood

of any given point, see Algorithm 3. The level of Γ-radius sampling is a tuned value

for all heuristics, and is also a maximum level of sampling when a stopping condition is

employed by the heuristic.

Each run of each heuristic identifies an estimate of the location and value of a robust

global optimum. The robust global value used by the heuristic is likely to be an inaccu-

rate estimate of the actual worst case value at the identified location. Therefore we post

process all estimated values by randomly sampling 1,000,000 points in the Γ-uncertainty

neighbourhood of the identified robust location, and taking the maximum sampled value

as the estimated worst case cost. This robust value is taken as the output of a single

heuristic-test problem run. This post processing does not impact on the heuristic search.

We employ ten multi-dimensional test functions over six dimensions: 2D, 5D, 10D,

30D, 60D and 100D, plus the 2D polynomial test problem from [BNT10b]. This gives 61

test problem instances for each of the heuristics to be applied to. Each heuristic is applied

95

to each test instance 200 times to give reasonable sample sets of results for comparison,

in order to identify the best performing approach. In line with assumed restrictions on

numbers of function evaluations when handling real-world problems, each test problem

run is limited to a budget of 5,000 function evaluations. Prior to undertaking the sample

runs parameter tuning has been applied, as described in Section 3.6.2.

Name X Γ

Rastrigin [14.88, 25.12]n 0.5

MultipeakF1 [−5,−4]n 0.0625

MultipeakF2 [10, 20]n 0.5

Branke’s Multipeak [−7,−3]n 0.5

Pickelhaube [−40,−20]n 1

Heaviside Sphere [−30,−10]n 1

Sawtooth [−6,−4]n 0.2

Ackley [17.232, 82.768]n 3

Sphere [15, 25]n 1

Rosenbrock [7.952, 12.048]n 0.25

2D polynomial [−1, 4]2 0.5

Table 3.1: Test functions.

Table 3.1 presents the eleven test functions used within our experimental testing. The

functions are based on the literature: [Bra98, KEB10, KRD+11, Kru12, JY13, BNT10b],

and their mathematical description is given in Appendix 3.8.2. 3D plots of the 2D

versions of these multi-dimensional functions are shown in Figures 3.4 and 3.5.

0

1

2

0

1

2

3

4

−20

−10

0

10

20

30

(a) 2D Polynomial Nominal

0

1

2

0

1

2

3

4
20

40

60

80

(b) 2D Polynomial Worst

Figure 3.4: Plots of 2D Polynomial test function [BNT10b] in the rPSO test suite.

The common features of the objective function surfaces of individual test problems

means that such problems can be associated with high level categorisations such as

96

16

18

20

22

24

16

18

20

22

24

0

20

40

60

(a) Rastrigin Nom

16

18

20

22

24

16

18

20

22

24

30

40

50

60

70

80

(b) Rastrigin Worst

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0
−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(c) Multipeak F1 Nom

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0
−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

(d) Multipeak F1 Worst

10

12

14

16

18

20
10

12

14

16

18

20

−1

0

1

(e) Multipeak F2 Nom

10

12

14

16

18

20
10

12

14

16

18

20

−0.5

0.0

0.5

1.0

1.5

(f) Multipeak F2 Worst

−7

−6

−5

−4

−3
−7

−6

−5

−4

−3

0.0

0.5

1.0

(g) Brankes Multi Nom

−7

−6

−5

−4

−3
−7

−6

−5

−4

−3

0.5

1.0

1.5

2.0

(h) Brankes Multi Worst

−40

−35

−30

−25

−20
−40

−35

−30

−25

−20

0.5

1.0

1.5

(i) Pickelhaube Nom

−40

−35

−30

−25

−20
−40

−35

−30

−25

−20

0.5

1.0

1.5

(j) Pickelhaube Worst

−30

−25

−20

−15

−10
−30

−25

−20

−15

−10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(k) Heaviside S Nom

−30

−25

−20

−15

−10
−30

−25

−20

−15

−10
1

2

3

(l) Heaviside S Worst

−6.0

−5.5

−5.0

−4.5

−4.0
−6.0

−5.5

−5.0

−4.5

−4.0

0.2

0.4

0.6

0.8

1.0

(m) Sawtooth Nom

−6.0

−5.5

−5.0

−4.5

−4.0
−6.0

−5.5

−5.0

−4.5

−4.0

0.4

0.6

0.8

1.0

(n) Sawtooth Worst

20

40

60

80
20

40

60

80

0

5

10

15

(o) Ackley Nom

20

40

60

80
20

40

60

80

5

10

15

(p) Ackley Worst

16

18

20

22

24

16

18

20

22

24

0

10

20

30

40

50

(q) Sphere Nom

16

18

20

22

24

16

18

20

22

24

20

40

60

(r) Sphere Worst

8

9

10

11

12
8

9

10

11

12

0

1000

2000

3000

(s) Rosenbrock Nom

8

9

10

11

12
8

9

10

11

121000

2000

3000

4000

(t) Rosenbrock Worst

Figure 3.5: Plots of 2D versions of the 10 multi-dimensional problems in the rPSO test suite.

97

multi-modality, basins or valleys, see e.g. [JY13]. Here we have arranged the ten multi-

dimensional test problems in an approximate order based on modality and common

features, which should be apparent in the 3D plots shown in Figure 3.5.

All of our algorithms have been coded in Java, with calls to the mathematical pro-

gramming software IBM ILOG CPLEX Optimization Studio V12.6.3 to solve the second

order cone problem element of a d.d. calculation.

3.6.2 Parameter tuning

Parameter tuning has been undertaken at the dimensional level, separately for each

heuristic, and for each of the six dimensions. This seems reasonable in a practical

setting, where a decision maker is likely to have a good advance understanding of the

dimension of the problem at hand. This generates a set of parameters for each heuristic

separately for each dimension in the testing process.

Our tuning uses an evolutionary tuning approach applied to a subset of the test suite

(four instances), including only problems where the nominal and robust global optima are

differently located. This is primarily to ensure that the tuned level of inner maximisation

is not biased by test problems where the nominal and robust optima are coincident, and

therefore where no Γ-uncertainty neighbourhood analysis might be desirable.

Within the tuning GA each member of the evolving population represents a set of

parameter values for a given heuristic operating at a specific dimension. For all heuristics

the same level of tuning is employed for a given dimension: each problem in the tuning

subset of the test suite is run for the same number of samples, with the same population

size and number of generations used. For a given member of the evolutionary population

the mean of the sample runs on a single tuning test problem is calculated, and ranked

in comparison to the other individuals in the population. The average ranking of these

means over the tuning test suite is used as the measure of utility within an evolutionary

tournament selection, see e.g. [ES12].

For all heuristics a key tuned parameter is the extent of the inner maximisation

analysis. For d.d. the parameters that control the parameter σ which impacts the de-

termination of high cost points, and the minimum step size required for any descent

direction step, are tuned. This also applies to our framework when set to employ a d.d.

calculation. For LEH the parameters that control the genetic algorithm employed in

the identification of the largest empty hypersphere devoid of all high cost points, see

equation (lehMM), are tuned. Again this applies to our framework when set to employ

an LEH calculation. For all four rPSO based heuristics (baseline rPSO and the three

alternative framework settings) the new parameters that are tuned are stated in Sec-

tions 3.3.4, 3.5.2, 3.5.3 and 3.5.4. Tuned parameter values are given in Appendix 3.8.4.

98

3.6.3 Results

Here we present results of the 200 sample runs for each of the six robust heuristics

when applied to each of the 61 test problem-dimension instances. The mean results are

shown in Tables 3.2 and 3.3. The best or statistically equivalent to the best results

(best-equivalent) due to Wilcoxon rank-sum testing with 95% confidence and employing

a Bonferonni correction (see e.g. [HTF09]) are highlighted. That is a highlight on a

method means that no other method is statistically better. For Table 3.3 this applies

at the cell level. Note that being best with respect to the mean objective value does

not always correspond to being statistically best-equivalent. Statistical analysis was

undertaken in R, see [R C19, Din17]. Details of the distributions of the 200 samples

runs for the multi-dimensional problems are provided by box plots in Appendix 3.8.3.

The box plots for the 2D Bertsimas polynomial are shown in Figure 3.6.

Heuristic Mean

d.d. 6.91

LEH 4.80

rPSO (4) 6.10

rPSOdd (4,5) 5.97

rPSOleh (4,6) 7.13

rPSOlehdd (4,5,6) 5.29

Table 3.2: Mean results for 200 sample runs for the 2D polynomial function due to [BNT10b].

Statistically equivalent best heuristics are highlighted. Bracketed numbering on rPSO based

heuristics refers to the outer minimisation algorithms used.

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●
●
●
●●●●
●●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

10

20

30

d
d

le
h

p
s
o

p
s
o

d
d

p
s
o

le
h

p
s
o

le
h

d
d

O
b

je
c
ti
v
e

Figure 3.6: Box plots of 2D Polynomial test function [BNT10b] robust objective values for 200

sample runs.

99

R
a

st
ri

g
in

M
u

lt
ip

ea
k

F
1

M
u

lt
ip

ea
k

F
2

B
ra

n
k

es
P

ic
k

el
h

a
u

b
e

H
ea

vi
si

d
e

S
a

w
to

o
th

A
ck

le
y

S
p

h
er

e
R

o
se

n
b

ro
ck

d
.d

.
3
7
.1
5

-0
.5
7

-0
.6
2

0
.4
4

0
.4
0

0
.5
8

0
.5
9

1
1
.0
0

1
.0
6

9
.3
7

L
E

H

3
4
.5
6

-0
.6
0

-0
.6
7

0
.4
4

0
.4
0

0
.3
3

0
.4
7

9
.5
0

1
.1
1

7
.5
9

rP
S

O
 (

2
)

3
9
.2
3

-0
.4
7

-0
.5
4

0
.4
8

0
.5
2

0
.3
0

0
.5
1

1
1
.5
8

1
.5
6

1
1
.3
6

rP
S

O
d

d
 (

2
,3

)
3
8
.4
2

-0
.5
1

-0
.5
6

0
.4
8

0
.5
1

0
.5
7

0
.5
3

9
.8
9

1
.1
3

9
.1
3

rP
S

O
le

h
 (

2
,4

)
3
7
.4
2

-0
.6
1

-0
.6
8

0
.4
3

0
.3
8

1
.0
1

0
.6
3

9
.3
8

1
.0
1

7
.7
1

rP
S

O
le

h
d

d
 (

2
,3

,4
)

3
6
.2
2

-0
.6
1

-0
.6
5

0
.4
3

0
.3
9

0
.7
4

0
.5
6

9
.3
7

1
.0
1

7
.7
2

d
.d

.
6
7
.7
2

-0
.4
4

-0
.4
1

0
.4
5

0
.3
3

1
.0
4

0
.5
3

1
2
.4
3

1
.0
4

1
3
.3
2

L
E

H

7
6
.1
8

-0
.4
7

-0
.5
5

0
.4
2

0
.5
4

0
.7
6

0
.4
7

1
3
.0
1

2
.8
1

3
8
.7
3

rP
S

O
 (

2
)

7
7
.6
8

-0
.4
8

-0
.5
4

0
.4
7

0
.6
8

0
.9
7

0
.4
7

1
1
.4
5

2
.8
3

4
0
.9
8

rP
S

O
d

d
 (

2
,3

)
7
3
.8
5

-0
.5
0

-0
.6
0

0
.4
1

0
.5
4

1
.0
5

0
.5
2

8
.4
9

1
.6
1

2
4
.4
9

rP
S

O
le

h
 (

2
,4

)
6
5
.3
0

-0
.6
0

-0
.6
9

0
.3
7

0
.4
4

1
.0
6

0
.4
8

7
.5
9

1
.0
8

1
9
.5
7

rP
S

O
le

h
d

d
 (

2
,3

,4
)

6
7
.5
0

-0
.5
3

-0
.5
6

0
.4
1

0
.4
8

1
.0
2

0
.4
4

7
.8
6

1
.3
6

2
0
.1
8

d
.d

.
1
0
8
.4
7

-0
.4
6

-0
.2
5

0
.5
6

0
.9
0

1
.8
3

0
.5
9

1
9
.4
5

1
.3
0

3
0
.7
7

L
E

H

1
2
8
.1
9

-0
.4
4

-0
.5
1

0
.6
5

0
.9
3

1
.2
9

0
.4
9

1
5
.1
6

1
0
.2
2

1
3
5
.6
8

rP
S

O
 (

2
)

1
2
3
.1
0

-0
.4
7

-0
.5
1

0
.5
7

0
.8
1

1
.1
6

0
.4
8

1
3
.0
0

6
.9
7

1
1
1
.3
4

rP
S

O
d

d
 (

2
,3

)
1
3
7
.5
3

-0
.4
4

-0
.5
1

0
.5
1

0
.4
7

1
.0
3

0
.4
6

7
.5
6

2
.3
7

2
9
.5
2

rP
S

O
le

h
 (

2
,4

)
1
0
1
.8
9

-0
.5
2

-0
.6
0

0
.4
8

0
.5
0

1
.0
4

0
.4
3

8
.1
9

2
.5
5

5
1
.1
9

rP
S

O
le

h
d

d
 (

2
,3

,4
)

1
1
6
.2
1

-0
.5
5

-0
.6
5

0
.4
0

0
.4
4

1
.0
2

0
.4
3

7
.1
8

2
.1
8

2
8
.7
0

d
.d

.
3
2
3
.4
5

-0
.4
4

-0
.3
3

0
.7
0

1
.7
5

7
.5
0

0
.6
6

2
1
.4
2

8
8
.1
1

3
9
5
1
.9
7

L
E

H

3
3
4
.0
8

-0
.4
4

-0
.4
6

0
.7
0

1
.4
0

1
.9
3

0
.4
9

1
5
.5
4

3
9
.7
0

5
5
6
.9
6

rP
S

O
 (

2
)

3
7
9
.5
9

-0
.4
3

-0
.2
8

0
.6
3

1
.0
7

2
.2
0

0
.5
0

1
6
.6
2

3
7
.5
4

1
1
4
9
.8
4

rP
S

O
d

d
 (

2
,3

)
3
6
0
.3
5

-0
.4
5

-0
.2
9

0
.6
2

0
.8
7

1
.3
1

0
.6
0

2
0
.7
2

7
.9
1

2
4
1
.7
5

rP
S

O
le

h
 (

2
,4

)
2
2
6
.5
7

-0
.6
3

-0
.5
1

0
.4
7

0
.4
4

1
.0
6

0
.3
5

6
.7
8

5
.3
0

1
0
4
.0
0

rP
S

O
le

h
d

d
 (

2
,3

,4
)

3
1
0
.6
5

-0
.4
5

-0
.4
0

0
.5
4

1
.6
4

1
.0
3

0
.4
4

1
8
.6
2

2
.8
6

8
9
.2
4

d
.d

.
8
7
6
.2
6

-0
.3
5

-0
.2
3

0
.7
5

1
.8
1

1
5
.7
2

0
.6
7

2
1
.2
6

3
6
5
.6
6

1
7
1
9
7
.3
6

L
E

H

6
7
1
.2
6

-0
.4
4

-0
.4
2

0
.7
0

1
.6
0

4
.2
1

0
.4
5

1
7
.5
0

8
5
.6
3

2
1
1
1
.7
9

rP
S

O
 (

2
)

6
9
3
.7
0

-0
.4
4

-0
.4
1

0
.6
7

1
.7
9

5
.4
3

0
.4
9

1
8
.5
9

1
1
9
.8
3

3
1
8
6
.0
0

rP
S

O
d

d
 (

2
,3

)
4
2
2
.0
3

-0
.6
0

-0
.4
7

0
.5
1

0
.6
6

1
.0
3

0
.5
0

2
0
.3
4

2
.8
4

1
0
8
.6
9

rP
S

O
le

h
 (

2
,4

)
5
5
3
.5
4

-0
.5
2

-0
.4
7

0
.6
1

0
.7
4

1
.4
1

0
.3
7

1
0
.4
9

2
0
.0
3

3
2
3
.8
3

rP
S

O
le

h
d

d
 (

2
,3

,4
)

5
0
3
.9
4

-0
.5
5

-0
.4
9

0
.5
8

1
.1
2

2
.4
5

0
.3
7

1
4
.6
6

4
1
.9
3

8
0
6
.4
9

d
.d

.
1
6
7
7
.5
2

-0
.3
3

-0
.2
3

0
.7
7

1
.8
1

2
7
.7
9

0
.6
9

2
1
.2
9

7
1
1
.2
5

3
7
2
6
4
.5
5

L
E

H

9
7
5
.0
5

-0
.5
0

-0
.4
3

0
.7
8

1
.6
3

3
.3
2

0
.3
3

1
4
.4
6

6
1
.6
6

1
3
0
2
.5
5

rP
S

O
 (

2
)

1
1
7
7
.9
3

-0
.4
3

-0
.4
0

0
.6
9

1
.8
1

9
.0
6

0
.4
9

1
8
.7
7

2
0
7
.9
9

5
9
6
8
.7
9

rP
S

O
d

d
 (

2
,3

)
6
4
8
.6
7

-0
.5
8

-0
.4
9

0
.5
6

1
.7
7

3
.5
5

0
.4
2

1
7
.6
5

3
6
.1
1

1
2
8
8
.0
0

rP
S

O
le

h
 (

2
,4

)
8
4
2
.7
1

-0
.5
3

-0
.4
8

0
.6
2

1
.7
6

5
.4
5

0
.4
0

1
6
.6
7

1
1
9
.7
6

2
9
7
5
.6
9

rP
S

O
le

h
d

d
 (

2
,3

,4
)

7
2
0
.0
8

-0
.4
8

-0
.4
5

0
.7
0

1
.7
2

4
.5
5

0
.4
1

1
7
.2
2

8
2
.9
0

2
0
3
9
.8
0

1
0

0
D

2
D

5
D

1
0

D

3
0

D

6
0

D

T
ab

le
3.

3:
M

ea
n

re
su

lt
s

fo
r

20
0

sa
m

p
le

ru
n

s
fo

r
th

e
10

m
u

lt
i-

d
im

en
si

o
n

a
l

p
ro

b
le

m
s.

S
ta

ti
st

ic
a
ll

y
eq

u
iv

a
le

n
t

b
es

t
h

eu
ri

st
ic

s
a
re

h
ig

h
li

g
h
te

d
.

B
ra

ck
et

ed
n
u

m
b

er
in

g

on
rP

S
O

b
as

ed
h

eu
ri

st
ic

s
re

fe
rs

to
th

e
ou

te
r

m
in

im
is

at
io

n
a
lg

o
ri

th
m

s
u

se
d

.

100

We see that the 2D instances are dominated by rPSOleh, baseline LEH and rPSOle-

hdd, which are best-equivalent in 64%, 45% and 36% of instances respectively; here, e.g.

64% refers to rPSOleh being best or statistically equivalent to the best in seven out of the

eleven 2D test problem instances. For 5D, rPSOleh is best-equivalent in 60% of cases,

followed by the baseline d.d. with 50%, rPSOlehdd 30%, and the baseline LEH 10%.

However for 10D the picture changes, with rPSOlehdd dominating as best-equivalent in

70% of cases, followed by rPSOleh and the baseline d.d. with 20% each.

The 30D and 60D instances are completely dominated by the new framework. For

30D rPSOleh is best-equivalent in 90% of cases, with only rPSOlehdd achieving any

other best-equivalent results, in 30% of cases. At 60D rPSOdd comes into prominence,

being best-equivalent in 70% of cases, with 30% for rPSOleh and 20% for rPSOlehdd.

Finally for 100D rPSOdd is again best-equivalent in 70% of cases, although now the

baseline LEH heuristic is best-equivalent in 50% of cases, with 10% for rPSOleh.

Table 3.4 summarises the proportion of the 61 test problem instances for which each

heuristic is identified as the best or statistically equivalent to the best. The three settings

in the new framework lead the order of best to worst results: rPSOleh, rPSOlehdd,

rPSOdd, LEH, and d.d., with rPSO failing to be the best for any test instance.

Heuristic Best-equiv.

d.d. 11.48%

LEH 18.03%

rPSO (4) 00.00%

rPSOdd (4,5) 22.95%

rPSOleh (4,6) 44.26%

rPSOlehdd (4,5,6) 31.15%

Table 3.4: Summary of the proportion of best or statistically equivalent to the best results for

each heuristic. Bracketed numbering on rPSO based heuristics refers to the outer minimisation

algorithms used.

From the summary Table 3.4 it is not clear how each of the settings for the new rPSO

framework perform individually against the three baseline comparators. Therefore we

have conducted a number of further statistical tests. First we compared rPSOdd against

the three baselines, rPSOleh against the baselines, and rPSOlehdd against the baselines.

The result is that rPSOdd is best-equivalent in 49.2% of the 61 test instances, rPSOleh

is best-equivalent in 75.4% of instances, and rPSOlehdd is best-equivalent in 65.6% of

instances. In each test the baseline LEH heuristic had the next best performance, with

best-equivalent results of 39.4%, 21.3% and 29.5% of the test instances respectively.

Finally we compared each of the settings for the new rPSO framework individually

against each of the three baseline comparators, in a series of one-to-one analyses. The

results are summarised in Table 3.5, where each cell comprises three values: top, middle

101

and bottom. Each cell shows the proportion of the 61 test problem instances for which

each new framework heuristic is better than (top), statistically equivalent to (middle), or

worse than (bottom) each baseline heuristic. Within each set of three values the highest

is highlighted.

In the comparison between the rPSO and rPSOdd methods, specifically considering

the impact of augmenting the baseline rPSO velocity equations (Vel1) with a d.d. com-

ponent (Vel2), rPSO is best or statistically equivalent to the best in 23.0% of the 61

test instances, with rPSOdd best-equivalent in 88.5%. The dominance of the new rPSO

framework in one-to-one comparisons against each of the baselines is clear, in particular

for rPSOleh and rPSOlehdd. Indeed rPSOleh is individually better than each of the

baselines in nearly 80% of test instances.

d.d. LEH rPSO (4)

rPSOdd (4,5)

65.6% 52.5% 77.0%

6.6% 8.2% 11.5%

27.9% 39.3% 11.5%

rPSOleh (4,6)

86.9% 78.7% 93.4%

3.3% 3.3% 3.3%

9.8% 18.0% 3.3%

rPSOlehdd (4,5,6)

86.9% 70.5% 91.8%

3.3% 3.3% 1.6%

9.8% 26.2% 6.6%

Table 3.5: Results of one-to-one statistical tests between the new framework and baseline heuris-

tics. Each cell shows the percentage of test problem instances where: (top) the new heuristic is

best, (middle) the new and baseline heuristics are equivalent, and (bottom) the baseline heuris-

tic is best. Bracketed numbering on rPSO based heuristics refers to the outer minimisation

algorithms used.

3.7 Conclusions and further work

We have developed a new robust metaheuristic framework for box-constrained, black-box

robust optimisation problems under implementation uncertainty. Our robust approach

assumes min max conditions, seeking to find solutions that optimise the worst per-

formance. Our new approach uses a baseline robust particle swarm population based

heuristic as a frame, adapting elements of two existing individual-based robust meta-

heuristics, descent directions [BNT10b] and largest empty hypersphere [HGW19], and

combing them along with new features. The following novel features are introduced here:

� An extension of the PSO movement formulation to include particle level, iteration

102

level, d.d. vector information: exploiting uncertainty neighbourhood information

in order to provide a locally optimal directional movement component.

� Efficiency savings in terms of numbers of function evaluations due to the use of a

particle level stopping condition.

� The introduction of the concept of dormancy, whereby the repeated non-requirement

to perform any function evaluations is monitored at a particle level in order to in-

terrupt particles trapped in previously visited regions or outside of the feasible

region.

� The relocating of dormant particles by an optimal exploration-focussed calculation

of the largest empty hypersphere devoid of all high cost points.

This results in a framework encompassing a full enhanced capability plus two settings

where specific enhancements are ‘switched off’. With the full capability (rPSOlehdd), the

baseline rPSO heuristic is augmented with an additional component in the standard PSO

velocity equation, using the descent direction vector that optimally points away from the

worst Γ-uncertainty neighbourhood points around a candidate point (particle location).

This is further augmented with both the stopping condition and the determination of the

largest hypersphere empty of previously evaluated poor points, from the LEH heuristic.

The stopping condition allows efficiencies in the inner maximisation calculations, which

are terminated early if any Γ-neighbourhood point is identified with nominal function

value worse than a particle’s current personal best information. The calculation of an

LEH is used to relocate particles that have become ‘dormant’, either due to repeated

movements outside of the feasible region or repeated movements in areas of the feasible

region where points with high nominal function value have already been identified.

In the alternative framework settings, the baseline rPSO heuristic can be augmented

by our enhanced d.d. capability alone (rPSOdd), or by our enhanced LEH capability

alone (rPSOleh).

The performance of the new framework has been assessed by applying it to 61 test

problem instances, covering six dimensions up to 100D, a single 2D problem and 10 multi-

dimensional problems. The performance of our framework has been compared against

three existing baseline approaches, a repeating d.d. approach, LEH, and a baseline robust

PSO. Our new framework is shown to outperform the existing approaches across all

dimensions. For 10D, 30D and 60D instances the new framework dominates. It also

outperforms the baseline heuristic for other dimensions, although both LEH and d.d.

also produce some good results.

One potential extension of our new framework is to undertake explicit inner max-

imisation searches, for example using PSO or GA searches, as opposed to the use of

uniform random sampling here. Also, in order to make the technique more widely appli-

cable other forms of uncertainty, for example model uncertainty, could be accommodated.

103

The current focus on a Γ-radius uncertainty neighbourhood can also be extended, to the

consideration of other descriptions of a point’s uncertainty neighbourhood.

3.8 Appendices

3.8.1 List of Abbreviations

Abbreviation Definition

d.d. descent directions

GA genetic algorithm

hcp high cost point

LEH largest empty hypersphere

PSO particle swarm optimisation

rPSO robust particle swarm optimisation

rPSOdd robust particle swarm optimisation with descent directions

rPSOleh robust particle swarm optimisation with largest empty hypersphere

rPSOlehdd robust particle swarm optimisation with descent directions and largest

empty hypersphere

Table 3.6: Commonly used abbreviations.

3.8.2 Test functions

Functions used in the experimental testing of the enhanced rPSO framework. These

functions are based on [Bra98, KEB10, KRD+11, Kru12, JY13, BNT10b].

Rastrigin

f(xxx) = 10n+
n∑
i=1

[(xi − 20)2 − 10 cos(2π(xi − 20))]

The feasible region is the hypercube xi ∈ [14.88, 25.12].

MultipeakF1

f(xxx) = − 1

n

n∑
i=1

g(xi)

g(xi) =

e
−2 ln 2(

(xi+5)−0.1

0.8
)2
√
|sin(5π(xi + 5))| if 0.4 < xi + 5 ≤ 0.6 ,

e−2 ln 2(
(xi+5)−0.1

0.8
)2 sin6(5π(xi + 5)) otherwise

104

The feasible region is the hypercube xi ∈ [-5, -4].

MultipeakF2

f(xxx) =
1

n

n∑
i=1

g(xi) , g(xi) = 2 sin(10e−0.2(xi−10)(xi − 10))e−0.25(xi−10)

The feasible region is the hypercube xi ∈ [10, 20].

Branke’s Multipeak

f(xxx) = max{c1, c2} −
1

n

n∑
i−1

g(xi)

g(xi) =


c1

(
1− 4((xi+5)+

b1
2

)2

b21

)
if − b1 ≤ (xi + 5) < 0 ,

c2 · 16
−2|b2−2(xi+5)|

b2 if 0 ≤ (xi + 5) ≤ b2 ,

0 otherwise

Here b1 = 2, b2 = 2, c1 = 1, c2 = 1.3.

The feasible region is the hypercube xi ∈ [-7, -3].

Pickelhaube

f(xxx) =
5

5−
√

5
−max{g0(xxx), g1a(xxx), g1b(xxx), g2(xxx)}

g0(xxx) =
1

10
e−

1
2
‖xxx+30‖

g1a(xxx) =
5

5−
√

5

(
1−

√
‖xxx+ 30 + 5‖

5
√
n

)

g1b(xxx) = c1

(
1−

(
‖xxx+ 30 + 5‖

5
√
n

)4)

g2(xxx) = c2

(
1−

(
‖xxx+ 30− 5‖

5
√
n

)d2)

Here c1 = 625/624, c2 = 1.5975, d2 = 2 = 1.1513.

The feasible region is the hypercube xi ∈ [-40, -20].

105

Heaviside Sphere

f(xxx) =

(
1−

n∏
i=1

g(xi)

)
+

n∑
i=1

(
(xi + 20)

10

)2

g(xi) =

0 if 0 < (xi + 20) ,

1 otherwise

The feasible region is the hypercube xi ∈ [-30, -10].

Sawtooth

f(xxx) = 1− 1

n

n∑
i=1

g(xi) , g(xi) =

(xi + 5) + 0.8 if − 0.8 ≤ (xi + 5) < 0.2 ,

0 otherwise

The feasible region is the hypercube xi ∈ [-6, -4].

Ackleys

f(xxx) = −20 exp

(
−0.2

√√√√ 1

n

n∑
i=1

(xi − 50)2

)
−exp

(
1

n

n∑
i=1

cos(2π(xi−50))

)
+20+exp(1)

The feasible region is the hypercube xi ∈ [17.232, 82.768].

Sphere

f(xxx) =

n∑
i=1

(xi − 20)2

The feasible region is the hypercube xi ∈ [15, 25].

Rosenbrock

f(xxx) =

n−1∑
i=1

[100((xi+1 − 10)− (xi − 10)2)2 + ((xi − 10)− 1)2]

The feasible region is the hypercube xi ∈ [7.952, 12.048].

106

2D polynomial

f(x) = 2x6
1 − 12.2x5

1 + 21.2x4
1 + 6.2x1 − 6.4x3

1 − 4.7x2
1 − x6

2 − 11x5
2 + 43.3x4

2

−10x2 − 74.8x3
2 + 56.9x2

2 − 4.1x1x2 − 0.1x2
2x

2
1 + 0.4x2

2x1 + 0.4x2
1x2

The feasible region is the square xi ∈ [-1, 4].

3.8.3 Box plots

Box plots of the results of the experimental testing on our comparator robust heuristics

applied to 60 test problems covering the 10 multi-dimensional problems. Each plot is

based on 200 sample runs of each heuristic applied to each problem instance.

107

●

●
●

●

●●

●●

●

●

●
●
●●
●●
●

●●

●
●

●●

●●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●● ●

●

●

●
●

●

●
●

●
●
●

●

●
●
●

●●
●
●●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●
●●●

●

●● ●

●

●●●●
●●●
●
●●●●●●

●

●●
●●●
●
●

●●●●●
●●
●
●
●
●●●
●

●
●●

●

●
●

●●
●

●

●●●●●●● ●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●●
●

●
●●
●

●

●

●
●
●
●
●
●
●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Ackley Brankes Heaviside MultipeakF1 MultipeakF2
dd le

h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

−0.7

−0.6

−0.5

−0.4

−0.3

−0.6

−0.5

−0.4

−0.3

−0.2

0.0

0.5

1.0

0.5

0.6

0.7

0.8

10.0

12.5

15.0

17.5

2D

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●

●

●●
●
●

●

●●●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●
●●
●●
●

●

●

●

●

●●●●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●●

●
●●

●

●

●
●

●●

●

●
●

●●

●
●
●

●

●

●

●

●
●●

●

●

●●
●
●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●
●●
●

●

●●
●●
●●

●

●

●
●●●●●●●
●
●●●

●

●

●

●
●
●

●

●
●
●●

●

●
●

●

●

●●

●

●●
●
●●●●

●
●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●

●

●●●

●

●●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●●●

●

●●

●

●●●●
●

●

●
●

●

●●
●

●

Pickelhaube Rastrigin Rosenbrock Sawtooth Sphere

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

1.0

1.5

2.0

2.5

0.4

0.6

0.8

1.0

10

20

30

32

36

40

44

0.4

0.5

0.6

0.7

0.8

2D

●

●

●

●

●●

●

●
●●

●

●●
●

●

●
●●●●●●

●
●

●
●●

●
●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●
●●

●

●

●

●●●●●
●
●●●●●

●

●

●

●
●
●
●●●●●●●●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●●●●

●

●●

●

●

●

●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Ackley Brankes Heaviside MultipeakF1 MultipeakF2

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

−0.75

−0.50

−0.25

0.00

−0.6

−0.5

−0.4

−0.3

−0.2

0.5

1.0

1.5

0.4

0.5

0.6

0.7

0.8

0.9

10

15

20

5D

●

●

●

●

●

●
●●●
●●●

●

●

●●

●

●

●

●

●
●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●
●
●●●●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●
●●●●●
●

●

●

● ●●
●
●
●
●

Pickelhaube Rastrigin Rosenbrock Sawtooth Sphere

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

2.5

5.0

7.5

0.3

0.4

0.5

0.6

0.7

0.8

30

60

90

120

60

80

100

0.3

0.4

0.5

0.6

0.7

0.8

5D

Figure 3.7: Box plots of 2D and 5D robust objective values for 200 sample runs.

108

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

● ●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●●●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

Ackley Brankes Heaviside MultipeakF1 MultipeakF2
dd le

h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

−0.75

−0.50

−0.25

0.00

−0.7

−0.6

−0.5

−0.4

−0.3

1.0

1.5

2.0

2.5

0.4

0.5

0.6

0.7

0.8

10

15

20

10
D

● ●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●
●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●
●
●●●●

●

●

●
●

●●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

Pickelhaube Rastrigin Rosenbrock Sawtooth Sphere

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

4

8

12

16

0.3

0.4

0.5

0.6

0.7

0.8

100

200

300

90

120

150

180

0.5

1.0

1.5

10
D

●●●●

●
●
●
●●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

Ackley Brankes Heaviside MultipeakF1 MultipeakF2

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

−0.6

−0.4

−0.2

0.0

−0.7

−0.6

−0.5

−0.4

−0.3

2.5

5.0

7.5

10.0

0.4

0.5

0.6

0.7

0.8

10

15

20

30
D

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●●

●

●
●

●
●●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

● ●●●●●●●

Pickelhaube Rastrigin Rosenbrock Sawtooth Sphere

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

0

50

100

150

200

0.3

0.4

0.5

0.6

0.7

0

4000

8000

12000

200

300

400

500

0.5

1.0

1.5

30
D

Figure 3.8: Box plots of 10D and 30D robust objective values for 200 sample runs.

109

●●●●●●

●

●

●●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●●●●●●

●●●●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

Ackley Brankes Heaviside MultipeakF1 MultipeakF2
dd le

h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

−0.6

−0.5

−0.4

−0.3

−0.2

−0.6

−0.5

−0.4

−0.3

5

10

15

0.5

0.6

0.7

0.8

8

12

16

20

60
D

●●●●●●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●●

●

●●●

●
●
●

●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●●●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

Pickelhaube Rastrigin Rosenbrock Sawtooth Sphere

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

0

100

200

300

400

0.3

0.4

0.5

0.6

0.7

0

5000

10000

15000

20000

25000

400

600

800

1000

0.5

1.0

1.5

60
D

●●

●●

●
●
●

●

●

●

●

●

●

● ●

●

●●●●●

●

●●

●●

●

●

●●●●

●

●

●

●●●●

●●

●

●

●●

●●●

●●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

Ackley Brankes Heaviside MultipeakF1 MultipeakF2

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

−0.5

−0.4

−0.3

−0.2

−0.6

−0.5

−0.4

−0.3

10

20

30

0.5

0.6

0.7

0.8

15.0

17.5

20.0

10
0D

●●●●●●●●●●●●●●●●●

●●●

●

●

●●●●●●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●●●

●●

●
●

●●

●●●●●

●●●

●

●
●

●

●

●

●

●●
●●

●●

Pickelhaube Rastrigin Rosenbrock Sawtooth Sphere

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

dd le
h

ps
o

ps
od

d

ps
ol

eh

ps
ol

eh
dd

0

200

400

600

800

0.3

0.4

0.5

0.6

0.7

0

10000

20000

30000

40000

500

1000

1500

1.0

1.2

1.4

1.6

1.8

10
0D

Figure 3.9: Box plots of 60D and 100D robust objective values for 200 sample runs.

110

3.8.4 Heuristic parameter values

As described in Section 3.6.2 the parameter values for all comparator heuristics have

been tuned at the dimensional level – generating a set of dimension-specific parameters

for each heuristic. These values were then used in the generation of the experimental

results given in Section 3.6.3. The values of those tuned parameters are given below in

Tables 3.7 to 3.12. For all heuristics the extent of the inner maximisation search is a

tuned parameter.

For the d.d. heuristic 5 parameters were tuned in addition to the extent of the inner

maximisation: σinit the initialisation factor for the high cost set threshold σ(t) at step

t, the σ(t) reduction factor α used to adapt the threshold value, σα a lower threshold

for σ(t), a factor initρMin which is multiplied by the uncertainty parameter Γ in order

to establish a minimum step size for the search, and ρred a reduction factor for reducing

this minimum step size with every step t. See [BNT10b] for a full description of these

parameters. The tuned values for these parameters are given in Table 3.7.

σα α σinit ρred initρMin inner

d.d.

2D 0.0057 1.0648 0.3856 0.9252 0.0238 15

5D 0.0067 1.0108 0.3548 0.9228 0.0730 18

10D 0.0090 1.0127 0.2135 0.9671 0.0145 5

30D 0.0043 1.0204 0.2651 0.9343 0.0978 19

60D 0.0047 1.0409 0.1022 0.9689 0.0478 5

100D 0.0080 1.0634 0.1482 0.9493 0.0120 8

Table 3.7: Tuned parameter values for the d.d. heuristic.

For the LEH heuristic which employs a genetic algorithm to search for the centre

of the largest empty hypersphere, 6 parameters associated with the GA were tuned in

addition to the extent of the inner maximisation: the size of the population, number of

generations, number of elites, tournament size, and mutation probability and size. Here

mutation ‘size’ is actually a percentage value which is subsequently multiplied by the

dimensional range of the decision variable space X in order to specify the actual amount

by which any value is adjusted due to mutation. The tuned values for these parameters

are given in Table 3.8.

For the baseline rPSO heuristic 4 parameters were tuned in addition to the extent of

the inner maximisation: the C1 and C2 acceleration parameters, the inertia weight pa-

rameter ω, and the swarm size. See [SE98] for a further description of these parameters.

The tuned values for these parameters are given in Table 3.9. These parameters are also

tuned for all rPSO based heuristics. It should be noted that there is no need to tune

the number of iterations as this is controlled by the budget limitation on the number of

function evaluations.

111

pop gens elites tour size mut prob mut size inner

LEH

2D 20 5 5 19 0.8000 0.2000 249

5D 4 25 2 2 0.2480 0.2178 42

10D 5 20 2 2 0.0000 0.0800 242

30D 10 10 1 7 0.3400 0.0800 16

60D 5 20 0 3 0.0120 0.0400 84

100D 20 5 0 10 0.5500 0.0000 114

Table 3.8: Tuned parameter values for the LEH heuristic.

C1 C2 ω swarm inner

rPSO

2D 0.1184 1.7000 0.7056 43 45

5D 1.0212 1.0816 0.3528 34 28

10D 0.9204 0.8000 0.5000 15 23

30D 2.1800 2.0424 0.3800 283 7

60D 0.6300 1.1248 0.1100 49 16

100D 0.4400 1.2200 0.5880 21 22

Table 3.9: Tuned parameter values for the baseline rPSO heuristic.

For the rPSOdd heuristic in addition to the baseline rPSO parameters and the extent

of the inner maximisation, 4 other parameters were tuned: the new C3 parameter and

3 of the d.d. parameters: the initial σ factor for the high cost set threshold, σlimit the

lower threshold for σ, and the factor initρMin which is multiplied by the uncertainty

parameter Γ in order to establish a minimum step size for the search. Note that unlike

in the local individual based d.d. approach, in the modified rPSO formulation the initial

σ, the σlimit and the initρMin values are re-employed separately for each particle and at

each iteration of the swarm. The factor α used to adapt the threshold value is not used as

in order to limit processing time for the experiments σ is reduced a fixed ten times in ten

equal steps from the initial σ value to the σlimit value. Furthermore the ρred reduction

factor employed in d.d. is not used, as for each particle at each iteration the magnitude

of a calculated descent direction vector is checked solely against the minimum step size

based on initρMin. These 4 parameters are also tuned for the rPSOlehdd heuristic. The

tuned values for these parameters are given in Table 3.10.

For the rPSOleh heuristic in addition to the baseline rPSO parameters and the

extent of the inner maximisation, 7 other parameters were tuned: the 6 parameters

associated with the LEH genetic algorithm were tuned (size of the population, number

of generations, number of elites, tournament size, and mutation probability and size),

plus dormancylimit the number of iterations over which a particle must be dormant prior

112

to being moved using the LEH calculation. These 7 parameters are also tuned for the

rPSOlehdd heuristic. The tuned values for these parameters are given in Table 3.11.

For the rPSOlehdd heuristic in addition to the baseline rPSO parameters and the

extent of the inner maximisation, the 4 additional parameters associated with rPSOdd

and 7 additional parameters associated with rPSOleh were tuned. The tuned values for

these parameters are given in Table 3.12.

113

C
1

C
2

ω
sw

a
rm

in
n
er

C
3

σ
li
m

σ
in
it
ρ
M
in

rP
S
O

d
d

2
D

2
.3

5
7
3

0
.3

2
7
3

0
.4

0
8
2

1
1

5
9

3
.5

7
4
2

0
.0

0
6
4

0
.2

5
1
3

0
.0

2
9

5
D

0
.2

8
2
9

2
.3

1
5
2

0
.1

8
9
2

4
3

1
1

5
.5

8
6
3

0
.0

0
2

0
.1

9
4
2

0
.0

2
7
2

1
0
D

2
.3

1
3
6

0
.3

1
1
3

0
.2

9
9
0

4
5
3

9
.5

7
5
2

0
.0

0
8
8

0
.3

1
4
5

0
.0

4
5
3

3
0
D

1
.2

5
4
9

2
.0

4
7
3

0
.7

5
3
0

9
4
7

3
.9

5
4
9

0
.0

0
7
8

0
.2

7
2
2

0
.0

5
5

6
0
D

0
.3

7
1
4

0
.3

0
5
7

0
.6

1
4
1

2
1
8

6
.0

0
6
7

0
.0

0
7
4

0
.3

9
5
6

0
.0

9
6
9

1
0
0
D

0
.5

7
8
8

0
.5

6
8
8

0
.7

6
7
1

9
1
0

8
.6

3
5
8

0
.0

0
1
5

0
.2

7
9
2

0
.0

7
6
7

T
ab

le
3.

10
:

T
u

n
ed

p
a
ra

m
et

er
va

lu
es

fo
r

th
e

rP
S

O
d

d
h

eu
ri

st
ic

.

C
1

C
2

ω
sw

a
rm

p
o
p

g
en

s
el

it
es

to
u
r

sz
m

u
t

p
ro

b
m

u
t

sz
d
or
m
li
m

in
n
er

rP
S
O

le
h

2
D

1
.8

9
0
0

2
.3

1
0
0

0
.4

7
0
0

1
3

1
0

1
0

9
8

0
.1

8
0
0

0
.3

8
0
0

1
0

3
1

5
D

0
.8

8
0
0

1
.0

9
0
0

0
.7

3
0
0

8
1
0

1
0

9
9

0
.6

9
0
0

0
.1

6
0
0

9
1
2

1
0
D

0
.5

3
0
0

1
.4

3
0
0

0
.7

3
0
0

1
5

1
0

1
0

4
7

0
.2

9
0
0

0
.3

1
0
0

6
1
6

3
0
D

2
.3

9
0
0

0
.8

5
0
0

0
.7

0
0
0

3
4

2
5

1
3

0
.6

6
0
0

0
.3

3
0
0

7
2

6
0
D

0
.4

0
0
0

1
.4

5
0
0

0
.5

2
0
0

2
4

2
5

3
3

0
.6

5
0
0

0
.0

9
0
0

1
0

3

1
0
0
D

1
.6

0
0
0

0
.7

4
0
0

0
.7

4
0
0

8
2
5

4
3

3
0
.2

3
0
0

0
.3

5
0
0

7
9

T
ab

le
3.

11
:

T
u

n
ed

p
a
ra

m
et

er
va

lu
es

fo
r

th
e

rP
S

O
le

h
h

eu
ri

st
ic

.

C
1

C
2

ω
sw

a
rm

p
o
p

g
en

s
el

it
es

to
u
r

sz
m

u
t

p
ro

b
m

u
t

sz
d
or
m
li
m

in
n
er

C
3

σ
li
m

σ
in
it
ρ
M
in

rP
S
O

le
h
d
d

2
D

1
.3

4
5
6

0
.4

5
3
5

0
.4

5
8
0

6
4

2
5

2
3

0
.0

9
2
3

0
.2

6
0
8

2
5
5

0
.3

4
4
7

0
.0

0
3
1

0
.3

5
4
4

0
.0

8
6
6

5
D

1
.1

4
8
3

1
.7

0
8
4

0
.1

0
1
2

1
2

1
0

1
0

4
4

0
.1

8
5
4

0
.3

5
8
7

2
4
1

2
.8

9
2
1

0
.0

0
4
1

0
.3

2
0
3

0
.0

0
8
0

1
0
D

1
.0

5
2
8

0
.5

4
7
9

0
.6

5
6
9

2
5

2
0

1
4

0
.4

9
5
4

0
.0

5
9
5

8
1
0

6
.1

0
5
7

0
.0

0
4
5

0
.2

9
0
3

0
.0

7
6
9

3
0
D

0
.0

6
2
8

1
.7

1
2
9

0
.6

0
1
1

2
5

2
0

1
4

0
.3

6
0
4

0
.1

2
6
9

6
4
8

6
.5

1
6
6

0
.0

0
7
7

0
.1

2
5
4

0
.0

7
7
5

6
0
D

0
.6

6
2
4

1
.4

9
8
9

0
.7

5
2
6

2
1

5
2
0

0
4

0
.1

8
7
9

0
.2

7
4
5

1
0

9
0
.8

6
0
7

0
.0

0
3
2

0
.2

6
9
6

0
.0

2
9
2

1
0
0
D

0
.8

6
8
8

0
.9

1
4
8

0
.8

1
3
6

5
2
0

5
1

2
0
.8

8
8
1

0
.0

6
3
4

9
1
9

8
.6

0
7
9

0
.0

0
5
8

0
.2

6
3
5

0
.0

5
5
5

T
ab

le
3.

12
:

T
u

n
ed

p
a
ra

m
et

er
va

lu
es

fo
r

th
e

rP
S

O
le

h
d

d
h

eu
ri

st
ic

.

114

Chapter 4

Paper 3: Automatic Generation of

Algorithms for Robust Optimisation

Problems using Grammar-Guided

Genetic Programming

Submitted to Applied Soft Computing in April 2020 [HGD20a].

Partially funded through EPSRC grants EP/L504804/1 and EP/M506369/1.

Author 1: Martin Hughes, Lancaster University, United Kingdom.

Author 2: Marc Goerigk, University of Siegen, Germany.

Author 3: Trivikram Dokka, Lancaster University, United Kingdom.

Abstract: We develop algorithms capable of tackling robust black-box optimisation

problems, where the number of model runs is limited. When a desired solution cannot

be implemented exactly the aim is to find a robust one, where the worst case in an un-

certainty neighbourhood around a solution still performs well. To investigate improved

methods we employ an automatic generation of algorithms approach: Grammar-Guided

Genetic Programming. We develop algorithmic building blocks in a Particle Swarm Op-

timisation framework, define the rules for constructing heuristics from these components,

and evolve populations of search algorithms for robust problems. Our algorithmic build-

ing blocks combine elements of existing techniques and new features, resulting in the

investigation of a novel heuristic solution space. We obtain algorithms which improve

upon the current state of the art. We also analyse the component level breakdowns

of the populations of algorithms developed against their performance, to identify high-

performing heuristic components for robust problems.

115

4.1 Introduction

The use of optimisation search techniques to investigate a decision variable solution space

and identify good solutions is common when using models to support informed decision

making. However the search may be impacted by issues such as model run times, the

size of the solution space, and uncertainty, see [BTEGN09, GS16]. In this work we are

concerned with optimisation under implementation uncertainty, and where some budget

on the number of model runs restricts the search.

If a model can take the form of a mathematical program, optimisation may be tackled

efficiently and exactly. Here we assume this is not the case, and instead some model is

employed which from an optimisation perspective can be considered a black-box where

decision variable values are input and an objective extracted. In this case only an

approximate global optimum is sought, and so in this work we consider metaheuristic

techniques applicable to general, likely non-convex problems.

With implementation uncertainty an ideal solution cannot be achieved exactly, so

solutions are sought where all points in the uncertainty neighbourhood around a can-

didate still perform well. Such a situation is common in many real-world applications.

For example in engineering, manufacturing or construction it may not be possible to

meet design specifications exactly, in which case a solution is sought which is toler-

ant of some variation in the design variables. In scheduling, timetabling, logistics,

queuing or supply chain management it is desirable to be able to tolerate some de-

viation in resource levels and transportation or processing times. See, for example,

[PBJ06, BNT07, BNT10b, Kru12, GMT14, GS16].

When it is known how the uncertainty is distributed, the problem is one of stochastic

optimisation, see [PBJ06, HdMB14]. Instead we assume the uncertainty takes the form of

some set containing all uncertainty scenarios such as an interval, making the problem one

of robust optimisation. Specifically a classic robust setting is considered, where the worst

(inner maximum) model value in the uncertainty region around a candidate solution is

sought in the context of an overarching (outer) minimisation objective, [BTN98]. We

seek improved methods for robust general, black-box problems that can be employed in

this setting. This necessitates a metaheuristic approach, as the requirement is beyond

the scope of robust mathematical programming methods. The simplistic alternative

of ignoring the uncertainty and using a classic optimisation method can produce sub-

optimal results, see [BTEGN09, GS16].

The application of metaheuristics to real-world problems is complicated by the need

to both identify an appropriate search technique and define the associated parameter

settings. Both of these choices can significantly impact on the effectiveness of any search.

These difficulties can be overcome through the automatic generation of metaheuristics,

actively seeking good heuristics and avoiding the need for the manual determination of

the search algorithm and parameter values, see e.g. [BGH+13, POH+14]. This is the

116

approach adopted here. Such an approach has been applied to a number of practical

problems, for example computing [SAMO03], machine scheduling [JJB07], timetabling

[MPF09], the design of data mining algorithms [PF10], and agent-based transportation

simulation [vLHVB+12].

For a general problem setting where there is no knowledge of the nature of a model’s

objective function surface we seek to develop improved general search techniques for

robust problems. This is targeted at a situation where the problem dimension is known

and there is an appreciation of model run time limitations leading to some budget

on model runs, both of which are reasonable assumptions for real-world problems. In

an alternative setting there may be access to some previous model run information

due to historic analysis, or approximate model run data, e.g. due to the availability

of a complementary model with much reduced run times. In which case given some

appreciation of the nature of a model’s objective function surface an even more targeted

technique may be automatically generated. Both general and more targeted settings are

considered in our work.

To automatically generate robust metaheuristics here, a hyper-heuristic approach is

employed, genetic programming (GP) [Noh11]. This is an evolutionary process where

each individual in a population is an algorithm – here a metaheuristic for a robust prob-

lem. From the initial population some measure of fitness is determined for each heuristic,

and a new generation established through typical evolutionary selection, combination

and mutation processes. After multiple generations the fittest heuristic is chosen and

applied to the problem at hand.

To facilitate the GP search, heuristic sub-components are generated. When com-

bined correctly these algorithmic building blocks form a complete heuristic. The sub-

components form a language, and the design rules specifying how they combine to cre-

ate a heuristic represent a grammar. This is Grammar-Guided Genetic Programming

(GGGP) [Noh11].

As with any evolutionary approach, GP employs combination and mutation op-

erations to generate improved (fitter) solutions. However integrating sub-algorithms

(computer sub-programs in the more general GP sense), may not be straightforward

when the intention is to form a coherent, executable higher level algorithm. A com-

mon GGGP approach uses a tree-based representations of the overarching algorithm

[MLIDLS14, CBP15, MP16, MP17]. This approach-representation is adopted here,

where we specify heuristic sub-components in terms of a context-free grammar (CFG)

and use standard tree-based random combination and mutation operators [MP16].

4.1.1 Contributions and outline

Improved global metaheuristics are developed for robust black-box problems under im-

plementation uncertainty, for problems of 30 dimensions (30D) and 100D and assuming a

117

budget of 2,000 model runs. A GGGP search of the solution space of heuristics for robust

problems is used to identify the best approaches. The previously uninvestigated heuristic

solution space comprises algorithmic building blocks that combine to form a complete

particle swarm based heuristic. A large number of sub-components are developed using

existing approaches and novel implementations.

New algorithms are tested on a suite of problems, and improved heuristics for gen-

eral robust problems are identified. The significance of individual algorithmic sub-

components is also assessed against heuristic performance. The effectiveness of an inner

maximisation by random sampling on a small number of points and using a particle

level stopping condition, is established. For the outer minimisation a small swarm of

particles performs well, as does communication via a Global typology. The preferred

particle movement uses an inertia based velocity equation plus specialised capabilities

drawn from the largest empty hypersphere [HGW19, HGD20b] and descent directions

[BNT07, BNT10a, BNT10b, HGD20b] heuristics.

In Section 4.2 we outline the optimisation problem of concern here, and current

approaches for addressing it. We include descriptions of the heuristics that form the basis

for the building blocks in the GP analysis. Section 4.3 gives an overview on the automatic

generation of algorithms, and in Section 4.4 GP is discussed in detail. This includes sub-

component descriptions, the design rules for constructing complete heuristics, and our

GP approach including tree-based representation and operators. Section 4.5 describes

the experimental analysis, results for the best heuristics identified, and an analysis of

heuristic sub-component performance. Section 4.6 provides conclusions and possible

directions for future work.

4.2 Robust optimisation

4.2.1 Problem description

A general optimisation problem without consideration of uncertainty takes the form:

min f(xxx)

s.t. xxx ∈ X

This is the nominal problem. The objective f : Rn → R operates on the n-

dimensional vector of decision variables xxx = (x1, x2, . . . , xn)T in the feasible region

X ⊆ Rn. Here we assume box constraints X =
∏
i∈[n][li, ui]. Any other feasibility

constraint is assumed to be dealt with by a penalty in the objective. The notation

[n] := {1, . . . , n} is used. Consider the problem due to [Kru12] in Figure 4.1, where

X ⊆ R1, l1 = 0 and u1 = 10. The nominal problem is the black curve.

118

1

1.5

2

O
bj

ec
ti

v
e

Nominal: f(x)

Worst: g(x)

0

0.5

0 2 4 6 8 10

O
bj

ec
ti

v
e

Decision variable

x0x'0

Uncertainty Δx:
Γ=0.5

Figure 4.1: The worst case cost curve (dashed grey) is generated by determining the maximum

objective value in the uncertainty neighbourhood around all points xxx on the nominal (solid black)

curve. Due to the uncertainty the global optimum shifts to xxx′0.

Introducing uncertainty ∆xxx around the intended solution xxx, makes only a solution

x̃xx = xxx + ∆xxx achievable. If it is assumed that the uncertainty neighbourhood around a

candidate is completely defined by a radius Γ > 0, the uncertainty set is [BNT10b]:

U := {∆xxx ∈ Rn | ‖∆xxx‖ ≤ Γ}

where ‖ · ‖ represents the Euclidean norm. Using a local maximisation to find a ro-

bust solution xxx, the worst case value g(xxx) is optimised for any x̃xx in the uncertainty

neighbourhood of xxx:

g(xxx) := max
∆xxx∈U

f(xxx+ ∆xxx)

In Figure 4.1, Γ = 0.5 and each point on the worst case cost (dashed grey) curve g(xxx) is

generated by finding the maximum value on the nominal curve within a range of −0.5

to +0.5 of the desired solution xxx.

The complete min max robust problem then involves finding the outer minimum

objective in X , where that objective is itself an inner maximisation in the uncertainty

neighbourhood around each solution xxx ∈ X for the nominal objective function:

min
xxx∈X

g(xxx) = min
xxx∈X

max
∆xxx∈U

f(xxx+ ∆xxx) (MinMax)

In the example this moves the global minimisation search from the black curve to the

grey curve, where the global optimum shifts from xxx0 to xxx′0.

As xxx+∆xxx may be outside of X , here it is not assumed that f is restricted to X . If it

is required that xxx+ ∆xxx ∈ X for all ∆xxx ∈ U , this could be achieved for example through

the reduction of the original X by Γ.

4.2.2 State of the art

Since its initial formalisation [KY97, BTN98] robust optimisation has been heavily

aligned with mathematical programming, see [BBC11, GMT14, GS16]. Where mathe-

matical programming techniques cannot be applied, metaheuristics may be considered.

119

However only limited consideration has been given to robust black-box optimisation

under implementation uncertainty, see [MWPL13, GS16, MWPL16].

Whilst standard metaheuristics can be extended to the robust worst case through the

brute force addition of an inner maximisation routine into an outer minimisation setting

e.g. [HGW19, HGD20b], more refined robust-specific methods may be desirable. Such

techniques include co-evolutionary approaches [Her99, SK02, Jen04, CSZ09, MKA11],

robust evolutionary approaches [TG97, BS07], and the use of emulation by surrogates or

meta-models [ONL06, BS07, ZZ10, KVDHL16] including Kriging [MWPL13, uRLvK14,

MWPL16, uRL17] and Bayesian techniques [CLSS17, SEFR19]. However specific as-

sumptions or simplifications are typically required for such methods to be effective, or

there are limitations on the problems that can be addressed e.g. due to dimensionality.

Two existing general robust approaches requiring no further assumptions or simplifi-

cations are given specific attention here. They form the basis for some of the algorithmic

building blocks which constitute the grammar in our GP analysis. These are the local

descent directions (d.d.) approach [BNT07, BNT10a, BNT10b] and the global largest

empty hypersphere (LEH) method [HGW19]. Both are single-solution techniques, al-

though elements of these approaches have been incorporated into robust population

based approaches [HGD20b]. First, however, we consider the non-robust particle swarm

optimisation (PSO) metaheuristic [KE95, KES01, Tal09], which is the basis for all heuris-

tics in our GP search. Constituent elements of a typical PSO algorithm are included as

building blocks in our GP grammar.

4.2.2.1 Particle swarm optimisation

PSO is a population based approach which moves a ‘swarm’ of particles through points

in the decision variable space, performing function evaluations and iterating particle po-

sitions through particle level ‘velocity’ vectors. Velocities are based on particle histories,

shared information from the swarm, scaling, and randomisation. The intention is for

the behaviour of this complex systems of particles to approximate a global optimisation

search. There are very many PSO formulations building on this general concept, see for

example [Kam09, NMES11, ZWJ15, Kir17, SBP18].

In a robust setting two-swarm co-evolutionary PSO techniques have been considered

[SK02, MKA11], whilst [HGW19] employ a simple robust PSO (rPSO) as a comparator

heuristic, with inner maximisation by random sampling. The rPSO from [HGW19]

is extended in [HGD20b] through the addition of d.d. and LEH elements. Here the

framework for each heuristic in the GP population is a basic PSO formulation [KE95,

KES01, Tal09], built upon through the availability of more complex algorithmic building

blocks in our grammar.

In a basic non-robust PSO formulation, the swarm (population) of N particles start

at iteration t = 0 randomly located at points xxxj(0) in X , where the function is evaluated;

120

here j = 1, . . . , N . Each particle stores information on the best position it has visited in

its history, xxxj∗. Best refers to the lowest objective function value.

Information sharing is a key element of PSO, with each particle associated with a

neighbourhood of other particles. Within a neighbourhood information is shared on

the best point visited by any neighbourhood particle in their entire histories, x̂xx∗. A

number of neighbourhood topologies are included as components in the grammar here,

see Section 4.4.2.4.

A particle is moved to a location xxxj(t) at iteration t, through the addition of that

particle’s current velocity vector vvvj to its previous position:

xxxj(t) = xxxj(t− 1) + vvvj(t) (PSOmove)

There are a number of alternative velocity formulations. In the grammar in Section 4.4.2

two of the most basic formulations are considered, including so-called inertia [SE98,

KES01] and constriction [CK02, KES01] coefficients:

vvvj(t) = ω · vvvj(t− 1) + C1 · rrr1 · (xxxj∗ − xxxj(t− 1)) + C2 · rrr2 · (x̂xx∗ − xxxj(t− 1)) (Inertia)

vvvj(t) = χ ·

(
vvvj(t−1) + C1 ·rrr1 ·(xxxj∗−xxxj(t−1)) + C2 ·rrr2 ·(x̂xx∗−xxxj(t−1))

)
(Constriction)

where

χ =
2∣∣∣2− φ−√φ2 − 4φ

∣∣∣
with

φ = C1 + C2

Here particle velocities vvvj(0) are initialised by uniform random sampling ∼ U(0 , 0.1)n

[Eng12]. Each component of the random vectors rrr is typically randomly sampled indi-

vidually, rrr1 , rrr2 ∼ U(0 , 1)n. Vector multiplication is component-wise. The scalar terms

C1, C2 represent weightings that a particle puts on its xxxj∗ (C1) versus x̂xx∗ (C2) location

data. The inertia scalar ω moderates the significance of the preceding velocity, whilst

the constriction scalar χ is used to avoid particles ‘exploding’ – disappearing out of the

feasible region. Here an invisible boundary condition is adopted [RR04], with particles

allowed to leave the feasible region but no function evaluations undertaken for particle

locations outside of X .

A non-robust PSO can be extended to a robust approach through the addition of

an inner maximisation search component. This is the approach adopted here. The

inner maximisation techniques available as grammar components are discussed in Sec-

tion 4.4.2.6.

The (Inertia) and (Constriction) formulations represent an rPSO baseline movement

capability. For any given heuristic in our GGGP the movement calculation can be

extended through the addition of components, described in Section 4.4.2. This includes

121

building blocks based on a series of metaheuristics for robust problems developed using

rPSO as a framework in [HGD20b], and novel features here. These developments are

largely based around two robust search techniques, d.d. and LEH.

4.2.2.2 Descent direction

Descent directions is an exploitation-focussed, individual-based robust local search tech-

nique [BNT07, BNT10b, BNT10a] for solving (MinMax), although it can easily be ex-

tended to approximate a global search through random re-starts each time a local search

completes [HGW19]. We briefly summarise the method outlined in [BNT07, BNT10b,

BNT10a].

In d.d. at each candidate point xxx in the decision variable space that the search

moves to, an inner maximisation search is performed to assess that point’s uncertainty

neighbourhood N(xxx) = {xxx + ∆xxx | ∆xxx ∈ U} and approximate the worst case cost

g̃(xxx) ≈ g(xxx). Function evaluations are stored in a history set H, and at each candidate

the local information is further exploited through the identification of poor ‘high cost’

points (hcps), those with the greatest objective function value, in H and within the

Γ-radius uncertainty region. At a candidate point xxx the high cost set Hσ(xxx) is defined

as:

Hσ(xxx) := {xxx′ ∈ H ∩N(xxx) | f(xxx′) ≥ g̃(xxx)− σ}

σ is the threshold value for determining what constitutes an hcp.

The optimum (descent) direction originating at the current candidate xxx(t) at step t,

and pointing away from the hcps, is then calculated using mathematical programming.

The angle θ between the vectors connecting the points in Hσ(xxx(t)) to xxx(t), and ddd, is

maximised:

min
ddd,β

β (Soc)

s.t. ‖ddd‖ ≤ 1 (Con1)

dddT

(
hhh− xxx(t)

‖hhh− xxx(t)‖

)
≤ β ∀hhh ∈ Hσ(xxx(t)) (Con2)

β ≤ −ε (Con3)

Here ε is a small positive scalar, so from (Con3) β is negative. The left hand side

of constraint (Con2) is the multiplication of cos θ and ‖ddd‖, for all hcps in Hσ(xxx(t)) and

a feasible direction ddd. (Con2) therefore relates β to the maximum value for cos θ across

all hcps. As the objective (Soc) is to minimise β, and β is negative, the angle θ will

be greater than 90o and maximised. Also minimising β in combination with (Con1)

normalises ddd. A standard solver such as CPLEX can be used to solve (Soc). When a

feasible direction cannot be found, that is (Soc) cannot be solved, the algorithm stops:

a robust local minimum has been reached.

122

The local search repeats at step t by moving away from the current candidate xxx(t), in

this optimum direction ddd with a step size ρ(t) large enough that the points in Hσ(xxx(t)) are

at a minimum on the boundary of the uncertainty neighbourhood of the next candidate

at step t+ 1. Then xxx(t+ 1) = xxx(t) + ρ(t) · ddd, where:

ρ(t) = min

{
dddT (hhh− xxx(t)) +

√
(dddT (hhh− xxx(t)))2 − ‖hhh− xxx(t)‖2 + Γ2 | hhh ∈ Hσ(xxx(t))

}
(Rho)

Steps are repeated until a local minimum is reached.

In one of the rPSO variants described in [HGD20b], given neighbourhood uncertainty

information for each particle at each step, a descent direction vector is calculated. This

vector dddj(t−1) for particle j at step t is used for the calculation of an additional velocity

component:

C3 · rrr3 · dddj(t− 1) (ddVel)

In [HGD20b] each component of rrr3 is randomly sampled individually, rrr3 ∼ U(0 , 1)n,

vector multiplication is component wise, and the scalar term C3 represents a weighting

that a particle puts on its local descent direction vector. From step t = 1 onwards a

variant on the baseline PSO (Inertia) velocity formulation is then used in [HGD20b]:

vvvj(t) = ω ·vvvj(t−1) + C1 ·rrr1 · (xxxj∗−xxxj(t−1)) + C2 ·rrr2 · (x̂xx∗−xxxj(t−1)) + C3 ·rrr3 ·dddj(t−1)

(InertiaV2)

Building blocks components based on this d.d. approach, and associated parameters, are

considered in the grammar here. Details are given in Section 4.4.2.

4.2.2.3 Largest empty hypersphere

Largest empty hypersphere is an exploration-focussed individual-based robust global

search technique [HGW19] for solving (MinMax). LEH takes the d.d. concept of hcps

to a global setting, identifying a high cost set Hτ of poor points from within the global

history set H, and moving to the centre of the region completely devoid of all such points.

Hτ contains those points in H with nominal objective function value f(xxx) greater than

a threshold τ . In LEH τ equals the current estimated robust global minimum value.

The centre of the LEH, xxx(t) ∈ X at iteration t, is the estimated point furthest from

all hcps in Hτ , and is approximated using a genetic algorithm (GA). Movement from

centre of LEH to centre of LEH repeats until no point xxx(t) ∈ X which is at least Γ

away from all hcps can be identified, or a defined budget of available objective function

evaluations (model runs) is exhausted. The final estimate for the global robust minimum

is accepted.

A key feature of LEH is the early stopping of neighbourhood searches at any can-

didate where an improved estimated robust global optimum cannot be achieved. In

theory an inner maximisation is performed at each candidate xxx(t), however in LEH each

objective function evaluation in a neighbourhood analysis f(xxx(t) + ∆xxx(t)) is compared

123

to τ , with the inner search terminating if that value exceeds τ . This recognises that

the current point xxx(t) won’t improve on the estimated robust global optimum, and has

the potential to afford considerable savings in local function evaluations and so enable

a more efficient exploration of X .

One of the rPSO variants in [HGD20b] is based around core elements of the LEH ap-

proach. Firstly the stopping condition is employed at a particle level for each particle in

each iteration. For any particle j an inner maximisation search may begin but is termi-

nated early if an uncertainty neighbourhood point exceeds the particle best information

xxxj∗. In fact by first assessing the complete history set H of all previous function evalu-

ations, no inner maximisation may be necessary if it is determined that some historical

value in the particle’s uncertainty neighbourhood already exceeds the best information

xxxj∗.

Using a second novel LEH-based feature, particles are assessed for ‘dormancy’, de-

fined as a state where no function evaluations have been required by a particle for a

specified number of iterations. This may be due to the repeated identification of ex-

isting neighbourhood points which exceed the particle’s best information xxxj∗, prior to

undertaking an inner maximisation. Or it may be due to the particle repeatedly moving

outside the feasible region, linked to the use of an invisible boundary condition [RR04].

In either case dormancy suggests that a particle has become ’stuck’. In [HGD20b] dor-

mant particles are relocated to the centre of the largest empty hypersphere devoid of all

hcps, using the current robust global minimum as the high cost threshold. More details

of the LEH-based components and associated parameters available in the grammar here

are given in Section 4.4.2.

4.3 The automatic generation of heuristics

In seeking to develop improved metaheuristics for robust problems an obvious question

is what features should be included in the search methodology. This is a step beyond the

issues of what existing search technique a decision maker might employ, or what param-

eter settings might be used for any given problem. These issues impact the effectiveness

of any optimisation search.

Given a problem for which an optimisation search is to be undertaken, the field of

hyper-heuristics encompasses techniques which employ a search methodology to auto-

matically identify or generate heuristics for application to that problem. The hyper-

heuristic itself does not search the problem solution space, but rather seeks a heuristic

for application to the problem. A high level classification of hyper-heuristic approaches

distinguishes between methods for selecting a heuristic, from a space of heuristics, and

methods for generating a heuristic [BHK+09, BGH+13]. Our interest is in the latter.

The automatic generation of a search heuristic is a specific application of the broader

theme of the automatic generation of algorithms, or the automatic generation of com-

124

puter programs. One technique which can be applied in the general case and to the

specific issue of automatically generating a search heuristic is genetic programming (GP)

[Koz92, BHK+09]. This employs the well known high level concepts of selection, combi-

nation and mutation to evolve a population of computer programs, or in our case search

heuristics for robust problems.

When considering the applications of genetic programming to automatically generate

optimisation search approaches [BGH+13], the use of tree-based context-free grammar-

guided GP [MHW+10] to the generation of PSO heuristics described in [MP16, MP17] is

of particular interest here. We adopt that approach and apply it to PSO based heuristics

for robust problems.

Relatively little work has been undertaken on the application of GP to optimisation

search techniques for uncertain problems. One example from the field of stochastic

optimisation is [MZ18], where GP is applied to a vehicle routing problem including

uncertainty. In terms of optimisation for robust problems, [GH19] use a simple GP-based

approach to evolve techniques for robust combinatorial optimisation problems. However,

to the author’s knowledge [GH19] is the only explicit use of a GP-based approach applied

to a robust problem, and there is no application of GP to metaheuristics for black-box

robust optimisation problems prior to the work outlined here.

4.4 The genetic programming of metaheuristics for robust

problems

4.4.1 Genetic programming

Our aim is to develop improved metaheuristics for robust problems and remove the

manual determination of feature-technique-parameter choices, through the automatic

generation of algorithms by genetic programming [Koz92, MHW+10, Noh11]. GP is an

evolutionary process, and here each individual in the GP population is a heuristic. For

an initial population of heuristics, a measure of fitness is calculated for each individual.

A new generation of heuristics is then determined through typical evolutionary algorithm

fitness-based selection, combination and mutation processes. This repeats over multiple

generations, at the end of which the fittest heuristic is chosen.

Each heuristic in the GP process is made up of multiple algorithmic sub-components

and their parameter settings, which when combined appropriately form executable search

heuristics. So the GP solution space consists of sub-components and their parameters.

We define algorithmic sub-components along with the production rules which deter-

mine how they combine to form complete heuristics. Sub-components are designed to

integrate effectively under those construction rules. This is our grammar [Koz92], which

is employed within an evolutionary framework. That framework must be capable of per-

forming combination and mutation operations on heuristics constructed from building

125

blocks. Here a tree-based GP evolutionary process is used to facilitate these processes,

as described in Section 4.4.3. Details of the individual sub-components are given now in

Section 4.4.2.

4.4.2 Grammar

4.4.2.1 Structure

The heuristics considered here consist of outer minimisation and inner maximisation

searches, wrapped around a black-box model. Each model run generates a single objec-

tive function output corresponding to a point in the model decision variable space X .

We use a PSO frame for all heuristics, comprising a swarm of particles moving over a

series of iterations. This constitutes the outer minimisation, with inner maximisations

undertaken at the particle level to determine the robust objective function value at a

point in X .

Every member of the population in the GP analysis has the same basic algorithmic

structure, described by Algorithm 7. We assume a limit on the number of function

evaluations (model runs) available. The swarm is initialised randomly, and the defined

form of inner maximisation undertaken to determine robust objective values for each

particle. Particle movement is then controlled by the velocity equation formulation and

the forms of topology and movement, i.e. how particle velocities are calculated, how

particles share information, and how these elements are used. The swarm moves and

particle level inner maximisations are undertaken again. This repeats until the budget

is exhausted. On completion the current best estimate for robust global minimum is

accepted.

Generating metaheuristics for robust problems in a GP process requires the definition

of a grammar: algorithmic sub-components and the rules for combining them. Here

the high level outline of each heuristic, Algorithm 7, also forms the high level design

criteria in the grammar: the outer minimisation layer as a swarm of particles, some

movement formulation, a topology dictating particle information-sharing, and an inner

maximisation layer.

Our sub-components and the production rules for generating complete heuristics are

defined in the grammar in Figure 4.2. The specific approach adopted here is known as

context-free grammar genetic programming (CFG-GP). This uses a tree-based represen-

tation of algorithms and standard tree-based operators in the evolutionary process, see

[MHW+10, MP16].

The grammar includes non-terminal nodes, indicated by < >, terminal nodes, and

the production rules (::=). The generation of a heuristic begins at the <Start> node,

resulting in the generation of more nodes by following the rules in Figure 4.2. Each

non-terminal node leads to the generation of further nodes according to the production

rules, with each non-terminal node expanded upon until a terminal node is reached. The

126

result is the generation of a series of nodes corresponding to elements of the heuristic.

Non-terminal nodes do not result in the generation of further nodes, but instead in

the determination of parameter settings: parameter values or choices of individual sub-

components. On reaching a non-terminal node that portion of the heuristic is complete.

The final heuristic is achieved when there are no more non-terminal nodes to expand

upon in the sequence.

Algorithm 7 Overview of a robust particle swarm optimisation algorithm

Inputs: Swarm size, extent of inner search (inExt), budget of function evaluations

Parameters: Form of inner, form of topology, form of velocity, form of movement

Parameters: innerParams, topolParams, velParams, moveParams

1: t← 0

2: while (budget > 0) do

3: for all (j in 1, . . . , size) do

4: if (t = 0) then

5: Randomly initialise particle xxxj(0) ∈ X
6: else

7: Update particle velocity according to (velocity, velParams)

8: Update particle position according to

9: (movement,moveParams, topology, topolParams)

10: end if

11: if (xxxj(t) ∈ X) then

12: Perform inner maximisation:

13: for all (k in 1, . . . , inExt) do

14: Select uncertainty neighbourhood point: (inner, innerParams)

15: Evaluate function (run model, generate objective)

16: budget← budget− 1

17: if (budget = 0) then break: goto end end if

18: end for

19: end if

20: end for

21: t← t+ 1

22: end while

23: return Current estimate of robust global best

Sub-component details are given in Sections 4.4.2.2 to 4.4.2.9. The high level <Outer>

and <Inner> elements are identifiable in Figure 4.2. <Outer> consists of <Group> (swarm

size), <Mutation>, <Network> and <Capability> elements. <Mutation> refers to ran-

dom variations applied to a particle’s next location, <Network> specifies the rules for

127

< Start >::= < Outer > < Inner >

< Outer >::= < Group > < Mutation > < Network > < Capability >

< Group >::= Uniform [2, 50]

< Mutation >::= < Mutate > < Prob Mutate >

< Mutate >::= None | Uniform | Gaussian

< Prob Mutate >::= Uniform [0, 0.5]

< Network >::= Global | Focal | Ring (n=2) | 2D von Neumann | Clan | Cluster | Hierarchical

< Capability >::= < Baseline > < Movement >

< Baseline >::= Inertia | Constriction

< Inertia >::= < C1 > < C2 > < ω >

< Constriction >::= < C1 > < C2 >

< C1 >::= Uniform [0, 2.4]

< C2 >::= Uniform [0, 2.4]

< ω >::= Uniform [0.1, 0.9]

< Movement >::= { } | < DD > | < LEH > | < DD > < LEH >

< DD >::= < C3 > < σ > < σ limit > < Min step > < r3 >

< C3 >::= Uniform [0, 10]

< σ >::= Uniform [0.1,0.4]

< σ limit >::= Uniform [0.001, 0.01]

< Min step >::= Uniform [0.001,0.1]

< r3 >::= < Random r3 > | 1

< Random r3 >::= Uniform [0, 1]

< rndLEH >::= < LEH > | Random relocation

< LEH >::= < lpop > < lmutP > < lmutA > < lelites > < ltour > < Dorm >

< lpop >::= Uniform (4, 5, 10, 20, 25)

< lmutP >::= Uniform [0, 1]

< lmutA >::= Uniform [0, 0.5]

< lelites >::= Uniform [1, 3]

< ltour >::= Uniform [0, 0.5]

< Dorm >::= Uniform [1, 5]

< Inner >::= < In Ext > < Form Inner > < nDorm > < nPBest > < Stopping >

< In Ext >::= Uniform [0, 1]

< Form Inner >::= { } | < In PSO > | < In GA >

< In PSO >::= < In Swarm > < In C1 > < In C2 > < In ω >

< In Swarm >::= Uniform [0, 1]

< In C1 >::= Uniform [0, 2.4]

< In C2 >::= Uniform [0, 2.4]

< In ω >::= Uniform [0.1, 0.9]

< In GA >::= < In pop > < In mutP > < In mutA > < In elites > < In tour >

< In pop >::= Uniform [0, 1]

< In mutP >::= Uniform [0.01, 0.5]

< In mutA >::= Uniform [0.01, 0.5]

< In elites >::= Uniform [0, 1]

< In tour >::= Uniform [0, 1]

< nDorm >::= No | Yes

< nPBest >::= No | Yes

< Stopping >::= No | Yes

Figure 4.2: Context-free grammar employed here for the construction of metaheuristics for robust

problems. The symbol | designates a choice of one of the alternatives.

128

particle information sharing, and <Capability> covers a number of sub-components

which combine to form the rules for particle movement. <Capability> breaks down into

<Baseline> and <Movement>, where <Baseline> refers to core PSO velocity equations,

and <Movement> refers to extended capabilities built around d.d. [BNT10b] and LEH

[HGW19] techniques and their variants [HGD20b]. <Inner> is by random sampling, or

a PSO or GA search, along with additional <nDorm>, <nPBest> and <Stopping> capa-

bilities, based on features in [HGD20b] and explained here in Sections 4.4.2.7 to 4.4.2.9.

There are also a number of sub-components and parameters associated with many of

these elements, which in total constitutes our grammar.

One way to visualise this process is in the form of a tree [Koz92, Whi95], Figure 4.3,

showing the high level structure of a heuristic generated by the production rules in

Figure 4.2. <Start> produces the non-terminal nodes <Outer> and <Inner>. <Outer>

is expanded upon, and when it is complete the <Inner> node is returned to. From the

<Outer> node <Group>, <Mutation>, <Network> and <Capability> are generated one

at a time, fully expanding on <Group> before moving to <Mutation> and so on. When

<Capability> is complete <Outer> is complete.

< Start >

< Outer >

< Capability >

< Group >

< Inner >

< Ext >

< stop >

< Network >

< Capability >

< Baseline >

< Movement >

< Form >

< stop >

< nDorm >

< nPbest >

< Mutation >

Figure 4.3: Solution representation: high level tree-based representation of the heuristic gener-

ated by following the CFG-GP grammar production rules in Figure 4.2.

<Group> generates a terminal node, a randomly sampled value between 2 and 50 for

the number of particles (swarm size) in the heuristic. Having reached a terminal node,

the next non-terminal node in the chain generated so far but not yet expanded upon, is

<Mutation>. This refers to the mutating of individual particle positions. <Mutation>

leads to the non-terminal combination of <Mutate> and <Prob Mutate>, both leading

to terminal choices, respectively either None (no mutation), or Uniform or Gaussian

129

mutation, and if mutation the probability of mutation from the range 0 to 0.5. The

symbol | in the production rules designates a choice of one of the alternatives. On

randomly choosing a mutation alternative and probability, if required, the next non-

terminal node in the chain, <Network>, is returned to. And so on.

4.4.2.2 Building blocks: Particle swarm framework

A basic PSO extended by an inner maximisation forms the basis for all heuristics here.

Core PSO elements are a <Group> (swarm) of particles, a <Baseline> velocity equation

of either Inertia or Constriction forms described in Section 4.2.2.1, and some system

of particle information sharing. The latter, <Network>, is discussed in Section 4.4.2.4.

In all heuristics the <Group> size, <C1> and <C2> parameter values are sampled from

the ranges defined in the grammar in Figure 4.2. The need for the <ω> term depends

on the choice of <Baseline>.

4.4.2.3 Building blocks: Mutation

The use of the non-terminal node <Mutation> is considered at a particle level, after

the candidate position in the next iteration has been determined, see [MP17]. If used,

mutation is considered separately for each particle and at the dimensional level, as a final

stage in the movement calculation. For each particle it is determined whether or not to

mutate by sampling against the probability <Prob Mutate>. If mutation is confirmed,

any given dimension is mutated with probability randomly sampled from between 0 and

1/n, so on average only one dimension is changed. The magnitude of change is sampled

from either the Uniform or Gaussian distributions as appropriate, and related to the

dimensional bounds.

4.4.2.4 Building blocks: Networks

The sharing of information throughout the swarm to inform movement at the individual

particle level, is a core PSO element. Here that form of sharing between particles is

determined by the <Network> component. Of the large number of networks available

[KE95, KM02, MKN03, JM05, dCBF09, WYO16, MP17], we consider seven alternatives.

Each particle is assigned to a network neighbourhood. At each iteration information on

the best neighbourhood point visited by any particle in the network across all itera-

tions, x̂xx∗, is shared in a manner defined by the baseline velocity equations (Inertia) or

(Constriction).

� Global : This is the most basic formulation, with all particles accessing the same neigh-

bourhood information – the current robust global minimum location [KE95, KES01].

� Focal : A singe particle is randomly selected as the focal. All particles access the same

neighbourhood information, the focal particle’s best information, [KES01, KM02].

130

� Ring (size=2): In a network sense all particles may be randomly arranged into a ring

formation. With this topology a particle has access to the best information from the

adjoining particles in the ring. Here we set the size equal to two, so a particle has

access to its two neighbour’s (one either side in the ring formation) best information

[KES01, KM02].

� 2D von Neumann: In a network sense particles may be randomly arranged into a 2D

grid, or more correctly the surface of a torus where the grid wraps around so that

the top and bottom join, as do the left and right hand sides. Each particle has four

neighbours, the nearest north, south, east and west particles in this grid formation,

accessing the best information in this neighbourhood [KM02, MP17].

� Clan: Each particle is randomly placed in a network sub-group, or clan. Each clan

is linked to each other clan via a clan leader. The leader in each clan is the particle

with the best performance, so leaders may change over iterations of the swarm. Each

leader shares their information with all other clans [dCBF09, MP17].

� Cluster : Each particle is randomly placed in a network sub-group, or cluster. Within

each cluster a number of ‘informant’ particles are randomly assigned. The number

of informants is one less than the number of clusters, and within each cluster one

informant is linked to one other cluster. Informants remain fixed. Within a cluster

the best information is shared between all particles. Informant particles share their

information with the single cluster they link to [MKN03, MP17].

� Hierarchical : All particles are randomly arranged in a tree formation, in a network

sense. The depth and width of the tree is dependent on the number of particles

(swarm size). Each particle communicates with the particle above it in the tree. At

each iteration of the swarm the positions in the tree can shift: if a particle below

another one in the tree performs better, the two swap positions. This applies to all

particles in each iteration [JM05, MP17].

4.4.2.5 Building blocks: Additional movement capability

The baseline PSO capability can be augmented by additional movement components

based on the descent directions [BNT10b] and largest empty hypersphere [HGW19]

approaches, as proposed in [HGD20b]. The additional formulations available in our

grammar are none { }, a d.d. based approach <DD>, an LEH based approach <LEH>,

or a combined d.d. and LEH based approach <DD> <LEH>. In the case of { } just the

rPSO <Baseline> formulation is used. Otherwise the rPSO d.d. or LEH approaches,

or both, augment the baseline rPSO formulation at the particle level as described in

Sections 4.2.2.2 and 4.2.2.3, and [HGD20b].

Both <DD> and <LEH> require the determination of further non-terminal nodes. <DD>

employs the nodes: <C3>, <σ>, <σ limit>, <Min step> and <r3>. These are d.d.

131

parameters whose descriptions can be found in [BNT10b, HGW19, HGD20b]. They all

terminate once parameter values have been determined, with the exception of <r3> which

relates to the additional C3 component in the d.d. equations (ddVel) and (InertiaV2)

in Section 4.2.2.2. In the original formulation each element of rrr3 is randomly sampled

individually, rrr3 ∼ U(0 , 1)n. This alternative is available in the component <Random r3>

in the grammar, along with another where each element of rrr3 is set to unity. The latter

is a recognition that a locally calculated d.d. vector might be more effective without

added random variation.

<LEH> relates to the relocation of a particle deemed ’dormant’, and requires the

determination of either the non-terminal node <LEH relocation> or the terminal se-

lection of Random relocation. In the original formulation a particle is moved to the

centre of the LEH devoid of all identified high cost points [HGD20b], as described in

Section 4.2.2.3. Here this is designated by <LEH relocation>, and if selected the param-

eters <lpop>, <lmutP>, <lmutA>, <lelites>, <ltour> and <Dorm> must be determined.

In the grammar all of these parameters terminate once their values have been generated;

their descriptions can be found in [HGW19, HGD20b]. However an alternative is avail-

able here, Random relocation, which as the name suggests simply relocates a particle

randomly in X . This does not use any additional parameters.

4.4.2.6 Building blocks: Inner maximisation

In theory an inner maximisation search is required to accurately estimate the worst

objective function value in a candidate point’s uncertainty neighbourhood. In practice,

issues such as the run time for each function evaluation (model run) may be prohibitive.

Here we assume a limit on the number of function evaluations that are possible. This

will likely restrict the accuracy of any search, as it will cause some trade-off between

the extent of an inner search (robustness) and the level of global exploration. Such a

trade-off is not simple [MLM15, EDHX17]. In this context the choice of approach for,

and the extent of, the inner maximisation is not obvious. Here the non-terminal <Inner>

node generates several further non-terminal nodes: <In Ext>, <Form Inner>, <nDorm>,

<nPBest> and <Stopping>.

<nDorm>, <nPBest> and <Stopping> are discussed in Sections 4.4.2.7 to 4.4.2.9. <In

Ext> and <Form Inner> relate to the extent and form of inner search. <In Ext> is based

on a randomly sampled value in the range 0 to 1. This value is related to the outer particle

group size and budget of function evaluations, to determine a corresponding integer size

of inner search. There are three alternatives for <Form Inner>: random sampling { },
or inner PSO <In PSO> or genetic algorithm <In GA> searches. All apply to a candidate

point’s Γ-radius uncertainty neighbourhood, Section 4.2.1. If random sampling is used

no additional parameters are required. Multiple parameter nodes are required for either

<In PSO> or <In GA>.

132

<In PSO> requires the determination of <In Swarm>, <In C1>, <In C2> and <In

ω>, the parameters for an (Inertia) form of PSO: an inner swarm size and settings for

C1, C2 and ω. For an inner PSO the (Inertia) formulation is fixed. <In GA> requires

the determination of <In pop>, <In mutP>, <In mutA>, <In elites> and <In tour>,

parameters for a standard form of GA [Tal09]: an inner population size, and settings

for the probability of and amount of mutation, the number of elites, and a tournament

size. If employed, <In Swarm> or <In pop> are initially determined in the range 0 to 1,

and then related to <In Ext> to give a corresponding integer value. For an inner GA,

<In elites> and <In tour> are initially determined in the range 0 to 1, then related

to <In pop> to give integer values.

4.4.2.7 Building blocks: Dormancy – use of neighbourhood information

The consideration of particle dormancy leading to its relocation [HGD20b], is described

in Section 4.2.2.3. Dormancy refers to a particle becoming ’stuck’. Of concern here is

when this might be due to the particle being in an already identified poor region of the

solution space, and thereby repeatedly not requiring any function evaluations. In our

grammar the determination of dormancy for each particle in each generation may (Yes)

or may not (No) make use of the history set H of all points evaluated, and specifically

those points within a particle’s uncertainty neighbourhood. The choice is represented in

node <nDorm>.

4.4.2.8 Building blocks: Supplement xxxj∗ – neighbourhood information

A particle’s robust value is based on an inner search, and leads to the determination of

the particle’s personal best location xxxj∗ as employed in the (Inertia) or (Constriction)

velocity formulation. Given a completed inner search, if relevant the identified robust

value can be updated by the worst point already identified in the history set H within the

particle’s current uncertainty neighbourhood. The choice of whether (Yes) or not (No)

historic information is used in this way is included as a component here, represented by

node <nPBest>.

4.4.2.9 Building blocks: Stopping condition

The use of a stopping condition in an inner search for a given particle, if a point is

identified with objective function value exceeding that particle’s personal best informa-

tion, has the potential to generate significant efficiencies in terms of function evaluations,

see [HGD20b] and Section 4.2.2.3. In our grammar the choice of whether (Yes) or not

(No) to employ a stopping condition is included as a component, represented by node

<Stopping>.

133

4.4.3 Tree-based representation and evolutionary operators

The evolutionary GP process begins with the random generation of a population of

heuristics, constructed following the grammar production rules in Figure 4.2. Populating

subsequent generations requires the selection, combination and mutation of heuristics.

Fitness-based selection can be undertaken as in any standard evolutionary process.

Here each heuristic in the population, in each generation, is applied to a single test

problem or group of problems, as appropriate. A heuristic is run on any single problem

multiple times to generate a sample. For each heuristic applied to each problem, the

mean of the samples is used as a fitness measure. If only a single problem is under con-

sideration the fitness across the population of heuristics can be determined directly from

a comparison of the means. If multiple problems are considered, means must be calcu-

lated for each heuristic across multiple problems. The description of how these means

are combined into a single fitness measure for each heuristic is given in the experimental

analysis Section 4.5.

The calculated fitnesses are used in tournament selections to identify two parent

heuristics per each individual in the following GP generation, see e.g. [ES12]. A number

of elite, unchanged, heuristics are also retained from generation to generation.

For combination and mutation operations, less standard operators may be required.

Consider, for example, the differences between the use of a GA to tune the parameters

for a specific heuristic compared to the GP evolution of different heuristics, illustrated in

Figure 4.4. All computational evolutionary processes require that an individual object

(e.g. a heuristic) has a representative form for the evolution, and in particular combi-

nation and mutation operations, to be performed on. In the case of a GA tuning, the

solution space consists of the parameters for a single heuristic, which can be represented

as a simple linear string of values. So standard GA combination and mutation processes

can be employed, see e.g. [Tal09]. Whereas in the GP, each heuristic may comprise

different sets of sub-components, complicating a linear representation. For example two

such strings would likely be of different lengths, with ‘corresponding’ sections repre-

senting different sub-components and so different parameters. Combining and mutating

these strings would introduce difficulties.

Fortunately GP offers an alternative heuristic representation, a tree. This is a com-

mon representation for computer programs and algorithms [PDCL05, MHW+10, Noh11,

MP17], and lends itself to standard tree-based GP operators. The CFG-GP approach

we employ uses this representative form for a heuristic generated by our grammar, Fig-

ures 4.2 and 4.3, with standard random tree-based combination and mutation operators

[MHW+10, MP16].

Consider the high-level heuristic tree representation in Figure 4.3 with the addition

of ‘cut’ points, Figure 4.5. Any two trees generated by our grammar have this overall

structure, so the cut points will apply to all of our heuristics. Any two parent heuristics

134

Outer minimisation

Genetic algorithm

GA individuals: Easily represented as a
linear string of numbers.

Black-box model

Inner maximisation
GA individuals:
Same heuristic
but different

parameter values.

(a) GA parameter tuning

Outer: sub-components

Genetic program

GP individuals: Represented as trees, supporting
tree-based combination and mutation.

Black-box model

Inner: sub-components
GP individuals:

Different
heuristics as well

as different
parameter values.

(b) Tree-based GP

Figure 4.4: GA and GP applied to a metaheuristic for robust problems, consisting of an outer

minimisation search and inner maximisation search operating on a black-box model.

fitness-selected in the GP process, along with one randomly selected cut point, can be

combined by merging the branches below the cut in parent tree 1 with the branches

above the cut in parent tree 2. The resulting tree is an executable heuristic. This is the

combination operation used here.

A newly combined heuristic, represented by a single tree, can be mutated by ran-

domly selecting another cut point. Below the cut point completely new branches can be

randomly generated by following the grammar in Figure 4.2, whilst retaining the existing

branches from above the cut. This is the mutation operation used here, in conjunction

with sampling against a probability of mutation to determine whether to mutate. Thus

the requirement for selection, combination and mutation operators applicable directly

to the heuristics generated by combining sub-components following our grammar, has

been fulfilled.

Note that the generation of the heuristic from the corresponding tree is achieved

simply by reading off the sub-components and associated parameter values from the

terminal nodes (leaves) at the ends of each branch of the tree.

A final point should be made about the benefits of the CFG-GP approach. In a

GP process it is not an absolute requirement to always generate executable algorithms,

e.g. a fitness value of zero could be assigned to non-executable algorithms. However it

can be appreciated that there is a considerable likelihood of generating non-executable

algorithms when randomly combing sub-algorithms. Not only is this very inefficient

but it could result in any executable algorithm, whether effective or not, being deemed

relatively fit and therefore propagating across many generations. A CFG-GP approach

avoids such pitfalls, [MHW+10, MP16].

135

< Start >

< Outer >

< Capability >

< Group >

< Inner >

< Ext >

< stop >

< Network >

< Capability >

< Baseline >

< Movement >

< Form >

< stop >

< nDorm >

< nPbest >

< Mutation >

Figure 4.5: High level tree-based representation of the heuristic generated by the grammar

production rules in Figure 4.2, with cut points for combination and mutation operations.

4.5 Computational experiments

4.5.1 Experimental set up

The experimental analysis employs 10 established multi-dimensional robust test prob-

lems. The problems are listed in Table 4.1 along with the feasible regions and Γ-radius

uncertainty values used. Problem formulations and 2D representations are provided

in Appendix 4.7.1. In our experiments 30D and 100D versions of these problems are

considered.

Name X Γ

Rastrigin [14.88, 25.12]n 0.5

Multipeak F1 [−5,−4]n 0.0625

Multipeak F2 [10, 20]n 0.5

Branke’s Multipeak [−7,−3]n 0.5

Pickelhaube [−40,−20]n 1

Heaviside Sphere [−30,−10]n 1

Sawtooth [−6,−4]n 0.2

Ackley [17.232, 82.768]n 3

Sphere [15, 25]n 1

Rosenbrock [7.952, 12.048]n 0.25

Table 4.1: Test functions.

136

A single GP run applies each heuristic to a test function or functions, in order to

determine fitness and inform the evolutionary process. Here 22 GP runs are considered,

once for each test problem individually (individual cases) and once for a combined run

where each heuristic is applied to all 10 problems (general case). That is there are 10

individual case GP runs. Within each individual case GP run all heuristics are applied to

the same single test problem. There is also one general case GP run, where all heuristics

are applied to all 10 test problems. This is repeated for 30D and 100D. A budget of

2,000 function evaluations is assumed in each heuristic run.

In the GP runs, when a heuristic is applied to a problem this is repeated 20 times to

generate a mean. For the individual case runs this is taken as the fitness of the heuristic.

In a general case run the 10 separate means for each heuristic are used to determine

10 separate fitness rankings. For each heuristic the 10 rankings are averaged to give

a combined initial ranking. This ranking is then refined using an elimination process.

The worst performing heuristic is ranked lowest and removed. For the remaining heuris-

tics the 10 rankings and combined ranking are recalculated, the new lowest performing

heuristic is ranked second lowest overall and removed. This repeats until all heuristics

have been ranked.

On completion of a GP run the best heuristic in the final population is accepted.

To properly assess its performance 200 sample runs of the heuristic are undertaken,

applied to the problem or problems on which it has been evolved. Each run generates an

estimate of the location of the robust global optimum for the problem(s) at hand. The

corresponding robust value at each global optimum location is re-estimated in a post-

processing stage, as the worst value identified by randomly sampling a million points in

the Γ-uncertainty neighbourhood of the optimum.

Algorithms are written in Java. For all d.d. calculations the solution of (Soc) includes

a call to the IBM ILOG CPLEX Optimization Studio V12.6.3 software.

We now report two analyses. The first, Section 4.5.2, considers the quality of the

best solutions (heuristics) found in the GP runs. The second, Section 4.5.3, assesses the

structure (component breakdowns) of the heuristics generated in the GP runs, against

heuristic performance.

4.5.2 Results for the best performing heuristics

Mean estimates of the optimum robust values for the best performing heuristics, from the

200 sample runs and following the post-processing stage described in Section 4.5.1, are

shown in Table 4.2. Corresponding box plots are shown in Figures 4.6 to 4.9. Individual

case results are for the best heuristic evolved for a given test problem, then applied

to that problem. General case results are for the best general case heuristic at 30D

as applied to all 10 test problems, and the best at 100D applied to all 10 problems.

The full description of the component breakdowns and parameter values for these best

137

performing heuristics are given in Appendix 4.7.2.

Individual 30D Individual 100D General 30D General 100D

GGGP Comp GGGP Comp GGGP Comp GGGP Comp

Rastrigin 154.93 226.57 416.35 648.67 216.80 226.57 615.40 648.67

Multipeak F1 -0.64 -0.63 -0.64 -0.58 -0.58 -0.63 -0.62 -0.58

Multipeak F2 -0.62 -0.51 -0.54 -0.49 -0.56 -0.51 -0.51 -0.49

Branke’s 0.49 0.47 0.55 0.56 0.57 0.47 0.74 0.56

Pickelhaube 0.43 0.44 1.04 1.63 0.42 0.44 1.11 1.77

Heaviside 1.03 1.03 1.36 3.32 1.03 1.06 1.57 3.55

Sawtooth 0.30 0.35 0.25 0.33 0.34 0.35 0.27 0.42

Ackley 5.71 6.78 10.33 14.46 5.91 6.78 10.30 17.65

Sphere 1.68 2.86 15.60 36.11 2.62 5.30 19.05 36.11

Rosenbrock 55.23 89.24 311.96 1288.00 57.38 104.00 375.01 1288.00

Table 4.2: Mean estimates of the optimum robust values for the best performing heuristics, due

to 200 sample runs and using a budget of 2,000 functions evaluations. Comparators are taken

from [HGD20b] and use a budget of 5,000 functions evaluations. Best results are shown in bold.

Comparator results taken from [HGD20b] are also shown. There several heuristics

were analysed, with each parameter-fitted to 4 of the 10 test problems used here, sepa-

rately for 30D and 100D. The budget was 5,000 function evaluations. For the individual

cases the comparator results shown are due the best performing specific heuristic for

an individual problem. For the general case the comparator results are for the best

performing heuristic overall in [HGD20b], as applied to all 10 problems.

As the individual case comparators were not tuned on specific problems, comparisons

with our individual results should be considered indicative. For the general case a direct

comparison is reasonable. Comparisons should be interpreted in the context of the use of

a budget of 2,000 function evaluations here. Labels on the box plots, Figures 4.6 to 4.9,

give the specific comparator heuristic responsible for each set of results.

In Table 4.2 values in bold indicate results which are best or statistically equivalent

to the best, based on Wilcoxon rank-sum tests with 95% confidence.

At 30D in 8 of the individual cases our GP analysis produces the best heuristic, with

one worse than the comparator and one statistically equivalent. For the general case the

GP again produces the best heuristic for 8 problems, with the comparator best for 2. In

view of our much reduced budget this shows a significantly improved performance for

the general case. The individual case comparisons also indicate a good performance.

At 100D the performance of the new heuristics is even better. For all of the individual

cases the GP produces the best results. In a number of instances we see substantial

improvements, which is encouraging. For the general case the new heuristic is best for 9

problems and worse for one. Again for several problems the new results show significant

improvements. In view of the reduced budget this is a strong performance.

138

●

●

●

●

●

●

●

●

●

●

●

●

100

150

200

250

300

350

G
G

G
P

ps
ol

eh

(a) Rastrigin

●

●

●

●

−0.70

−0.65

−0.60

−0.55

G
G

G
P

ps
ol

eh

(b) Multipeak F1

●

●

●

●

●

●

●

●

●

●

●

−0.7

−0.6

−0.5

−0.4

−0.3

G
G

G
P

ps
ol

eh

(c) Multipeak F2

●●●

●

●

●

0.4

0.5

0.6

G
G

G
P

ps
ol

eh

(d) Brankes

0.3

0.4

0.5

0.6

0.7

G
G

G
P

ps
ol

eh

(e) Pickelhaube

●

●

●●

●

●

●

●

●

●

●

●●

●

1.02

1.03

1.04

G
G

G
P

ps
ol

eh
dd

(f) Heaviside

●●

●

●0.25

0.30

0.35

0.40

0.45
G

G
G

P

ps
ol

eh

(g) Sawtooth

●
●

●

●

●

●

●

●

5

6

7

8

G
G

G
P

ps
ol

eh

(h) Ackley

●
●

●

●●

●

●●●

●

●●

●

●

●●

●●

●

2

3

4

5

G
G

G
P

ps
ol

eh
dd

(i) Sphere

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

50

100

150

200

250

G
G

G
P

ps
ol

eh
dd

(j) Rosenbrock

Figure 4.6: 30D individual bests box plots. 200 sample runs with a budget of 2,000 function

evaluations. The comparators are taken from [HGD20b], where the budget was 5,000 evaluations.

●
●●

300

400

500

600

700

800

G
G

G
P

ps
od

d

(a) Rastrigin

●

●

●●●
●

●

−0.65

−0.60

−0.55

G
G

G
P

ps
od

d

(b) Multipeak F1

●

●

●

●

●

●

●

●

−0.60

−0.55

−0.50

−0.45

G
G

G
P

ps
od

d

(c) Multipeak F2

●●

●●
●

●

0.50

0.55

0.60

0.65

G
G

G
P

ps
od

d

(d) Brankes

●

●

●●●

1.0

1.2

1.4

1.6

G
G

G
P

le
h

(e) Pickelhaube

●

●

●●●

2

3

G
G

G
P

le
h

(f) Heaviside

●

●

●

●

●

●
●
●

●

●

●

0.24

0.28

0.32

0.36

G
G

G
P

le
h

(g) Sawtooth

●

●
●
●

●

10

12

14

G
G

G
P

le
h

(h) Ackley

●

●

●●

10

20

30

40

50

60

G
G

G
P

ps
od

d

(i) Sphere

●●

●

●
●
●

●500

1000

1500

2000

G
G

G
P

ps
od

d

(j) Rosenbrock

Figure 4.7: 100D individual bests box plots. 200 sample runs with a budget of 2,000 function

evaluations. The comparators are taken from [HGD20b], where the budget was 5,000 evaluations.

139

●

●

●

150

200

250

300

G
G

G
P

ps
ol

eh
(a) Rastrigin

●

●

●

●

−0.70

−0.65

−0.60

−0.55

−0.50

G
G

G
P

ps
ol

eh

(b) Multipeak F1

●●

● ●

●

●

−0.7

−0.6

−0.5

−0.4

−0.3

G
G

G
P

ps
ol

eh

(c) Multipeak F2

●

●

0.4

0.5

0.6

0.7

G
G

G
P

ps
ol

eh

(d) Brankes

0.3

0.4

0.5

0.6

0.7

G
G

G
P

ps
ol

eh

(e) Pickelhaube

●●

1.03

1.05

1.07

1.09

G
G

G
P

ps
ol

eh

(f) Heaviside

●

●0.25

0.30

0.35

0.40

0.45

G
G

G
P

ps
ol

eh

(g) Sawtooth

●

●

●

●

●

●

●

●

6

8

10

G
G

G
P

ps
ol

eh
(h) Ackley

●

●

●

2

4

6

8

G
G

G
P

ps
ol

eh

(i) Sphere

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●

50

100

150

200

G
G

G
P

ps
ol

eh

(j) Rosenbrock

Figure 4.8: 30D best general box plots. 200 sample runs with a budget of 2,000 function evalu-

ations. The comparators are taken from [HGD20b], where the budget was 5,000 evaluations.

●

●

●

●

●

500

600

700

800

G
G

G
P

ps
od

d

(a) Rastrigin

●

●

●

●

−0.65

−0.60

−0.55

G
G

G
P

ps
od

d

(b) Multipeak F1

●

●

●

●

−0.55

−0.50

−0.45

G
G

G
P

ps
od

d

(c) Multipeak F2

●

●

●

●

0.5

0.6

0.7

0.8

G
G

G
P

ps
od

d

(d) Brankes

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

1.0

1.2

1.4

1.6

1.8

G
G

G
P

ps
od

d

(e) Pickelhaube

●

●●
●

●

●

●●

2

3

4

5

G
G

G
P

ps
od

d

(f) Heaviside

0.3

0.4

0.5

G
G

G
P

ps
od

d

(g) Sawtooth

●●

●

●

●

●

10.0

12.5

15.0

17.5

G
G

G
P

ps
od

d

(h) Ackley

●●

●

●●

●●

20

30

40

50

60

G
G

G
P

ps
od

d

(i) Sphere

●

●●●
●
●500

1000

1500

2000

G
G

G
P

ps
od

d

(j) Rosenbrock

Figure 4.9: 100D best general box plots. 200 sample runs with a budget of 2,000 function

evaluations. The comparators are taken from [HGD20b], where the budget was 5,000 evaluations.

140

4.5.3 Component analysis

4.5.3.1 Analysis of best performing heuristics

The component breakdown for the best heuristic generated in each of the 22 GP runs are

shown in Tables 4.3 and 4.4. The results discussed in Section 4.5.2 are generated by these

heuristics. We first consider this snapshot of the components associated with the very

best performing heuristics, and then move on to consider the component breakdowns

across all heuristics from all GP runs, against heuristic performance.

From Tables 4.3 and 4.4 it can be observed that an inner maximisation using random

sampling is much preferred, with only 2 heuristics employing an alternative, PSO. Fur-

thermore only a small number of points are typically sampled, with 14 heuristics using 5

points or less in the inner maximisation. In all cases a particle level stopping condition

is used.

For the movement formulations, a baseline Inertia velocity formulation is preferred

by 20 heuristics. An extended capability is used by all heuristics, with 16 using the full

+DD+LEH capability. In all heuristics where dormancy and relocation are used (in-

cluding +LEH), relocation using the largest empty hypersphere is selected over random

relocation. Where a descent direction vector is used (including +DD), a unit vector form

of rrr3 is employed in all but 3 heuristics, rather than a randomised vector.

The best heuristics typically employ small swarm sizes, with 17 using less than 10

particles. Of the 4 network topologies appearing in Tables 4.3 and 4.4, 14 heuristics use

Global, with Hierarchical, von Neumann and Ring also represented. Where dormancy

is relevant the use of existing information to inform it is preferred in 14 heuristics. The

use of existing information to update a robust value on completion of an inner search is

preferred 19 times. Some form of PSO level mutation is employed 12 times, 7 of which

are by sampling from a Gaussian distribution.

Beyond this narrow snapshot of the component breakdowns of the very best per-

forming search algorithms, an assessment of the forms of component included across the

large numbers of heuristics generated by our GP runs will give some indication of how

each alternative impacts heuristic performance. The alternative forms that a component

may take are given by the grammar in Figure 4.2. For a given component the levels of

representation of each alternative form across all heuristics generated in the GP runs, is

driven by evolutionary processes and so will indicate some preference. At a component

level Table 4.5 gives the proportions of each alternative form separately for 30D and

100D, from all heuristics generated here. For a given dimension the heuristics due to all

individual cases and the general case are taken in total.

In Table 4.5 results for the top third best performing heuristics are also shown. This

is a high level indication of the impact of each alternative form on heuristic performance.

In Figures 4.10 to 4.27 we expand on this information for selected components. Each plot

relates to all heuristics generated in a single GP run. By arranging all heuristics gener-

141

ated in a run in order of best-to-worst fitness, an assessment of the heuristic component

breakdowns with fitness is made, using a decile scale of heuristic performance (x axis).

Within each decile of the fitness-sorted heuristics, for each component, the proportion of

each alternative choice for that component is calculated. For a given component and a

given test problem case, each line on the plot represents one of the alternatives available

for that component. A line is generated from the 10 decile point values, representing

the proportion of heuristics within that decile which employ that alternative (y-axis).

Within any given decile the plotted values add to 100% as they refer to the proportion

of heuristics within that decile.

For example consider Figure 4.10 comprising 10 individual test problem plots at 30D,

for the form of inner maximisation. There are 3 alternatives for the inner maximisation:

random sampling (red), particle swarm optimisation (green), or genetic algorithm (blue).

For the Rastrigin problem, of all of the heuristics within the first decile, that is the top

10% performing heuristics, 97% employ random sampling whilst 2% and 1% employ

PSO and GA respectively. These are the values plotted at the 0.1 position on the x-axis.

Within the next decile at the 0.2 position on the x-axis (the 10% – 20% range of best

performing heuristics), the values are 75%, 7% and 18% for random sampling, PSO and

GA respectively.

These plots indicate how component breakdowns relate to heuristic performance. In

addition the relative areas under the lines indicate the total proportion of each compo-

nent category across all heuristics in a single GP run. For example in the Rastrigin plot

in Figure 4.10 the proportions of each alternative for the form of inner maximisation is

48%, 24% and 28% for random sampling, PSO and GA respectively. In Sections 4.5.3.2

to 4.5.3.11 we consider the main components individually.

142

G
ro

u
p

in
n

er
M

o
v
em

en
t

N
et

w
o
rk

in
E

x
t

st
o
p

n
D

o
rm

n
P

B
es

t
M

u
ta

ti
o
n

B
a
se

li
n

e
R

el
o
ca

te
r3

R
a
st

ri
g
in

2
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
8

Y
es

Y
es

Y
es

N
o
n

e
In

er
ti

a
L

E
H

U
n

it
y

M
u

lt
ip

ea
k

F
1

2
1

R
a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
Y

es
N

o
Y

es
U

n
if

o
rm

In
er

ti
a

L
E

H
U

n
it

y

M
u

lt
ip

ea
k

F
2

8
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

H
ie

ra
rc

h
ic

a
l

5
Y

es
Y

es
Y

es
U

n
if

o
rm

In
er

ti
a

L
E

H
U

n
it

y

B
ra

n
k
e’

s
9

R
a
n

d
o
m

rP
S

O
+

D
D

H
ie

ra
rc

h
ic

a
l

4
Y

es
n

a
Y

es
U

n
if

o
rm

In
er

ti
a

n
a

R
a
n

d
o
m

P
ic

k
el

h
a
u

b
e

3
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
Y

es
Y

es
Y

es
N

o
n

e
C

o
n

st
ri

ct
io

n
L

E
H

U
n

it
y

H
ea

v
is

id
e

3
R

a
n

d
o
m

rP
S

O
+

D
D

G
lo

b
a
l

7
Y

es
n

a
Y

es
N

o
n

e
In

er
ti

a
n

a
U

n
it

y

S
a
w

to
o
th

1
0

R
a
n

d
o
m

rP
S

O
+

L
E

H
G

lo
b

a
l

6
Y

es
N

o
Y

es
G

a
u

ss
ia

n
In

er
ti

a
L

E
H

n
a

A
ck

le
y

3
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
Y

es
Y

es
Y

es
N

o
n

e
In

er
ti

a
L

E
H

U
n

it
y

S
p

h
er

e
2

R
a
n

d
o
m

rP
S

O
+

D
D

H
ie

ra
rc

h
ic

a
l

1
5

Y
es

n
a

Y
es

N
o
n

e
In

er
ti

a
n

a
U

n
it

y

R
o
se

n
b

ro
ck

9
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

6
Y

es
Y

es
N

o
N

o
n

e
C

o
n

st
ri

ct
io

n
L

E
H

U
n

it
y

G
en

er
a
l

4
R

a
n

d
o
m

rP
S

O
+

D
D

R
in

g
4

Y
es

n
a

Y
es

G
a
u

ss
ia

n
In

er
ti

a
n

a
U

n
it

y

T
ab

le
4
.3

:
3
0
D

co
m

p
o
n

en
ts

o
f

b
es

t
h

eu
ri

st
ic

s.

G
ro

u
p

in
n

er
M

o
v
em

en
t

N
et

w
o
rk

in
E

x
t

st
o
p

n
D

o
rm

n
P

B
es

t
M

u
ta

ti
o
n

B
a
se

li
n

e
R

el
o
ca

te
r3

R
a
st

ri
g
in

4
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

9
Y

es
Y

es
Y

es
G

a
u

ss
ia

n
C

o
n

st
ri

ct
io

n
L

E
H

U
n

it
y

M
u

lt
ip

ea
k

F
1

8
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
Y

es
N

o
Y

es
U

n
if

o
rm

In
er

ti
a

L
E

H
U

n
it

y

M
u

lt
ip

ea
k

F
2

8
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

v
o
n

N
eu

m
a
n
n

5
Y

es
Y

es
Y

es
G

a
u

ss
ia

n
In

er
ti

a
L

E
H

U
n

it
y

B
ra

n
k
e’

s
1
5

P
S

O
rP

S
O

+
L

E
H

H
ie

ra
rc

h
ic

a
l

4
Y

es
N

o
N

o
U

n
if

o
rm

In
er

ti
a

L
E

H
n

a

P
ic

k
el

h
a
u

b
e

9
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

H
ie

ra
rc

h
ic

a
l

4
Y

es
Y

es
Y

es
N

o
n

e
In

er
ti

a
L

E
H

U
n

it
y

H
ea

v
is

id
e

8
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
Y

es
Y

es
N

o
G

a
u

ss
ia

n
In

er
ti

a
L

E
H

U
n

it
y

S
a
w

to
o
th

2
1

R
a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

v
o
n

N
eu

m
a
n

n
4

Y
es

Y
es

Y
es

G
a
u

ss
ia

n
In

er
ti

a
L

E
H

U
n

it
y

A
ck

le
y

1
1

P
S

O
rP

S
O

+
D

D
+

L
E

H
G

lo
b

a
l

4
Y

es
Y

es
Y

es
N

o
n

e
In

er
ti

a
L

E
H

R
a
n

d
o
m

S
p

h
er

e
5

R
a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

8
Y

es
Y

es
Y

es
N

o
n

e
In

er
ti

a
L

E
H

U
n

it
y

R
o
se

n
b

ro
ck

5
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

8
Y

es
Y

es
Y

es
G

a
u

ss
ia

n
In

er
ti

a
L

E
H

R
a
n

d
o
m

G
en

er
a
l

8
R

a
n

d
o
m

rP
S

O
+

D
D

+
L

E
H

G
lo

b
a
l

4
Y

es
Y

es
Y

es
N

o
n

e
In

er
ti

a
L

E
H

U
n

it
y

T
a
b

le
4
.4

:
1
0
0
D

co
m

p
o
n

en
ts

o
f

b
es

t
h

eu
ri

st
ic

s.

143

Component 30D all 30D top 100D all 100D top

Form of Random 46.6% 67.5% 42.5% 55.3%

inner search PSO 25.2% 12.8% 29.8% 25.5%

GA 28.1% 19.8% 27.7% 19.2%

Extent of [2-10] 49.9% 83.0% 50.3% 84.9%

inner search [11-20] 21.1% 12.8% 20.3% 10.3%

[21-30] 11.2% 2.4% 11.5% 3.5%

[31-40] 5.3% 0.6% 5.7% 0.8%

>40 12.5% 1.3% 12.2% 0.6%

Form of baseline Constriction 36.2% 17.0% 35.8% 19.5%

rPSO formula Inertia 63.8% 83.0% 64.2% 80.5%

Form of rPSO 12.1% 3.1% 11.4% 1.6%

movement +DD 25.0% 25.2% 15.0% 7.8%

+LEH 25.8% 25.0% 32.2% 36.3%

+DD+LEH 37.1% 46.8% 41.4% 54.3%

Form of Global 24.5% 41.2% 25.6% 43.0%

network Focal 9.8% 3.1% 9.9% 3.2%

Ring (size=2) 11.3% 6.9% 11.1% 6.4%

von Neumann 13.6% 12.8% 14.3% 12.9%

Clan 13.2% 10.9% 13.6% 13.5%

Cluster 12.1% 8.8% 11.5% 7.9%

Hierarchy 15.5% 16.5% 14.1% 13.1%

Group (swarm) [2-10] 25.6% 43.2% 22.4% 33.9%

size [11-20] 19.4% 17.0% 21.3% 22.1%

[21-30] 20.2% 18.0% 20.3% 18.1%

[31-40] 17.6% 11.9% 18.2% 13.8%

>40 17.2% 10.0% 17.8% 12.1%

Inclusion of No 36.8% 16.2% 40.6% 26.9%

stopping condition Yes 63.2% 83.8% 59.4% 73.1%

Use of existing No 30.4% 32.3% 32.3% 33.4%

info. for dormancy Yes 32.6% 39.4% 41.3% 57.3%

Not applicable 37.0% 28.3% 26.4% 9.4%

Use of existing info. No 46.3% 39.9% 44.6% 36.5%

for personal best Yes 53.7% 60.1% 55.4% 63.5%

Form of None 37.2% 42.4% 39.1% 48.0%

mutation Random 31.0% 27.2% 31.9% 29.9%

Gaussian 31.8% 30.4% 29.0% 22.1%

Form of relocation LEH 55.5% 71.7% 65.7% 90.6%

due to dormancy Random 7.5% 0.0% 7.9% 0.0%

Not applicable 37.0% 28.3% 26.4% 9.4%

Form of Random 27.3% 27.9% 29.6% 32.3%

r3 vector Unity 34.8% 44.0% 26.8% 29.8%

Not applicable 37.9% 28.1% 43.6% 37.9%

Table 4.5: Proportions of component make ups over all heuristics. Here ‘top’ refers to the top

one third of heuristics when sorted best to worst.

144

4.5.3.2 Form and extent of inner maximisation

From Table 4.5 and Figures 4.10 to 4.12 it can be seen that the most used form of inner

maximisation search is random sampling. For the 30D individual cases random sampling

is the most commonly associated choice with the best performing heuristics, dominating

for most problems. At 100D random sampling is again most typically associated with

the best heuristics, although it is much less dominant, with PSO the most used form of

inner search in the best performing heuristics for the Branke and Heaviside problems.

For the general cases random sampling dominates the best performing heuristics.

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.10: Component – decile breakdowns for the form of inner search, across all GGGP

heuristics at 30D. Components: Random (red), PSO (green), GA (blue).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.11: Component – decile breakdowns for the form of inner search, across all GGGP

heuristics at 100D. Components: Random (red), PSO (green), GA (blue).

145

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30D

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 100D

Figure 4.12: Component – decile breakdowns for the form of inner search, across all GGGP

heuristics at 30D and 100D for the general heuristics. Components: Random (red), PSO (green),

GA (blue).

In terms of the number of points evaluated in an inner maximisation, Table 4.5 and

Figures 4.13 to 4.15 show a clear dominance for low numbers, primarily in the range 2-10

(red). This is both for all heuristics generated and those performing best. Additional

analysis shows that for the best performing third of heuristics, the proportions that

employ random sampling using a number of points in the 2-10 range is 56% and 49%

for 30D and 100D respectively.

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.13: Component – decile breakdowns for the extent (size) of the inner maximisation

search, across all GGGP heuristics at 30D. Components: [2 – 10] (red), [11 – 20] (green), [21 –

30] (blue), [31 – 40] (orange), > 40 (black).

146

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.14: Component – decile breakdowns for the extent (size) of the inner maximisation

search, across all GGGP heuristics at 100D. Components: [2 – 10] (red), [11 – 20] (green), [21 –

30] (blue), [31 – 40] (orange), > 40 (black).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30D

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 100D

Figure 4.15: Component – decile breakdowns for the extent (size) of the inner maximisation

search, across all GGGP heuristics at 30 D and 100D for the general heuristics. Components: [2

– 10] (red), [11 – 20] (green), [21 – 30] (blue), [31 – 40] (orange), > 40 (black).

4.5.3.3 Baseline and extended movement capabilities

Table 4.5 shows that the inertia formulation of the baseline particle velocity equation

appears in 64% of all heuristics for both 30D and 100D, whilst for the best performing

third it dominates, appearing in over 80% of heuristics. A decile level analysis confirms

this dominance in the best performing heuristics.

However for the extended form of particle level movement, things are less clear. From

Table 4.5 it can be seen that the most used form of extended capability includes both

descent direction and LEH dormancy-relocation (+DD+LEH) for both 30D and 100D.

For both dimensions this increases in the top third performing heuristics. Nevertheless

both the +LEH and +DD individual capabilities are also well represented. Figures 4.16

to 4.18 show the decile analysis for the extended movement capability: no additional

capability (red: rPSO), +DD (green), +LEH (blue), or +DD+LEH (orange). The plots

are in accord with the high level results, with +DD+LEH most associated with the best

performing heuristics but both +DD and +LEH also performing well.

147

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.16: Component – decile breakdowns for the form of movement capability, across all

GGGP heuristics at 30D. Components: Baseline (red), DD (green), LEH (blue), LEH+DD

(orange).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.17: Component – decile breakdowns for the form of movement capability, across all

GGGP heuristics at 100D. Components: Baseline (red), DD (green), LEH (blue), LEH+DD

(orange).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30D

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 100D

Figure 4.18: Component – decile breakdowns for the form of movement capability, across all

GGGP heuristics at 30D and 100D for the general heuristics. Components: Baseline (red), DD

(green), LEH (blue), LEH+DD (orange).

148

4.5.3.4 Network topology

For the form of network for particle information sharing, Table 4.5 shows that a Global

(red) network is most preferred for both 30D and 100D, with this increasing in the top

third performing heuristics. No other forms of network particularly stand out. This

is reflected in the decile plots for the individual case heuristics, Figures 4.19 and 4.20,

although both Hierarchical (purple) and von Neumann (orange) networks are also rep-

resented in the lowest deciles for a few problems. In the general cases, Figure 4.21, at

30D the Ring (blue) network outperforms Global for the lowest deciles.

4.5.3.5 Group size

For the group (outer PSO swarm) size, in Table 4.5 all of the different categories are quite

well represented considering all heuristics generated in the GP runs. Most common is the

lowest range, 2-10 (red), and in the best performing third of heuristics this range stands

out somewhat, increasing to 43% and 34% for 30D and 100D respectively. A similar

pattern is observed for the individual case heuristics decile analysis in Figures 4.22

and 4.23, although the next group size range, 11-20 (green), is also favoured in the

lowest deciles for a few problems and in particular at 100D. For the general case at

100D, Figure 4.24, the lower decile results are well distributed across the group size

ranges.

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.19: Component – decile breakdowns for the form of network for particle information

sharing, across all GGGP heuristics at 30D. Components: Global (red), Focal (green), Ring

(size=2) (blue), von Neumann (orange), Clan (black), Cluster (brown), Hierarchy (purple).

149

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.20: Component – decile breakdowns for the form of network for particle information

sharing, across all GGGP heuristics at 100D. Components: Global (red), Focal (green), Ring

(size=2) (blue), von Neumann (orange), Clan (black), Cluster (brown), Hierarchy (purple).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30D

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 100D

Figure 4.21: Component – decile breakdowns for the form of network for particle information

sharing, across all GGGP heuristics at 30D and 100D for the general heuristics. Components:

Global (red), Focal (green), Ring (size=2) (blue), von Neumann (orange), Clan (black), Cluster

(brown), Hierarchy (purple).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.22: Component – decile breakdowns for the group (swarm) size, across all GGGP

heuristics at 30D. Components: [2 – 10] (red), [11 – 20] (green), [21 – 30] (blue), [31 – 40]

(orange), > 40 (black).

150

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.23: Component – decile breakdowns for the group (swarm) size, across all GGGP

heuristics at 100D. Components: [2 – 10] (red), [11 – 20] (green), [21 – 30] (blue), [31 – 40]

(orange), > 40 (black).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30D

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 100D

Figure 4.24: Component – decile breakdowns for the group (swarm) size, across all GGGP

heuristics at 30D and 100D for the general heuristics. Components: [2 – 10] (red), [11 – 20]

(green), [21 – 30] (blue), [31 – 40] (orange), > 40 (black).

4.5.3.6 Use of a stopping condition

Considering the inclusion of a stopping condition in the inner maximisation, from Ta-

ble 4.5 it can be seen that this is preferred in 63% and 59% of all heuristics from the

GP runs, for 30D and 100D respectively. In the top third of results this increases to

84% and 73%. A decile level analysis confirms this dominance in the best performing

heuristics across all GP runs.

4.5.3.7 Use of neighbourhood information for dormancy

When a heuristic uses the dormancy-relocation capability, (+LEH or +DD+LEH), the

assessment of dormancy may (Yes) or may not (No) make use of existing uncertainty

neighbourhood information from the history set. Table 4.5 indicates that the use or

non-use of this information is quite evenly apportioned, particularly for 30D. These high

level results are reflected at the individual case and general case decile level analysis. In

a few cases the use of information performs better in the lowest deciles.

151

4.5.3.8 Use of neighbourhood information for xxxj∗

For the use of uncertainty neighbourhood information in the history set to update a

particle’s robust value on completion of the inner maximisation search, the use of such

information (Yes) versus non-use (No) is somewhat evenly apportioned – although there

is some limited preference for using the information. Again these results are reflected at

the more detailed decile level analysis.

4.5.3.9 Particle level mutation

Our grammar includes the ability to mutate a particle’s intended position. Analysis

of this component is shown in Table 4.5 and Figures 4.25 to 4.27. A choice of no

mutation (red), or mutation due to either Uniform (green) or Gaussian (blue) random

sampling, is available. In Table 4.5 all three alternatives are well represented, with no

mutation performing best, appearing in over 40% of the top third performing heuristics.

In the decile analysis, for 30D individual cases preference is quite even, whilst at 100D

the non-use of mutation is more preferred at the lowest deciles. In the general cases

apportionment is evenly distributed.

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.25: Component – decile breakdowns for the form of PSO mutation, across all GGGP

heuristics at 30D. Components: None (red), Uniform (green), Gaussian (blue).

152

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Rastrigin

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Multipeak F1

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Multipeak F2

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Brankes

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Pickelhaube

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Heaviside

0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(g) Sawtooth

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Ackley

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) Sphere

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(j) Rosenbrock

Figure 4.26: Component – decile breakdowns for the form of PSO mutation, across all GGGP

heuristics at 100D. Components: None (red), Uniform (green), Gaussian (blue).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30D

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 100D

Figure 4.27: Component – decile breakdowns for the form of PSO mutation, across all GGGP

heuristics at 30D and 100D for the general heuristics. Components: None (red), Uniform (green),

Gaussian (blue).

4.5.3.10 Extended movement capability: relocation by LEH

If a heuristic employs the dormancy-relocation capability (+LEH or +DD+LEH), there

is a choice of how dormant particles are relocated. This is by the calculation of the largest

empty hypersphere devoid of poor points, or completely randomly. From Table 4.5 the

use of relocation using LEH is seen to dominate when dormancy is employed. At 30D

88% of all heuristics use LEH-relocation, rising to 100% of the top performers. At 100D

89% rises to 100%. This complete dominance is also observed in the decile level analysis.

4.5.3.11 Extended movement capability: descent directions rrr3 vector

When a heuristic use the descent directions capability (+DD or +DD+LEH), the rrr3

vector may be generated randomly or set to the unit vector. Table 4.5 indicates a

reasonably even use of the randomised or unit rrr3 vectors. Where d.d. is employed, the

use of a unit vector rises from 56% across all heuristics to 61% in the top performers, for

30D. Whereas at 100D this figure remains static at 48%. The decile level analysis reflects

these high level patterns. At 30D for several cases the use of a unit vector performs

better in the lowest deciles, whilst at 100D the preference is fairly evenly distributed

153

across cases.

4.5.4 Summary of experimental analysis

The analysis of the results due to the best heuristics generated in the GP runs shows a

strong performance. For individual case performance the indications against comparator

results is encouraging. For the general cases the newly developed heuristics show an

improvement over the best comparators, in some cases significant, despite using a budget

60% lower.

For the component level analysis, inner maximisation using random sampling on a

small number of points performed best, with a particle level stopping condition strongly

preferred. For the outer minimisation the best heuristic performance is (separately)

related to a relatively small swarm size, communication using a Global typology, and a

particle movement formulation consisting of an inertia based velocity equation plus d.d.

and LEH extended capabilities.

In addition to the decile level component analysis reported here, consideration was

given to potential correlations between alternatives across different components. No

such correlation was observed.

4.6 Conclusions and further work

We have used grammar-guided genetic programming to automatically generate particle

swarm based metaheuristics for robust problems, in order to determine improved search

algorithms and assess the effectiveness of various algorithmic sub-components. This has

involved the generation of a grammar consisting of a number of heuristic building blocks,

the design rules for constructing heuristics from these components, and an evolutionary

GP process. We have searched a heuristic sub-algorithm space not previously inves-

tigated, encompassing specialised robust-focussed capabilities alongside more standard

elements such as network topologies and alternatives for the inner maximisation.

Using a suite of 10 test problems at 30D and 100D, the best evolved heuristics were

identified at individual and general (all problems simultaneously) test case levels. Using

comparators, significant improvements are observed for the best new general heuristics,

whilst indicative individual case results are highly promising.

The GP process generates substantial numbers of heuristics, enabling an assessment

of algorithmic sub-components against heuristic performance. In the context of a budget

of 2,000 function evaluations, this identifies an inner maximisation by random sampling

on a small number of points as most effective, including the use of a particle level stop-

ping condition. For the outer minimisation small numbers of particles are preferred,

sharing information through a Global topology. Other topologies exhibit some good

performance. The preferred particle movement uses a baseline inertia velocity equa-

tion plus some largest empty hypersphere [HGW19, HGD20b] and descent directions

154

[BNT10b, HGD20b] heuristic capabilities. This includes the assessment of particle dor-

mancy and relocation to the centre of the LEH, or the use of a d.d. vector component

in the velocity formulation, or both.

There are a number of ways in which this work can be built upon, most obviously

in terms of extending the sub-algorithmic space over which the GP operates. Moving

away from a PSO structure for all of the heuristics to a more general agent based setting,

using other population based metaheuristics, would introduce alternative movement and

information sharing capabilities into our grammar for the outer minimisation layer.

As the use of random sampling for the inner maximisation layer has proven effective

here, the inclusion in our grammar of some efficient sampling techniques such as the

specialised Latin hypercube approach described in [FBG19], would seem appropriate.

The potential efficiencies offered by emulation in either the outer minimisation or

inner maximisation layers, warrants investigation. The introduction of emulation based

components into the grammar, including sub-elements of specific emulation approaches,

could significantly extend the heuristic solution space.

A final consideration might be the use of alternatives to the GGGP approach, to

automatically generate heuristics for robust problems.

4.7 Appendix

4.7.1 Test functions

The mathematical descriptions for the 10 test functions used in the experimental testing

are given below, with 3D plots of their 2D versions shown in Figure 4.28. All functions

are taken from the literature: [Bra98, KEB10, KRD+11, Kru12, JY13].

Rastrigin

f(xxx) = 10n+
n∑
i=1

[(xi − 20)2 − 10 cos(2π(xi − 20))]

The feasible region is the hypercube xi ∈ [14.88, 25.12].

MultipeakF1

f(xxx) = − 1

n

n∑
i=1

g(xi)

g(xi) =

e
−2 ln 2(

(xi+5)−0.1

0.8
)2
√
|sin(5π(xi + 5))| if 0.4 < xi + 5 ≤ 0.6 ,

e−2 ln 2(
(xi+5)−0.1

0.8
)2 sin6(5π(xi + 5)) otherwise

155

The feasible region is the hypercube xi ∈ [-5, -4].

MultipeakF2

f(xxx) =
1

n

n∑
i=1

g(xi) , g(xi) = 2 sin(10e−0.2(xi−10)(xi − 10))e−0.25(xi−10)

The feasible region is the hypercube xi ∈ [10, 20].

Branke’s Multipeak

f(xxx) = max{c1, c2} −
1

n

n∑
i−1

g(xi)

g(xi) =


c1

(
1− 4((xi+5)+

b1
2

)2

b21

)
if − b1 ≤ (xi + 5) < 0 ,

c2 · 16
−2|b2−2(xi+5)|

b2 if 0 ≤ (xi + 5) ≤ b2 ,

0 otherwise

Here b1 = 2, b2 = 2, c1 = 1, c2 = 1.3.

The feasible region is the hypercube xi ∈ [-7, -3].

Pickelhaube

f(xxx) =
5

5−
√

5
−max{g0(xxx), g1a(xxx), g1b(xxx), g2(xxx)}

g0(xxx) =
1

10
e−

1
2
‖xxx+30‖

g1a(xxx) =
5

5−
√

5

(
1−

√
‖xxx+ 30 + 5‖

5
√
n

)

g1b(xxx) = c1

(
1−

(
‖xxx+ 30 + 5‖

5
√
n

)4)

g2(xxx) = c2

(
1−

(
‖xxx+ 30− 5‖

5
√
n

)d2)

Here c1 = 625/624, c2 = 1.5975, d2 = 2 = 1.1513.

The feasible region is the hypercube xi ∈ [-40, -20].

156

Heaviside Sphere

f(xxx) =

(
1−

n∏
i=1

g(xi)

)
+

n∑
i=1

(
(xi + 20)

10

)2

g(xi) =

0 if 0 < (xi + 20) ,

1 otherwise

The feasible region is the hypercube xi ∈ [-30, -10].

Sawtooth

f(xxx) = 1− 1

n

n∑
i=1

g(xi) , g(xi) =

(xi + 5) + 0.8 if − 0.8 ≤ (xi + 5) < 0.2 ,

0 otherwise

The feasible region is the hypercube xi ∈ [-6, -4].

Ackleys

f(xxx) = −20 exp

(
−0.2

√√√√ 1

n

n∑
i=1

(xi − 50)2

)
−exp

(
1

n

n∑
i=1

cos(2π(xi−50))

)
+20+exp(1)

The feasible region is the hypercube xi ∈ [17.232, 82.768].

Sphere

f(xxx) =

n∑
i=1

(xi − 20)2

The feasible region is the hypercube xi ∈ [15, 25].

Rosenbrock

f(xxx) =

n−1∑
i=1

[100((xi+1 − 10)− (xi − 10)2)2 + ((xi − 10)− 1)2]

The feasible region is the hypercube xi ∈ [7.952, 12.048].

157

16

18

20

22

24

16

18

20

22

24

0

20

40

60

(a) Rastrigin Nom

16

18

20

22

24

16

18

20

22

24

30

40

50

60

70

80

(b) Rastrigin Worst

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0
−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(c) Multipeak F1 Nom

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0
−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

(d) Multipeak F1 Worst

10

12

14

16

18

20
10

12

14

16

18

20

−1

0

1

(e) Multipeak F2 Nom

10

12

14

16

18

20
10

12

14

16

18

20

−0.5

0.0

0.5

1.0

1.5

(f) Multipeak F2 Worst

−7

−6

−5

−4

−3
−7

−6

−5

−4

−3

0.0

0.5

1.0

(g) Brankes Multi Nom

−7

−6

−5

−4

−3
−7

−6

−5

−4

−3

0.5

1.0

1.5

2.0

(h) Brankes Multi Worst

−40

−35

−30

−25

−20
−40

−35

−30

−25

−20

0.5

1.0

1.5

(i) Pickelhaube Nom

−40

−35

−30

−25

−20
−40

−35

−30

−25

−20

0.5

1.0

1.5

(j) Pickelhaube Worst

−30

−25

−20

−15

−10
−30

−25

−20

−15

−10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(k) Heaviside S Nom

−30

−25

−20

−15

−10
−30

−25

−20

−15

−10
1

2

3

(l) Heaviside S Worst

−6.0

−5.5

−5.0

−4.5

−4.0
−6.0

−5.5

−5.0

−4.5

−4.0

0.2

0.4

0.6

0.8

1.0

(m) Sawtooth Nom

−6.0

−5.5

−5.0

−4.5

−4.0
−6.0

−5.5

−5.0

−4.5

−4.0

0.4

0.6

0.8

1.0

(n) Sawtooth Worst

20

40

60

80
20

40

60

80

0

5

10

15

(o) Ackley Nom

20

40

60

80
20

40

60

80

5

10

15

(p) Ackley Worst

16

18

20

22

24

16

18

20

22

24

0

10

20

30

40

50

(q) Sphere Nom

16

18

20

22

24

16

18

20

22

24

20

40

60

(r) Sphere Worst

8

9

10

11

12
8

9

10

11

12

0

1000

2000

3000

(s) Rosenbrock Nom

8

9

10

11

12
8

9

10

11

121000

2000

3000

4000

(t) Rosenbrock Worst

Figure 4.28: Plots of 2D versions of the functions used in our experimental testing.

158

4.7.2 Heuristic parameter-component values

The full list of parameter-component values for the best performing heuristics as reported

on in Tables 4.2 to 4.4, are shown below in Tables 4.6 to 4.9. The components are as

described in our grammar, Figure 4.2

For the particle-iteration level d.d. calculations used here, the σ value can be reduced

a fixed ten times in ten equal steps from it’s initial value (σ) to the σlimit value. This

applies when the re-calculation of a high cost set is required. A fixed number of steps is

employed here to limit processing time. In addition, for each particle at each iteration,

a fixed minimum step size is used: (Min step * Γ). See [BNT10b] for a full description

of the d.d. algorithm. Also, in the LEH calculation, the mutation ‘amount’ (‘lmutA’ in

the grammar Figure 4.2) is actually a percentage value which is subsequently multiplied

by the dimensional range of the decision variable space X to give the actual amount by

which any value is adjusted due to mutation.

Rastrigin Multi F1 Multi F2 Brankes Pickel Heavi

Group size 2 21 8 9 3 3

Mutation None Uniform Uniform Uniform None None

Mutation prob na 0.3810 0.3106 0.1511 na na

Network Global Global Hierarch Hierarch Global Global

Baseline Inertia Inertia Inertia Inertia Constrict Inertia

C1 (base) 1.6757 1.3441 2.2915 2.3900 2.0545 1.1573

C2 (base) 1.6501 0.8235 1.0337 0.8500 2.1980 0.5565

ω (base) 0.2084 0.4674 0.2552 0.7000 na 0.2579

Movement DD+LEH DD+LEH DD+LEH DD DD+LEH DD

C3 (DD) 4.0812 7.2490 8.6110 4.5671 7.1072 7.6501

σ (DD) 0.3315 0.3673 0.3593 0.3116 0.3970 0.1337

σlimit (DD) 0.0033 0.0063 0.0087 0.0041 0.0037 0.0077

Min step (DD) 0.0793 0.0382 0.0154 0.0728 0.0756 0.0684

r3 (DD) 1 1 1 Random 1 1

Relocation (LEH) LEH LEH LEH na LEH na

GA pop (LEH) 25 20 25 na 25 na

GA gens (LEH) 4 5 4 na 4 na

GA mut prob (LEH) 0.0294 0.4991 0.9189 na 0.1966 na

GA mut perc (LEH) 0.0557 0.0191 0.0892 na 0.0210 na

GA elites (LEH) 1 3 2 na 2 na

GA tour size (LEH) 2 7 3 na 9 na

Dormancy limit (LEH) 2 1 1 na 3 na

Inner extent 48 4 5 4 4 7

Inner max Random Random Random Random Random Random

Use n’hood: dormancy Yes No Yes Yes Yes No

Use n’hood: pBest Yes Yes Yes Yes Yes Yes

Stopping condition Yes Yes Yes Yes Yes Yes

Table 4.6: Parameter-component values for the best performing heuristics at 30D: part 1.

159

Sawtooth Ackley Sphere Rosenbrock General

Group size 10 3 2 9 4

Mutation Gaussian None None None Gaussian

Mutation prob 0.3329 na na na 0.3197

Network Global Global Hierarch Global Ring (n=2)

Baseline Inertia Inertia Inertia Constrict Inertia

C1 (base) 0.0063 0.8054 1.1376 2.0501 1.0497

C2 (base) 0.4673 0.3509 1.0335 2.3880 0.5170

ω (base) 0.2706 0.4603 0.1412 na 0.1780

Movement LEH DD+LEH DD DD+LEH DD

C3 (DD) na 4.7125 2.8093 6.6843 8.0436

σ (DD) na 0.2265 0.1360 0.2451 0.2987

σlimit (DD) na 0.0066 0.0012 0.0054 0.0100

Min step (DD) na 0.0815 0.0884 0.0696 0.0568

r3 (DD) na 1 1 1 1

Relocation (LEH) LEH LEH na LEH na

GA pop (LEH) 25 20 na 25 na

GA gens (LEH) 4 5 na 4 na

GA mut prob (LEH) 0.0171 0.2970 na 0.6545 na

GA mut perc (LEH) 0.3692 0.0401 na 0.0397 na

GA elites (LEH) 2 3 na 3 na

GA tour size (LEH) 3 7 na 2 na

Dormancy limit (LEH) 5 4 na 2 na

Inner extent 6 4 15 6 4

Inner max Random Random Random Random Random

Use n’hood: dormancy No Yes No Yes Yes

Use n’hood: pBest Yes Yes Yes No Yes

Stopping condition Yes Yes Yes Yes Yes

Table 4.7: Parameter-component values for the best performing heuristics at 30D: part 2.

160

Rastrigin Multi F1 Multi F2 Brankes Pickel Heavi

Group size 4 8 8 15 9 8

Mutation Gaussian Uniform Gaussian Uniform None Gaussian

Mutation prob 1.0000 0.1265 1.0000 0.1486 na 0.3022

Network Global Global von Neu Hierarch Hierarch Global

Baseline Constrict Inertia Inertia Inertia Inertia Inertia

C1 (base) 2.2924 2.0730 1.2724 0.4344 0.8688 1.1323

C2 (base) 2.2617 0.6844 1.2904 1.9297 0.9148 0.9203

ω (base) na 0.5676 0.4673 0.6612 0.8136 0.5147

Movement DD+ LEH DD+ LEH DD+ LEH LEH DD+ LEH DD+ LEH

C3 (DD) 3.9960 6.3242 6.7039 na 7.0708 5.5855

σ (DD) 0.2796 0.2667 0.1695 na 0.1701 0.2226

σlimit (DD) 0.0096 0.0057 0.0063 na 0.0062 0.0069

Min step (DD) 0.0970 0.0575 0.0929 na 0.0953 0.0870

r3 (DD) 1 1 1 na 1 1

Relocation (LEH) LEH LEH LEH LEH LEH LEH

GA pop (LEH) 25 25 25 10 25 25

GA gens (LEH) 4 4 4 10 4 4

GA mut prob (LEH) 0.1569 0.5122 0.5615 0.9996 0.0243 0.0683

GA mut perc (LEH) 0.0049 0.0348 0.0517 0.4723 0.4678 0.0685

GA elites (LEH) 2 1 2 1 3 2

GA tour size (LEH) 4 9 5 3 9 6

Dormancy limit (LEH) 1 5 5 3 5 2

Inner extent 9 4 5 4 4 4

Inner max Random Random Random PSO Random Random

PSO swarm (inner) na na na 2 na na

PSO C1 (inner) na na na 0.6492 na na

PSO C2 (inner) na na na 0.1359 na na

PSO ω (inner) na na na 0.8361 na na

Use n’hood: dormancy Yes No Yes No Yes Yes

Use n’hood: pBest Yes Yes Yes No Yes No

Stopping condition Yes Yes Yes Yes Yes Yes

Table 4.8: Parameter-component values for the best performing heuristics at 100D: part 1.

161

Sawtooth Ackley Sphere Rosenbrock General

Group size 21 11 5 5 8

Mutation Gaussian None None Gaussian None

Mutation prob 0.1605 na na 0.0141 na

Network von Neu Global Global Global Global

Baseline Inertia Inertia Inertia Inertia Inertia

C1 (base) 0.9865 2.0713 0.1852 0.1882 0.8688

C2 (base) 1.0166 1.0798 0.9672 0.9148 0.9148

ω (base) 0.3898 0.5652 0.6568 0.5731 0.8136

Movement DD+ LEH DD+ LEH DD+ LEH DD+ LEH DD+ LEH

C3 (DD) 8.7102 5.6421 5.0272 8.3429 7.1878

σ (DD) 0.1420 0.3072 0.2198 0.1341 0.1265

σlimit (DD) 0.0049 0.0081 0.0049 0.0039 0.0062

Min step (DD) 0.0669 0.0390 0.0954 0.0964 0.0477

r3 (DD) 1 Random 1 Random 1

Relocation (LEH) LEH LEH LEH LEH LEH

GA pop (LEH) 20 20 20 25 25

GA gens (LEH) 5 5 5 4 4

GA mut prob (LEH) 0.0307 0.0871 0.0404 0.3878 0.0110

GA mut perc (LEH) 0.4841 0.0341 0.1861 0.0415 0.1951

GA elites (LEH) 2 1 1 2 3

GA tour size (LEH) 2 2 4 3 10

Dormancy limit (LEH) 2 2 2 1 3

Inner extent 4 4 8 8 4

Inner max Random PSO Random Random Random

PSO swarm (inner) na 2 na na na

PSO C1 (inner) na 2.0158 na na na

PSO C2 (inner) na 1.0902 na na na

PSO ω (inner) na 0.3478 na na na

Use n’hood: dormancy Yes Yes Yes Yes Yes

Use n’hood: pBest Yes Yes Yes Yes Yes

Stopping condition Yes Yes Yes Yes Yes

Table 4.9: Parameter-component values for the best performing heuristics at 100D: part 2.

162

Chapter 5

Conclusion

5.1 Summary

The use of models to support informed decision making is ubiquitous in many real-world

situations, as is the desire to identify optimal model solutions. The potential impact of

uncertainty on any identified optimal solution is also a common consideration. Here our

interest is in the development of improved optimisation methaeuristics for general prob-

lems, taking account of implementation uncertainty. Specifically we consider a robust

setting, and seek to develop improved methaeuristics for black-box robust optimisation

problems.

We assume a classic worst case or min max problem, comprising a local uncertainty

neighbourhood inner maximisation search within an outer global minimisation search.

We consider a Γ-radius uncertainty set, where the uncertainty neighbourhood around

any point is a hypersphere completely defined by a single radius value, Γ. We also

assume some limit on the number of function evaluations or model runs available to the

decision maker.

Compared to both stochastic optimisation and robust mathematical programming

settings, heuristics for black-box robust problems have been less widely considered. In

particular general approaches which do not place additional assumptions on the prob-

lems, such as limiting the dimension of the problem or making simplifying assumptions

about the nature of the objective function surface, have been much less widely consid-

ered.

In the first paper we develop a new heuristic for application to the min max problem.

This largest empty hypersphere approach takes the local descent directions [BNT10b]

concept of moving away from poor, ‘high cost points’, to a global setting. LEH is

an individual-based approach which proceeds by repeatedly identifying regions of the

solution space completely devoid of any high cost points and stepping to the centres

of these regions. An analysis of alternative approaches for identifying the centre of the

largest empty hypersphere identified an optimisation heuristic as the most valid, practical

approach. Here a genetic algorithm is employed. A key element of the approach is the

163

use of a ‘stopping condition’ whereby an inner maximisation is terminated early if it

can be determined that a candidate point cannot improve on the current estimate of the

global robust optimum.

The new technique was tested on eight established multi-dimensional test problems,

across five dimensions between 2D and 100D, and assuming a budget of 10,000 function

evaluations. Comparisons were made against a re-starting descent directions and a

brute force particle swarm optimisation approach. In all cases random sampling was

employed for the inner maximisation layer. Parameter tuning using a genetic algorithm

was employed at the heuristic level. At high dimensions the new approach substantially

outperforms the comparators for all problems, whilst in other cases it also performs

competitively.

In the second paper we develop a new robust heuristic framework using particle

swarm optimisation as a basis. This new population based approach extends a baseline

robust PSO heuristic through the incorporation of elements of the descent direction and

largest empty hypersphere heuristics. The first new capability includes the calculation

of particle level d.d. vectors and adds this to the standard inertia based PSO velocity

formulation, as a third component. The second new capability includes particle level

stopping conditions, an assessment of ‘dormant’ particles, and relocation by LEH. The

framework can be set to employ d.d. and LEH features in combination, or either one

individually.

The new framework was tested on ten multi-dimensional test problems, across six

dimensions between 2D and 100D. Comparisons were made against a re-starting d.d.

approach, a robust PSO heuristic, and LEH. A budget of 5,000 function evaluations was

used, with inner maximisation again due to random sampling for all heuristics. Using

a genetic algorithm parameters were tuned at the heuristic level, separately for each

dimension. The new approach outperforms the comparators at all dimensions, and in

particular at 10D, 30D and 60D. The PSO formulation augmented by LEH features

alone performs best, followed by the framework employing both LEH and d.d. features

together, and then PSO with d.d. only.

The third paper adopts a different approach to the development of improved search

algorithms, the automatic generation of heuristics. We employ grammar-guided genetic

programming to evolve populations of heuristics for robust problems, employing a tree-

based approach and identifying the best algorithms generated in this way. The approach

requires the specification and generation of a number of algorithmic building blocks

which, when combined appropriately, form complete heuristics. This is our grammar,

and includes components offering alternatives for the inner and outer layers, networks

for information sharing, and movement formulations. In addition to the development of

improved search algorithms, the large numbers of heuristics generated by the GP process

enables an analysis of the alternatives employed in each building block against heuristics

performance.

164

The GP process was undertaken using ten established multi-dimensional test prob-

lems, at 30D and 100D. A budget of 2,000 function evaluations was assumed. In total

twenty two GP runs were undertaken, evolving heuristics targeted separately at each of

the ten problems plus a single general ten-case run, for both dimensions. Comparisons

were made against the best results from the second paper. The best new general heuris-

tics outperform the comparators, substantially for some of the test problems. Results

for the best new individual case heuristics also indicate a strong performance. For the

building block level analysis, an inner maximisation by random sampling on a small

number of points and using a particle level stopping condition is effective. For the outer

minimisation small numbers of particles, a Global topology, and particle movement us-

ing a baseline inertia velocity equation augmented by LEH and d.d. capabilities are all

effective.

5.2 Further Work

There remains considerable potential for developing improved heuristics to tackle the

min max robust problem as set out here.

An obvious way to expand on the work in our third paper is to extend the gram-

mar, and therefore the the sub-algorithmic solution space, on which we apply genetic

programming. One direction this could take would be to move to a more general agent

based framework, beyond the current PSO baseline. In the first instance considering for-

mulations from other existing population based search heuristics would introduce new

movement and information sharing building blocks for the outer minimisation layer. Po-

tential adaptations of these capabilities might then also become apparent, beyond just

the use of existing formulations.

A budget on the number of model runs imposes some trade-off on the optimisation

search, between each inner maximisation uncertainty neighbourhood analysis and the

global exploration of the robust objective solution space. In this context the extent

and nature of the inner layer warrants further investigation. One approach would be to

build upon the inner maximisation by random sampling in our GP grammar through

the use of alternative and more efficient sampling techniques as additional building block

components, see for example [Bra01, BF16, FBG19].

Further assumptions used in the formulations here could be expanded upon. For

example alternatives to the use of an invisible boundary condition in the baseline PSO

algorithm could be added to the grammar, see [RR04, HBM13].

Another consideration is the use of emulation, for either the outer minimisation or

inner maximisation layers. Within our literature review in Section 1.3.3 we discuss

multiple such approaches. Introducing algorithmic building blocks into our grammar

based directly on such emulation approaches, as well as potential adaptations directed

towards agent based approaches to the solution of the robust min max problem, could

165

be considered.

At a higher level we could investigate the potential for alternative approaches to the

automatic generation of heuristics for robust problems, to the current grammar-guided

genetic programming approach described in our third paper.

Finally we might want to expand on some of the limiting assumptions of our work,

to consider for example forms of uncertainty beyond those described here. Consid-

eration could be given to uncertainty neighbourhoods other than one defined by the

single Γ-radius parameter. Alternatively explicit consideration could be given to model

uncertainty, in addition to implementation uncertainty. Expanding the scope of our ap-

proaches in these ways could further lead to a direct application to some of the real-world

problems mentioned in Section 1.1.

166

Bibliography

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max

regret versions of combinatorial optimization problems: A survey. Eu-

ropean Journal of Operational Research, 197(2):427 – 438, 2009.

[AVCMSdCM11] C. Arbex Valle, L. Conegundes Martinez, A. Salles da Cunha, and

G. R. Mateus. Heuristic and exact algorithms for a min–max se-

lective vehicle routing problem. Computers & Operations Research,

38(7):1054 – 1065, 2011.

[BBC11] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applica-

tions of robust optimization. SIAM Review, 53(3):464–501, 2011.

[BF16] J. Branke and X. Fei. Efficient sampling when searching for robust so-

lutions. In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa,

and B. Paechter, editors, Parallel Problem Solving from Nature –

PPSN XIV, pages 237–246, Cham, 2016. Springer International Pub-

lishing.

[BGH+13] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,

and R. Qu. Hyper-heuristics: a survey of the state of the art. Journal

of the Operational Research Society, 64(12):1695–1724, 2013.

[BHK+09] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and

J. R. Woodward. Exploring Hyper-heuristic Methodologies with Ge-

netic Programming, pages 177–201. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009.

[BL15] J. Branke and K. Lu. Finding the trade-off between robustness and

worst-case quality. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, GECCO ’15, page 623–630,

New York, NY, USA, 2015. Association for Computing Machinery.

[BLS13] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization

metaheuristics. Inf. Sci., 237:82–117, July 2013.

[BN10] D. Bertsimas and O. Nohadani. Robust optimization with simulated

annealing. Journal of Global Optimization, 48(2):323–334, 2010.

[BNT07] D. Bertsimas, O. Nohadani, and K. M. Teo. Robust optimization

in electromagnetic scattering problems. Journal of Applied Physics,

101(7):074507, 2007.

167

[BNT10a] D. Bertsimas, O. Nohadani, and K. M. Teo. Nonconvex robust opti-

mization for problems with constraints. INFORMS journal on com-

puting, 22(1):44–58, 2010.

[BNT10b] D. Bertsimas, O. Nohadani, and K. M. Teo. Robust optimization

for unconstrained simulation-based problems. Operations Research,

58(1):161–178, 2010.

[Bra98] J. Branke. Creating robust solutions by means of evolutionary algo-

rithms. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,

editors, Parallel Problem Solving from Nature — PPSN V, pages 119–

128, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[Bra01] J. Branke. Reducing the sampling variance when searching for robust

solutions. In Proceedings of the 3rd Annual Conference on Genetic and

Evolutionary Computation, GECCO’01, page 235–242, San Francisco,

CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations Re-

search, 52(1):35–53, 2004.

[BS07] H-G. Beyer and B. Sendhoff. Robust optimization–a comprehensive

survey. Computer methods in applied mechanics and engineering,

196(33):3190–3218, 2007.

[BSS01] J. Branke, C. Schmidt, and H. Schmeck. Efficient fitness estimation

in noisy environments. In Proceedings of the 3rd Annual Conference

on Genetic and Evolutionary Computation, GECCO’01, page 243–250,

San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[BTBB10] A. Ben-Tal, D. Bertsimas, and D. Brown. A soft robust model for

optimization under ambiguity. Operations research, 58(4-part-2):1220–

1234, 2010.

[BTEGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization.

Princeton University Press, Princeton and Oxford, 2009.

[BTGGN03] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Ad-

justable robust solutions of uncertain linear programs. Math. Pro-

gramming A, 99:351–376, 2003.

[BTN98] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathe-

matics of Operations Research, 23(4):769–805, 1998.

[CBP15] C. Contreras-Bolton and V. Parada. Automatic design of algorithms

for optimization problems. In Computational Intelligence (LA-CCI),

2015 Latin America Congress on, pages 1–5. IEEE, 2015.

[CG16] A. Chassein and M. Goerigk. A bicriteria approach to robust opti-

mization. Computers & Operations Research, 66:181 – 189, 2016.

[Cha93] B. Chazelle. An optimal convex hull algorithm in any fixed dimension.

Discrete & Computational Geometry, 10(4):377–409, Dec 1993.

168

[CK02] M. Clerc and J. Kennedy. The particle swarm - explosion, stability,

and convergence in a multidimensional complex space. Trans. Evol.

Comp, 6(1):58–73, February 2002.

[CLSS17] R. Chen, B. Lucier, Y. Singer, and V. Syrgkanis. Robust optimization

for non-convex objectives. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, NIPS’17, pages

4708–4717, USA, 2017. Curran Associates Inc.

[CSZ09] A. M. Cramer, S. D. Sudhoff, and E. L. Zivi. Evolutionary algorithms

for minimax problems in robust design. IEEE Transactions on Evolu-

tionary Computation, 13(2):444–453, 2009.

[CZ09] X. Chen and Y. Zhang. Uncertain linear programs: Extended affinely

adjustable robust counterparts. Operations Research, 57(6):1469–1482,

2009.

[dCBF09] D. F. de Carvalho and C. J. A. Bastos-Filho. Clan particle swarm

optimization. International Journal of Intelligent Computing and Cy-

bernetics, 2(2):197, 2009.

[Din17] A. Dinno. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank

Sums, 2017. R package version 1.3.5.

[Dip10] C. J. Dippel. Using particle swarm optimization for finding robust op-

tima. Technical report, Natural Computing Group, Universiteit Lei-

den, 2010.

[EDHX17] J. Esteban Diaz, J. Handl, and D-L. Xu. Evolutionary robust op-

timization in production planning – interactions between number of

objectives, sample size and choice of robustness measure. Computers

& Operations Research, 79:266 – 278, 2017.

[EHG05] E. Elbeltagi, T. Hegazy, and D. Grierson. Comparison among five

evolutionary-based optimization algorithms. Advanced engineering in-

formatics, 19(1):43–53, 2005.

[EK95] R. Eberhart and J. Kennedy. A new optimizer using particle swarm

theory. In MHS’95. Proceedings of the Sixth International Symposium

on Micro Machine and Human Science, pages 39–43, Oct 1995.

[EKS17] G. Eichfelder, C. Krüger, and A. Schöbel. Decision uncertainty in mul-

tiobjective optimization. Journal of Global Optimization, 69(2):485–

510, 2017.

[Eng12] A. Engelbrecht. Particle swarm optimization: Velocity initialization.

In 2012 IEEE Congress on Evolutionary Computation, pages 1–8, June

2012.

[ES12] A. E. Eiben and S. K. Smit. Evolutionary Algorithm Parameters and

Methods to Tune Them, pages 15–36. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012.

169

[FBG19] X. Fei, J. Branke, and N. Gülpınar. New sampling strategies when

searching for robust solutions. IEEE Transactions on Evolutionary

Computation, 23(2):273–287, April 2019.

[GH19] M. Goerigk and M. Hughes. Representative scenario construction and

preprocessing for robust combinatorial optimization problems. Opti-

mization Letters, 13(6):1417–1431, Sep 2019.

[GLT97] B. L. Golden, G. Laporte, and É. D. Taillard. An adaptive memory

heuristic for a class of vehicle routing problems with minmax objective.

Computers & Operations Research, 24(5):445 – 452, 1997.

[GMT14] V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust op-

timization: An overview. European journal of operational research,

235(3):471–483, 2014.

[Goe12] M. Goerigk. Algorithms and Concepts for Robust Optimization. PhD

thesis, Universität Göttingen, 2012.

[GS10] J. Goh and M. Sim. Distributionally robust optimization and its

tractable approximations. Operations Research, 58(4-part-1):902–917,

2010.

[GS16] M. Goerigk and A. Schöbel. Algorithm engineering in robust optimiza-

tion. In L. Kliemann and P. Sanders, editors, Algorithm Engineering:

Selected Results and Surveys, volume 9220 of LNCS State of the Art

of Lecture Notes in Computer Science, pages 245–279. Springer Berlin

/ Heidelberg, 2016.

[HBM13] S. Helwig, J. Branke, and S. Mostaghim. Experimental analysis of

bound handling techniques in particle swarm optimization. IEEE

Transactions on Evolutionary Computation, 17(2):259–271, 2013.

[HdMB14] T. Homem-de Mello and G. Bayraksan. Monte carlo sampling-based

methods for stochastic optimization. Surveys in Operations Research

and Management Science, 19(1):56 – 85, 2014.

[Her99] J. W. Herrmann. A genetic algorithm for minimax optimization prob-

lems. In Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on, volume 2, pages 1099–1103. IEEE, 1999.

[HGD20a] M. Hughes, M. Goerigk, and T. Dokka. Automatic generation of robust

particle swarm optimisation metaheuristics using grammar-guided ge-

netic programming. arXiv e-prints, page arXiv:2004.07294, Apr 2020.

[HGD20b] M. Hughes, M. Goerigk, and T. Dokka. Particle swarm metaheuristics

for robust optimisation with implementation uncertainty. arXiv e-

prints, page arXiv:2003.09664, Mar 2020.

[HGW19] M. Hughes, M. Goerigk, and M. Wright. A largest empty hyper-

sphere metaheuristic for robust optimisation with implementation un-

certainty. Computers & Operations Research, 103:64 – 80, 2019.

170

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Second Edition.

Springer Series in Statistics. Springer New York, 2009.

[Jen04] M. T. Jensen. A New Look at Solving Minimax Problems with Coevo-

lutionary Genetic Algorithms, pages 369–384. Springer US, Boston,

MA, 2004.

[JJB07] D. Jakobović, L. Jelenković, and L. Budin. Genetic programming

heuristics for multiple machine scheduling. In M. Ebner, M. O’Neill,

A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar, editors, Ge-

netic Programming, pages 321–330, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

[JM05] S. Janson and M. Middendorf. A hierarchical particle swarm optimizer

and its adaptive variant. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 35(6):1272–1282, Dec 2005.

[JSW98] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimiza-

tion of expensive black-box functions. Journal of Global Optimization,

13(4):455–492, December 1998.

[JY13] M. Jamil and X-S. Yang. A literature survey of benchmark functions

for global optimization problems. International Journal of Mathemat-

ical Modelling and Numerical Optimisation (IJMMNO), 4(2):150–194,

2013.

[Kam09] K. Kameyama. Particle swarm optimization - a survey. IEICE Trans-

actions on Information and Systems, E92.D(7):1354–1361, 2009.

[KE95] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Pro-

ceedings of the 1995 IEEE International Conference on Neural Net-

works, volume 4, pages 1942–1948, Perth, Australia, 1995.

[KEB10] J. Kruisselbrink, M. Emmerich, and T. Bäck. An archive mainte-

nance scheme for finding robust solutions. In R. Schaefer, C. Cotta,

J. Ko lodziej, and G. Rudolph, editors, Parallel Problem Solving from

Nature, PPSN XI, pages 214–223, Berlin, Heidelberg, 2010. Springer

Berlin Heidelberg.

[KES01] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm intelligence. Morgan

Kaufmann, 2001.

[Kir17] M. S. Kiran. Particle swarm optimization with a new update mecha-

nism. Applied Soft Computing, 60:670 – 678, 2017.

[KM02] J. Kennedy and R. Mendes. Population structure and particle swarm

performance. In Proceedings of the 2002 Congress on Evolutionary

Computation. CEC’02 (Cat. No.02TH8600), volume 2, pages 1671–

1676 vol.2, May 2002.

[Koz92] J.R. Koza. Genetic Programming: On the Programming of Computers

171

by Means of Natural Selection. A Bradford book. MIT Press, 1992.

[KRD+11] J. W. Kruisselbrink, E. Reehuis, A. Deutz, T. Bäck, and M. Emmerich.

Using the uncertainty handling cma-es for finding robust optima. In

Proceedings of the 13th Annual Conference on Genetic and Evolution-

ary Computation, GECCO ’11, pages 877–884, New York, NY, USA,

2011. ACM.

[Kru12] J. W. Kruisselbrink. Evolution strategies for robust optimization. PhD

thesis, Leiden Institute of Advanced Computer Science (LIACS), Fac-

ulty of Science, Leiden university, 2012.

[KVDHL16] K. Khac Vu, C. D’Ambrosio, Y. Hamadi, and L. Liberti. Surrogate-

based methods for black-box optimization. International Transactions

in Operational Research, 24(3):393–424, 2016.

[KY97] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Appli-

cations. Kluwer Academic Publishers, 1997.

[LBR16] K. Lu, J. Branke, and T. Ray. Improving efficiency of bi-level worst

case optimization. In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez,

G. Ochoa, and B. Paechter, editors, Parallel Problem Solving from Na-

ture – PPSN XIV, pages 410–420, Cham, 2016. Springer International

Publishing.

[Luk13] S. Luke. Essentials of Metaheuristics. Lulu, second edition, 2013.

Available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[MHW+10] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill.

Grammar-based genetic programming: a survey. Genetic Program-

ming and Evolvable Machines, 11(3):365–396, Sep 2010.

[Mit98] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-

bridge, MA, USA, 1998.

[MKA11] K. Masuda, K. Kurihara, and E. Aiyoshi. A novel method for solving

min-max problems by using a modified particle swarm optimization.

In Systems, Man, and Cybernetics (SMC), 2011 IEEE International

Conference on, pages 2113–2120. IEEE, 2011.

[MKN03] R. Mendes, J. Kennedy, and J. Neves. Watch thy neighbor or how the

swarm can learn from its environment. In Proceedings of the 2003 IEEE

Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), pages 88–

94, April 2003.

[MLIDLS14] F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T. Stützle.

Grammar-based generation of stochastic local search heuristics

through automatic algorithm configuration tools. Computers & Oper-

ations Research, 51:190 – 199, 2014.

[MLM15] S. Mirjalili, A. Lewis, and S. Mostaghim. Confidence measure: A novel

metric for robust meta-heuristic optimisation algorithms. Information

172

Sciences, 317:114 – 142, 2015.

[MP16] P. B. C. Miranda and R. B. C. Prudêncio. Tree-based grammar ge-

netic programming to evolve particle swarm algorithms. In 2016 5th

Brazilian Conference on Intelligent Systems (BRACIS), pages 25–30,

Oct 2016.

[MP17] P. B.C. Miranda and R. B.C. Prudêncio. Generation of particle swarm

optimization algorithms: An experimental study using grammar-

guided genetic programming. Applied Soft Computing, 60:281 – 296,

2017.

[MPF09] Bader. M., R. Poli, and S. Fatima. Evolving timetabling heuristics us-

ing a grammar-based genetic programming hyper-heuristic framework.

Memetic Computing, 1(3):205–219, 2009. Funders: EPSRC.

[MWPL13] J. Marzat, E. Walter, and H. Piet-Lahanier. Worst-case global opti-

mization of black-box functions through kriging and relaxation. Jour-

nal of Global Optimization, 55(4):707–727, Apr 2013.

[MWPL16] J. Marzat, E. Walter, and H. Piet-Lahanier. A new expected-

improvement algorithm for continuous minimax optimization. Journal

of Global Optimization, 64(4):785–802, 2016.

[MZ18] Y. Mei and M. Zhang. Genetic programming hyper-heuristic for multi-

vehicle uncertain capacitated arc routing problem. pages 141–142, 07

2018.

[Nah17] C. Nahr. Tektosyne library for java, 2017. Available at

http://www.kynosarges.org.

[NMES11] A. Nickabadi, M. Mehdi Ebadzadeh, and R. Safabakhsh. A novel

particle swarm optimization algorithm with adaptive inertia weight.

Applied Soft Computing, 11(4):3658 – 3670, 2011.

[Noh11] A. Nohejl. Grammar-based genetic programming. Master’s thesis,

Department of Software and Computer Science Education, Faculty of

Mathematics and Physics, Charles University in Prague, 2011.

[ONL06] Y-S. Ong, P. B. Nair, and K. Y. Lum. Max-min surrogate-assisted

evolutionary algorithm for robust design. IEEE Transactions on Evo-

lutionary Computation, 10(4):392–404, 2006.

[OS97] A. Okabe and A. Suzuki. Locational optimization problems solved

through voronoi diagrams. European Journal of Operational Research,

98(3):445 – 456, 1997.

[PBJ06] I. Paenke, J. Branke, and Y. Jin. Efficient search for robust solutions

by means of evolutionary algorithms and fitness approximation. IEEE

Transactions on Evolutionary Computation, 10(4):405–420, 2006.

[PDCL05] R. Poli, C. Di Chio, and W. B. Langdon. Exploring extended parti-

cle swarms: A genetic programming approach. In Proceedings of the

173

7th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’05, pages 169–176, New York, NY, USA, 2005. ACM.

[PF10] G. L. Pappa and A. A. Freitas. Automating the design of data mining

algorithms: an evolutionary computation approach. Natural Comput-

ing Series. Springer, January 2010.

[PHP12] P. Poš́ık, W. Huyer, and L. Pál. A comparison of global search algo-

rithms for continuous black box optimization. Evolutionary computa-

tion, 20(4):509–541, 2012.

[POH+14] G. L. Pappa, G. Ochoa, M. R. Hyde, A. A. Freitas, J. Woodward, and

J. Swan. Contrasting meta-learning and hyper-heuristic research: the

role of evolutionary algorithms. Genetic Programming and Evolvable

Machines, 15(1):3–35, 2014.

[R C19] R Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, 2019.

[RC13] S. Roy and S. Chaudhuri. Bio-inspired ant algorithms: A review.

International Journal of Modern Education and Computer Science,

5(4):25, 2013.

[RR04] J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in

electromagnetics. IEEE Transactions on Antennas and Propagation,

52(2):397–407, Feb 2004.

[SAMO03] M. Stephenson, S. Amarasinghe, M. Martin, and U-M. O’Reilly. Meta

optimization: Improving compiler heuristics with machine learning.

SIGPLAN Not., 38(5):77–90, May 2003.

[SBP18] S. Sengupta, S. Basak, and R. Peters. Particle swarm optimization: A

survey of historical and recent developments with hybridization per-

spectives. Machine Learning and Knowledge Extraction, 1(1):157–191,

2018.

[SE98] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998

IEEE International Conference on Evolutionary Computation Pro-

ceedings. IEEE World Congress on Computational Intelligence (Cat.

No.98TH8360), pages 69–73, 1998.

[SEFR19] N. D. Sanders, R. M. Everson, J. E. Fieldsend, and A. A. M. Rahat.

A Bayesian Approach for the Robust Optimisation of Expensive-To-

Evaluate Functions. arXiv e-prints, page arXiv:1904.11416, Apr 2019.

[SK02] Y. Shi and R. Krohling. Co-evolutionary particle swarm optimiza-

tion to solve min-max problems. In Evolutionary Computation, 2002.

CEC’02. Proceedings of the 2002 Congress on, volume 2, pages 1682–

1687. IEEE, 2002.

[SP97] R. Storn and K. Price. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of

174

Global Optimization, 11(4):341–359, 1997.

[Tal09] E-G. Talbi. Metaheuristics: From Design to Implementation. Wiley

Publishing, 2009.

[TG97] S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution

searching scheme. IEEE transactions on Evolutionary Computation,

1(3):201–208, 1997.

[Tou83] G. T. Toussaint. Computing largest empty circles with location con-

straints. International Journal of Computer & Information Sciences,

12(5):347–358, 1983.

[uRL17] S. ur Rehman and M. Langelaar. Expected improvement based in-

fill sampling for global robust optimization of constrained problems.

Optimization and Engineering, 18(3):723–753, Sep 2017.

[uRLvK14] S. ur Rehman, M. Langelaar, and F. van Keulen. Efficient kriging-

based robust optimization of unconstrained problems. Journal of Com-

putational Science, 5(6):872 – 881, 2014.

[vLHVB+12] R. R.S. van Lon, T. Holvoet, G. Vanden Berghe, T. Wenseleers, and

J. Branke. Evolutionary synthesis of multi-agent systems for dynamic

dial-a-ride problems. In Proceedings of the 14th Annual Conference

Companion on Genetic and Evolutionary Computation, GECCO ’12,

page 331–336, New York, NY, USA, 2012. Association for Computing

Machinery.

[Whi95] P. A. Whigham. Grammatically-based genetic programming. In Pro-

ceedings of the Workshop on Genetic Programming: From Theory

to Real-World Applications, pages 33–41, USA, 1995. University of

Rochester.

[WYO16] L. Wang, B. Yang, and J. Orchard. Particle swarm optimization using

dynamic tournament topology. Appl. Soft Comput., 48(C):584–596,

November 2016.

[ZWJ15] Y. Zhang, S. Wang, and G. Ji. A comprehensive survey on parti-

cle swarm optimization algorithm and its applications. Mathematical

Problems in Engineering, 2015.

[ZZ10] A. Zhou and Q. Zhang. A surrogate-assisted evolutionary algorithm

for minimax optimization. In IEEE Congress on Evolutionary Com-

putation, pages 1–7, July 2010.

175

