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Abstract

AGENT-BASED MODELLING (ABM) IS PARTICULARLY SUITABLE for aiding analysis and producing in-

sight in a range of domains where systems have constituent entities which are autonomous, interactive and

situated. Decentralised control and irregular communication patterns among these make such models

difficult to simulate and even more so to understand. However, the value in this methodology lies in its ability to

formulate systems naturally, not only generating the desired macroscopic phenomena, but doing so in an elegant

manner. With these advantages, ABM has been enjoying widespread and sustained increasing use.

It is then reasonable to seek advances in the field of ABM which would improve productivity, comparability,

and ease of implementation. Much work has been done towards these, notably in terms of design methodology,

reporting, languages and optimisation. Three issues which remain despite these efforts concern the efficient

construction, performance and calibration of agent-based models.

Constructing a model involves selecting agents, their attributes, behaviours, interaction rules, and environment,

but it also demands a certain level of programming ability. This learning curve stymies research effort from

disciplines unrelated to computer science. It is also not clear that one methodology and software package is suitable

for all circumstances. Domain-specific languages (DSLs) make development much simpler for their application

area.

Agent-based model simulation sometimes suffer tremendously from performance issues. Models of situations

such as algal cultivation, international markets and pedestrians in dense urban areas invariably suffer from poor

scaling. This puts large system sizes and temporally distant states out of reach. The advent of scientific programming

on graphical processing units (GPUs) now provides inexpensive high performance, giving hope in this area.

It is also important to calibrate such models. More interestingly, the problem of calibrating model structure

is given particular emphasis. This ambitious task is difficult for a number of reasons, and is investigated with

considerable thought in this work.

In summary, the research shows that appropriate use of data-parallelism by multi-stage programming in a

simple domain-specific language affords high performance, extensibility and ease of use which is capable of

effective automatic model structure optimisation.
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CHAPTER 1

OVERVIEW

The core theme across the content of this dissertation is the concept of Agent-based Modelling (ABM). Its

widespread popularity and potency in complex systems analysis motivates much of this work. This chapter first

presents the thesis structure and then introduces important concepts used throughout including ABM, Evolution-

ary Algorithms (EAs), and data-parallel computing with Graphical Processing Units (GPUs), Domain-Specific

Languages (DSLs) and finally model calibration and optimisation.

The main objective is to make use of a staged programming methodology to leverage the computing power of

GPUs in conjunction with a specialised DSL in order to accomplish pragmatic model structure optimisation for

agent-based models.

1.1 Structure and Contributions

T HIS DISSERTATION IS ORGANISED into four parts. Part I introduces the various concepts used throughout

this work including EAs, Agent-based Modelling and Simulation (ABMS), data-parallel computing, and

optimisation. Part II deals with continuous and combinatorial optimisation in the context of ABM and

parallelism, and Part III introduces a DSL with built-in optimisation mechanisms using the techniques developed in

previous parts. A photobioreactor model is also proposed, and used to demonstrate this new DSL. Finally, Part IV

concludes this dissertation with discussions of findings, limitations, applications, opportunities for future work, as

well as final conclusions.

The major original contributions in this dissertation are the following1:

1. A natural multi-stage domain-specific language for parallel agent-based modelling with a built-in model

structure optimiser [126, 114] (see chapters 5 and 6).

2. A GPU-parallel modified implementation of the Firefly Algorithm by X.-S. Yang [299] for continuous global

optimisation [118] (see chapter 3).

3. Use of Gene Scanning in Genetic Programming to propose a GPU-parallel Firefly Algorithm to operate in

program space [128] (see chapter 4, particularly section 4.7).

4. An extended shallow-depth program-space visualisation algorithm, as well as a simple method for visualising

large program trees [127, 128] (see chapter 4, particularly section 4.8).
1Some of these have been published by the author, or submitted, accepted and/or in press. Please see appendix A for a full list. Where these

have been extended in the text, this has been noted.

3
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5. An agent-based model of an algal photobioreactor based on the Photosynthetic Factory model [95, 113, 125]

(see Chapter 7).

6. An investigation of the Karva language in conjunction with the Geometric Particle Swarm Optimiser [121]

(see Chapter 4, Section 4.6.1).

Each chapter of this dissertation is self-contained, however it is suggested that Parts II and III be read sequentially. (I, p. 3)

Some suggested reading is provided by cross-referencing to relevant introductory material, which are provided by

notes of the form (I, p. 3) in margins. In this case, hypothetically referring to page 3 (an example is given in the

margin here).

The rest of this chapter introduces core concepts and gives a general overview with respect to the major

contributions listed above. First, the practice of ABM is presented, followed by EAs, data-parallel computing,

DSLs and model calibration.

In the context of ABM (Section 1.2), EAs are discussed for their ability to calibrate parameters of a model

in Section 1.3. However, their use is compute-bound and typically exhibit poor scaling characteristics. For this

reason, data-parallel computing sees much use in this work, and is discussed in Section 1.4. Though the necessary

apparatus is illuminated, the use of parallelism in the realm of agent-based model calibration is programmatically

complex and difficult to accomplish. DSLs have in the past been useful to allow special syntax to express intention

in a program using domain-specific knowledge, which is used in this dissertation to improve accessibility of the

structural calibration mechanism for the end-user. DSLs are introduced in Section 1.5.

1.2 Agent-based Modelling
ABM is a modelling tool where components of a system are implemented as autonomous interacting nodes, or

“agents” [24, 174]. Already, light has been cast on many complex systems which have been difficult to analyse in

the past. Disciplines such as ecology [88, 87], microbiology [73, 65] and social science [59] benefit tremendously

from the insight generated by this tool. Apparent self-organisation of birds and fish into flocks and schools, the

foraging behaviour of ants and many other phenomena with no central source of instruction can now be explained

by this method, and applications are increasing in number. The increasing popularity of the technique certainly

warrants more investigation into its improvement.

There are various similarities in concept and implementation shared with other fields such as Population-based

optimisation such as the Particle Swarm Optimiser [142], as well as Multi-agent Systems (MAS) [76]. Specifically,

the presence of component-component interactions with a lack of central control.

The overall life cycle of the ABM process is shown in Figure 1.1. Firstly the researcher would begin with a

hypothesis about a particular phenomenon, such as the spatial concentration of crime [23]. The modelling phase in

this diagram follows the process detailed by Macal and North [174]. Implementing the model would simply follow

the standard software development life cycle, which in the case of object-oriented programming would involve

class diagrams and related documentation. Following the implementation phase, the model should be calibrated

to ensure that it aligns as expected with the actual phenomena being studied. This model verification process is

important to ensure the purpose of a model is consistent with its design [200].

Several aspects of ABM also make it particularly relevant in the realms of optimisation, parallel computing

and domain-specific languages. Firstly, agent-based models are composed of “agents”. Depending on the quantity

of agents, their interactions can be parallelised to improve performance greatly [1] (discussed in Chapter 2, and
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Hypothesise

Calibrate

Identify Agents

Identify Relationships

Theorise Interactions

Identify Environment

Model

Validate

Check

Analyse

Gather Data

Data Analysis

Implement

Produce Class Diagrams

Program Development

FIGURE 1.1: The high level Agent-based Modelling process. Starting from a hypothesis, a researcher would

develop a theoretical model (shown according to Macal and North [174]), then proceed to implement it. Finally,

the researcher would validate the model against the actual phenomena of interest, and then analyse the model

quantitatively and qualitatively before the process begins again with a new hypothesis.

introduced in Section 1.4). Secondly, agent-based models often require a laborious parameter calibration effort,

which can, under certain circumstances, be done automatically by re-interpreting the effort as an optimisation

problem [28]. Finally, multi-disciplinary interest in ABM has demanded an easier implementation process, which

has been shown by software packages such as NetLogo [279] to be something that can be mitigated by domain-

specific languages. In the pursuit of this dissertation, some of these links were also explored and exploited to assist

in the final objective.

With regard to the difficult and laborious calibration efforts that sometimes plague the use of ABM, there

fortunately exist several automatic algorithms which can assist in the process. These are not trivial to construct,

however, and may also suffer from performance problems themselves. A particular focus is given to evolutionary

algorithms for their natural formulation and close relation to concepts within ABM. These are introduced in the

next section.

1.3 Evolutionary Algorithms
Scientists in the field of numerical optimisation have looked towards many biological sources for inspiration

including Fireflies [298] and Ants [48]. One technique which showed great promise very early on in 1975 [107]

was the Genetic Algorithm (GA). EAs have become somewhat of a generalisation of the traditional GA, where

the original process is modified, expanded, or replaced entirely. An excellent example of a sophisticated EA is

Ferreira’s Gene Expression Programming (GEP) [64].

Figure 1.2 is a flow chart showing the general process which EAs tend to follow in order to maximise (or

minimise) an objective function. EAs maintain a population of possible solutions which are evolved over time using
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Create Population of
Candidate Solutions

Evaluate Candidates

Apply Genetic 
Operators

Keep Best Individual

Acceptable
Fitness Achieved?

No

Finish

FIGURE 1.2: The typical process followed by an Evolutionary Algorithm. A population of candidate solutions

is maintained, and evolved over time until an individual in the population reaches a certain fitness.

genetic operators such as mutation, crossover and selection. The process is analogous to that of nature, although,

greatly simplified.

EAs have been shown to be effective for combinatorial [149, 187] and continuous optimisation problems [81],

and consist of Evolutionary Strategies (ES), Evolutionary Programming (EP) and Genetic Algorithms (GAs) [11],

the purpose of which is to optimise some real-valued objective function.

Optimisers based on EAs are well suited to the problem of model parameter optimisation, as well as model

structure optimisation due to relaxed definitions of the meanings of concepts such as distance. However, these

algorithms still involve a number of individuals in a population which must all be evaluated. Sometimes these

population sizes can be very large or extremely computationally expensive to evaluate, or both. This presents an

opportunity to exploit another inherent parallelism for improving quality of solutions and speed.

A particularly useful and recent development in parallel computing is that of general-purpose graphics processing

units (GPGPU). These devices have extremely high theoretical throughput, which can be fully exploited only by a

carefully designed algorithm. Fortunately, this has become easier with the advent of NVIDIA’s Compute Unified

Device Architecture (CUDA). This is discussed in the next section.

1.4 Data-parallel Scientific Computing
GPUs have recently become the focus of attention for many researchers requiring more computing power

than what a typical desktop machine offers [162]. The reason for this is mostly due to the remarkably low cost

of these devices, considering the performance a carefully designed program can achieve on them. The history

of the general-purpose use of GPUs did not begin with full vendor software support, however. In the beginning,

they could only be utilised by writing specialised assembly instructions by hand, which was followed by higher
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level shader languages [161]. NVIDIA later released CUDA [202], along with other vendors releasing similar

software. The ease with which these devices can now be utilised makes it clear why scientific computing on GPUs

is increasing rapidly [161].

Continuous global optimisation algorithms benefitted quickly from this technology, as shown by several authors

[156, 157, 304, 128], including the fascinating work of Cupertino and colleagues [41] on evolving GPU PTX

instructions directly. The ABM community also gained FLAME GPU [244], with several authors proposing

GPU-variants of Agent-based Models [1, 287, 125, 51].

GPUs are by no means the only parallelisation strategy one may approach. Multi-core processors should

certainly not be ignored as well as data-parallel extensions such as SSE and AVX [68], as shown by Chitty [36];

and of course, cluster computers are still applicable [1]. For commodity pricing, GPUs certainly bring a large

amount of processing power to the workstation of today’s researchers.

Though CUDA has made the use of GPUs much easier, it is not always obvious how one might utilise a GPU in

arbitrary simulations. There has been research towards automatic parallelisation in the past, and has typically made

use of domain-specific languages (DSLs) to expose this functionality [221, 244, 247]. DSLs are introduced in the

next section.

1.5 Domain-Specific Languages
A DSL is a programming language (interpreted or compiled) which serves within a certain, narrow target

domain [269]. Efficiency in the writing of code can be improved by using such a language [99]. The advantages

of using custom languages include concise code with a clear intention which is easier to understand and easier to

write. In addition, experts in the domain may not always be experts in programming. In these cases, a language

which applies naturally to the target domain will greatly assist. DSLs have been applied to ABM in the past, with a

prominent example being NetLogo [279]. Other ABM-related examples include the work of Franchi [70] and Hahn

[91]. DSLs are not new, but have received greater attention in recent years [269, 182].

Taha [273] notes the characteristics of DSLs as having:

1. A clearly defined target domain

2. Notation with a clear intent

3. Clear formal and informal semantics

Figure 1.3 shows example compiler architectures. These are by no means the only architectures, but are most

relevant to this work. Both Figures 1.3(a) and 1.3(b) show statically typed languages. What separates internal and

external DSLs is that an internal DSL is supported, created and managed by a general purpose language, such

as C++. Whereas in an external DSL, the language is completely standalone, and much more effort is normally

involved.

An example of a DSL for controlling a state machine might be that shown in Listing 1.1. Though this is only

a hypothetical example, the advantages of such a language would be very beneficial, should the expert using the

language be less familiar with programming. It affords a clearly recognisable intent which makes it much more

conducive to cooperation among experts than obscure code written in a powerful general purpose language.

DSLs are investigated in this dissertation for their ability to simplify a more complex algorithm, such as a model

parameter or structure optimiser. By hiding complexity from the user, a more usable library can be developed. This

idea is not without its disadvantages however. This is discussed in detail in Chapter 5.
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Parser

Typechecker

Code Generator

DSL Parser

DSL Typechecker

DSL Code Generator

special syntax encountered

general purpose code

(a) Internal DSL architecture.

Parser

Typechecker

Code Generator

special syntax

(b) External DSL

architecture.

FIGURE 1.3: The architectures of typical compiled internal and external DSLs. External DSLs essentially

follow the typical compiler architecture, except that it is newly made for a specific purpose. Internal DSLs

benefit from a (usually) pre-defined general purpose language, which is simply extended by an inner DSL.

1 I = compute_illumination_coef()

2 :activated_state

3 with probability b*I

4 goto inhibited_state

5 :inhibited_state

6 with probability d

7 goto resting_state

8 :resting_state

9 with probability a*I

10 goto activated_state

LISTING 1.1: An example hypothetical DSL for controlling

a state machine operating on a Markov Decision Process.

Given a domain-specific language (this section) to ease parallelisation (Section 1.4) of optimisation by evolution-

ary algorithms (Section 1.3), agent-based model calibration is made accessible, sufficiently fast, and effective. One

final aspect which was investigated was structural optimisation, made possible by the same set of concepts, aimed

towards combinatorial optimisation. The task of continuous and combinatorial optimisation in model calibration is

discused in the next section.

1.6 Model Calibration and Optimisation
Optimising the parameters of an agent-based model has been done by Genetic Algorithms [28, 250] and other

algorithms such as “Adaptive Dichotomic Optimisation” [29]. As long as a model can be measured in terms of how

well it satisfies an objective, an optimiser can be applied to calibrate parameters, as well as behaviour. Junges and

Klügl have investigated the optimisation of behaviour [137, 136, 134] using a variety of algorithms including some
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machine learning techniques and algorithms from decision tree induction, as well as Genetic Programming [149],

with varying success.

Identify Purpose of
Optimisation

Choose parameters
to optimise

Choose Fitness/Objective
Function

Investigate the stochastic
nature of the model

Determine how to explore
parameter space

Investigate complexity
and performance

High variability in runs

Average results over
several runs for each

evaluation

Yes

No

Use distributed
computing or fitness

approximations

Computationally
Expensive?

Choose number of
chromosomes

Run Algorithm

Yes

No

FIGURE 1.4: The process a reseacher would follow to calibrate a model using a continuous global optimiser,

based on the process outlined by Calvez and Hutzler [28] for Genetic Algorithms. Choosing the objective

function is a particularly difficult task, and then one must further decide whether to average the results to

eliminate stochastic influence. Finally, the parameter set of the optimiser must be satisfied, and computationally

expensive simulations need to be dealt with.

Figure 1.4 outlines model calibration by continuous global optimisation. Several aspects of this are worth noting.

Firstly, choosing an objective function is not trivial, and has a very strong influence on the final result. Secondly,

the process has the potential to become very computationally expensive, very quickly. A model simulation might

already be expensive to compute. For instance, a model with nagents = 1000 interactive agents. How many

time steps nt to compute for one run is also a question which only the researcher can answer. Suppose then that

there is some stochastic influence, which forces the result of every run to be averaged nav times. Further, for a

population-based optimiser there must be a set of np candidate model simulations.

Viewing an Agent-based Model and its parameters as an optimisation problem brings with it some computational

issues [28]. Firstly, an Agent-based Model is typically expensive to compute. Suppose a model has n agents, and

every frame, each agent must communicate with every other agent. This is at least n(n− 1)/2 interactions, and in

simple implementations, simply n(n− 1). In other words, such a simulation has complexity O(n2).

Depending on the model, not all of these interactions might be necessary [119], and can be eliminated, as in the

case when two agents only interact when they are within communication distance. As shown by the author, it is
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not trivial to eliminate this complexity, since each agent must still communicate in order to compute their relative

distance [119]. It is possible to use spatial partitioning techniques to reduce the complexity.

In order to accomplish the objective of automatic model structure optimisation, a suitable optimiser is necessary.

It is interesting to note that there are similarities in some population-based optimisers to ABM. For instance, the

Particle Swarm Optimiser (PSO) [142] maintains a population of real-valued candidate solution vectors which

interact in order to move closer to the global optimum. The Firefly Algorithm [299] is similar to the PSO, except

that its candidates observe others differently in the spirit of light intensity decay through a medium. Similar

complexity issues arise also, from interacting agents in ABM. Effectively, this allows us to view population-based

optimisers with interacting candidates as agent-based models, and similar data structures and algorithms can be

applied to improve their performance. Moreover, ideas and techniques from population-based optimisation can be

superimposed on ABM. This opens the door to inter-discipline synergy once more.

Using parallel computing is of particular interest in this work and the realm of ABM in general. Some models

(as shown above) have the potential to become very computationally expensive, and their optimisation even more so.

The use of graphics hardware to improve performance in this area has shown to be very effective, and is discussed

in detail in Chapter 2. It is further discussed in Chapter 6.

1.7 Summary
The core concepts used throughout this dissertation were introduced and discussed. These included agent-

based modelling, evolutionary algorithms, data-parallel scientific computing using graphics processing units,

domain-specific languages and finally model calibration which uses all the core concepts to its advantage.

There are some interdependencies among these also discussed in this dissertation, such as larger system

sizes in both agent-based models and population-based evolutionary algorithms being both facilitated using

graphics processing units (see Chapters 2, 3 and 4). Domain-specific languages are also useful not only for easing

parallelisation, but also for ABM in general (see Chapter 7), as a specific target domain. In addition, calibration is a

problem not only faced by ABM, but also by optimisers themselves. The process of calibrating a population-based

evolutionary optimiser is essentially equivalent to calibrating an agent-based model, and this is investigated in detail

in Section 3.5.



“People think mathematics is

complicated—mathematics is the simple bit. It’s

the stuff we can understand. It’s cats that are

complicated. What is it in the molecules that

makes one cat behave different from another cat?

How do you define a cat?”

John H. Conway

CHAPTER 2

PARALLEL AGENT-BASED MODELLING AND SIMULATION

Agent-based Modelling (ABM) is an exciting field of work. We are currently entering a phase where scientific

inquiry in certain complex systems is being bolstered significantly by generative modelling methodologies, where

macro-level phenomena are created “bottom-up”. The advantages here are certainly not without drawbacks,

however. One area which is of particular interest in this work is that of system size scaling. Increasing the scale

of an interactive agent-based simulation invariably leads to poor performance, and at times, to the point where

further investigation is stymied, or simply impossible. We are fortunate to have experienced significant advances

in data-parallel scientific computing in recent years. Unfortunately, these are not trivial to harness. This chapter

offers a detailed introduction to ABM in Section 2.1 followed by an introduction to the parallelisation of these on

Graphical Processing Units (GPUs) in Section 2.2.

Code examples are given in a language code-named “MOL”, a new domain-specific language for Agent-based

Models which is described in detail in Chapters 5 and 6.

The contents of this chapter extend work previously published by the author, in the IIMS Postgraduate Student

Conference Proceedings1, Proc. IASTED International Conference on Parallel and Distributed Computing and

Systems2 and also Proc. Int. Conf. on Modelling, Simulation and Visualization Methods.3

2.1 Introduction to Agent-Based Modelling and Simulation

THE TECHNIQUE OF ABM HAS REACHED A MILESTONE in recent years as a well-developed research

methodology in terms of practice [62, 47] and theory [185]. The work of Nobel laureate Thomas Schelling

in 1971 [253] set in motion the initial concept of ABM in social science, as credited by many [174, 287,

175, 23, 59]. The concept of decentralised control was already under investigation, given that John Conway’s

revolutionary Game of Life was published in 1970 by Gardner [75], which popularised cellular automata and

artificial life with similar concepts. The simplicity with which Conway’s Game of Life created complex macroscopic

1A. V. Husselmann and K. A. Hawick. Spatial agent-based modelling and simulations - a review. Technical Report CSTN-153, Computer

Science, Massey University, Albany, North Shore,102-904, Auckland, New Zealand, October 2011. In Proc. IIMS Postgraduate Student

Conference, October 2011
2A. V. Husselmann and K. A. Hawick. Simulating species interactions and complex emergence in multiple flocks of Boids with GPUs. In T.

Gonzalez, editor, Proc. IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2011), pages 100–107,

Dallas, USA, 14-16 Dec 2011. IASTED
3A. V. Husselmann and K. A. Hawick. Spatial data structures, sorting and GPU parallelism for situated-agent simulation and visualisation.

In Proc. Int. Conf. on Modelling, Simulation and Visualization Methods (MSV’12), pages 14–20, Las Vegas, USA, 16-19 July 2012. CSREA
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patterns interested many. Like Schelling, Conway did not use a computer, rather they used chessboards, graph

paper and coins.

The practice of ABM stems from earlier works in complex adaptive systems (CAS) [174], which are generally

concerned with the investigation of (usually biological) decentralised systems where constituent parts interact in

some manner. John Holland, inventor of the hugely popular Genetic Algorithm [107], was very influential in the

CAS literature [108].

Conway and Schelling’s works were followed by prominent works of authors such as Robert Axelrod [6].

During this time, an influx of scientific attention in this field surfaced. Agent-based Modelling became the name

for a somewhat expanded investigation of complex adaptive systems and related phenomena in a wide range of

disciplines [174]. Reynolds elegantly demonstrated precisely what agent-based models are capable of [240, 241]

towards the latter years of the 1980s. His model showed realistic flocking behaviour, with no central source of

control. At that time it became prudent to examine ABM more formally, which resulted in some success [236].

The lack of central control and successive interaction in these models makes mathematical analysis (and hence

formalisation) difficult. There has, however, been research in fields which share similar reactive-agent complexity,

such as population-based global optimisation [285]. For the time being, statistical analysis and experimentation are

the best tools for understanding agent-based models [233]. Further research continued in earnest in the 1990s with

the very prominent works of Axelrod and Epstein [7, 60], which cemented the use of ABM in the social sciences.

The uptake of ABM in social science [59] was more or less concurrent with that of ecology [89], albeit with

different terminology. In ecology, ABM was effectively named “Individual-based Modelling” (IBM) which has

in latter years been identified as equivalent to ABM [87, 233]. Similar concepts were in use, albeit with different

terminology suited to the individual discipline. A great deal of research effort has from early years been invested in

IBM [87]. Railsback and Grimm in their work of 2012 use the terms Agent-based Modelling and Individual-based

Modelling interchangeably [233], in some ways signifying inter-discipline unification; but it is worth noting that in

history, IBM has mostly been discussed in terms of ecology.

During the 1990s, while ABM was still spreading as a methodology [105], it started being perceived as

complete opposition to traditional methods [215] such as partial differential equations. In general, the generative,

“bottom-up” approach of ABM makes it naturally applicable to systems with interactive entities. It is perhaps

this natural application (notably different from equation-based approaches) which made ABM be perceived as a

“...‘third way’ of carrying out social science,” [80]. A recent article in the International Journal of Business and

Economics Research by Voicu and Galalae indicates in an opening statement that ABM and equation-based models

are essentially mutually exclusive [287]. Bonabeau however, makes the case that a model with differential equations

imposed upon its individual components is also an agent-based model [24]. All of these points considered, ABM

should be considered as another complementary piece of apparatus, instead of a competing alternative. There

are still situations where ABM is not applicable, especially when the purpose of a system is central control or a

deliberate lack of communication between constituent entities.

The overall efficacy of ABM as a technique for analysing phenomena with decentralised control and interactive

entities has attracted great interest from many research fields; and many models have been reported for simulating a

wide variety of phenomena, including social interaction scenarios [174, 8], crowds [163, 140], vehicles [77, 277],

robotics [261], predator-prey models [104, 257, 133], biological phenomena [73], and models casting light on

flocking behaviour [240, 241], as well as archaeology and anthropology [174]. ABM has even found use in cancer

immunology [66, 67]. Even though such widespread success has arisen, some issues remain, which stifle further

research built upon works of others.
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Due to the multi-disciplinary nature of ABM, it has conflicting definitions of key concepts. This is damaging

when trying to compare models in the same domain, or even trying to interpret results; not to mention that it stymies

multi-disciplinary cooperation. The concept of an “agent” for example, has been a contested concept for some time

[174]. Fortunately however, most authors tend to agree on key aspects [174]. Drogoul, Vanbergue and Meurisse

disagree, however, insisting that this consensus regarding terminology is “at best, syntactic” [50]. During the time

which ABM was not yet fully interdisciplinary, it seemed reasonable to define terms which suit the application

domain at hand. For example in economics, Das asserted that agents have some level of bounded rationality [45].

Ferber [62] concedes that the term “agent” is used with little or no definition in some disciplines, and proceeds to

give a list of 9 attributes which define an agent. In the future, it seems more probable that a hierarchy of theory

will present itself, with a general theoretical knowledge base, with more specific specialisations and formalisms in

specific domains. Theoretical apparatus such as Belief-Desire-Intention agents [237] and the X-Machine formal

agent description [37] gives hope in this area.

There has been much confusion with the definition of the term “agent”, as exemplified by a remark of Carl

Hewitt4 who pointed out the equivalence between the question “What is intelligence?” in the AI community and

“What is an agent?” in the ABM community. It seems that the best (albeit not universally optimal) definition can be

constructed from the most widely used attributes and qualities of relevant models. The recent work of Macal and

North identifies five characteristics that seem to be the most common [174] in recent literature5:

1. Identity - Agents must be identifiable, discrete individuals

2. Situation - Agents are situated in some fashion

3. Goal-oriented - Agents have goals to achieve

4. Autonomy - Agents are autonomous and may operate independently

5. Learning - Agents could potentially learn and adapt

Emergence is another contested term in interaction-based simulations6. Reynolds’ flocking simulation [241]

demonstrated the ability of three simple local interaction-based rules which generate perhaps inexplicable complex

patterns. Conway’s Game of Life [75] also caused macroscopic complexity to emerge, which was not directly

specified. These features were termed “emergence”. Epstein notes that the term was often mystified during times

before complex systems were dealt with [59], and notes an early use of the term in the example of bond formation

between Oxygen and Hydrogen atoms, which was often assumed to be fundamentally unexplainable [59].

At present, emergence is certainly still a contested term. However, from a pratical point of view, it is typically

used to refer to macro-level patterns of behaviour which were not necessarily directly engineered, or noticeable in

designed local interaction specifications [60]. Figure 2.1 shows an example of what such simple local interaction

rules can generate. Each agent has simple reactive rules depending on the spatial configuration of other agents in

its immediate neighbourhood. The link between emergence and autonomy of interactive agents seem undeniable.

It would be extremely difficult to generate dynamic macroscopic patterns such as these using a central controller.

Macy and Willer in 2002 remarked that if Reynolds had instead pursued a central controller or “top-down” algorithm

for flocking behaviour, “he might still be working on it” [175].

4At the 13th Int. Workshop on Distributed AI, cited in Wooldridge and Jennings’ work, Intelligent Agents: theory and practice [295].
5This definition of agents is adhered to as much as possible in this work.
6As with other terms, the term “emergence” is also poorly defined, and perhaps altogether inappropriate [59].
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There are other methodological issues which arise in the use of ABM in practice. For instance, there is a

certain level of programming knowledge that is necessary for researchers to use ABM to their advantage [212].

Many software packages have emerged over the last decade to attempt to allow re-use of knowledge and reduce

the steep learning curve associated with custom-developed software. These include platforms such as RePast

[38], SWARM [186, 276], MASON [169], FLAME GPU [244], and NetLogo [279], among others. Each of these

software packages have their own merits. Railsback et al. compared these in detail [234].

FIGURE 2.1: An example of emergence: macroscopic patterns which are seemingly unrelated to underlying

interaction rules emerge. This image was generated using a modified Flocking simulation.

There is also the consideration of implementing agent-based models, and methods vary considerably. There

have been models where agents are represented by lists of rules [258], finite state machines [125] and situated in

continuous space [115] or discrete lattices [113]. From a practical standpoint, the details of implementation are

certainly not to be ignored. Sometimes these specifics can have a considerable effect on the model itself, which

was a concept which made many early researchers in the field of ABM concerned and uneasy [89]. Now, there are

several methods of implementation, and each is more suited to certain domains than others. Proto [18] for instance,

is specific to the field of spatial computing and sensor networks, but its paradigm can also be used for ABM [282].

For more general agent-based models, NetLogo [279] contains a special limited Domain-Specific Language (DSL)

which is used to specify agent behaviour, whereas in RePast [38] agents are defined using Java, a general purpose

language. The spatial configuration of agents is also important [174]. As for how agents are situated, Figure 2.2

shows a selection of configurations. A focus is given to discrete lattice spaces, where individual sites are able to

contain an agent which is free to move to other sites and interact with other agents.

Implementation and frameworks aside, by considering agent-oriented systems already discussed in the literature,

one can obtain an appreciable idea of the wide variety of models that have been created which satisfy (at least

partially) the most common definitions of ABM concepts and certainly also gain a sense of precisely how flexible

ABM is.
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FIGURE 2.2: Spatial topologies of agent-based models: network, lattice and continuous-space. Models based

on these different topologies vary considerably.

It is prudent to further the introduction on ABM with suitable examples. In the following sections, Conway’s

Game of Life is explained in detail, followed by Reynolds’ “Boids” simulation, the Predator-Prey model and a short

discussion on spatial computers. Conway’s Game of Life is formulated on a “lattice”, or checkerboard, whereas

Boids is formulated in continuous space. The Predator-Prey model discussed here is formulated on a lattice, though

it can also be formulated in continuous space. Spatial computer nodes communicate by local radios. All of these

are excellent examples of how simple local interaction rules can lead to complex macroscopic behaviour through

successive agent-agent interactions in different spatial configurations.

2.1.1 Conway’s Game of Life

The pioneering work of Conway resulted in a fascinating “mathematical game” in 1970, published by Martin

Gardner [75]. Conway’s work was predominantly in pure mathematics. The “Game of Life” resulted from a past

time of Conway which was what Gardner called “recreational mathematics”; the results of which Conway almost

never published. Even in recent years, Conway’s Game of Life still inspires research [103, 94].

The game is played on a large checkerboard with counters (“cells”), starting with a random or predetermined

number of live, and empty cells. The rules are extremely simple and elegant, and were given by Gardner as:

1. “Survivals”. A cell survives if it is neighboured by two or three other cells.

2. “Deaths” (overcrowding). A cell dies if it is neighboured by four or more cells.

3. “Deaths” (isolation). A cell dies if it is neighboured by one or zero cells.

4. “Births”. If an empty cell has exactly three live neighbouring cells, it will become a live cell.

Figure 2.3 shows 14 time steps (or “generations”) of the Game of Life starting with a simple hand-made pattern.

The initial configuration becomes stable after 13 steps. It is certainly difficult to predict without simulation whether

a pattern will become stable, and in what configuration. These are two of the objectives Conway had in mind while

designing the rules of the game [75].
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FIGURE 2.3: An example of Conway’s Game of Life with an initial pattern that becomes stable after 13 steps.

1 defvar c = get neighbour count

2 if current site == 0 then

3 if c == 3 then

4 comealive

5 end

6 else

7 if c >= 4 then

8 die

9 elseif c <= 1 then

10 die

11 end

12 end

13 end

LISTING 2.1: A simple implementation of Conway’s Game

of Life, written in the MOL language (see Chapters 5 and 6).

The code shown in Listing 2.1 generated the images shown in Figure 2.3. This language is discussed in great

detail in Chapter 5. The same code is executed for every site in a lattice of 32 by 32 cells, where a value of 0

indicates a dead cell, and 1 indicates a live cell. What makes this directly related to ABM is the fact that cells

are autonomous and local interactions decide their fate. Although cellular automata is different in purpose and

general formulation to the practice of ABM, it embodies some of the most basic apparatus which ABM relies on

fundamentally: autonomy, interaction, spatial situation, and also emergence. For this reason, it is included here as

part of introduction to ABM. Emergence in the Game of Life refers to the overall macroscopic patterns which are

not predefined, but rather, they emerge from the predefined rules for each individual cell.

Conway’s Game of Life takes place on a lattice, therefore, it is also relevant to discuss agent-based models

which operate in continuous space. The work of Reynolds on flocking simulations is an ideal example of this, and

is discussed in the next section.

2.1.2 Flocking Simulations

Agents in ABM are typically represented by a set of rules for their behaviour, or a decision tree, or a finite state

machine. For Conway’s Game of Life, rules are enforced simply by testing a list of rules and executing the first

action which has a satisfied precondition. In the case of the “Boids” simulation, each agent is endowed with three

simple deterministic vector-based rules [240]: cohesion, alignment and separation, which are each applied in turn
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without fail (except where no agents are in communication distance). The original Boids algorithm is summarised

in Algorithm 1.

initialise N boids in continuous space.

for i← 0 to iN−1 do
gather agents into set C that are within communication radius of agent iN
Rule 1: compute relative vector to centre of mass Vc of boids in C

Rule 2: compute average velocity vector Vv of boids in C

Rule 3: compute separation vector Vs of boids in C which are in the separation radius

new V ← V0 + Vs + Vc + Vv

end for

ALGORITHM 1: The original Boids algorithm by Reynolds [240].

Apart from these rules, agents have bounded knowledge of their surroundings and the environment. Each agent

may only perceive of other agents within a certain radius, and a view restricted to a forward-facing spherical sector.

Bounds on knowledge of an agent is important not only in simulations such as these, but also in economics [45].

In summary, the rules of the original Boids model are [240]:

1. “Separation”: Avoid crowding local agents.

2. “Alignment”: Attempt to match the average heading of local agents.

3. “Cohesion”: Tend towards the centre of mass of local agents.

By maintaining a velocity for each agent, one simply adds a vector contribution of each of these rules. The result

of which, in 1987, was astonishing [240], and was described as “emergence” for emerging from the successive

complex interactions within a group of autonomous agents. These rules do not obviously indicate the macro-level

behaviour associated with them. Common across the rules above is that they all involve only local agents: agents

within a certain distance (and heading as in the original). But when all agents interact with their local counterparts,

they create a global pattern, which at first, seems to indicate a collective unity; as if there was only one agent. This

is indeed noticeable in nature, when fish school together and sometimes assume the movements and shape of a

much larger fish [76]. Attempts to take advantage of this led to the concept of holonic multi-agent systems, which

Gerber, Siekmann and Vierke define as a multi-agent system where certain agents deliberately lose some of their

autonomy in order to become part of a “super-agent” or “holon” [76]. Multi-agent systems are closely related to

ABM, but more directly to distributed artificial intelligence [50, 62].

Figure 2.4 shows an example of a modified Boids simulation with multiple flocks, identified by their respective

colours. An analysis of this model is available [115]. The difference between this model and the original Boids

model is simply ignoring nearby agents which are of foreign flocks. Nevertheless, interesting behaviour ensues

when these flocks interact, especially when they repel, rather than simply ignoring each other. This is yet another

example of emergence, though the outcome from such a simulation is perhaps more easily predicted.

It is also necessary to consider precisely how computationally expensive such a model is to execute. An

immediate application of this algorithm is crowd simulation [140, 241] in films. A number of agents such as 2000

in Boids would begin to stretch the limit of a single-threaded implementation. It is not realistic to ignore the
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FIGURE 2.4: The Boids model with separate flocks which repel foreign agents and attract like agents.

possibility that one may require a crowd much larger, perhaps 106 or even more. Section 2.2 deals with this in

detail.

Another example is the Predator-Prey model [104, 257]. This model is interesting for several reasons, including

its application to ecology, as well as its ability to benchmark some machine learning algorithms. This model is

discussed in the next section.

2.1.3 Predator-Prey Models

The Predator-Prey model is essentially a “food chain” simulation which stems from the independent works of

Lotka and Volterra early in the 20th centuary [166, 288]. There are many varieties of these simulations with small

differences in formulation, but in general they are helpful for ecological inquiry as well as benchmarking machine

learning algorithms [171]. Important discoveries have also been made, such as the fascinating work of Jim and

Giles, in which they discovered, quite simply, that “talking helps” [133]. By which the authors meant that when

predators communicate using a simple language, they can help coordinate their efforts successfully.

In Predator-Prey models, two types of individuals exist, named predators and prey. Predators pursue and kill

prey, and prey attempt to escape from the predators. Typically, this is formulated on a closed lattice or in continuous

space, frequently with periodic boundaries. Predators breed depending on how successfully they kill the prey,

and/or spatial proximity to other predators, or simply by a constant probability. The precise formulation of the

model depends on its purpose. There have been studies on food webs [102, 232], multiple species [101, 100],

spatial emergence [104] and altruism [257].

Figure 2.5 shows a plot of the proportion of prey and predators in the lattice. It is interesting to note that, with

some random variation, the difference between the curves is essentially amplitude and phase, even though only one

species can consume the other. The formulation of this simulation was very simplistic. The code for this model is

shown in Listing 2.2. As with Conway’s Game of Life, this particular implementation is formulated on a square
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FIGURE 2.5: A plot of the predator and prey lattice coverage. Interesting in this plot is that the number of prey

and predators essentially only differ by amplitude and phase.

lattice, but 64 by 64 cells. Each cell can contain either a predator, or a prey animal (these “artificial animals” are

termed “Animats” in many Artificial Life publications [101, 257]). A summary of the rules, as implemented in

Listing 2.2, is given in Tables 2.1 and 2.2. A rule is tested and executed if its precondition is satisfied, otherwise,

the next rule is evaluated, until all rules have been tested, or one rule has been executed.

Rule Precondition Action

1 Surrounded by 4 other predators Die

2 random number < 0.1 Breed

3 true Move towards closest prey

TABLE 2.1: A set of predator rules for the simple Predator-Prey model.

The autonomy and local interaction of the predators and prey classify the model as agent-based. By the

definitions of Macal and North [174], predators and prey have identity, being discrete individuals. They are also

situated on a lattice, and are clearly goal-oriented. They behave independently of each other, on their individual

spatial arrangement, therefore they have autonomy, and finally, they do have potential to learn, depending on

how the model is formulated. For example, when using the Predator-Prey model for evaluating machine learning

algorithms, predators can learn to communicate [133]. Simpler formulations such as the one described here, do not

include learning.

Again, the purpose of a model determines how its analysis will proceed. In this case, the numbers of the

different species (predators and prey) are collected. Quantitative analysis is important, but often one can obtain

useful insight from qualitative sources. Visualisation is a very good source for obtaining feedback during the
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Rule Precondition Action

1 Closest predator is adjacent and 10% chance Die

2 A predator is close Move away

3 Surrounded by 4 prey Die

4 random number < 0.3 Breed

5 random number < 0.5 Move randomly

TABLE 2.2: A set of Prey rules for the simple Predator-Prey model.

1 mol
2 defvar count = 1
3 defvar pred = 1
4
5 query neighbours6
6 if neighbour == 1 then
7 count = count + 1
8 else
9 if neighbour == 2 then

10 pred = pred + 1
11 end
12 end
13 done
14
15 defvar predator = 2
16 defvar prey = 1
17
18 if me == predator then
19 if pred >= 4 then
20 die
21 else
22 if randomfloat < 0.1 then
23 breed
24 else
25 defvar temp = get closest prey()
26 move towards temp
27 end
28 end
29 end
30
31 if me == prey then
32 defvar closestpredator
33 = get closest predator ()

34 if (distance to (closestpredator)) < 2 then
35 if randomfloat < 0.1 then
36 die
37 end
38 else
39
40 defvar closestprey = get closest prey ()
41
42 if (distance to (closestpredator)) < 3 then
43 move awayfrom closestpredator
44 else
45 if (count > 4) then
46 die
47 else
48 if randomfloat < 0.3 then
49 breed
50 else
51 if randomfloat < 0.5 then
52 move random 4
53 end
54 end
55 end
56 end
57
58 end
59 end
60 end

LISTING 2.2: A simplistic variant of the
Predator-Prey model, written in the SOL DSL
(see Chapter 5) for a variant of the Predator-
Prey model.
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modelling process. This is discussed in section 2.1.5.

2.1.4 Amorphous Computers

To illustrate the interconnectedness of ABM as a methodology and perhaps more as a “mindset” [24], spatial

computers, and, more specifically, their amorphous medium abstraction [17], present a direct application of multi-

agent systems. Amorphous computing is a fascinating concept, where severely limited computing nodes strewn

across an area communicate and tolerate communication errors, sensor inaccuracies and even total node failure

[39]. While not immediately obvious as an ABM methodology, the simulation of such a system is an agent-based

model simulation, one of a network-space agent model. Simulating such systems can be a very useful tool to assist

in designing them. There are several characteristics in a simulation of an amorphous computer that are related

to similar concepts in ABM. Firstly, individual components in the computing medium of nodes are autonomous

and operate independently, occasionally communicating with each other locally. Moreover, the nodes are spatially

situated.

Researchers at MIT have developed a language and simulator known as Proto [15, 10]. The language itself is

LISP-like, and initially intended for prototyping sensor networks. However, with more recent modifications, it is

able to simulate actuators as well, in order to simulate robot teams [10]. Proto also supports compiling for actual

sensor network nodes which can be deployed.

The effort expended by research teams in this area can, in the most part, be considered when performing ABM.

It is possible to implement certain agent-based models in this spatial computing paradigm. Some researchers have

already begun to explore the advantages and disadvantages of re-using this research effort in other domains, notably

Multi-agent Systems (MAS) and ABM [282, 260].

FIGURE 2.6: A time lapse image showing several screenshots of a Particle Swarm Optimiser written in Proto.

Figure 2.6 shows a deliberately slowed Particle Swarm Optimiser (PSO) running in the Proto simulator. This

serves as an indication of what Proto is capable of. Proto was even released with an example program of flocking.

Briefly, agents in the simulation of the PSO shown in Figure 2.6 communicate with each other up to a limited

distance, and share information about their spatial position. In this case, the absolute coordinates in the system are

used as the input variables to a 2-parameter, real-valued objective function. Agents indicate themselves as having

the best neighbourhood fitness by switching on a green light, at which point, other nearby agents move towards

them with some random variation, in the spirit of the PSO. Optimisation algorithms such as the PSO are discussed

in detail in Chapter 3.

2.1.5 Visualisation and Analysis

In order to speed and improve the understanding of a model beyond empirical observation, it is prudent to quantify

the simulation of an agent-based model as a whole. This also serves to convey its purpose, which should almost

never be simply “realism” [87]. Simple clustering and histogramming (shown in Figure 2.7) are simple techniques

to obtain spatial configuration information [115]. Often however, the statistic gathered depends on model purpose,
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such as in modelling Photobioreactors [95, 125] where accurate growth rate is the objective. The popular modelling

platform NetLogo [279] has even enjoyed the addition of a statistical computation facility [278] for this purpose.

Simple spatial clustering and histogramming can be useful, and serves to indicate the usefulness of other tools to

obtain information describing spatial configurations. An example of spatial histogramming is shown in Figure 2.7,

in which a simulation of Boids in continuous space was executed. The left image shows the 3D space randomly

initialised with Boids. Each cuboid in the space indicates the presence of an agent, and its colour indicates the

number of agents in that cell. Agents were directed towards the centre of the large 3D cube by an additional “goal”

rule. The right image shows the same system several time steps later.

FIGURE 2.7: Visualisation of a sample spatial histogram of a Boids simulation.

Figure 2.8 shows a plot of cluster counts obtained by using a component labelling algorithm on the 3D

histogramming data. As the agents tend toward the centre of the cube, the cluster count declines, and tends

towards 1. Each curve represents a different number of agents at initialisation. Around frame number 1000, all

configurations tended to form 1 cluster. The geometry boundaries were not changed, which caused density to

increase linearly with system size, which then caused this effect.

Visualisation is an effective tool for gaining valuable insights in the process of an experiment [106], and

specifically with regard to ABM [148]. It is usually somewhat trivial in 2D plane lattice-based simulations and

spatial simulations, however, 3D lattices are more difficult to visualise since it is typically only the outer layers that

are visible. Programs such as Cubes [93] allows the operator to obtain crossections of a 3D dataset. Figure 2.9

shows different rendering methods of an agent-based photobioreactor model7. In this case, coherent clumps of

biomass are more important than the cells which are contained within them. The model which produced this image

is discussed in detail in Chapter 7.

2.2 Introduction to Parallel ABMS (I, p. 11)

It is well known that processor manufacturers are not increasing clock speeds further, instead, they are adding

cores and concentrating on Single-Instruction Multiple-Data (SIMD) architectures [221]. Aside from multiple

cores, there are other parallel processors in common desktop machines such as Graphical Processing Units (GPUs).

7This is related to the models developed in Chapter 7.
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FIGURE 2.8: Cluster counts obtained from a Boids simulation using a simple component labelling algorithm.

An additional rule directs all agents toward the centre of a cube, which is why the cluster counts tend towards

one.

(a) An isosurface rendering where clumps of biomass are

rendered as surfaces using a Marching Cubes algorithm

implementation in a superficially modified NVidia CUDA

sample program [202].

(b) A point-rendering visualisation method using cubes to

indicate cell occupation.

FIGURE 2.9: Example renders of an agent-based photobioreactor model.
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GPUs were designed for processing mass numbers of pixel data as quickly as possible, and as such, they have

evolved over several years to become massively parallel devices, capable of assigning a single lightweight thread to

every pixel. As researchers have discovered decades ago, this pixel data need not necessarily be image data, rather,

scientific data.

Several authors have reported the use of GPUs for accelerating simulations, including simulations of agent-based

models. For example, particle based simulations [84, 203], Tuberculosis modelling [51], marketing [287] and

photobioreactors [125] as well as platforms for accelerating ABM generally [246, 245, 1, 220]. Earlier platforms

such as MASON [169] in 2005 supported a maximum of one million agents, provided the visualiser was disabled.

But the parallelisation of agent-based models was likely conceived in concept much earlier in 1994, when Mitchel

Resnick published “Turtles, Termites and Traffic Jams: Explorations in Massively Parallel Microworlds” [239].

Resnick notes on page 45 that while parallelism has received much interest in the 1980s and 1990s, his goals (for the

educational package “StarLogo”) were in fact to support discrete event simulation, where some events must occur

simultaneously. Similar concepts and difficulties surfaced in the study of long-standing cellular automata [102],

which did result in some research towards parallelisation across, for example, Transputers [30] in 1995. Desktop

hardware is perfectly suited to simulating small scale agent-based models, but larger scale models requiring several

thousand agents have remained out of reach for some time. This has prompted research by authors such as Scheffer

et al., who devised an approximation to several agents known as “super-individuals” [252], which is reminiscent of

the concept of a “holon” [76].

More recently, in 2006, Scheutz and Schermerhorn investigated algorithms for automatically parallelising agent-

based models across multiple CPUs, thereby saving the ABM researcher the burden of improving performance

manually [254]. Despite this advancement, in 2008 researchers at Oak Ridge National Laboratory stated their belief

that research in ABM is starting to become stymied by lack of speed and scale; they then introduced the use of

GPUs for improving the performance and scaling characteristics of ABM [220], and later, multiple GPUs [1]. In

the same year, Lysenko and D’Souza also published a framework for ABM on GPUs [172]. What is clear is that

the driving force behind these improvements is a general interest in massive scale and the potential discoveries to

be made within.

While the focus here is on the use of fine-grained parallelism using GPUs, it is important to not ignore multi-core

processors which are also present in the average desktop computer. Chitty asserts that a carefully written program

can extract performance similar to that of GPUs [36] from multi-core CPUs; a provocative statement which in

the least forces one not to disregard multi-core CPUs as a method of improving performance. In this dissertation,

GPUs are studied for their intensive use later in Multi-Stage Programming and run-time code generation. In this

dissertation, performance tuning is necessary to ensure that model structure optimisation efforts in later chapters

can be computed in reasonable time. Computing expense in this research is a significant burden.

2.2.1 Compute Unified Device Architecture

NVIDIA’s Compute Unified Device Architecture (CUDA) is a potent arrangement of hardware and software

extensions designed to streamline general purpose use of NVIDIA’s graphics hardware [202]. It makes available a

comprehensive back-end library and a compiler (known as nvcc) which filters out special additional syntax to C,

and compiles them to CUDA PTX instructions [201]. PTX is the intermediary single static assignment language

which is later compiled (as needed) into device specific machine code. The syntax additional to C makes available

a mechanism by which to launch code on devices known as “kernels”. Additional functions from the CUDA library

are also linked automatically to allow copying memory to and from the devices, as well as a host of other functions.
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The flowchart shown in Figure 2.10 shows one process which a simulation typically follows when using an NVIDIA

GPU.

Allocate Space

Initialise Data

Perform Pre-processing if any Copy Data to Device

Launch Kernel

Copy Data to Host

General Host Code CUDA Specific Code

Allocate Space in Device Global Memory

Output / Visualisation

For Simulation

Finish

FIGURE 2.10: A flowchart indicating the process that an application typically follows when using an NVIDIA

GPU.

This is not the only process, however. It is also possible to use page-locked host memory to map host memory

space directly to device memory space, streamlining the data copy across the PCI bus, which is a very time

consuming process [202]. To illustrate the process shown in Figure 2.10, a simple minimal program for computing

the sum of two integer vectors on an NVIDIA GPU using CUDA is shown in Listing 2.3.

Lines 4–7 defines the CUDA “kernel” which executes directly on the device, and line 28 shows how it is

launched using special syntax. These lines are pre-processed by the nvcc compiler before the rest of the code is

passed to the system C/C++ compiler. More sophisticated examples are distributed in the CUDA SDK [202].

The numbers between the <<< >>> brackets indicate the thread grid configuration. The thread grid is

essentially a hierarchy, determining the number of logical threads to execute. The grid is further subdivided into a

series of blocks, each of which can contain up to a maximum of 1024 threads at the time of writing. The grid and

the blocks within it may be 1D, 2D, or 3D.

The width, height and depth of the blocks may vary, as can the grid, provided boundaries are not exceeded.

These tend to differ depending on the device. CUDA devices are also built with a certain number of Streaming

Multiprocessors (SMs), which again vary depending on the device. Each SM may process one block of threads at a

time, occasionally switching to another incomplete block in order to hide memory latency. It is important to note

that the grid and the blocks within it are not purely hypothetical. Blocks are executed in arbitrary order by different

SMs, each of which has a certain number of floating point and double precision units, local memory banks, and

shared memory banks, as well as other cache units. Therefore, a single block must adhere to the limitations of a

single SM. This may sound daunting, but among all the restrictions and limitations of the CUDA architecture lies

the power of a massively powerful processor which, with a well written program, can be effectively harnessed.

Complete details and more can be found in the CUDA C Programming Guide [202], key points are extracted here.
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1 #include <stdio.h>
2 #include <assert.h>
3
4 __global__ void cuAddVectors(int* a, int* b, int* result, int count) {
5 int tx = blockDim.x*blockIdx.x + threadIdx.x;
6 if (tx < count) result[tx] = a[tx] + b[tx];
7 }
8
9 int main() {

10 const int count = 256*8;
11 int* h_a = (int*)malloc(sizeof(int) * count); int* d_a = NULL;
12 int* h_b = (int*)malloc(sizeof(int) * count); int* d_b = NULL;
13
14 int* h_results = (int*)malloc(sizeof(int) * count);
15 int* d_results = NULL;
16
17 assert(h_a && h_b && h_results);
18 assert(cudaMalloc((void**)&d_a, sizeof(int) * count) == cudaSuccess);
19 assert(cudaMalloc((void**)&d_b, sizeof(int) * count) == cudaSuccess);
20 assert(cudaMalloc((void**)&d_results,sizeof(int) * count) == cudaSuccess);
21
22 for (int i=0; i < count; ++i) { h_a[i] = i; h_b[i] = 1; }
23 assert(cudaMemcpy(d_a,h_a, sizeof(int)*count, cudaMemcpyHostToDevice)
24 == cudaSuccess);
25 assert(cudaMemcpy(d_b,h_b, sizeof(int)*count, cudaMemcpyHostToDevice)
26 == cudaSuccess);
27
28 cuAddVectors<<<256, 8>>>(d_a,d_b, d_results, count); assert(cudaGetLastError()
29 == cudaSuccess);
30
31 assert(cudaMemcpy(h_results,d_results, sizeof(int)*count, cudaMemcpyDeviceToHost)
32 == cudaSuccess);
33 for (int i=0; i < count; ++i) {
34 if (h_results[i] != i+1) {
35 printf("Failure.\n");
36 return -1;
37 }
38 }
39
40 cudaFree(d_a); cudaFree(d_b); cudaFree(d_results);
41 delete[] h_a; delete[] h_b; delete[] h_results;
42
43 printf("Success\n");
44 return 1;
45 }

LISTING 2.3: A minimal program for computing the sum of two integer vectors on an NVIDIA GPU using
CUDA 5.0.

A pseudocode kernel for the Boids model is shown in Listing 2.4. This code incorporates a technique known

as “tiling” [154, 203, 222] for caching global memory to a faster shared memory bank within the SM a block

is executing on. Global memory is notoriously expensive to access, often ranging in hundreds of clock cycles

[202]. Moreover, memory accesses occur in fetches of a certain number of bytes, of which most can be wasted by

uncoalesced memory accesses. At present, memory accesses are of a fixed size, and the more threads which can

complete their memory fetches using the same fixed size memory fetch, the faster memory accesses will be. When

threads have completely separate memory fetches in separate parts of memory, this is termed as a lack of coalesced
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1 __global__ void boid_kernel(positions,velocities) {
2 // compute scalar index from threadIdx and blockIdx
3 for (int i=0; i < (N/tile_size); ++i) { // for every tile
4 // load tile into memory
5 __syncthreads();
6
7 for (int j=0; j < tile_size; ++j) {
8 // compute additions to centre of mass calculation
9 // compute additions to average velocity calculation

10 // compute additions to avoidance calculation
11 // increment count of agents in local neighbourhood
12 }
13 __syncthreads();
14 }
15
16 // add centre of mass contribution to my_velocity
17 // add average velocity contribution to my_velocity
18 // add avoidance calculation to my_velocity
19
20 // compute new position by simple Euler method
21 my_position = my_velocity * new_velocity_ratio + my_position
22
23 // check boundaries
24
25 // copy new position and velocity into new device vector
26 }

LISTING 2.4: An interaction CUDA kernel for the Boids model.

reads.

Warp divergence is also an issue: maximum performance tends to be reached when threads execute the same

instructions. Threads which are not in the same context as others are simply disabled and essentially execute

NO-OP instructions until they are back in context. In some cases, global memory accesses can be “hidden” by

the warp scheduler. This occurs when there are sufficient warps ready for instructions while others are waiting for

memory fetches.

Some simple performance data was gathered for the Boids simulation, across a range of NVIDIA graphics

hardware and a range of system sizes. This is shown in Figure 2.11. As a very rough comparison, the NetLogo

(version 5.0.4) Java platform for ABM appears to compute one frame of the included Flocking model with 3000

agents in 0.05s, well above the starting mark of the GPUs.

From a practical standpoint, other matters need to be considered for effectively harnessing the power of GPUs.

Apart from “tiling”, it is also necessary to consider how random numbers can be generated on the GPU [161].

Should only one or two random numbers be necessary, it is possible to copy high quality host-generated random

deviates onto the global memory of the device, but if any number of random numbers could be used, then this will

quickly become inefficient and impractical. Various methods are possible including using CURAND (distributed

with the CUDA SDK) [97], as well as copying several separate generator internal states to the device. As in all

cases, care must be taken in order to ensure a sequence of decorrelated deviates.

It is sometimes necessary to synchronise threads, as in the case of tiling. At first glance, the syncthreads()

internal device function call shown in Listing 2.4 is perhaps misleading. This barrier sync applies to the threads

within a block only. By design, it is not possible to synchronise threads across blocks, since the CUDA programming

guide states that blocks must be executable independently and in an undefined order [202]. This has far-reaching
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FIGURE 2.11: Performance by system size across a range of NVIDIA graphics hardware.

implications, and must be taken into account during development. It is worth noting that should inter-block

synchronisation be necessary, it is possible to synchronise between CUDA kernels when control returns to the host

processor.

FIGURE 2.12: One million particles running a simple Boids simulation, rendered and computed in real time

using CUDA, spatial partitioning and a simple point-rendering pixel shader technique.

Figure 2.12 shows one million Boids, which was rendered in real time. A fast point-rendering method using

pixel shaders was used to render the image quickly, and to improve the performance of the algorithm, redundant

interactions were removed using a spatial partitioning algorithm [119]. Spatial partitioning for reducing redundant

interactions is introduced in the next section.
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2.2.2 Spatial Partitioning

In cases where a large number of agents are present, and each has a relatively small interaction distance, there is a

very large number of redundant interactions taking place. Every agent must effectively communicate with each

other, regardless of their spatial location, regardless of whether they will actually interact. In the case of Boids,

every agent must iterate over all others and compute a distance in order to determine which agents to interact

with. While these are simple communications, the sheer number of these cause a considerable effect on overall

performance.

Spatial partitioning [96, 204] was under investigation decades ago, as early as 1985 when Appel proposed the

first multipole partitioning method [3] for N-body simulations, with some subsequent developments [265]. The

N-body simulation often sees use as a computing benchmark [203, 222]. Other methods of mitigating the so-called

“all-pairs” issue surfaced including the Barnes-Hut method [12], tree organisational methods [290] including Octrees

[291], K-D trees [44, 297] (shown in Figure 2.14), Kautz trees [303], Adaptive Refined Trees [152], and more.

K-D trees are especially popular for ray tracing applications [44]. Some of these are suitable for particle-based

simulations, where high density is not an issue, and others perform best when agents or particles are approximately

uniformly distributed across space, and some are approximations trading some precision for speed by treating dense

space as point masses (particularly of interest in Astrophysics), similar to the ideas of Scheffer [252], although for

a different purpose. The choice of spatial partitioning algorithm therefore certainly depends on the purpose of the

simulation.

A problem domain which had a particular role in the development of these techniques is collision detection in

computer science [204]. Another O(n2) complexity issue. While this problem has great importance in simulations

of physical objects, these ideas are also applicable in several other domains [204]. In the case of this work,

interactive agent-based simulations.

The uniform grid partitioning method [61, 96] is a particularly simple algorithm among other spatial partitioning

algorithms, but its simplicity lends itself well to exploitation on GPU [84], both during construction of the

datastructure, as well as the actual use of it for lookup procedures. This is fortunate considering that certainly not

all space partitioning algorithms respond well to parallelisation [204]. The rest of this chapter makes use of this

conceptually simple algorithm to improve system scaling characteristics of the Boids model.

(a) Screenshot of the Boids simulation. (b) Boids with a uniform grid visualisation superimposed

upon it.

FIGURE 2.13: Flocking: Visualisation of a uniform grid partitioning scheme over a set of agents.
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(a) First 3 axis splits of the kD tree. (b) Full kD tree.

FIGURE 2.14: Flocking: Visualisation of simple and complex constructed k-D trees.

Even more fortunate is the fact that the uniform grid datastructure can be constructed on GPU, where it would

be used, as Green demonstrated elegantly [84]. A GPU-based implementation of this is shown in Algorithm 2

which is heavily based on the implementation of Green’s particle simulation, but adapted for Boids [84]. The way

in which space is partitioned is straightforward, and shown in Figure 2.13.

The algorithm shown in Algorithm 2 is very similar to the method which Green used to accelerate a particle

simulation demonstrating collision detection using CUDA [84]. In his simulation, collision detection ensured

that spatial density was not an issue. As seen in the algorithm shown for Boids, most computations are done in

parallel, such as hash computations, sorts by hash key, populating boxStart and boxEnd with indices of present

agents, scatter writing all boids to their hash-key array location, and finally, computing interactions using another

CUDA kernel.

In the main loop of the algorithm, hashes are first computed for all agents. The hashes are simply Morton codes

in order to accomplish Morton ordering. Morton ordering (or Z-ordering) is a space-filling curve used to ensure that

stored data reflects spatial locality [176]. In this case, the Morton codes are computed by the spatial location of the

agent in a uniformly divided grid. This method helps greatly to reduce costly additional memory fetches in CUDA.

The indices array is simply filled with a zero and the sequence of positive integers. This is so that the sequence

of hashes can be sorted while still keeping track of which agents they refer to. After the hashes and indices arrays

have been sorted by hashes, then another CUDA kernel populates an array of grid box starting and ending indices.

These arrays are used by the interaction computing CUDA kernel. By iterating over agents beginning from the start

to the end of the box indices provided, many redundant interactions can be eliminated. Of course, agents bordering

the individual cells could possibly suffer the opposite issue: a lack of communication with an agent clearly within

radius. This problem is solved by checking surrounding grid boxes as well. Due to this, it is very important to

choose a grid granularity which suits the communication radius of the agents. The size of an individual grid cell

should at least be large enough to completely contain the communication radius of an agent. Much larger than this,

and the datastructure loses its effectiveness; much smaller than this and communication errors will be introduced,

or too many grid boxes must be checked.

There is a considerable amount of computing taking place in Algorithm 2, and yet this still improves performance

over simple implementations of simulations with an inherentO(n2) complexity. Further performance improvements

can be obtained by making use of multiple GPUs in a single computer, especially since high-end NVIDIA graphics

cards often have two physical GPUs integrated within. This is introduced in the next section.
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Allocate memory space

copyVectorsToDevice()

for i← 0 to n timesteps OR NOT exit condition do
i← i+ 1

{Calculate hashes for all boids.}
for j ← 0 to NUM BOIDS do

hashes[j] = calculate morton code(position[j ])

indices[ j ] = j

end for
Sort by hash key (hashes,indices)

Populate boxStart and boxEnd

Scatter write boids

for each agent in parallel do
for every adjacent grid cell 0 ≤ g < 8 do

for every agent a in grid cell g do
if a in communication radius then

Compute rule contributions

end if
end for

end for
Update position and velocity using averaged contributions

end for
copyVectorsFromDevice()

drawBoids()

swapDeviceBuffers()

end for

ALGORITHM 2: GPU implementation of a uniform grid spatial partitioning scheme for the Boids model.

2.2.3 Multiple GPUs

Aaby and colleagues at Oak Ridge National Laboratory have shown that multiple GPUs can be harnessed together

in order to improve performance further [1]. While there is a considerable performance increase in using multiple

GPUs, the underlying complexity is not mitigated at all without using some method such as spatial partitioning.

Essentially the parallelisation process depends upon what strategy is used. In the case of ABM, the most

immediate method would be to assign a thread to every agent. This is “fine-grained” parallelism. Unless each

agent has independent tasks which can be parallelised, there is no other logical way to assign more threads to the

problem. “Coarse-grained” parallelism in an agent-based model would be assigning one thread (or processor) to

several agents.

By using the uniform grid developed above, one can further improve performance of a multiple-GPU agent-

based model. Algorithm 3 shows a simple method to accomplish this. Note that it is not necessary for all devices to

build the datastructures independently. However, since a timestep cannot be computed before this happens, every

device computes the datastructure separately. This avoids having to distribute the datastructure to every device,

which would incur an additional memory copy penalty.
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Allocate arrays

copyVectorsToDevices()

for i← 0 to n OR NOT exit condition do
i← i+ 1

for each GPU in parallel do
for j ← 0 to NUM BOIDS in parallel do

hashes[j] = calculate hash(position [ j ])

end for
Sort by hash key (hashes,indices)

Populate boxStart and boxEnd

Write agents to their sorted locations

for each agent in parallel do
for every adjacent grid cell 0 ≤ g < 8 do

for every agent a in grid cell g do
if a in communication radius then

Compute rule contributions

end if
end for

end for
Update position and velocity using averaged contributions

end for
end for
copyPartialVectorsFromDevices()

copyVectorsToDevices()

drawBoids()

end for

ALGORITHM 3: Multiple-GPU (mGPU) implementation of the uniform grid in Boids.

In Algorithm 3, a timestep is computed by first copying velocities and position vectors to all devices. Identical

information is cloned onto every device. It is not necessary that all devices are aware of all agents. It is sometimes

suitable to distribute distinct parts of the space (either lattice or continuous space) to the devices with a read-only

border [1]. This is one possible enhancement to the above algorithm. After the GPUs have constructed the uniform

grid, they compute the CUDA kernel, which uses it by iterating over each adjacent grid cell, and the agents within

them. Finally, the agents are updated, and the host copies back the sequences of agents modified by each GPU. The

process repeats when the host reconstructs the full arrays once more and copies these to the devices. There are,

however, some redundancies here which can be eliminated.

The most immediate drawback here is that devices must synchronise in order to construct the whole array

of agents, which is fed back to the GPUs again. This can be improved using newer versions of CUDA released,

allowing several devices to communicate with each other directly using a unified address space [202]. Historical

releases of CUDA have improved upon each other significantly, and the trend seems to continue. Page-locked

memory can also be used to construct the full array of agents, which will also improve performance.

It is also very important to consider the memory hierarchy at almost every step of development in these programs.

Memory fetches from global memory is extremely slow in comparison to memory fetches from the registers and
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shared memory on each SM of the GPU. Also, the constant memory bank should not be ignored, which is a cached

segment of global memory. Use of the texture cache can also be a source of improvement here, since it is designed

to operate at maximum efficiency for an algorithm which is likely to benefit from spatial locality in its data [202].

(a) A log-linear plot of agent-agent interaction time step

compute time using the CUDA kernel with different

system sizes across timesteps.

(b) Datastructure construction time plot by system size

for mGPU.

(c) Comparison of mGPU and single-GPU algorithms for

timestep computing by system size.

FIGURE 2.15: Multiple-GPU performance results for datastructure construction and timestep computation.

Figure 2.15 shows some performance data for the multiple-GPU implementation. As expected, the multiple-GPU

algorithm increases in compute time more slowly than the single-GPU algorithm (Figure 2.15(c)). Although there

could be some algorithmic improvements, a slower increase in compute time is certainly desirable. Constructing

the spatial datastructures appear to be fairly consistent for different system sizes using the mGPU algorithm

(Figure 2.15(b)). Figure 2.15(a) shows that the first few timesteps of a simulation run increases in computing time

quickly, followed by a more consistent increase in computing time. The reason why computing times increase

consistently is due to the agents using less grid boxes while moving towards the centre of the space. Ideally, spatial

distribution of agents would be more uniform for maximum utility from the spatial partitioning algorithm.
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CHAPTER 3

CONTINUOUS GLOBAL OPTIMISATION

Many problems can be described in terms of a real-valued cost function. For example, a wind turbine blade requires

a design which maximises output power given specific weather conditions [138]. Hypothetically, the output power

P = F (f, r,m) could be expressed in terms of fibreglass thickness f , number of ribs r, and perhaps more directly

on massm. Furthermore, these parameters may be subject to an upper and lower limit due to tolerances in allowable

blade stresses and displacements. Optimisation of cost functions such as these is relatively simple, but the choice of

algorithms is vast enough to cast doubt on “off-the-shelf” solutions, especially given recent theoretical advances.

Such optimisers are broadly categorised into population-based, and trajectory-based methods. Some are then

further divided into stochastic and deterministic. Problems themselves can also be categorised into constrained and

unconstrained.

The purpose of this chapter is to introduce and characterise a selection of major stochastic numerical optimisers

in terms of data-parallel computing, applicability in calibrating agent-based models, and for use later in parallel

geometric optimisation in Chapter 4. Optimiser evaluation methods and some notable variations in algorithm design

are discussed. Spatial partitioning concepts are adopted from Chapter 2 in order to propose improvements to these

algorithms. Advanced space exploration techniques such as Lévy Flights and variations of these are discussed.

Finally, a study on optimiser calibration is presented. Given the fundamental similarities between population-based

optimisers such as the PSO and agent-based models, calibration of these can be equated, from an optimisation point

of view. The chapter ends with a short study on higher dimension visualisation.

The contents of this chapter extend upon work previously published by the author in Proc. 12th IASTED Int.

Conf. on Artificial Intelligence and Applications1, Proc. Int. Conf. on Modelling, Identification and Control

(AsiaMIC 2013)2, Parallel and Cloud Computing3 and also Proc. Int. Conf. on Genetic and Evolutionary Methods

(GEM 2012)4.

1A. V. Husselmann and K. A. Hawick. Random flights for particle swarm optimisers. In Proc. 12th IASTED Int. Conf. on Artificial

Intelligence and Applications, Innsbruck, Austria, 11-13 February 2013. IASTED
2A. V. Husselmann and K. A. Hawick. Particle swarm-based meta-optimising on graphical processing units. In Proc. Int. Conf. on Modelling,

Identification and Control (AsiaMIC 2013), Phuket, Thailand, 10-12 April 2013. IASTED
3A. V. Husselmann and K. A. Hawick. Levy flights for particle swarm optimisation algorithms on graphical processing units. Parallel and

Cloud Computing, 2(2):32–40, April 2013
4A. V. Husselmann and K. A. Hawick. Parallel parametric optimisation with firefly algorithms on graphical processing units. In Proc. Int.

Conf. on Genetic and Evolutionary Methods (GEM’12), number 141 in CSTN, pages 77–83, Las Vegas, USA, 16-19 July 2012. CSREA
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3.1 Introduction

C ONTINUOUS OPTIMISATION ALGORITHMS ADDRESS MANY PROBLEMS in a variety of areas such as

image compression [109, 110], improvement of manufacturing processes [5], structural design [72,

9], scheduling problems (notably, Job-shop scheduling problems) [143], cryptanalysis [208], object

recognition and clustering [259], economics (notably the Load Dispatch problem) [302, 79, 2], antenna design

[34, 14], spring-mass systems [53] and more. Each of these problem domains do not necessarily use the same set

of algorithms. There are many to choose from, and some are more suitable than others for certain tasks.

The field of numerical optimisation in general is vast, and includes a wealth of gradient-based methods,

stochastic algorithms such as evolutionary optimisers, and many hybridised methods. In general, the problem of

optimising a function with real-valued parameters is defined by Nocedal and Wright [199] as:

min
x∈Rn

f(x)

{
ci(x) = 0 i ∈ E
ci(x) > 0 i ∈ I

(3.1)

More specifically, this is the minimisation of a function with an input vector x in Rn, subject to a set of

constraints on each variable. E and I are simply integer sets containing the indices of constraint functions. Of

course, in the case where E = ∅ and I = ∅, the problem is unconstrained, which, while a special case, is a

considerably different problem to solve. The methods to solve constrained and unconstrained optimisation problems

are quite varied [292].

Focus in this chapter is given to global optimisation (which is contained within numerical optimisation [292])

and deals with the task of finding a global optimum for a certain known or unknown function f(x) across the

entire set of Rn. The search for a global optimum is made more difficult by the presence of local minima and local

maxima. These are simply the best solutions for a specific subset of the input parameters (solutions which are the

best for a local region) but not the whole set of input parameters. These tend to cause algorithms to converge, in the

same manner as it would for a global optimum.

Specific interest here is given to stochastic optimisation using Evolutionary Algorithms (EAs). EAs are attractive

due to their inherent parallel natures, which can be exploited effectively in the same style as agent-based models.

The greater subset of stochastic optimisers are sometimes known as metaheuristics [168] in recognition of the few

assumptions made by these algorithms of the target problem. As demonstrated by Section 3.5, this is also attractive

because gradient information may be entirely missing.

The problem of finding the real-valued vector x which minimises f(x) has been successfully addressed by

various derivative-free optimisers such as Genetic Algorithms [107], Simulated Annealing [145], Particle Swarm

Optimisation [142, 262], Firefly Algorithm [299], and other bio-inspired algorithms [298], as well as first-order

optimisers such as Gradient Descent and its many variants [199]. It is important, however, not to disregard

gradient-based (first-order) methods due to their use of derivatives. The value in using a derivative-free optimiser is

the ability to treat a function as a “black-box”, which is particularly useful when gradient information is unavailable.

For context, a brief introduction on first-order optimisation is provided here.
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3.1.1 First-order Optimisation

Algorithms such as Gradient Descent, Quasi-Newton and other variations termed gradient-based methods [199]

are known as first-order optimisation algorithms due to their use of first-order derivatives. Assuming that gradient

information is available, these algorithms typically follow a deterministic process to iteratively improve upon a

solution vector using gradient information.

Gradient descent involves moving from a random location on a curve towards the global optimum by successive

additions of 0 < α < 1 step-sized instantaneous gradients [168]. A simple example is an unknown function f(x),

with a known derivative function f ′(x). Assuming that there are no bounds on the values of x (ie. an unconstrained

problem), x can be initialised to an arbitrary location (such as x = 0) and then f ′(x) can be iteratively added to it

until f ′(x) = 0. At this point, the global optimum would have been found, assuming the function does not contain

local minima (monotonically decreasing).

In stochastic optimisation, some randomisation is employed either by perturbing a single solution in space and

accepting a better solution with a certain probability (such as Simulated Annealing [145]), or in a population of

individuals where collective cooperation tends to accept better solutions with some inertia (perhaps better described

as “scepticism”).

3.1.2 Stochastic Derivative-free Optimisation

Nocedal and Wright note that should gradient information not be available, it is often adequate to obtain an estimate

using finite differencing [199]. They do concede that this is not always appropriate when there is the potential for

noise. Generally, algorithms which do not rely on derivatives make very little assumptions about the problem at

hand. These algorithms treat the optimisation function as a “black box” [168]. One or more candidate solution

vectors are improved by using its corresponding value of optimisation function as a measure of “fitness”. It may

also be computationally expensive to compute this fitness, which further demands that the optimiser make as few

iterations as possible to minimise the number of evaluations performed. This is sometimes used as an additional

measure of the effectiveness of an optimiser [299].

Derivative-free optimisers are categorised into those which are based on trajectory methods, and population-

based methods [168]. Trajectory-based methods involve the use of a single candidate solution which is improved

over time. Examples of these include the Hill-Climbing technique, which is a very simple technique conceptually

similar to Gradient Descent. A more sophisticated example is Nelder and Mead’s Simplex method [196] and

Kirkpatrick’s Simulated Annealing [145] algorithm. These methods evolve a certain candidate solution over time,

the former being a generalised simplex, and the latter a point in n-dimensional space when applied to continuous

optimisation problems.

Elegant nature-inspired algorithms such as the Firefly Algorithm (FA) [299] and the Particle Swarm Optimiser

(PSO) [142] make use of firefly flashing behaviour and bird flocking behaviour respectively. While not strictly

constrained to their natural counterparts, they still show their source of inspiration in their formulation. The FA for

instance, uses a light decay function to degrade the perceived fitness of other fireflies based on the distance between

them. The PSO departs somewhat from its natural source of inspiration, but still maintains either a global or local

“flock leader”, depending on the variant (gbest or lbest). These algorithms are unified by the term Evolutionary

Algorithms, which accentuates their inspiration in some form from simplified natural phenomena [21] rather than

specific usage of evolutionary and genetic phenomena.

There are several problems which plague the field of evolutionary algorithms, which are given with regard to

the fitness landscape of the optimisation function by Weise and colleagues as [293]:
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1. Deceptiveness - Areas where gradient information is misleading.

2. Neutrality - A zero-gradient in ranges of the optimisation function.

3. Epistasis - Interdependency among parameters with respect to the objective function value.

4. Premature Convergence - A stagnation of the search algorithm before the global optimum is found.

5. Ruggedness - High variation in gradient information causing a “rugged” fitness landscape.

6. Noise - The presence of inaccuracies or stochasticity.

A function is deceptive should it contain local optima. If it contains regions of zero or near-zero gradient, it is

said to contain neutrality. Epistasis occurs when a function’s variables are dependent on each other in some fashion.

Premature convergence occurs when an optimiser’s search stagnates around a local optimum, rather than a global

optimum. A function is rugged if there is great variation in gradient data, and finally, a function may also be noisy

if it is subject to Gaussian noise, or simply inaccuracies brought on by factors such as stochasticity.

These problems pertain to the function’s landscape. Weise et al. also discuss additional problems in the

algorithms themselves, including overfitting and over-simplification [293]. Given all these difficulties, a number

of algorithms have surfaced which perform differently in the presence of each of these. For instance, it has been

suggested that a particle swarm optimiser adapted for use in combinatorial search spaces may be generally less

effective than Genetic Programming [280].

Using the “No Free Lunch” theorems of Wolpert and Macready [294], it can be shown that the number of

specialised EAs will increase [293], due to the impossibility of one unifying EA outperforming every other EA on

every problem. Restricting the domain of an EA allows one to tailor an algorithm to specifically overcome the

issues listed above to some extent. This argument was used by van den Bergh, who made the assumption that an

algorithm can be designed to successfully outperform others in a specific subset of problems [285].

To be able to compare algorithms by how well they solve optimisation problems in the presence of specific

issues is very important. Their stochastic nature also ensures that not every execution is precisely the same. It

is therefore sometimes difficult to objectively compare these algorithms, but fortunately, there is a variety of test

functions that have been designed for this purpose. As will be explained later, there are other means of comparison.

The focus of this chapter is on the use of evolutionary algorithms, due to their ability to optimise functions which

have no obvious or accessible analytical forms. Such functions may simply be the measurement of some quantity

within a simulation of a fully constructed agent-based model.

3.1.3 Calibrating Agent-based Models (I, p. 11)

As mentioned in Section 1.6, calibrating the parameters of an agent-based model can be seen as an optimisation

problem. A notable example of this was investigated by Calvez and Hutzler who used a Genetic Algorithm to

optimise various aspects of the ant foraging model [28]. In that paper, the authors bring forth three key issues

specifically relevant to this practice:

1. The choice of fitness function.

2. Random variation in fitness due to model stochasticity.

3. Computational cost.
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It must be at least possible for an optimiser to compute the fitness of a parameter vector. Precisely how this is

done depends on the goal of the optimisation effort. In general, it is either the detection of a desired phenomenon in

the system (quantified by some method), or simply the collection of a specific quantity. Obtaining an output value

from the simulation of a model with a particular parameter set is effectively the “black box” objective function

mentioned above. Clearly, in this case, gradient information is unavailable, and estimation is very difficult.

Random variation stymies comparison between parameter sets. It is then necessary to obtain averages or modify

the optimiser, depending on precisely how much variation the simulation exhibits. The issues given by Weise et

al. above [293] subsume random variation as a difficulty experienced by stochastic optimisation in general, but

describes other problems which are also relevant, but perhaps not as critical.

It is important to consider computational cost as well. For instance, assume some quantity is gathered from

timestep 200 of a simulation of ant foraging, this can be seen as a single evaluation of a fitness function. Given a

set of 50 different ant foraging models, this would equate to 10000 timestep computations. To reduce variations

in fitness, it may also be necessary to average this result 10 times. This is only a single set of 50 candidates, and

there may be hundreds depending on the complexity of the fitness function. It is clear that this kind of problem is

very computationally expensive. Calvez and Hutzler [28] note that these fitness evaluations are independent, and

could be done across a cluster computer, each with a certain number of candidate solutions. This is one method of

reducing the time taken by such an optimisation effort.

In the next few sections, the concept of a particle-based optimiser and an evolutionary optimiser is introduced,

along with the methods used to evaluate their efficacy. Focus is given to particle-based methods and evolutionary

algorithms as these are (1) well-suited to the problem of calibrating an agent-based model, (2) are conceptually

simple, and (3) parallelise readily. Specific examples of these optimisers are given in Section 3.2. Then in

Section 3.3 advanced space exploration techniques are discussed. Parallel implementation of a selection of these

algorithms are presented in Section 3.4 along with algorithmic modifications. The problem of calibrating an

optimiser is discussed and mitigated to some extent in Section 3.5. Visualisation of the n-dimensional particle

systems is considered in Section 3.6.

3.2 Evolutionary Optimisers
Evolutionary Computation (EC) consists of a set of algorithms which include EAs, and has in recent years

become the “umbrella term” used for the majority of population-based optimisation algorithms [267]. EAs

iteratively improve upon a population of candidate solutions using population operators inspired by nature, such as

mutation and crossover [267, 63] but also linear combinations. Popular evolutionary algorithms include the Genetic

Algorithms (GAs) [107], PSOs [142], FAs [299], and geometric versions of these [189]. Some of these may also

be classified as metaheuristics [168, 298].

Even though these methods can be considered non-deterministic, they are not by any means less precise,

however. The method by which they explore solution space is stochastic, but carefully formulated in order to ensure

a consistent convergence to an optimum. This is generally done by exploiting adequate solutions in tandem with

some random steps in an attempt to improve them. Any solution found is valid, even when the objective function

is constrained, as these algorithms typically constrain their individual candidates to the corresponding hypercube

in solution space where each n-vector is a valid solution. There is, however, a risk that the global optimum is

not found, possibly due to one or more of the issues discussed in the previous section. In this case, the operator
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can either use the solution if it is adequate, or modify parameters and try again. The act of modifying optimiser

parameters is a dubious practice, but often necessary. This is discussed in some detail in Section 3.5.

The PSO [142] is part of a larger family of particle-based methods, where a set of particles in Rn pseudospace

cooperate to some extent in order to find the global optimum. Frequently, they are actually constituted by both

deterministic and stochastic components, as is the case in the PSO and the FA. These facilitate what is known as

the solution space exploration component and the discovered solution exploitation component.

There have been a plethora of EAs proposed for global optimisation problems. Searching through these for an

algorithm which performs satisfactorily in a particular domain is difficult. One is then generally also required to

perform hand-calibration. Fortunately, for the purpose of evaluating algorithms, many test functions exist which

take various forms [301, 188]. These are generalised to n dimensions because many optimisation problems are

themselves multi-dimensional. The example of an aerofoil design for instance, requires several tuned parameters.

The efficacy of continuous global optimisers and metaheuristics are evaluated by using one of these test functions

as a “black box”.

The search for an appropriate test function is difficult and been under scrutiny for several years. The main

reason for this is that finding a suitable test scenario which is representative of all possible problems is an unrealistic

goal. Research towards this has, however, resulted in a great variety of functions, where each of which attempts to

deceive an optimiser in one or more ways [188]. Comparing against a selection of these provides an acceptable

indication of effectiveness with respect to the specific difficulties of the functions and provides for a method by

which to objectively compare algorithms.

An example of a test function is the Rosenbrock function [248]. Initially, it was intended for two dimensions,

and became known for its characteristic valley, which occasionally earns it the title “Rosenbrock’s Valley”. A plot

of the 2-parameter Rosenbrock function is shown in Figure 3.1(b); the function is shown in Equation 3.2 and its

n-dimensional version is shown in Equation 3.3 [188]. The valley in the function is arguably what makes this

function difficult to optimise. For an optimiser to locate the valley is not difficult, but to converge towards the

global minimum (at x = y = 1 for the 2-dimensional case) within it takes many steps. A near-zero gradient in the

valley pertains to neutrality, as described by Weise et al. [293]. Other test functions used in this chapter are shown

in Figure 3.1.

f(x, y) = (1− x)2 + 100(y − x2)2 (3.2)

f(x) =

n−2∑
i=0

100(xi+1 − x2i )2 + (1− xi)2 (3.3)

Each of these functions attempt to deceive the optimiser in a number of ways. Functions such as the Schwefel

function [188], for example, distributes local minima throughout the parameter space, geometrically distant from

each other and the global minimum. Its n-dimensional version is:

f(x) =

n∑
i=1

[
− xi sin(

√
|xi|)

]
(3.4)

Other functions such as the Ackley function (shown below) is a more computationally expensive function

to evaluate. In cases where the function is excessively compute intensive, it is sometimes useful to measure the

number of function evaluations an algorithm computes [299].

f(x, y) = −20 exp(−1

5

√
1

2
(x2 + y2))− exp(

1

2
(cos(2πx) + cos(2πy))) + 20 + e (3.5)
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(a) Schwefel function (deceptive and rugged) f(x, y) =

−x sin(
√

(|x|))− y sin(
√

(|y|)).
(b) Rosenbrock function (high degree of neutrality and epista-

sis) f(x, y) = (1− x)2 + 100(y − x2)2.

(c) Rastrigin function (deceptive and rugged) f(x, y) = 20+

x2 − 10 cos(2πx) + y2 − 10 cos(2πy).

(d) Ackley’s function (deceptive) f(x, y) =

−20 exp(− 1
5

√
1
2
(x2 + y2)) − exp( 1

2
(cos(2πx) +

cos(2πy))) + 20 + e.

FIGURE 3.1: Surface plots of the 2-parameter variants of The Schwefel, Rastrigin, Ackley and Rosenbrock

functions [188].
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Boundaries and minima for the test functions used are given in Table 3.1. The lower and upper limits pertain to

every dimension of the test problem, and the number of dimensions for each test function is noted when they are

used. The minimum of the Schwefel function is −3351.8632, but for convenience, this was renormalised to zero.

In all experiments conducted, the functions were minimised.

Lower Upper Optimum

Rosenbrock -2 2 0.0

Rastrigin -5 5 0.0

Schwefel -500 500 0.0

Ackley -20 20 0.0

Griewangk -600 600 0.0

Michalewicz 0 π/2 -4.687

TABLE 3.1: Test functions used and the constraints designating the feasible region of the solution space for each

[301]. These bounds are enforced for all dimensions of the corresponding function. In all cases, the optimum is

taken to be the global minimum of the function.

The rest of this section introduces prominent evolutionary algorithms including the Genetic Algorithm, Particle

Swarm Optimiser, and the Firefly Algorithm. As it is impossible to enumerate all the evolutionary computation

techniques for continuous-space optimisation problems, only this small selection of algorithms will be explained in

detail, the GA for its conceptual applicability in Chapter 4 and being one of the oldest EAs in history, the PSO

for its performance characteristics in terms of parallelisation, and the Firefly Algorithm for its ability to solve

optimisation problems in very few time steps.

3.2.1 Genetic Algorithm

A very prominent nature-inspired numerical optimiser is the GA, due to Holland in 1975 [107]. It was hailed as a

breakthrough, and the number of variations [82] and improvements since its inception has resulted in successful

applications in several disciplines. For instance, Jim and Giles used it to show that communicating predators in a

Predator-prey model [257] results in better performance in catching prey than predators that do not communicate

[133], a discovery which has important implications. Jureczko et al. used a modified GA to optimise wing structures

[138] for wind turbines. Koza used the GA as inspiration for Genetic Programming (GP), a combinatorial optimiser

which searches through the pseudospace of programs which also attempts to optimise a quantitative measure of

fitness.

The GA is an evolutionary algorithm which maintains a population of candidate solutions (sometimes known as

chromosomes), each traditionally in the form of a bit string, though formulation varies. Each candidate could be

composed of a predetermined number of symbols, which could be integers, reals or traditionally bits. What makes

the GA different from other stochastic optimisers such as Simulated Annealing [145] is its use of a set of operators

inspired by nature which determine how to construct a new, better population of candidates. These operators are

in the simplest case: selection, mutation and crossover, in the spirit of evolution. Since Holland introduced the

GA, many variations have surfaced. Formulations differ in subtle ways, but conform to at least the three above.

Without mutation, only genetic drift is possible. Without crossover, candidates cannot exchange information, and
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the optimiser degenerates to a slow random search. Selection provides meaningful inputs to the crossover operator,

without it, fitness becomes meaningless, as the search would not be biased towards better candidates.

The process a GA follows is to first initialise a population of solution candidates p0 with arbitrary information.

This population is evaluated, and each candidate assigned a score by how well they solve a particular problem. A

candidate therefore encodes all information necessary to encapsulate a solution to a particular problem. A selection

mechanism such as a roulette wheel then chooses a set of candidates with replacement. The roulette-wheel selection

mechanism simply selects candidates with a probability proportional to their fitness. The crossover operator then

takes effect with probability P (crossover), which takes as input 2 candidates and produces two new candidates by

some form of recombination. The mutation operator takes effect with probability P (mutate) and takes as input one

candidate, and perturbs a small portion of it. The result from these three operators is a new population the same

size as the previous one. This process then repeats until a suitable solution is found within a given tolerance, or a

maximum number of iterations are computed.

As mentioned previously, many different formulations and variations exist, and to enumerate them all would

be impractical. For this reason, the fundamental concepts behind the GA were introduced in this section. What

was not discussed however, was the formulation of the solution space. This involves the design of the solution

candidate (bits, reals, integers, etc), as well as how a candidate should be perturbed in solution space (mutation),

and how it should be recombined with other candidates (crossover). For self-containment purposes, the most basic

implementations of these will be presented. In the simple case where candidates are composed of bits, mutation

perturbs a candidate by flipping a randomly selected bit in the array. Crossover recombines two candidates by

choosing a random crossover site, and then exchanging bits after this site with another candidate.

3.2.2 Particle Swarm Optimisation

The PSO was invented by Kennedy and Eberhart in 1995 [142] and improved upon by Shi and Eberhart in 1998

[262]. It was inspired by flocking and schooling behaviour in birds and fish. A population of n-dimensional particles

are maintained, each of which represents a unique position in solution space, which for the PSO is traditionally

n-dimensional Cartesian coordinate space.

The version of the PSO introduced here is that of Shi and Eberhart who introduced an inertial weight to the

original PSO [262]. The recurrence relations which describe the single timestep update of the PSO is given in

Equations 3.6 and 3.7.

vi ← ωvi + φprp(pi − xi) + φgrg(g − xi) (3.6)

xi ← xi + vi (3.7)

Where 0 < i < population size. The first term is the inertial term, where 0 < ω < 1 is the intertia weight. The

last two terms involve relative vectors. The vector pi refers to the best n-vector found so far by particle i and g

refers to the best solution found across all particles. The variables φp and φg are predetermined constants (learning

parameters). Choosing these carefully result in the bias of particles towards the global optimum. The values rg and

rp are simply uniform random deviates in the range [0, 1).

Early variations of the PSO include the lbest and gbest varieties [285, 224, 214]. The lbest (or “local best”)

refers to a local neighbourhood, where the “best” is the most optimal solution found within a local neighbourhood.
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The gbest formulation is essentially the same as the lbest, except that the local neighbourhood is large enough to

contain all particles at all times, so as to ensure communication between them at all times.

More extensively modified algorithms include the Dynamic Multi-Swarm PSO, augmented by the Quasi-

Newton method [164], Stretched PSO [213, 214], the Lévy PSO [242] and the simpler Many Optimising Liaisons

PSO (MOLPSO) [218].

A particular interest is given to the MOLPSO, as it is more suited to parallelisation, uses less memory, one less

random deviate and therefore requires less computation. Although this variation is perhaps more susceptible to

local minima than the lbest formulation, maximum performance in timestep computation is very important. Some

fitness functions (such as entire candidate agent-based models) require excessive computation and frequently also

an averaging regime to circumvent the effects of stochasticity. The velocity update equation of the MOLPSO is

shown in Equation 3.8. Immediately, one can see that the term involving φp is missing. The implications of this are

discussed further in Section 3.5.

vi ← ωvi + φgrg(g − xi) (3.8)

Require: d | d ∈ I ∧ d ≥ 1 dimensions

Require: n | n ∈ I ∧ n > 1 population size

let X be the d-dimensional hypercube which satisfies upper and lower bounds on each dimension

initialise vectors xi where i = 1..n to random vector in X
initialise g with a valid random vector in X
evaluate the fitness of vector g

while termination criteria not met do
for i← 0 to in−1 do

calculate the fitness of vector xi
end for
g← current best solution

for i← 0 to in−1 do
rg ← U [0, 1)

vi ← ωvi + φgrg(g − xi)
ensure velocity is within bounds

xi ← xi + vi

ensure position vector is within bounds

end for
end while

ALGORITHM 4: The MOLPSO algorithm.

To more fully illustrate this method, Algorithm 4 contains further description. This algorithm requires almost

half as much memory as the usual PSO with both local and global influence, since there is no need to maintain a

list of best solutions attained for every particle. Less computation is necessary because particles no longer have to

compute a relative vector, and also incur additional memory fetch penalties and multiplications. Finally, rp is no

longer necessary, removing the need to compute a random deviate (a potentially costly operation as will be noted in

Section 3.3). More information can be obtained from the work of Pedersen and Chipperfield [218].
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3.2.3 Firefly Algorithm

Xin-She Yang invented the FA in 2009 [299]. It is a metaheuristic optimiser algorithm with homogeneous

communicating agents and stochastic space exploration, originally for continuous space. The macroscopic patterns

of this algorithm are reminiscent of emergent behaviour in agent-based systems, where microscopic rule-based

interaction leads to an apparent system-wide pattern. There are also some similarities between the FA and PSO.

Yang also states that the PSO can in fact be obtained in a special case of the FA [299].

The biological phenomenon which inspired the FA was mostly the mating habits of fireflies. The flashing

light behaviour of fireflies is associated with mating, which, when idealised with a few assumptions, leads to the

underlying principle behind the FA. Fireflies are therefore the agents within the system, and encode vectors (or

points) in the search space Rn. The assumptions given in the original FA paper by Yang are [299]:

1. All fireflies are attracted to all other fireflies.

2. Attractiveness of a firefly is proportional to the brightness of the firefly.

3. Brightness is affected by the objective function.

Roughly speaking, the fitness of a firefly (or candidate solution) is simply the objective function result. When

fireflies interact, they observe each others’ fitness after it has been degraded based on the distance between the

fireflies, and some system-wide hand-calibrated parameters. This light decay is based on the Lambert-Beer

law [155] for light decay through a medium with a certain density. For minimisation problems, the attractiveness

of a firefly is therefore inversely proportional to the objective function, whereas for maximisation problems, it is

simply proportional.

The interaction between two fireflies xi and xj is shown in Equation 3.9. This interaction is repeated for every

firefly with respect to every other firefly.

xi ← xi + β0e
−γr2ij (xj − xi) + α(d) (3.9)

The equation makes clear the stochastic and deterministic aspects of the algorithm. The first term is simply an

inertial term reminiscent of parts of the modified Particle Swarm Optimiser by Shi and Eberhart [262]. The second

term β0e
−γr2ij (xj − xi) is often named the β-step, and the third term α(d) is named the α-step.

The β-step involves an exponential decay of the Cartesian distance between two particles, modified by a constant

amplitude scaling parameter β0, and also a hand-tuned constant coefficient γ. Finally, the α-step traditionally

causes a uniform-random perturbation in coordinate space.

Figure 3.2 shows a system of 65536 fireflies searching the parameter space of the Rosenbrock Function in

3 dimensions. Parameters of the optimiser were altered so as to convey particle movements more clearly. The

algorithm involves a similar process as the MOLPSO, in that the fitness values of all particles are updated once per

timestep. The particles are also propagated by their velocities, which are modified using Equation 3.9.
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FIGURE 3.2: 65536 fireflies attempting to optimise a 3-parameter generalised Rosenbrock Function. The global

minimum is at (1, 1, 1), which is near the centre of the box. The Rosenbrock function is characterised by a

low-lying valley, which is easy to find, but the minimum inside this valley is more difficult to find.

3.3 Advanced Space Exploration
Recent effort in improving search algorithms such as the PSO and FA have resulted in more effective exploration

behaviour [242, 111] by using Lévy flights.

Lévy flights are random walks where step sizes are determined using a Lévy distribution, giving a combination

of long and short trajectories [178]. Brownian motion is the usual random walk in stochastic optimisers, involving

some kind of inertia and influenced velocity. The Lévy distribution belongs to the family of stable distributions,

along with the Cauchy and Gaussian distributions. Cauchy and Rayleigh flights can be obtained from the Cauchy

and Gaussian distributions respectively. The term Lévy flight was coined by B.B. Mandelbrot in 1982 [178],

alongside Cauchy flights for the Cauchy distribution, and Rayleigh flights for step sizes drawn from a Normal

distribution.

The Lévy α-stable distribution’s probability density function is defined as the following inverse Fourier

transform [71, 27, 33]:

p(x) =
1

2π

∫ +∞

−∞
dt exp(−itx− |ct|α) (3.10)

Two parameters modify the shape and width of the distribution. The c parameter scales the width of the

distribution, and the α parameter (otherwise known as the exponent) controls the shape and tail. Furthermore,

for α = 1, it is actually the Cauchy distribution, and for α = 2, the distribution becomes Gaussian (no heavy

tails). When the distribution is Gaussian and step sizes are sampled from it, this gives rise to Rayleigh flights.

With α = 1.5 the characteristic heavy tail shape is present, which is the α value used in experiments here unless

otherwise noted.

Considering the random walk patterns which Rayleigh, Cauchy and Lévy flights generate gives a qualitative

indication of their differences. Figure 3.3 shows sample random walks with 10,000 steps, where step sizes in each

dimension are taken from the Cauchy, Gaussian and Lévy distributions. The Brownian random walk and Rayleigh
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flights appear to have local diffusive characteristics in common, while the Cauchy and Lévy flights have long step

lengths in common with longer bouts of small steps causing local diffusion.

FIGURE 3.3: Random walks generated by Brownian motion and the stable random distributions Cauchy,

Gaussian, and Lévy .

The algorithm used for sampling from the Lévy , Cauchy and Gaussian distributions for the purpose of the

experiments carried out in Section 3.4 is shown in Algorithm 5 [27, 33]5.

3.3.1 Convergence Results using MOLPSO

The Rayleigh, Cauchy and Lévy flights were implemented in the MOLPSO of Pedersen and Chipperfield [218], in

order to test them against conventional Brownian motion. Test functions used and their search space constraints are

given in Table 3.1. The boundaries are enforced on all dimensions of the corresponding function.

The parameters of the MOLPSO were as follows:

ω = 0.9, φg = 0.3, c = 2 (3.11)

These serve to provide moderate inertia (ω), an attempted balance in exploration and exploitation (φg) and finally, a

Lévy distribution scaling of c = 2. A population size of 50 was used. These parameters were chosen experimentally,

and may not be the most optimal choice.

5For an adapted version of the C code given by Bratley, Fox and Schrage [27], I credit my supervisor Prof. Ken Hawick.
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procedure levydeviate(c, α) begin

double u, v

u = π ∗ (U(0, 1]− 0.5)

{When α = 1, the distribution simplifies to Cauchy}
if α == 1 then

return (c tanu)

end if
v = 0

while v == 0 do
v = − log(U(0, 1])

end while
{When α = 2, the distribution defaults to Gaussian}
if α == 2 then

return (2c
√
v sin(u))

end if
{The general Lévy case}
return c sin(αu)

cos(u)1/α
(cos(u(1− α))/v)(1−α)/α

end

ALGORITHM 5: Algorithm for generating a Lévy deviate. The algorithm essentially involves a transform

applied to two uniform random deviates, effectively consuming two deviates to produce one stable random

deviate, using a skewness parameter and an exponent [33].
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Two methods of implementation are possible. The first is to use uniform random deviates to choose a direction,

and using a Lévy , Rayleigh, Cauchy or uniform (for Brownian motion) deviate for a step magnitude. The other

is to simply use a Lévy , Rayleigh, Cauchy or uniform (for Brownian motion) deviate in every dimension. Both

methods were implemented, and the results were recorded independently.

Rayleigh Cauchy Lévy Brownian Actual Minimum
Schwefel 8D 1950± 200 1850± 200 1950± 200 1950± 210 0.0

1950± 200 1950± 200 1950± 200

Ackley 32D 3.7± 0.7 3.9± 0.7 3.7± 0.7 4.3± 0.7 0.0

3.7± 0.7 4± 0.7 3.9± 0.8

De Jong 64D 0.05± 0.04 0.024± 0.004 0± 0 3± 1.4 0.0

0.026± 0.003 0.104± 0.007 0.074± 0.005

Rastrigin 8D 4.2± 1.9 4.7± 1.9 4.3± 1.6 3.9± 1.6 0.0

4.1± 2 4± 1.8 4.2± 2.2

Rosenbrock 4D 0.5± 1.3 0.2± 0.9 0.1± 0.7 0.5± 1.2 0.0

0.3± 1 0.4± 1.2 0.3± 1

Griewangk 3D 4.5± 2.8 5± 3.4 5.4± 3.3 5± 3.7 0.0

5.3± 3.6 4.9± 3.4 5.7± 4

Michalewicz 5D −4.5± 0.2 −4.5± 0.2 −4.6± 0.2 −4.5± 0.3 -4.687

−4.6± 0.1 −4.5± 0.2 −4.5± 0.2

TABLE 3.2: Convergence data measured for the MOLPSO with Rayleigh, Cauchy and Lévy flights, as well as

Brownian motion. Results were averaged over 300 separate runs, for 3000 timesteps each. Results are in the

form µ± σ, where σ is the standard deviation. Low values denote faster solution. Each combination is given

with two results, the first line corresponds to making use of an alpha-step with a uniform-random direction and a

magnitude given by either a Rayleigh, Cauchy or Lévy flight. The second line indicates the results obtained

from using a Rayleigh, Cauchy or Lévy deviate in every dimension.

Table 3.2 contains the convergence data collected. Each function has a suffix of the form xD, where x is the

number of dimensions. Data is presented in the form µ± σ, where µ is the mean fitness attained at termination,

and σ is the standard deviation across the 300 separate executions. Termination criteria is simply 3000 timesteps.

Results show that the Lévy flight method gives at least equal or better results than the standard approach as achieved

by Brownian motion for space exploration. Results of these flights appear to be similar to those of Richer and

Blackwell [242]; albeit with some algorithmic differences. The other random flights do not clearly distinguish

themselves from each other. Furthermore, it appears that using a Rayleigh, Cauchy or Lévy flight in every dimension

is not as effective as using a single one for a magnitude. This is fortunate, since these deviates are computationally

expensive to obtain.

3.3.2 Discussion

The hypothesis that Lévy flights could assist in space exploration was inspired by another natural phenomenon: the

flight patterns of insects [300]. However, there is disagreement in the conclusion that Lévy flights cause observed

phenomena in ecology [54]. The statistical difference in performance as shown in Table 3.2, warrants some form of
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explanation, however. The basic assumption is that the foraging patterns of insects essentially allow the algorithm

to escape local minima more easily [242].

Very similar concepts in use elsewhere such as Simulated Annealing [145] suggests that adapting step sizes by

a monotonically decreasing temperature variable may both explain the somewhat inconclusive results in Table 3.2,

as well as create a basis for a greatly improved algorithm. This would be an interesting topic for future work.

Computing correct deviates from a Lévy distribution is relatively computationally expensive. The algorithm of

Chambers et al. [33] requires several trigonometric functions, and although simplifications are possible for the

special cases where α = 1 and α = 2, it still typically consumes two uniform random deviates to compute one

Lévy deviate. A common method in the literature is to sample from a power law distribution with a heavy tail

[300, 111] which is considerably cheaper, but less accurate. Another method uses two normal random deviates to

compute a Lévy deviate using a number of linear and nonlinear transforms [242]. It is beyond the scope of this

work to compare these methods, however. It is clear that the effective use of Lévy flights demands some careful

consideration regarding performance.

3.4 Parallel Implementation (I, pp. 6 & 24)

Population-based EAs are particularly well suited to being parallelised in the particle/candidate evaluation stage.

Due to their effectiveness in optimising continuous objective functions, Particle Swarm Optimisers have been some

of the first EAs to benefit from parallelism [286, 304, 256, 195] especially with the use of Graphical Processing

Units (GPUs). In essence, parallelism in continuous global optimisation algorithms is motivated by their inherently

parallel operation, and also the existence of objective functions which are excessively compute intensive. In the

context of optimising the parameters of an agent-based model, one is also faced with averaging objective function

measurements in order to overcome potential stochasticity in the model, not to mention the potential of computing

hundreds of timesteps to reach a suitable system state to obtain a measurement of some form.

Parallelisation of the PSO or the FA is met with some interesting problems. Firstly one must decide on an

parallel computing platform. The Compute Unified Device Architecture (CUDA) architecture of NVIDIA is given

special interest here due to its inexpensive wealth of theoretical computing power. Making use of the full potential

of these devices is also an interesting problem, and deserves thorough investigation. OpenCL [270] and MPI [206]

are both software architectures able to make use of graphics hardware (among other architectures). CUDA is the

preferred architecture in this work due to its excellent maturity and documentation support, as well as allowing

developers access to the internals of the hardware such as all memory banks, universal addressing, and features such

as pinned host memory and reentrant kernels [202]. Hardware heterogeneity causes less than peak performance in

some parallel platforms [270].

Unless otherwise noted, testing of these algorithms were done using an Intel Core i7 server (3.4GHz), configured

with two NVIDIA GTX 590 graphics cards.

3.4.1 MOL Particle Swarm Optimiser

As mentioned earlier, the PSO was the centre of much research in high performance GPU implementations early on

[256, 286, 195, 304, 13, 112]. Some of these are GPU-based methods, and some are cluster computer methods.

Clearly however, there are different methods of parallelising the PSO. The earliest parallel PSO was that of Schutte

et al. [256] in 2003, which involved the division of work among nodes on a Beowulf cluster using MPI (Message

Passing Interface) [206]. Venter and Sobieszczanski-Sobieski also made use of MPI in 2005, and introduced another
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parallel PSO which makes use of a deliberate lack of synchronisation to improve parallel efficiency [286]. The

simplicity of the PSO algorithm and its inherent parallel nature proved to be very attractive.

In latter years where GPUs have gained increasing interest, other authors have also proposed GPU-parallel

PSO algorithms. These include the work of Bastos-Filho et al. who proposed a GPU-based PSO with a variety of

communication topologies, both synchronous and asynchronous [13]. Another named the SyncPSO was developed

by Mussi et al. which embraces the limitations of blocks in terms of resources and synchronisation [195].

allocate and initialise enough space for n solution vectors with d dimensions on device

allocate space for dn random deviates

while termination criteria not met do
call CURAND to fill the random number array with uniform deviates in the range [0,1)

copy vectors to device, including g
BEGIN CUDA KERNEL

with dn CUDA Threads (i = 0..dn− 1);

// Safety check for unconventional thread grid configurations.

if i < dn then
if velocity thread then

// Thread grid is set up for separate threads to compute velocities and positions for simplicity.

vi ← ωvi + φgrgi(g − xi)
end if

syncthreads()

if position thread then
ensure velocity is within bounds

xi ← xi + vi

ensure position vector is within bounds

if i%(2d+ 1) == 2d then
calculate the fitness of vector x which i belongs to

end if
end if

end if
END CUDA KERNEL

copy new vectors to host

obtain the best solution and assign to g
visualise the result

end while

ALGORITHM 6: The parallel implementation of the MOL PSO.

As discussed in section 3.2.2, the MOLPSO provides a few benefits which make parallelisation easier. Algo-

rithm 6 shows a GPU-parallel version of the MOLPSO, where each particle has one thread dedicated to one of its

components. Much of this algorithm is dictated by implementation details of the typical GPU-enabled algorithm.

Firstly, syncthreads() is necessary in order to avoid race conditions between threads, which will ensure the new
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velocity is computed and ready for use. It is worth noting that a simple modification using a previously calculated

velocity can avoid this synchronisation. Other race conditions are eliminated by separating read-only solution

vectors and write-only solution vectors. Every time step ensures that the device contains the current best candidate

in global memory where all thread blocks can access it (g). Each dimension of each particle is assigned a thread,

maximising the fine-grained parallelisation of the algorithm. Once the velocity update and position update equations

are computed, all threads apart from one per particle are disabled. This is done in order to compute the fitness of

the particle without race conditions. It is noteworthy that memory copies to and from the device is a very expensive

operation. Mussi et al., for example, have opted instead for an algorithm which operates entirely on the GPU

without synchronisation with the host other than when it has reached a maximum number of generations [195].

The reason for having identical if statements in the algorithm is to ensure that all threads reach the barrier

synchronisation. This is a necessary condition to avoid undefined behaviour in CUDA [202]. Finally, the vectors

are copied to the device such that position and velocity vectors are adjacent, in order to improve memory locality

and retrieval speed.

Lévy flights are also used in Algorithm 6. Enough random deviates are generated by CURAND (which is

included as part of CUDA), in order to compute a Lévy deviate for every dimension, for every particle on the

device.

In testing this algorithm, 2048 particles were used. This would be a considerably difficult task for a single-

threaded implementation. For the Lévy deviates, the parameters used were c = 2 and α = 1.5 to give a balance

between Cauchy and Rayleigh flights. φg was set to a constant value of 0.01 and particle velocities were constrained

to between −0.04 and 0.04 in every dimension.

Schwefel 4D Rastrigin 32D Ackley 64D de Jong 256D Rosenbrock 32D

Success % (Original) 1% 0% 0% 0% 0%

(Lévy Flights) 100% 100% 52% 100% 0%

Best Solution 17± 39 110± 80 1.4± 1 1.5± 2 35± 4

0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 30± 1

Timestep time (µsec) 140± 2.5 1240± 6 2221± 0.9 3700± 8 632± 0.5

173± 0.7 1380± 7 2565± 1.8 4723± 2.6 910± 30

Total Timesteps 4000± 400 4000± 0 4000± 0 4000± 0 4000± 0

2000± 430 213± 21 2000± 1600 1300± 390 4000± 0

Total Time (msec) 560± 27 4950± 20 8890± 4 14800± 35 2530± 2.35

330± 70 300± 30 6000± 4300 6000± 1800 3700± 130

TABLE 3.3: Results with the MOLPSO (in parallel) with 2048 particles including Lévy-flights (3000 frames

each, averaged over 100 runs each) accompanied by standard deviations for optimising various test functions.

For the measurements collected, the first line pertains to the typical Brownian random space exploration method,

and the second is the Lévy-flight method.

The results from comparing the parallel MOLPSO with regular uniform-random deviates against the version

with Lévy-flights are shown in Table 3.3. For each measurement collected, the first line pertains to the original

Brownian motion space exploration method, and the second pertains to the Lévy-flight method. The most difficult
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function to optimise was the Rosenbrock function in 32 dimensions. It is hypothesised that variable dependence in

the function and a generally neutral fitness landscape contribute to this.

The Lévy flights method seems to have an advantage over the original method. As noted earlier, the computa-

tional expense involved in computing Lévy deviates is high over the cost of uniform random deviates. However, the

results in Table 3.3 do not indicate that this increased cost is excessive. Given faster convergence, the end result

essentially means that the global minimum is obtained in fewer time steps, which is perhaps made more clear

by the total time taken. Less total time is necessary in order to obtain the solution than with lower quality space

exploration.

In all cases, the original space exploration method terminated at the maximum number of frames (4000), and

did not succeed in consistently minimising any of the functions for the given parameters. Success was defined as

reaching within 0.0001 of the function minimum.

In a brief additional comparison, the GPU and CPU algorithms were used for De Jong’s sphere function in

256 dimensions, with 2048 particles. The CPU algorithm required roughly 65msec for one timestep, and the GPU

algorithm required 3.7msec for one timestep. This is roughly an 18X speedup. It is important to take into account

that the CPU algorithm can perform much faster with fewer particles, and compute many more timesteps for the

same amount of time. However, it is more likely to succumb to typical difficulties such as deceptiveness in fitness

functions.

(a) A plot of the particle population size against the frame

calculation time for varying numbers of particles with 64

dimensions each, in µ-seconds. The function used here is the

Ackley function.

(b) A plot of the number of dimensions against the time taken

to compute one timestep with 64 particles (averaged across

100 timesteps in a run) in a range of dimensions on the Ackley

function (averaged over 100 separate runs).

FIGURE 3.4: Parallel MOLPSO: Particle population size scaling and dimension count scaling characteristics.

Figures 3.4(a) and 3.4(b) show some scaling performance results. The objective in these tests were to obtain a

measure of population-scaling characteristics and also how the algorithm responds to higher dimensions. It appears

that there is a fairly linear scaling with system sizes up to 4096. The fact that the MOLPSO is not of complexity

O(n2) but more of the order O(n log n) due to a lack of interaction except with the global best solution means

that the algorithm will scale very well. In addition, having one thread assigned to each dimension of every particle

further reduces the scaling coefficient in Figure 3.4(b).
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3.4.2 Firefly Algorithm (I, p. 47)

Parallelising the FA is met with considerable difficulty [118]. System scaling remains a substantial problem even

after attempting to rectify the excessive computation required by unrestricted communication between agents. It

is therefore prudent to examine how to reformulate the optimiser such that it is more suited to parallelisation,

while minimising the loss of effectiveness. The modification discussed here involves truncating the neighbourhood

topology of each particle (agent) in order to reduce the number of interactions necessary. The basis for this is

the exponential decay function which degrades perceived fitness across a distance. Assuming that particles at a

great distance have negligible influence on the movement of a particle, then these can be removed without causing

significant differences in convergence. This does however introduce a new tradeoff, whereby one must ensure

neighbourhoods are not too small (so as to cause stagnation), and not too large (so as to reintroduce all interactions

and hence the original O(n2) complexity.

For convenience, the Firefly update formula is repeated here:

xi+1 = xi + βe−γr
2
ij (xj − xi) + α(d) (3.12)

The modification made is to choose γ as follows:

γ =
lnh

−g2

where h | h ∈ R ∧ 0 < h < 1 is the coefficient given to the β-step when a firefly is observed on the boundary

of the local neighbourhood at distance g. Experimental testing revealed that a more smooth decay towards the

boundary of the neighbourhood had little benefit over a simpler 0 to 1 cutoff at the grid box boundary. To improve

compute performance, the zero-one cutoff was used instead of the light decay function.

To compare against a single-threaded implementation, an implementation written by Mancuso was obtained

[177]. Four test functions were used to compare these algorithms, the Rosenbrock, Rastrigin and Schwefel functions,

as well as Ackley’s Path function.

Rosenbrock Rastrigin Schwefel Ackley’s Path

GPU Time (msec) 9488.7 966.5 848.6 949.9

GPU Minimum 0.000045 1.1741 25.475 3.061

CPU Time (msec) 368460 367329 369935 368384

CPU Minimum 0.000071 1.445 73.267 1.1382

TABLE 3.4: CPU vs GPU Parallel Firefly algorithms in optimising a set of 3-parameter test functions.

Figure 3.5 shows a screenshot of the GPU-based FA, deliberately slowed by small step sizes in order to

accentuate the movement characteristics of the fireflies. Thanks to the spatial partitioning techniques developed in

Section 2.2.2 in the previous chapter, this algorithm runs very quickly for such a colossal population size.

Table 3.4 contains some performance data for the comparison between the original CPU FA and the GPU

Parallel Firefly algorithm presented here. The data collected was averaged over 100 independent runs. Both CPU

and GPU algorithms maintained populations of 4096 particles and 600 time steps were executed for one run on

each. The global minima for each test function in three dimensions were as follows:
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FIGURE 3.5: A population of 262,244 fireflies optimising a 3-parameter Rosenbrock function. Step sizes were

deliberately smaller to accentuate movement through space and discovery of better solutions.

1. Rosenbrock function:

for f(x, y, z), f(1, 1, 1) = 0.

2. Ackley’s Path function:

for f(x, y, z), f(0, 0, 0) = 0.

3. Rastrigin function:

for f(x, y, z), f(0, 0, 0) = 0.

4. Schwefel function:

for (x, y, z), f(420.9, 420.9, 420.9) = 06.

Both the CPU and GPU implementations randomly distribute particules in the allowable ranges of each function

shown in Table 3.1. The boundary checks in the CPU Firefly algorithm were removed to more closely resemble the

implementation of the GPU algorithm7. However, the CPU algorithm was implemented using double precision,

whereas the GPU algorithm uses single precision. With the large margin of performance difference indicated by the

results, this difference in implementation is less likely the cause. Such a considerable speedup is certainly worth

the effort considering the size of the population being used. Saturating the search space with particles certainly

assists the algorithms in finding the global minimum, especially in the Schwefel function, where the traditional

bounds are −500 < xi < 500.

Overall, both the best compute time and accuracy of the solution were achieved by the parallel algorithm, except

the Ackley Path function in accuracy. There are a number of reasons for this. Firstly, it may well be that the Ackley

Path function is simply more suited to an optimiser with global interaction, such as the original CPU-based FA. By

observation, once the parallel algorithm’s particles prematurely converge, they are completely out of reach of others

in a different grid box, and zero useful interactions will take place. In the case of the single-threaded algorithm, all

6The global minimum of the Schwefel function is −3351.8632, but to yield a minimum of zero, this was renormalised so that the minimum

is at 0.
7Less boundary checks require less computation, and in this case, it was not necessary to force particles to remain within the feasible region.
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particles are always in contact with each other, and when premature convergence occurs, it may still be possible for

particles to escape and move closer to the global minimum.

The speed-up obtained of the GPU over the CPU is 39 times for 4096 fireflies, but would be much higher for

larger numbers of fireflies. Larger bounding boxes such as −500 < xi < 500 would suit even larger numbers of

fireflies. In these experiments, it is difficult to form conclusive comparisons (as in metaheuristics in general), but

in testing, it was not possible to use the CPU FA for optimising the Schwefel, Rastrigin, and Ackley functions in

reasonable time. The GPU FA discussed could optimise all three within one second.

3.4.3 Discussion

It is possible to achieve good performance with far less fireflies. In testing these algorithms, what seemed important

is whether local minima were present in the test functions. Functions lacking many local optima tended to be

easy for the CPU implementation to optimise with very few fireflies and in very short time. Using 16 fireflies,

the single-threaded algorithm could achieve an error of less than 0.00005 in approximately 25msec (on a 10-run

average) on the Rosenbrock function. By comparison, the parallel FA discussed here takes approximately 338msec

(10-run average) to obtain an error less than 0.00005. The CPU FA has a clear advantage here. However, using 16

fireflies in a complex (local minima containing) function such as the Schwefel or Rastrigin functions, the CPU

algorithm will either take an inordinate amount of time (days or weeks), or fail to achieve the global minimum due

to premature convergence to local minima.

The basic principle at work in the parallel FA is that of divide and conquer. By saturating the parameter space

between the allowable constraints with 2048 or more fireflies reduces the maximum distance between the true

global minimum and the nearest firefly. While this still does not provide any guarantee, it greatly increases the

chance of success. It is important to note that this is valid for constrained optimisation, but different strategies

would be necessary for unconstrained optimisation, where no bounding box is supplied.

Little discussion has taken place on the choice of constant parameters in these algorithms. For the MOLPSO

and the FA, at least 3 parameters needed to be calibrated by hand. The choice of these were made empirically by

observing the effects on a visualisation of the optimiser. Thoughtful consideration is necessary when choosing these

parameters, as in some cases, the wrong choice can lead to consistently suboptimal solutions. The next section

deals with the intriguing problem of reinterpreting this hand-calibration effort as another optimisation problem.

3.5 Calibrating Metaheuristic Optimisers
Meta-optimisation has been known by many names including Meta-Evolution and Automated Parameter

Calibration [217]8. It involves the use of an optimiser to calibrate the parameters of another optimiser. Several

interesting properties surface from this practice, and several considerable problems which severely hinder the

successful use of this method.

An optimiser can behave radically different depending on the parameters chosen for it. It can make the

difference between total failure and a consistently low error rate. Consider the PSO update equation, reproduced

here for convenience:

vi ← ωvi + φprp(pi − xi) + φgrg(g − xi)

8Instead of providing a thorough introduction to meta-optimisation the reader is referred to Chapter 3 of Pedersen’s PhD dissertation on

Tuning & Simplifying Heuristical Optimization [217].
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Here, ω, φp and φg are all user-defined parameters. By considering the extreme cases, one can gain an

appreciation of precisely how these parameters affect the outcome. For instance, if φg = 1, this could cause the

particle to gain a huge velocity increase and cause huge overshoot, instead of gently pursuing the global best,

which will considerably increase convergence time. If φg = 0, no notice would be given to the best solution found

globally, and would cause a complete reliance on local information to ensure proper convergence. Similar effects

would result from altering φp in this manner. In summary, there may be sets of parameters which are similar in

effectiveness, as well as sets which differ dramatically [180].

Given also that different combinations of these parameters can be effective for different problems, it is reasonable

to view this as an optimisation problem as well: meta-optimisation [217]. This practice has been researched in

some depth already, but remains somewhat constrained by excessive compute times. Previous works include

those of Meissner et al. who have considered using an overlaid optimiser [180] to improve the PSO, Pedersen’s

meta-optimiser for the Differential Evolution algorithm [216], and Kantschik et al. who used the concept of

meta-evolution in order to evolve recombination operators themselves, essentially evolving key components of the

optimisation algorithm [139]. Clearly the results of this practice can be useful.

Similar to the problem of calibrating an agent-based model, the compute time problem in meta-optimisation

stems from the fact that optimising a complex “black-box” function takes a certain amount of time. Stochasticity

also demands several iterations in order to obtain an average. For this reason optimisers are normally best suited to

trajectory-based methods such as Local Unimodal Sampling [217], or Simulated Annealing [145], as there would

be only one candidate that would be iteratively improved instead of an entire population; as would be the case in

the PSO.

Preference is given to population-based methods, due to the benefits they possess from communication between

agents. Even if a population of interactionless trajectory-based optimisers were used, the computing power of

parallel devices such as GPUs offer an intruiging improvement to performance. Trajectory-based methods do

also deserve further discussion in the context of parallelism, but the focus is given to population-based methods

here, for their inherent parallelism and communication strategies. In this section, the MOL PSO is used due to its

implementation simplicity and performance characteristics as detailed by the previous sections.

3.5.1 Methodology

In meta-optimisation, the overlaid optimiser is sometimes known as the super-optimiser (SRO), and its population

(termed super-particles) consists of particles in Rn. In this case, the SRO is implemented as a MOLPSO, and its

parameters (as shown in Equation 3.8) are ω and φg. The effect of the c parameter on the Lévy distribution is

scaling, which will affect the step sizes taken dramatically, therefore, it is included as part of the sub-optimiser

(SBO) parameters. Therefore, the spatial position of super-particles determine the parameters (ω, φg , and c) of their

respective SBOs. The evaluation phase of this SRO is what sets it apart from ordinary optimisation, in that the

candidates are themselves optimisers.

Figure 3.6 shows the conceptual operation of an SRO. Sub-optimisers are not involved in the SRO anywhere

except in the evaluation phase. Here, x, y ∈ R, and when each particle must be evaluated, these values are

propagated into a small unique MOL PSO with ω = x and φg = y hypothetically. In order to return a fitness value

for the super-particle at (x, y), the sub-optimiser initialised is trialled by attempting optimisation of the Rosenbrock

function, for instance.

For testing the parallel implementation of the meta-optimiser discussed here, the MOLPSO super-optimiser

is set up with 16 particles, each with initially random locations in a cube where the principal axes (x,y,z) are
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FIGURE 3.6: A pictorial representation of the relationship between the meta-optimiser, and the fitness evaluation

of its population.

constrained to −4 and 4. This boundary seems to be appropriate enough to observe a range of effective and

ineffective optimisers. The axes x,y and z represent the sub-optimiser parameters ω, φg and c respectively. The

parameter c is directly used to scale the size of Lévy flights (discussed in Section 3.3), given that these have a

dramatic effect on the effectiveness of the optimisers.

Let P be the set of super-particles, and let S(p)|p ∈ P be the fitness of a super-particle at position p = (x, y, z).

To evaluate S(p), a CUDA kernel calculates 500 time steps of the sub-optimiser where ω = x, φg = y and c = z.

The output fitness value is the highest value of the test function obtained, which is averaged across 20 attempts. In

summary, to compute one time step of the SRO, S(p) must be computed for all p ∈ P , which involves 500 time

steps computed 20 times to obtain an average. It is important to average the results in order to ensure stochasticity

does not compromise the accuracy of the fitness obtained [180].

In essence, CUDA is used to evaluate all the candidate optimisers with their respective parameters on GPU

hardware. This process of evaluation significantly outweighs any computation done at the super-optimiser level.

The number of particles in the sub-optimisers is set to 20, and velocities are constrained to a maximum

magnitude of 1.0, and initialised randomly. The sub-optimisers are evaluated by several test functions, given in the

next section. 300 time steps of the super optimiser were computed, and this was repeated 40 times to obtain an

average.

Finally, super-particle velocities are also constrained to less than 1.0, and other hand-calibrated parameters for

the SROs are:

ω = 0.9, φg = 0.03, c = 4.0 (3.13)

3.5.2 Results

A visualisation of an in-progress meta-optimiser is shown in Figure 3.7. Lighter grey particles and the lighter grey

bounding box represents the realm of the SRO: the axes of the parameters ω, φ and c. As seen here, several of the

super-particles are towards the centre of the cube, indicating that smaller values of each parameter are perhaps

more suitable. The darker red particles represent the best averaged fitness obtained from the sub-optimisers. The

super-particles and the sub-particles are superimposed within the same region.

In the author’s experience [124], it was necessary to make small differences in ω and large differences in c

in order to optimise the MOLPSO for different test functions. Only one function was used to measure fitness in

sub-optimisers at a time, however.
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(a) First timestep. (b) Several timesteps later.

FIGURE 3.7: A snapshot of the GPU-based SRO (grey particles) and the end-resulting particle distribution of

sub-optimisers (dark-red particles) after several frames of the SRO.

Rosenbrock 8D Schwefel 8D Griewangk 16D Michalewicz 5D Ackley 16D

Meta-PSO

Mean Result 4.05 −1941 2.3 −3.69 0.0

Std. Dev. 0.14 32.4 0.13 0.011 0.0

TABLE 3.5: The mean results generated by the MOLPSO meta optimiser for several test functions. Low values

denote higher quality solutions. Function boundaries are given in Tab. 3.1.

Rosenbrock 8D Schwefel 8D Griewangk 16D Michalewicz 5D Ackley 16D

ω 0.2557 3.8690 1.7098 −0.3540 0.6784

φg 2.1863 3.0114 4.0 0.3332 0.4677

c 0.7154 4.000 3.5909 3.8098 0.3988

F (x) 3.7471 1330.7 1.9462 −3.6953 0.0000

TABLE 3.6: Best sub-optimiser parameters generated by the meta-optimiser throughout the 40 separate runs.
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Table 3.5 shows convergence results for the test functions used, which were obtained by averaging S(p) across

40 independent runs of 300 time steps of the SRO. This table is discussed below.

Of the test functions used, the Ackley function in 16 dimensions appears to have been the easiest to optimise.

The ability of the meta-optimiser to generate parameters (given in Table 3.6) which allow a 20-particle optimiser to

consistently optimise the Ackley function is impressive, as it requires a considerable amount of computing power

to obtain these parameters.

In previous experiments (see [124] and Section 3.3), acceptable values for φg were typically in the range

[0.01, 0.1]. As shown in Table 3.6, φg and ω are quite large. Larger step sizes were expected for the Schwefel and

Griewangk functions due to the large boundaries involved, however. This behaviour is made clearer in Figure 3.8.

The excessive freedom allowed in the bounds of the parameters ω, φg and c allowed the SRO to seek out

unconventional parameters as well. The c value for the Schwefel function is one example. For ease of reference, c

is a scaling parameter of the Lévy distribution of step sizes. Larger values corresponds to generally larger steps,

which in the case of the Scwhefel function in Table 3.5 is very large, perhaps indicating a need for larger step

sizes. It can also, however, be a symptom that the sub-optimiser’s population is simply not substantial enough to

effectively search the landscape of the vast search space of the Schwefel function.

During testing, the average time taken to compute one timestep of the super-optimiser was approximately

150msec. Larger numbers of particles quickly increased this number, however. The purpose of this short study

was to indicate that it is indeed possible to effectively accomplish meta-optimisation using GPUs, rather than to

demonstrate the precise speedup over a CPU implementation.

3.5.3 Discussion

Good results were obtained by using meta-optimisation to find appropriate parameters for optimising certain test

functions. However, the process in doing so is still computationally expensive. Due to CUDA block size limitations,

it was not possible to extend the sub-optimiser dimension count to more than 16 without a total redesign of the

algorithm.

The resulting parameters also appeared in some cases to take advantage of the individual characteristics of the

test functions which they were assigned. This is usually an undesirable effect, but could be mitigated somewhat by

testing all functions at the same time. Though, this would again increase the computational cost tremendously. This

problem is otherwise known as “overfitting”.

An auxiliary advantage of meta-optimisation is that it facilitates comparison [217] between optimisers.

As shown earlier, certain agent-based models such as flocking models share the inspiration behind optimisers

such as the PSO. In much the same way, both the PSO and most agent-based models require some form of

calibration. This short study has indicated that meta-optimisation is effectively equivalent to the calibration of an

agent-based model. The definition of the fitness function is perhaps more difficult in an agent-based model, but the

precise process is demonstrated very well by meta-optimisation of the MOLPSO using another MOLPSO.

Having discussed optimisers which involve arbitrary numbers of dimensions, and also noting that it is important

to have a qualitative sense of how an optimiser operates, it is therefore relevant to discuss visualisation. Higher

dimensions above 3D are less trivial to visualise, and require special pre-processing. The next section demonstrates

some simple techniques for visualising these.
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(a) Meta-optimiser on Rosenbrock’s function. (b) Meta-optimiser on Michalewicz’s function.

(c) Meta-optimiser on Griewangk’s function. (d) Meta-optimiser on Schwefel’s function.

(e) Meta-optimiser on Ackley’s Path function.

FIGURE 3.8: Plots of the mean fitness obtained from the super-optimiser across all 40 separate runs, including

error bars representing the average standard deviations of each point (sub-optimiser) across the separate runs.
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3.6 Higher Dimension Visualisation

Visualisation of an optimiser gives a good qualitative understanding of its operation, and can result in valuable

information to improve its effectiveness. Low dimensions d = 1..3 are straight forward to visualise, but higher

dimensions (often the case in global optimisers) d = 4, 5, 6, ... are less trivial. One possible method is to utilise a

dimension reduction technique such as Principal Component Analysis (PCA) [69]. A very simple (but perhaps

rudimentary) method is given here, which is very easy to implement and does not perform any dimension reduction.

Results of this are shown in Figure 3.9.

(a) A single 64-dimension candidate solution. (b) De Jong Sphere function in 128 dimensions.

(c) Rosenbrock function in 32 dimensions where

the optimisation attempt has stagnated.

(d) Rosenbrock function in 32 dimensions, with

fitnesses coloured using hues of the HSV colour

space.

FIGURE 3.9: Visualisation of an optimiser searching for a global minimum for various functions in various

dimensions.
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An example of a single particle in R64 is shown in Figure 3.9(a). Particles are visualised by first placing a

particle sprite in a 3D location denoted by the first three dimensions. This is to ensure later, that when convergence

occurs, that it is obvious when more than one local optimum is discovered apart from the global optimum. The

next dimension value is used as a magnitude and a line is drawn from the sprite in the x axis with that magnitude.

The end of the line becomes the current position, and the next dimension is also used as a magnitude, but from the

sprite along the y axis. A line is then drawn from the current point to the next point, and so on, wrapping back

around to the x axis after drawing a line to a point along the z axis. Colours are assigned using the HSV colour

space assigning a Hue of 0 degrees for the worst solution, and 180 degrees for the best.

The end result is a quick visual display of the particles in Rn. The efficacy of this visualisation is perhaps

only appreciated when viewing it in real-time9. Collective movement of all these n-dimensional particles show

convergence towards a clearly recognisable goal configuration, where the optimum is of a distinctive shape. This

is an easily implemented visualisation and provides rudimentary, but effective visual cues from particle-based

optimisers.

Figure 3.9(d) shows an example of an optimiser searching for a solution for the 32-dimension Rosenbrock

function. Colours in this diagram are used to indicate better solutions. The worst solutions are coloured dark red.

9A video of this is available at http://husselmann.com/alwyn/fig3.9.html.





CHAPTER 4

COMBINATORIAL OPTIMISATION

As discussed in Chapter 3, the domain of continuous optimisation is well equipped with a variety of algorithms.

Departing from Cartesian real-coordinate space to a combinatorial search space where solutions are combinations

of “building blocks” is not a trivial transformation. Nevertheless there have been many algorithms proposed for

this task. As an example, there have been some discrete variations to metaheuristic optimisers such as the Firefly

Algorithm (FA) [299], which have been applied to interesting and diverse problems such as flow shop scheduling

problems [251] and cryptanalytics [208].

The purpose of this chapter is to form the basis for the structural optimisation subsystem in Chapter 6. This

chapter begins by introducing Genetic Programming followed by some test problems commonly used in the

literature. The use of Genetic Programming and its variants on Graphical Processing Units (GPUs) are also

discussed, given performance indications from Chapter 3. The second half of the chapter pertains to the application

of Geometric Optimisation, making use of optimisers previously intended for other search spaces. The Many-

optimising-liaisons Particle Swarm Optimiser and Firefly Algorithm discussed in Chapter 3 are adapted for program

search spaces and parallelism. The chapter ends with a short study on program-space visualisation, enabling the

visual perception of a population of candidate programs.

The contents of this chapter extend upon work previously published by the author in Proc. 10th International

Conference on Genetic and Evolutionary Methods (GEM’13)1, Proc. Int. Conf. on Artificial Intelligence (ICAI’13)2,

Cuckoo Search and Firefly Algorithm, Springer3, and also Proc. Int. Conf. on Information and Knowledge

Engineering (IKE’13)4.

4.1 Introduction

FACILITATING THE DISCUSSION ON GEOMETRIC-TYPE OPTIMISATION IS MADE MORE COHERENT by first

discussing conventional combinatorial optimisation [197]. One might think of the traditional combinatorial

optimisation problem as the Traveling Salesman Problem (TSP) [132]. In this chapter, the formulation of

1A. V. Husselmann and K. A. Hawick. Genetic programming using the Karva gene expression language on graphical processing units.

Technical Report CSTN-171, Computer Science, Massey University, Auckland, New Zealand, July 2013
2A. V. Husselmann and K. A. Hawick. Geometric optimisation using karva for graphical processing units. Technical Report CSTN-191,

Computer Science, Massey University, Auckland, New Zealand, February 2013
3A. V. Husselmann and K. A. Hawick. Geometric firefly algorithms on graphical processing units. In Cuckoo Search and Firefly Algorithm,

pages 245–269. Springer, 2014
4A. V. Husselmann and K. A. Hawick. Visualisation of combinatorial program space and related metrics. Technical Report CSTN-190,

Computer Science, Massey University, Auckland, New Zealand, 2013
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the search space is defined as the set of all expression trees which can be constructed from a set of symbols which

result in a tree representing program flow. The objective function is defined by the problem domain and allows easy

evaluation of such an expression tree. The goal is to minimise or maximise the objective function, as in continuous

global optimisation (see Chapter 3).

Genetic Programming (GP) [150, 151, 149] has become the term used for most population-based search

algorithms which operate on the space of interpretable, or directly executable programs or decision trees. These

programs are typically constituted by syntax from a tailored and very simplified Domain-specific Language (DSL).

The set of GP algorithms are divided by their method of representation, such as tree-based and linear varieties.

The former represents candidate solutions as trees which are interpreted at run-time, while the latter represents

programs as instructions which are executed (or interpreted) by the computer in sequence.

GP makes use of evolutionary phenomena, where candidates propagate depending on natural selection, genetic

crossover and mutation [225]. GP was the ground breaking work of John Koza in 1992 [149], predating the Particle

Swarm Optimiser by only a few years [142]. Before this, combinatorial optimisation received much research

interest for many years. Classic problems include the Traveling Salesman Problem [132], the Prisoner’s Dilemma

[6] and the Knapsack problem. Problems such as these are just as applicable in reality as continuous optimisation

problems. Research advancements on classic problems such as these are potentially beneficial for many additional

problems as well. So far, GP and its variants have been used for intrusion detection [40], soccer robotics [170, 167],

as well as land use change modelling [179], multi-agent learning [171], algorithm discovery [283], and image

enhancement [223]. It also has applications in cooperative multi-agent systems [210], and classification tasks in

data mining [305].

In the past some impressive performance results were obtained in the realm of combinatorial optimisation

with regard to high performance [31, 52, 118, 157]. Cano et al. reported an impressive 834X speedup against

single-threading, and a 212X speedup against a 4-threaded implementation of Ant Programming [31]. With recent

and ongoing improvements in parallel hardware, there certainly is scope for additional research in finding other

high performance evolutionary algorithms. It appears that as recently as 2013, combinatorial optimisation was

somewhat under studied [255]. Schulz et al. advocate for focus on efficiency and more complex optimisation

algorithms in comparison to the simpler GPU algorithms already published [255].

In the search for improvements in this field, many modifications to GP have been proposed since 1992. Some

of these include linear representations [25], Cartesian GP [184] and Strongly Formed GP [32] to name a few. There

are also other extensively modified optimisers such as Ferreira’s Gene Expression Programming (GEP) [64]. Many

modifications are intended to alleviate common problems in GP which adversely affect convergence rates. O’Neill

et al. give some open issues in GP as follows [205]:

1. Candidate representation

2. Judging problem difficulty (fitness landscape)

3. Dynamic problems

4. Determining how much influence from biology to accept

5. Continuous (dynamic) evolution

6. Generalisation

7. Benchmarking and comparison
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8. Scalability and modularity

9. Handling algorithmic and structural complexity

Another important problem is that of code size [266]. “Code bloat” occurs when candidate solutions increase in

size due to the sustained introduction of new genetic material by mutation. This is often due to the representation of

candidates and the specific formulation of the mutation operator, which is discussed later.

Like population-based continuous optimisers, GP also maintains a population of candidates. Experiments in

this chapter require candidate solutions to be expression trees, denoting program flow. There have been many other

representations, particularly linear ones [25]. Algorithms directly inspired from Holland’s Genetic Algorithm such

as Grammatical Evolution (GE) generate directly compilable code (depending on grammar) from Backus-Naur

form (BNF) grammars [249]. GE represents candidates as strings of integers, and the mapping of these to code is

called the genotype-phenotype mapping. The integers indicate which production rules to use from a given BNF

grammar.

The GP algorithm successively improves on a population of candidates by performing crossover and selection

operators on them, in a similar fashion to the original Genetic Algorithm [107]. The old population (or previous

“generation”) is replaced, and the new population is then evaluated. Changes in how candidates are represented in

GP call for a complete re-engineering of the crossover and mutation operators, however. The implementation of

these is often subject to slight variations and many different operators have been proposed [25, 64], but the concept

remains the same. The crossover and mutation operators can be thought of as the exploration and exploitation

concepts discussed in Chapter 3, in that mutation causes perturbation of a candidate in the pseudospace of solutions,

and the crossover operator exploits good solutions already found. Concrete examples of these are given below in

Sections 4.1.1 and 4.1.2.

Crossover

The crossover operator in GP deals with recombining two (or more [56]) candidates [197]. In the traditional

representation of abstract syntax trees (ASTs), this is done by performing a subtree swap on the two candidate trees

on a random point, named the “crossover site”. This attempts to construct two new candidates which can then be

used in the subsequent computations. This is very simplistically analogous to the biological process of genetic

crossover. There are however other interpretations, some of which are perhaps more true to the natural analogy

[64].

In linear representations of candidates, crossover is commonly done by selecting a point in two candidates’

sequences of instructions, and then exchanging the two sequences of instructions about that point with the

corresponding sequences of the other candidate. The result is a set of two candidates from the input set of two

candidates, which are rearranged.

Selection

The selection operator in GP is used to choose two candidates to be provided to the crossover operator as inputs

[197]. There are several methods of accomplishing this, the traditional method is fitness-proportional selection (or

“Roulette wheel selection”), where the probability of selecting a candidate is proportional to its fitness. Tournament

selection is another method, where n “tournaments” are held, where two (or more) candidates are chosen in a

uniform random fashion, and then the candidate with the lowest fitness is discarded. This operator ensures that the

genetic material of suitable candidates are preserved.
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Mutation

The mutation operator in GP is the simplest, in which candidates are perturbed in solution space, which is intended

to introduce new genetic material [197]. This serves as a method for exploring solution space. Without this operator,

the algorithm is only able to cause a drift (with the crossover operator) [63], and it is unlikely the global optimum

will ever be discovered.

Briefly, traditional mutation is derived from initialisation methods such as [289]:

1. Grow method: Random successive selection of functions and terminals to build a tree up to a predefined

maximum depth.

2. Full method: Random selection of functions and terminals, resulting in a tree where every leaf is at a

predefined depth.

3. Ramped half-and-half: a combination of the above methods are used.

Originally, mutation is simply a replacement of a subtree by “regrowing” it using one of these methods. An

initial set of candidates are usually constructed using the Ramped half-and-half strategy.

Like continuous global optimisation (see Chapter 3), these kinds of optimisation algorithms have their own

class of problems which facilitate comparison among the numerous variations already proposed. Two of these used

widely in the literature are presented and discussed. Firstly, the classic Symbolic Regression problem, followed by

the Santa Fe Ant Trail problem.

4.1.1 Symbolic Regression

A popular testbed for algorithms like GP is Symbolic Regression [4]. This problem serves as a suitable example of

the capability of GP. Symbolic Regression is the search for an expression which best matches an unknown function

by observations of it; for instance, f(x) : Rn → R, given a finite set of x and f(x) pairs. An example could be a

Sextic polynomial such as:

f(x) = x6 − 2x4 + x2 (4.1)

Assume this function is unknown and a set of observations is given. The GP algorithm would maintain

a population of candidates, where each candidate is initialised to an arbitrary expression, constructed from

terminal T and nonterminal symbols F (also termed functions). In this case, the sets could be T = 0..9 and

F = Q, ∗,+,−, / (Q denotes the square-root 1-arity function). Suppose a candidate expression was initialised to

x ∗ x ∗ x ∗ x ∗ x ∗ x+ 2x+ 3. By simple observation this is a poor match for Equation 4.1. However, it is important

that the algorithm has a quantifiable measure of “fitness”, or suitability, in order to propagate candidates which are

more suitable. By feeding a set of inputs through the “black-box” of the real f(x), one can obtain the root mean

squared error (RMSE) measure which will indicate a real-valued distance from the candidate’s f(x) expression to

the actual f(x) in Equation 4.1. The comparison between candidates in a population is what facilitates “survival of

the fittest”, and is hence very important.

It is not necessary to know the actual f(x) during testing; a sample dataset of input/output pairs would be

adequate. However, it is convenient to use the actual function while testing the convergence capabilities of

algorithms. Typically, a more simple scoring mechanism is used: should the error of the candidate f(x) be less

than a certain value ε then the test is deemed a “success”, and the score for the candidate is incremented. A perfect

solution is a faithful reconstruction of the original f(x), and therefore (ideally) achievement of the maximum score

possible.
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4.1.2 Santa Fe Ant Trail

The Santa Fe Ant Trail problem is another good problem for evaluating algorithms based on GP [149]. Figure 4.1

shows the initial state of the problem. The objective is to combine specific function and terminal symbols in such a

manner that the ant follows the path indicated by the black line, consuming all “food” tokens. Figure 4.2 shows a

modified 3D version of the Santa Fe Ant Trail problem with food particles uniform-randomly distributed in a cube

in continuous space.

The nonterminal function set is F = {IfFoodAhead (I),ProgN2 (P)}, where IfFoodAhead is of arity 2, taking a

left operand indicating what to do when food is not directly ahead, and a right operand which is executed when a

food token is directly ahead. The ProgN2 nonterminal is of arity 2 and simply executes both its arguments in order.

To simplify matters somewhat, the ProgN3 nonterminal is discarded unless otherwise noted. This does however

increase complexity somewhat, as multiple ProgN2 functions are necessary to reconstruct a ProgN3 function. The

terminal set is T = {Move Forward (M),Turn Right (R),Turn Left (L)}.

FIGURE 4.1: The initial state of the Santa Fe Ant Trail problem. The ant agent is in the lower left corner of

the lattice, and its task is to consume all food tokens while not being able to sense anything but tokens that are

immediately adjacent to itself.

This problem may seem trivially simple, but an important limitation is that the ant is not able to sense any food

tokens unless it is directly in front of it (also facing it). Consider the very simple attempt at a program to solve this

problem in Figure 4.3. The tree is traversed once for each time step. By following this through by hand on the trail

shown in Figure 4.1, it quickly becomes obvious that it cannot solve the whole problem, as the ant will stop moving

at the first gap in the line.

A program with 100% accuracy generated by John Koza is shown in Figure 4.4. Koza notes that this program

contains some redundancy, but does not affect its performance. With regard to the fitness function, Koza also

notes that no preference is given to more efficient programs (ie. less redundancy) [149]. Therefore, there is a large

number of programs which can solve this problem, some would be functionally equivalent.
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FIGURE 4.2: Initial state of a modified, 3-dimensional Santa Fe Ant Trail problem, with food tokens placed

uniform-randomly across a cube in continuous space.

IfFoodAhead

Move Left

FIGURE 4.3: A very simple attempt to solve the Santa Fe Ant Trail problem. Simulating this by hand will

quickly indicate precisely why this problem is a deceptively simple one to solve.

MOVE

LEFT

IF-FOOD-AHEAD

MOVE RIGHT RIGHT PROGN2

LEFT RIGHT

PROGN2

PROGN2

IF-FOOD-AHEAD

MOVE LEFT

PROGN2

MOVE

PROGN3

IF-FOOD-AHEAD

FIGURE 4.4: A perfect solution to the Santa Fe Ant Trail problem generated by John Koza [149].
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Having discussed some problems and their symbol sets, it is important to now discuss precisely how a candidate

is stored, as this will affect the rest of the implementation.

4.2 Linear Representations and Karva
One of the more prominent problems in using GP is finding an appropriate form or datastructure to encapsulate a

candidate solution to a problem. GP candidates are originally (and intuitively) encoded as pointer tree datastructures.

This is not conducive to the use of Graphical Processing Units (GPUs) for accelerating them, however. While

dynamic memory allocation is now supported by the very successful Compute Unified Device Architecture (CUDA)

API, it is not without overhead due to the use of the global memory bank. Race conditions would also plague the

construction and traversal of these trees.

There are generally three different candidate representations, they are tree-based, linear and graph representa-

tions [25]. The original tree-based representation devised by Koza involved the use of LISP S-expressions [150].

The newer linear [25] representation is more focussed upon a set of instructions, executed one after the other. Graph

GP [139] is a generalisation of the tree-based representations, which could perhaps be well illustrated as a flow

diagram.

A representation named Karva [63] is discussed here. Strictly speaking, it falls under the category of linear

representations. It has some advantages over the original tree-based representations and as such it is used later in

this chapter. It is a linear representation of expression tree structures which Ferreira used for developing the Gene

Expression Programming algorithm [64] which are stored in memory as strings of symbols. Karva is closely related

to Read’s linear code [219], which was an early method to linearise expression trees for GP. Introns are supported

by Karva, which is an interesting feature explained in this section along with how operators such as crossover and

mutation are applied. It should be noted that the Gene Expression Programming algorithm features many additional

operators including replication, mutation, three transposition operators and three recombination operators. These

serve to more closely emulate reality and guarantee effective circulation of genetic information [63].

Another advantage behind the Karva language of GEP is its ability to effortlessly handle any-arity functions,

variable length, and introns. Expressions based on Karva in GEP are known as k-expressions, and are constituted by

a set of symbols (from the function F and terminal T sets) in a specific order. There are however, some disadvantages

concerning the interpretation of these trees (also known as the genotype-phenotype mapping). However, these are

necessary in order to support its more salient features.

These Karva-expressions (or k-expressions) are written by Ferreira in the following form [64]:

012345678901234567

Q-+/-abaa+a-bbacda

The function and terminal sets used in this k-expression are the same as those of Section 4.1.1 above, except the

terminal set T now contains the arbitrary constants a, b, c and d. The line of digits above the expression is simply

an indexing convenience, and the next line is the genotype of the candidate.

The sequence of symbols shown is known as a genotype, meaning that is must first be interpreted before it can

be used. The interpretation of this (or genotype-phenotype mapping) is shown in Figure 4.5. It is worth noting that

neither of the symbols c or d appear in the phenotype. The phenotype is constructed simply by placing the first

symbol at the root of the tree, and then filling arguments of the tree level by level, left to right by advancing through

the sequence, symbol by symbol.
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Q

-

+ /

- a b a

a +

a -

b b

FIGURE 4.5: The abstract syntax tree representing the karva-expression Q-+/-abaa+a-bbacda.

Although candidates in this form would be kept at a constant length of symbols in the population, the actual

depth and construction of the trees depend on the genotype-phenotype mapping, the sequence head length, position

and number of function symbols. The symbol string (sometimes known as the chromosome) must be divided into

head and tail sections, which have their lengths governed by the equation of Ferreira [64] shown in Equation 4.2. In

addition, Karva (and hence GEP) can support candidates with any-arity functions, provided this equation holds.

t = h(nmax − 1) + 1 (4.2)

The concept of an intron is one which alludes to the concept of a disabled gene [64]. Candidates may at times

have unused symbols in their “genetic code” as indicated by the interpretation of k-expressions. These may be

activated and deactivated depending on the operators used. This means that potentially useful genes (or symbols)

are disabled instead of lost in some cases.

In Equation 4.2, the variable t is the length of the tail section of the k-expression, h is the length of the head

section, and nmax is the largest arity possible in the function set F. Only terminal symbols are allowed in the

tail section of the candidate. Should there be too many symbols from the function set F in the candidate, and not

enough terminals, a valid tree cannot be constructed. This is the reason why this equation is necessary.

Simple one-point crossover and point-mutation operators are used in this chapter, in the spirit of the original GP

and Genetic Algorithm (GA) [107]. For more sophisticated operators, the reader is referred to the work of Ferreira

[64]. As noted in Chapters 8 and 9, there is scope for future work in this area. The additional operators provided by

Ferreira are important to ensure the circulation of genetic information throughout a population of candidates [63].

Simple one-point crossover can be applied in a very similar fashion to that of the traditional GA. A random site

in a chromosome is chosen, and information is swapped about this point with another chromosome. This generates

two new candidates. An advantage of having a linear representation such as Karva is that this crossover operator is

much simpler to implement than in the usual single-threaded implementation of GP with pointer-trees.

Consider the following k-expression:
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01234567890123456

*-+*-abaa/abbacda

When this expression is recombined with the following k-expression, with crossover site at index 5:

01234567890123456

*-++baa/bbabbacda

Then the two candidates generated are shown below:

01234567890123456

*-++babaa/abbacda

*-+*-aa/bbabbacda

The phenotypes of these new candidates are shown in Figure 4.6. It is notable that the structures in this figure

differ greatly, even though the chromosomes are of the same length.

(a) New candidate with genotype

*-++babaa/abbacda.

(b) New candidate with genotype

*-+*-aa/bbabbacda.

FIGURE 4.6: New candidates generated by the crossover operator from the “parental” genotypes

*-+*-abaa/abbacda and *-++baa/bbabbacda.

In the traditional representation of solution candidates as pointer tree datastructures, crossover is done by

a variety of methods, and most commonly subtree swap/splicing [207, 149]. There is considerable additional

overhead traversing a pointer tree in memory (especially on GPU) to find a random subtree and reassigning it to

another randomly selected node in another tree.

Point mutation is much simpler. Consider the expression *-+*-aa/bbabbacda whose phenotype is shown

in Figure 4.6(a). Assume the head length of this k-expression is 8. The symbol a at a random index 7, may be

swapped for a random nonterminal or terminal, but any symbols in the tail section can only be swapped for terminals.

Suppose the symbol at index 7 is switched for the / symbol, the expression becomes *-+*-a//bbabbacda

Apart from the considerable lengths necessary to ensure a representation which is suitable for parallelisation, it

is also necessary to consider the ramifications of parallelising the genetic operators. Though the fitness evaluation
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phase is likely to be far more time consuming, it is useful to consider parallelisation of the search algorithm

itself when considering the possibility of large populations. The very common Roulette selection method (fitness-

proportionate selection) does not parallelise extremely well, for instance. Most parallel GP algorithms make use

of a selection method named “Tournament Selection” [183]. In this scheme, every candidate is compared against

another uniform-randomly selected candidate, and the best candidate (by fitness) is chosen as one of a crossover

pair. Once this process is complete, two candidates at a time are recombined and then the mutation operator is

applied.

In the next section, Karva is used as a representation for GP and further considerations for its use on GPU

hardware are made. Following this, Geometric Optimisation is introduced in Section 4.5, along with a prominent

example of it named the Geometric Particle Swarm Optimiser (PSO) [190, 280], and then a new algorithm in

the spirit of the geometric unification is proposed based on the Firefly Algorithm in Section 4.7. Some simple

visualisation techniques for these algorithms are presented in Section 4.8.

4.3 Data-parallelism using GPUs
GP and its variants respond reasonably very well to parallelisation. CUDA is used here to improve both

fitness evaluation speed and genetic operator speed of the search algorithm itself (including all the operators:

selection, crossover and mutation). The CUDA platform arose from a very effective arrangement of MIMD

(Multiple-instruction Multiple-data) and SIMD (Single-instruction Multiple-data) processors, which were intended

for processing large numbers of pixel data as fast as possible. General-Purpose Graphical Processing Units

(GPGPU) has gained much interest since the advent of CUDA, particularly in light of the fact that using pixel and

fragment shaders for simulation is an arcane and difficult affair. CUDA is purpose-built for this, and makes this

process much more accessible [198]. Additional detail on this is given in Chapters 2 and 3. A short introduction is

provided here for ease of reference and self-containment of this chapter. It is recommended that readers already

familiar with data-parallelism on Graphical Processing Units should skip this section.

The CUDA-enabled GPU consists of several Streaming Multi-processors (SMs) which have a certain number of

“CUDA cores”. These SMs process atomic units of work known as “blocks”, which represent a 1D, 2D or 3D grid

of threads. These blocks are sized by the user, and typically coincide with simulation-specific requirements, such

as a grid of threads mapping to every pixel in an image. An SM computes a block until completion, and then, if

available, carries on to the next block. During execution, threads are divided into groups of 16, known as “warps”.

Warps are the smallest unit of execution in CUDA and are executed in a Single-Instruction Multiple-Data (SIMD)

fashion on the CUDA cores on each SM, which is sometimes known as Single-Instruction Multiple-Thread (SIMT).

The combination of all SMs are therefore MIMD. Additional detail on this is provided in the CUDA programming

guide [202].

CUDA-enabled GPUs have some idiosyncratic attributes including memory access penalties and memory

scoping among others. These can sometimes be problematic when not given careful consideration. CUDA provides

access to a variety of memory banks to the user, each of which has different access penalties and scope. To keep this

section brief, a thorough discussion of these is omitted5. The process of executing simulations with CUDA involves

copying data across the PCI bus to the GPU’s global memory, where it is then manipulated by device-specific code.

Once this computation is complete on the GPU, the program would copy the modified data back to host memory.

5The reader is referred to the wealth of information contained within the CUDA Programming Guide [202].
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Depending on applicability in the application, one can make use of host page-locked memory which lessen the

effects of these expensive memory copies.

GPU-specific instructions are created by making use of special syntax added to the C language, which is

compiled by the nvcc compiler. Once this code has been compiled, the rest of the program is passed to the system

C compiler for normal compiling. This allows the CUDA device drivers to insert code to copy device specific

instructions to the GPU.

4.4 Karva, Genetic Programming and Parallelisation
As explained in Chapters 3 and 2, the advantages of GPUs are most notably their commodity pricing and

high theoretical throughput. Fortunately there is also an inherent parallelism in population-based optimisers. This

includes not only parallel fitness evaluation (though it is almost always the most expensive), but also the operators:

crossover, mutation and selection. Implementations of GP tend to focus on accelerating fitness evaluations [156],

as there is often no need for population sizes large enough to warrant GPU-based genetic operators. Though, if

population sizes in these optimisers were large enough, there would an added benefit in using GPUs.

In this section, an algorithm denoted as K-GP-GPU will be presented. It is an adaptation of the original GP to

operate on k-expressions, which also executes on GPU. It is later used for a base-level comparison.

4.4.1 Parallelisation of K-GP-GPU

From first observations, it appears that k-expressions are naturally well-suited to being used with CUDA. This is

because they can be stored as sequences of characters or integers and be interpreted. Furthermore, crossover and

mutation are almost trivially easy, bearing in mind the head and tail requirements (see Section 4.2). However, a

considerable disadvantage is in the genotype-phenotype mapping, which must happen to evaluate fitness. This is

discussed in more detail below.

The method used for combining the traditional GP algorithm and Karva is shown in Algorithm 7. The

optimisation problem is a modified version of the Santa Fe Ant Trail in R3 space. Food particles are strewn across

a cube with set boundaries, and ants compete to consume the food. The function and terminal sets are the same,

except two additional terminals are provided: Up and Down, which steer the agent upwards or downwards in 3D

space.

The majority of computations are parallelised in Algorithm 7. A considerable disadvantage to using k-

expressions is that the execution of these (or tree traversals) is not straight-forward. Argument-function maps are

pre-computed in a separate CUDA kernel in order to allow the interpreting CUDA kernel to directly associate the

instructions provided with their corresponding arguments without using recursion. While recursion is permitted in

a CUDA kernel, it is generally avoided due to limited stack space.

Precisely the method used to gather inputs and execute the genetic operators depends on the selection mechanism.

As mentioned earlier, Tournament selection is the method of choice for the majority of parallel GP implementations.

The algorithm used for accomplishing this with the K-GP-GPU algorithm is shown in Algorithm 8.

Probabilities used for determining whether to execute genetic operators on a population for the K-GP-GPU

algorithm are P (mutate) = 0.1 and P (crossover) = 0.8.

To facilitate comparison, a single-threaded CPU-based GP optimiser was implemented (which is named

here GP-CPU), with the exact same objective function, but computed in a serial fashion using pointer-tree
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allocate & initialise space for n candidate programs

allocate space for random deviates

while termination criteria not met do
call CURAND to fill the random number array with uniform deviates in the range [0,1)

copy candidates and candidate bests to device

CUDA: compute argument maps()

CUDA: interpret/execute programs

CUDA: update food locations/fitness

copy back to host

if end-of-generation then then
CUDA: apply genetic operators to programs

replace old programs with new ones

end if
visualise the result

end while

ALGORITHM 7: K-GP-GPU: The GPU-parallel implementation of GP using k-expressions.

launch a CUDA kernel with n/2 threads

assign each thread candidate numbers x/2 + 1 and x/2

set a to random index

if candidate a beats candidate x/2 + 1 then
replace candidate x/2 + 1 with a

end if
set b to random index

if candidate b beats candidate x/2 then
replace candidate x/2 with b

end if

recombine candidates x/2 and x/2 + 1

mutate the two resultant candidates

save results over the original two candidates

ALGORITHM 8: Parallel Tournament Selection, with crossover and mutation
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datastructures. Crossover and mutation probabilities are the same as the K-GP-GPU algorithm (P (crossover) = 0.8

and P (mutation) = 0.01). The GP-CPU algorithm makes use of the canonical tree-based representation with

a depth restriction of 4. The same number of agents were used (1024). Tournament selection is also used, and

initialisation/point mutation is done by the Full method. Crossover is implemented as a subtree swap. To avoid

program bloat in the GP-CPU algorithm, program trees are pruned following the execution of the genetic operators

to a maximum depth of 4. Any leaves in the tree with function symbols are replaced by random terminal symbols.

It should be noted that this is a very simplistic implementation of GP.

4.4.2 Experimental Results

Some convergence results are provided here for the modified 3D Santa Fe Ant Trail problem, showing how the

implementations compare. Performance data is also provided for comparing the GPU/CUDA implementation with

a conventional serial CPU implementation (GP-CPU).

FIGURE 4.7: Convergence results for the K-GP-GPU algorithm with k-expressions and the GP-CPU algorithm

(CPU-based GP) with the canonical tree-based representation. The graph shows an averaged mean value of each

generation, from 100 independent runs. The error bars represent the average standard deviation of the 100 runs

in each generation. Lowest and highest population means are also shown.

Convergence results for K-GP-GPU as well as the GP-CPU algorithm are shown in Figure 4.7. The plot shows

the averaged mean values of each generation for both algorithms. Each of these data points have been averaged

across 100 independent runs. The error bars on the averaged mean line represents the averaged standard deviation

of the population fitness across all 100 separate runs.

It is clear from this graph that K-GP-GPU clearly outperforms the GP-CPU algorithm. At around generation
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20, K-GP-GPU seems to have a larger spread in the average mean. It is interesting to note that, because of the

difference in representation between the K-GP-GPU (Karva) and the standard GP-CPU algorithms (pointer trees),

at generation 20, the standard GP shows the same increase in spread of mean, albeit, less pronounced.

The spread of the mean towards the end of the simulation is smaller for the standard GP-CPU than for the K-GP-

GPU. Although a smaller spread is much more desirable, the highest mean of the standard GP only barely surpasses

the score of the lowest mean in the K-GP-GPU algorithm. These results should give only a rough indication of the

capabilities of these algorithms. Both are likely to be improved considerably given more sophisticated operators

and initialisation procedures. Rough convergence properties of Karva as a representation appear to be suitable for

further study.

Frame Time (µ sec) Gen. Time (µ sec)

K-GP-GPU (k-exp) 1160± 40 423.2± 0.5

CPU-GP 48000± 8300 2600± 300

TABLE 4.1: Performance data for the GP-CPU algorithm and the K-GP-GPU algorithm.

Performance data for each of these algorithms were also collected. These are shown in Table 4.1. The timestep

compute time was averaged across the 300 steps in each generation, and then across all 100 independent runs. The

generation compute time represents the time it took the algorithms to compute a new population only. This was

also averaged over the 100 separate runs. The data is of the form mean ± std. dev.

From this data, the CUDA-based algorithm achieves a speedup of 6 times over the CPU algorithm for computing

new populations, and 41 times over the GP-CPU algorithm for computing a single frame of the simulation. A

CPU-based GP would not usually be given a population of size 1024, however. Sizes smaller than this is quite

likely to be much faster than a GPU, due to a lack of costly memory copies which are necessary to use the GPU

instead. The advantages of a larger population are clear when dealing with difficult problems.

Figure 4.8 shows the time taken by each algorithm for computing a new population for fitness evaluation. This

process is mostly just the genetic operators; selection, crossover and mutation. It is interesting to note that the

generation compute time for the GP-CPU algorithm is nonlinear, while the K-GP-GPU algorithm seems almost

practically linear. Given the pointer-tree representation of the GP-CPU algorithm, it is clear why earlier generations

are more expensive to generate. Larger pointer trees (generated to 4 levels) require more traversals and memory

fetches. Toward later generations, the trees become simpler, and generation of new populations becomes faster for

the CPU algorithm.

The mean timestep computing time for the CUDA algorithm has a standard deviation of just 40µsec, whereas

the CPU algorithm has a much larger 8300µsec, even taking into account the fact that its timestep computing

time is 41 times greater. This is also likely due to the initialisation method (Full) of the CPU-based GP algorithm.

Figure 4.9 shows what form a typical initialised agent would take. This is in sharp contrast with Figure 4.10 which

depicts a much more effective solution. As can be seen from the initial program, they can potentially contain

more IfFoodAhead functions, which are far more computationally expensive than terminals. This explains why

initialised programs are often more expensive to evaluate.

From observation, it seemed that highly effective programs generally take a certain form. An IfFoodAhead

function is used to cause movement in a direction other than straight, and the rest of the program consists simply of
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FIGURE 4.8: Computing performance of the K-GP-GPU and GP-CPU algorithms by generation.

FIGURE 4.9: A typical individual agent generated by the “Full” method in the simulation. LISP-style code for

this tree is (P(P(P(D)(L))(I(L)(L)))(P(P(M)(M))(P(M)(R)))).
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FIGURE 4.10: A highly effective generated agent. The LISP-style code for this is (P(P(P(M)(M))(M))(I(M)(R))).

Move terminals. The reason why multiple Move terminals are beneficial is because it allows the agent to move

faster, and hence potentially reach more food. This modified Santa Fe Ant Trail problem is then perhaps simpler

than the original used by Koza [149].

4.5 Geometric Optimisation
Geometric optimisation is a concept that was introduced by Moraglio in his thesis of 2007 [189]. Essentially

this methodology brings forth apparatus for converting a parameter-based evolutionary optimiser into an abstract

space-invariant optimiser. As is often the case, a specialised optimiser in a particular domain is more effective than

an off-the-shelf solution for that domain. Although Poli and colleagues [227] in 2007 noted that it is too early

to know if a geometric PSO can compete with other algorithms in the same space as GP. In 2008 Togelius et al.

concluded that while their geometric algorithm does not vastly outperform others, it is possible that the PSO is

simply not well suited to that particular search space [280].

Despite the initial negative results in the literature, there have been several geometric optimisers proposed.

These include Geometric Differential Evolution [192, 191], Geometric Particle Swarm Optimisation [190], and

Particle Swarm Programming [280].

The process involving the formal extension of optimisers to other search spaces typically involves redefining the

concept of distance [227]; which in continuous global optimisation is a particularly important notion, used primarily

for making linear combinations of two or more particles. This also depends on the concrete application intended.

Using convex set theory, Moraglio proposed a Geometric version of the PSO [189]. Moraglio also showed that the

actual movement of particles is simply dependent on the ability of the algorithm to make linear combinations of

vectors in Cartesian coordinate space. Using this, he then postulated that the same can be achieved by using one or

more geometric crossover operations, which enables detaching the PSO from its originally intended search space.

A geometric crossover is essentially a weighted crossover which ensures the intended abstract geometric properties

of crossover (ie. keeping the “better genes”, or placing a linear combination of two particles closer to the better

particle).

The rest of this chapter is organised as follows. First the Geometric Particle Swarm Optimiser (GPSO) of

Moraglio [190] is discussed. Then a new algorithm is proposed named the Geometric Firefly Algorithm (GFA),

which makes use of some of the apparatus that Moraglio and Togelius [192, 280] used to generalise algorithms
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of the same family as the Particle Swarm Optimiser. The generalised GFA is specialised to the search space of

programs, and a parallel implementation of it is presented and discussed.

4.6 Geometric Particle Swarm Optimiser
Moraglio, Chio and Poli formally derived the Geometric Particle Swarm Optimiser Algorithm (GPSO) (though

without the inertia term) by applying concepts of geometric crossover and geometric mutation using convex set

theory [190]. The GPSO is generalised to arbitrary search spaces. From the original PSO, the first observation

made is that it must be possible to compute “linear” combinations of more than two particles, in whatever search

space is necessary. Moraglio et al. used the concept of a convex combination to ensure that combinations of points

in a convex hull in some metric space satisfy four conditions involving the weight of the points.

These requirements were given by Moraglio in detail [190], and are loosely reminiscent of the same concepts in

continuous space. For example, suppose g has a fitness (or weight) of wg = 0.4, and a particle x in the space has a

fitness (weight) of wx = 0.1, and a linear combination between these are made without randomisation. It follows

that the new point n lies somewhere between x and g, and specifically, more closely to g due to having a larger

weight. The conditions essentially ensure that the weights satisfy wx +wg = 1, that the point n lies between x and

g, that the distance between x and g are coherent with their weights (the mid-point or equilibrium has a weight

of zero), and that if wg = wx then the distance to the midpoint is the same. More detail on this is available in

Moraglio’s thesis [189], as well as the work of Moraglio et al. [190].

In order to accomplish the linear combination of several points (ie. multi-parent crossover) in arbitrary space,

Moraglio et al. show that it can be done using several separate geometric crossovers [190]. The original PSO,

for example, requires the linear combination of a particle with its personal best position found, as well as a

global best (ie. a multi-parent recombination). Moraglio et al. also specialised the GPSO to Manhattan and

Hamming metric spaces, as well as Euclidean space. Using these ideas, Togelius et al. created the so-called Particle

Swarm Programming algorithm, which is a proof of concept optimiser based on the GPSO, and specialised to the

search space of genetic programs [280] (of GP). Togelius et al. proposed several possible operators for crossover,

and the authors concede that significant research still remains in finding the most appropriate operators. Some

effective ones presented by them include weighted subtree swap, weighted homologous crossover and weighted

one-point crossover. Homologous crossover ensures that the common region between two candidates are kept intact

[226]. Togelius and colleagues reported that common regions can sometimes be too small for this operator to be

constructive [280]. The other two operators are more self-explanatory.

4.6.1 GPSO for Karva-expressions

As the authors of Particle Swarm Programming (PSP) have noted, more research would be beneficial for geometric

optimisers especially in the search space of programs [280]. By combining the Karva language of Ferreira [64] with

the GPSO [190], a different specialisation of the GPSO was obtained. A different search space has a considerable

impact on an the ability of an optimiser to explore and converge. This specialisation of the GPSO is presented, and

then some performance data is given. The algorithm is parallelised across graphics hardware to improve wall-clock

performance. Henceforth this algorithm will be referred to as K-GPSO-GPU, and is described and investigated in

this section.

The method used for implementing the K-GPSO-GPU algorithm described above is summarised in Algorithm

9. Parallelisation is achieved in the same manner as the K-GP-GPU algorithm described in Section 4.4, whereby
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argument maps were pre-computed from k-expressions to allow a separate CUDA kernel to execute programs

without recursion.

The weighted crossover of the PSP algorithm of Togelius and colleagues [280] was modified to operate on

k-expressions using an adapted multi-parent geometric crossover proposed by the authors of that article, shown in

Equation 4.3 [280].

∆GX((a,wa), (b, wb), (c, wc)) =

GX((GX((a,
wa

wa + wb
), (b,

wb
wa + wb

)), wa + wb), (c, wc))
(4.3)

allocate and initialise enough space for n candidate programs

allocate space for random deviates

while termination criteria not met do
call CURAND to fill the random number array with uniform deviates in the range [0,1)

copy candidates and candidate bests to device

CUDA: compute argument maps()

CUDA: interpret/execute programs

CUDA: update food locations/fitness

copy back to host

if end-of-generation then then
CUDA: update candidate bests

CUDA: recombine and mutate programs

replace old programs with new ones

end if
Determine best candidate

visualise the result

end while

ALGORITHM 9: The parallel implementation of the K-GPSO-GPU algorithm.

In Equation 4.3, GX is the crossover operator, and ∆GX is the multi-parent crossover operator. It is assumed

that wa, wb and wc are all positive and sum to 1. Essentially this equation defines the weighted, multi-parent

crossover as two crossovers, the first being between a and b, where weights are re-normalised to sum to 1, and

the second is a crossover with c. Togelius, De Nardi and Moraglio provide more details on this using convex

set theory [280]. More detail on the rationale and rigorous mathematical proofs of this procedure are available

[192, 189, 190, 280].

As can be seen in Algorithm 9 the majority of computations are parallelised as with the K-GP-GPU algorithm,

in anticipation of large candidate populations. In order to execute the programs generated, arguments are again

reordered in separate memory space as described in Section 4.4.
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At this point, what remains to be determined is precisely how the crossover operation given in Equation 4.3

will be done on linear k-expressions. Ferreira defines one-point crossover as choosing a crossover site or “pivot”,

and then exchanging symbols about this point to obtain two new candidates [63]. In order to ensure that this

crossover is geometric in the sense that multi-parent one-point crossover can be computed and still be able to bias

the result towards one parent candidate or the other, it must be ensured that it is weighted. This is however not

enough to define the crossover as geometric. In order to do this, one must prove that this crossover satisfies the four

conditions for a convex combination outlined by Moraglio et al. [190]. According to Togelius et al. the following is

a reasonable approximation [280].

The method used for accomplishing this recombination is by using the ω, φg and φp parameters as the weights

(wa, wb and wc) in Equation 4.3. The candidate a is further defined as the current candidate under consideration, b

as the corresponding personal best of a, and c as the global best candidate discovered so far. The fitness values of

these are not used in the crossover process. Note also that unlike GP, selection is not required, other than simply

a value for P (crossover), a probability defined by the user, as in GP. GEP crossover defines a “donor” and a

“recipient” tree, which are chosen randomly [280].

The weights mentioned apply to the crossover operation between two k-expressions as an indication of how

closely to the root of the tree the pivot (crossover site) is. This idea was obtained from the article of Togelius et al.

where it was shown that this method roughly satisfies the four conditions of a convex combination [280].

Point mutation proceeds as with the K-GP-GPU algorithm, per Section 4.4.

As the algorithm has been described, focus is now given to an evaluation of effectiveness. The K-GPSO-GPU

algorithm described above was compared against the K-GP-GPU algorithm described in detail in Section 4.4.

The optimisation problem under consideration was the modified Santa Fe Ant Trail problem in three dimensions

described in Section 4.1.2. Analysis involved two aspects of the algorithms, firstly the ability of the algorithms to

converge upon a good solution, and secondly the speed with which it was achieved.

The parameters used for the K-GP-GPU algorithm were: P(Crossover) = 0.8, P(Mutate) = 0.1. The same

crossover and mutation rates were used for the K-GPSO-GPU algorithm, and for the PSO-specific settings, these

parameters were used: ω = 0.1, φp = 0.6, φg = 0.3. As for the simulation itself, angular velocities are restricted

to 0.1 units, and initial velocities are initialised to between −0.16 and 0.16. This essentially serves to increase the

difficulty in finding a good program. In order to use a higher mutation rate, Togelius et al. recommend using elitism

[280], whereby the best candidate is replicated verbatim into the new population following the genetic operators.

This is a common technique used in EAs to bias the population in a particular direction. Elitism is used in the GP

and the K-GPSO-GPU algorithms.

4.6.2 Experimental Results

Figure 4.13 shows the convergence results for the K-GPSO-GPU and the K-GP-GPU algorithms. Each data point

in all the plots shown have been averaged 100 times in independent runs. The figure shows apparent evidence

that the K-GPSO-GPU algorithm is indeed more able to find a good solution faster, but is quickly superseded by

the GP-based algorithm if computing fitness for more than about 25 timesteps. It could be that the GPSO-based

algorithm is more appropriate if it is not viable to compute more than 25 generations.

Figures 4.11 and 4.12 show the convergence results for the two algorithms respectively. Elitism was experi-

mented with in order to determine precisely how much of an effect it has on the space of k-expressions. Figure 4.13

shows conclusively that elitism allows the algorithms to perform better, albeit marginally.
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FIGURE 4.11: Modified 3D Santa Fe Ant Trail Problem convergence results for the K-GP-GPU algorithm, with

elitism. The graph shows the average mean value of each generation, from 100 independent runs. The error bars

represent the average standard deviation of the 100 runs in each generation.

FIGURE 4.12: Modified 3D Santa Fe Ant Trail problem convergence results for the K-GPSO-GPU with elitism.

Each data point has been averaged 100 times in independent runs, and the error bars represent the average

standard deviation of each generation.
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Each data point of the averaged mean was averaged across 100 separate runs. From these plots, it is clear

that the K-GPSO-GPU has more spread per generation than the GP-based algorithm, which is not very desirable.

Essentially this indicates that the algorithm is somewhat less reliable and not as consistent. The minimum and

maximum values are also shown to indicate the full spectrum.

Finally, Figure 4.14 shows the average compute time, by generation, for both the K-GP-GPU and the K-GPSO-

GPU. The fitness evaluation consisted of computing 300 frames of the candidate programs and gathering scores

from this. Therefore, each data point represents the average frame compute time across each of the 300 frames, and

then averaged 100 times by independent runs. The generation compute times are also shown, although they are

somewhat hidden. While the first observation seems that the K-GPSO-GPU is faster than the K-GP-GPU algorithm,

this is somewhat misleading. Essentially, the plots in Figure 4.14 would be completely linear, if all the terminal and

function symbols were of the same complexity. As will be shown later, this is likely due to the lack of diversity in

the populations of the K-GPSO-GPU algorithm and the overly quick convergence properties of it.

The average new-generation population parallel compute time for the K-GP-GPU was 420µsec, and for the K-

GPSO-GPU it was 440µsec. Even though this is not remotely comparable to the fitness evaluation ( 340, 000µsec),

it was still worth the effort, as this must happen in serial following the fitness evaluation phase. In other words, any

improvement on generation compute time will improve wall-clock performance since it cannot be done in parallel

with the fitness evaluation phase. This allows to generate larger populations of candidates, but it should be noted

that the fitness evaluation phase will also increase greatly in computing time. Therefore, this improved population

generation algorithm is likely to be more useful for problems with low-complexity in fitness evaluation.

The function symbol IfFoodAhead has a rough complexity ofO(f), where f is the number of food particles,

which would approachO(fN), should all candidates have one of these symbols in its program. Of course, the worst

case here is that every candidate consists only of these functions and enough terminals to satisfy the k-expression’s

head and tail sections. Hypothetically, given a maximum expression length l = 8, and a head length h = 3 (hence

a tail length of 5), then the maximum number of IfFoodAhead functions would be 3. Extrapolating from this,

assume all N particles were formed like this, then evaluation could reach complexity O(3fN), which could also

very well exceed O(N2), a highly undesirable complexity. Of course, this would depend on the value of f , which

was arbitrarily chosen in this instance.

Following from this argument, it is possible to make the conjecture that at generation 20, the K-GP-GPU

algorithm generally increased its use of the IfFoodAhead function, while the K-GPSO-GPU had reached a

steady equilibrium of a certain number of these functions. This would seem to agree with the suspicion that the

K-GP-GPU is in fact better in preserving population diversity.

Attempts to improve the K-GPSO-GPU beyond the results seen in Figure 4.13 was met with disappointment.

Parameter tuning efforts for phig , phip and ω included normalised combination of respective scores of particles and

also normalised weighted scores, but the best parameters observed were simply phig = 0.3, phip = 0.6, ω = 0.1.

Fine-tuning crossover and mutation probabilities had varying effects on convergence. Removing the crossover

phase with the global best solution reduced mean scores to around 0.2, and similar results were obtained from

removing the crossover with the personal best. Randomising the crossover point slightly with hand-tuned parameters

to aid in diversity did not improve scores at all.

Results indicate that, at the very least, the K-GPSO-GPU operating over k-expressions is appropriate for when

the fitness evaluation is extremely computationally expensive. Given enough time and compute power, however,

the K-GP-GPU algorithm operating on k-expressions is more suited to this problem.
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FIGURE 4.13: Convergence results for the K-GP-GPU and K-GPSO-GPU, as well as the use of elitism for both

in the modified 3D Santa Fe Ant Trail problem. Each data point has been averaged across 100 independent runs

to obtain meaningful statistical data.

As for the performance data presented, it would be unwise to favour the K-GPSO-GPU from the observation

in Figure 4.14 that the timestep compute time is lower. The slightly higher compute time does, after all, seem to

translate into a higher success rate as shown in Figures 4.11 and 4.13.

Having successfully integrated Karva into parallel modified versions of the GP and the GPSO, a next step is to

examine the use of a slightly more sophisticated optimiser, also from the realm of continuous global optimisation.

4.7 Geometric Firefly Algorithm (I, p. 47)

The Firefly Algorithm (FA) is a metaheuristic algorithm from the greater family of stochastic population-based

optimisation algorithms for continuous objective functions [299]. It was introduced in Section 3.2.3, and discussed

in Section 3.4.2 in the context of parallelism using GPUs. It is now reused and adapted in this section for the search

space of syntax trees represented by k-expressions.

In order to prepare for implementing a parallel GFA to operate on the space of syntax trees in the form of

k-expressions, multi-parent crossover must be considered. Unlike the K-GPSO-GPU and K-GP-GPU algorithms,

the original FA requires all candidates to accept some influence from all others. This therefore requires a “linear”

combination of one firefly with n other fireflies in one crossover operation.

Eiben et al. in their work of 1994 [55] and Eiben’s work of 1997 [56] introduced a method known as Gene

Scanning for multi-parent recombination. In the context of Memetic Algorithms, there is also some interest in

multi-parent crossover operators and Moscato et al. mention multi-parent recombination as a promising area of

future study [193]. Eiben introduced several multi-parent crossover operators for binary chromosome Genetic

Algorithms. These include uniform scanning, occurrence-based scanning and fitness-based scanning among others.



4.7. GEOMETRIC FIREFLY ALGORITHM 89

FIGURE 4.14: Modified 3D Santa Fe Ant Trail problem compute times for fitness evaluation, and generation

compute time for both the K-GPSO-GPU and K-GP-GPU algorithms.

A trivial modification to Eiben’s fitness-based scanning operator is made in order to operate on k-expressions and

the symbols they use. The reason fitness-based scanning is used is to ensure that crossover is biased according to

the fitness values of each candidate. This allows us to steer clear of adding additional operators6 in order to ensure

the algorithm converges.

The fitness-based scanning operator simply iterates over an expression and selects symbols to copy into the

expression from the set of corresponding symbols from all the other candidates. Selecting the symbol for a particular

index of the candidate involves choosing a gene with a probability based on the fitness of the candidate from which

the symbol is taken. Essentially, the process becomes a fitness-proportional selection operator, which is applied for

every expression symbol index separately. More detail on this can be sought from the work of Eiben et al. in 1994

[55]. In order to accomplish a fitness-based scanning crossover operator, it is necessary to use fitness-proportionate

selection. This involves keeping track of a running total of scaled probabilities, to which a uniform random deviate

can be applied to properly select a certain gene with a probability proportional to fitness. To illustrate how this

crossover operator would apply to the K-GP-GPU algorithm discussed in Section 4.4, consider Algorithm 10. Gene

Scanning is essentially a replacement for the crossover operator.

Before a FA in the space of programs can be proposed, another issue must be discussed. The original FA update

equation is shown below in Equation 4.4 for convenience.

xi ← xi + β0e
−γr2ij (xj − xi) + α(d) (4.4)

Note that in this equation, distance is necessary in order to compute a light decay function to degrade the

perceived fitness of candidates at a distance. Therefore, it is necessary to choose a metric space. For simplicity,

6This would effectively turn the algorithm into a Memetic Algorithm [193].
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allocate & initialise space for n candidates on host and GPU

while termination criteria not met do
copy candidates to device

CUDA: compute k-expression execution map

CUDA: evaluate fitness of k-expressions with 50 input sets

copy back to host

Report averages

CUDA: apply gene scanning recombination to candidates with P(crossover)

CUDA: apply mutation to candidates with P(mutation)

CUDA: replace old candidates with new ones

end while

ALGORITHM 10: Parallel Genetic Programming algorithm operating on k-expressions with fitness-based gene

scanning.

Hamming distances are used to measure distance between candidates. While in the spirit of the geometric unification

of Moraglio, this may not satisfy all the requirements of a geometric crossover, but perhaps only approximately.

There are other metrics which may be more suited, such as edit distances, Manhattan distance or fitness difference

[26].

Having obtained a crossover operator which is capable of weighted multi-parent recombination in the space of

k-expressions using fitness-proportionate selection, it is also important to decay weights with respect to relative

distances. Before weights (fitness values) are used, they are degraded by Equation 4.5.

sb′ = sbe
−γH(a,b)2 (4.5)

With a as the current candidate, in this equation, sb′ is the updated score of candidate b, sb is the previous score

of candidate b and H(a, b) is the Hamming distance between candidate a and b. Finally, γ defines the shape of the

decay curve, which is referred to here as the decay parameter.

With these modifications in place, a fully operational GPU-parallel Firefly Algorithm for expression trees using

k-expressions and fitness-based gene scanning for recombination has been created. What remains is to ensure that

it performs adequately well, considering the relative increase in complexity from simpler algorithms discussed in

previous sections.

4.7.1 Parallelisation

While the fitness evaluation phase remains the same, the process in which candidates are recombined is radically

different. Pseudocode at the centre of the k-expression recombination kernel is shown in Listing 4.1. This CUDA

kernel is executed ensuring that there is one thread per k-expression. Tiling is used to reduce memory fetch overhead

[154, 203, 222] to the same effect as spatial Agent-based Modelling (ABM) as discussed in Chapter 2.
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1 __global__ update_fireflies(scores,programs,newprograms,params) {

2 const uint index = <global thread index>

3 extern __shared__ unsigned char progtile[];

4 __shared__ float scoretile[32]; float newscoresum = 0.0f;

5 load_my_program(myprog);

6 // sum all observed scores for each thread

7 for (int i=0; i < agent_count/tile_size; ++i) {

8 scoretile[threadIdx.x] = observe_fitness(myprog,

9 programs + (i*tile_size + threadIdx.x)*maxlen,

10 scores[i*tile_size + threadIdx.x],params);

11 __syncthreads();

12 for (int i=0; i < tile_size; ++i) newscoresum += scoretile[i];

13 __syncthreads();

14 }

15 float symbolrand[progsize];

16 for (int i=0; i < progsize; ++i)

17 symbolrand[i]=<rand between 0 and 1> * newscoresum;

18 for (int i=0; i < agent_count/tile_size; ++i) {

19 globalindex = (i * tile_size + threadIdx.x)*maxlen;

20 for (int j=0; j < maxlen; ++j)

21 progtile[threadIdx.x*maxlen+j]=programs[globalindex+j];

22

23 scoretile[threadIdx.x] = observe_fitness(myprog,

24 programs + (i*tile_size + threadIdx.x)*maxlen,

25 scores[i*tile_size + threadIdx.x], params);

26 __syncthreads();

27 if (<rand between 0 and 1> < pcrossover)

28 for (int j=0; j < tile_size; ++j) {

29 running_score += observe_fitness(myprog,

30 programs + (i*tile_size + j)*maxlen,scoretile[j], params);

31 for (int k=0; k < maxlen; ++k)

32 if (symbolrand[k] < running_score) {

33 if (scoretile[j] > myscore) myprog[k] = progtile[j*maxlen + k];

34 symbolrand[k] = scoresum+1.0f;

35 }

36 }

37 __syncthreads();

38 }

39 if (<rand between 0 and 1> < pmutate) {

40 int pt = <rand int between 0 and maxlen>;

41 if (pt < program_head_length) myprog[pt] = <rand int between 0 and 4 inc>;

42 else myprog[pt] = 0; // the only terminal (x)

43 }

44 for (int i=0; i < maxlen; ++i) newprograms[index*maxlen+i] = myprog[i];

45 }

LISTING 4.1: Parallel Geometric Firefly update kernel code. This code includes tiling for scores and programs.
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4.7.2 Method

Symbolic Regression (as discussed in Section 4.1.1) is used to evaluate this algorithm against the K-GP-GPU (I, p. 70)

algorithm discussed in Section 4.4. The sextic function is used. The effectiveness of a single candidate expression

was evaluated by feeding 50 input/output pairs through the candidate, and if the error in the output is less than 0.01

then it is counted as a successful test. 1.0 is then added to the fitness of the candidate. Essentially this arrangement

allows for some noise in the fitness function, since a particular expression tree may be very different from the target,

and still obtain a non-zero fitness. The maximum fitness value is 50 for one test.

In terms of configuration, candidate k-expression sizes were allowed to extend to 64, and head lengths only to

24. The functions symbol set was F = +,−, ∗,% and there was only one terminal symbol, T = x. The search

space is therefore comprised of 424 unique k-expressions, since in this case there is only one terminal symbol.

Each algorithm was configured with a population size of 1024, mutation probability of P (mutate) = 0.08, and

crossover probability P (crossover) = 0.99. For the K-GP-GPU algorithm however, crossover probability was

set P (crossover) = 0.8 and mutation probability of P (mutate) = 0.1. These were the best values obtained by

empirical testing.

4.7.3 Experimental Results

In this section some generated programs as well as plots of fitness convergence are presented, along with some

visual representations of solutions and associated program spaces.

FIGURE 4.15: A sample expression tree generated by the Geometric Firefly Algorithm which yielded a full

score of 50 for the Symbolic Regression problem (Sextic function).

Figure 4.15 shows a program generated by the GFA. It resulted in a full score of 50, and when interpreted and

reduced, results in x6 + 2x4 − x2. This differs in a subtle way from the objective function, in that the + and −
operators are swapped. This may well have resulted due to the relatively large error allowed for a successful test

with 0.01 in absolute error. Reducing this to a smaller margin of 0.001 may yield a more correct result overall.
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FIGURE 4.16: Comparison plot of different settings of the decay parameter in the algorithm.

FIGURE 4.17: Fitness plot of the algorithm when observed fitness values from the point of view of one candidate

are not decayed at all.
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Figure 4.17 presents 100-run averages of standard deviations, lowest and highest population fitness mean, and

average population fitness mean. The data plotted in this graph was generated by setting γ = 0.0 in Equation 4.5,

effectively allowing a candidate to perceive the full undegraded fitness values of all other candidates during selection

and crossover. For this value of γ, the success rate yielded was an unimpressive 11%.

The plot shown in Figure 4.17 contains some interesting anomalies at generations 420, 530, 680, 760, 800, and

950. The standard deviations appear to climb instantly at these points, and so do the mean, while the lowest and

highest remain the same. It is believed that this is caused by the algorithm escaping local minima by pure chance,

since the lowest fitness mean is not affected. Essentially, as in continuous global optimisers, this appears to be some

kind of premature convergence, where the search would stagnate.

FIGURE 4.18: Fitness plot of the algorithm when the decay parameter is set to 0.01.

Figure 4.18 shows 100-run averages of the highest, lowest and mean population fitness by generation, in the

same format as Figure 4.17. Here, the difference is clear, as the average mean increases steadily. For this value of γ,

the success rate was 98%, as 98 runs succeeded in producing an expression which produced 50 outputs all within

0.01 of the true sextic function.

Figure 4.16 shows a comparison for different decay values of the algorithm proposed, and also the tournament-

selection K-GP-GPU algorithm. This graph is somewhat misleading, as the means do not necessarily convey the

success of the algorithm and the range of diversity within them by generation. For example, γ = 0.003 gains a

success rate of 75%, yet γ = 0.02 which is a similar curve gains a success rate of 98%. Therefore a 3D plot of

success rates is provided with mean fitness and generation numbers in Figure 4.19. Here, it is more obvious that

similar means obtained do not necessarily correspond to a higher success rate.

Decay curves are shown in Figure 4.20 for various values of γ. For varying values of γ, the observed fitness

values of other candidates are decayed differently. The curve with the highest success rate has been highlighted

(γ = 0.008). It is interesting to note, that the Hamming distance between two candidates can reach to a maximum

of 64 in this experiment. Even slight changes to the value of γ for this curve makes dramatic changes to the success

rate of the algorithm. The effective interaction radius in Hamming space of the algorithm with γ = 0.008 is
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FIGURE 4.19: 3D plot of success rates by decay values for each generation over 100 independent runs for

different decay values.

FIGURE 4.20: Sample decay curves produced by various γ values for Hamming distances to candidates

observed by the current candidate.
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reminiscent of appropriate settings of γ in the canonical Firefly Algorithm, where a γ too large would result in

stagnation, and a γ too small would suffer from premature convergence. This particular exponential decay appears

to maintain an optimal local search neighbourhood around a candidate.

It appears that suboptimal success rates are achieved if γ is set to not decay observed fitness values at all, or set

far too high so as to aggressively decay observed fitnesses.

FIGURE 4.21: GFA success rates over the 100 runs of each decay parameter used.

Success rates by γ-value (decay) are provided in Figure 4.21. Given that head lengths are at maximum length

of 24, it is useful to look at the shape of the decay curves with γ values between 0.003 and 0.005. What is clear is

that the best decay curve appears to degrade observed fitness values greatly if they approach 24. It appears that the

best balance in γ is achieved when the curve fits within the head section of the k-expressions. It is notable that this

may not be the case with other problem domains, however.

Figure 4.22 contains average performance data across the 100 runs of the algorithm. As is expected, initial

complexity of the candidates would be high, since the head sections of candidates would be randomly initialised.

The result is a decrease in complexity towards generation 500, where average generation evaluation time tends

to be around 12 msec. The average generation compute time is at a near constant 31.8 msec. Parallelisation of

this algorithm was worth the effort, as it would generally be far more expensive to compute the objective function,

therefore the overall compute time was kept in a reasonable range. The outliers in the generation evaluation time is

likely due to mutation introducing extra complexity and possibly activating dormant intron function symbols.

4.8 Program-space Visualisation
Visualising the results of algorithms searching through the space of programs not only assists in validation, but

also helps in fine tuning and often provides valuable insights. Such techniques have helped cast light on 3D voxel

datasets [93], vector fields [117], lattice gases [92] and also spatial datastructures [119] (see Section 2.2.2). They

have also been helpful to calibrate and debug algorithms presented in this thesis.
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FIGURE 4.22: Average performance data by generation for both generation evaluation time and the time taken

to compute a new generation for evaluation.

Two simple methods are presented here to visualise program space. The first is based on the subdivision of 2D

space, which works well for shallow-depth programs. The other is a graph based technique, which works better for

larger program trees, but is less coherent than the space division method, since two adjacent generations have little

in common visually.

4.8.1 Recursive Space Subdivision

The method used for visualising program space involves a successive subdivision of a 2D grid, where each

subdivision represents the selection of a different codon or symbol. This method is specifically engineered for

k-expressions, but it can easily extend to any other abstract syntax tree representation including pointer trees. This

method has previously been discussed by Daida et al. [43], who discontinued its use due to a lack of adherence to

widely accepted visualisation principles. The technique is admittedly difficult to interpret when trying to compare

individual candidates, and plagued by an excess of lines. However, as an interactive tool (with the ability to scale

and translate), the author found it useful to diagnose issues with evolutionary optimisers.

Figure 4.23 shows an example of what a randomly initialised population of candidate programs represented by

Karva-expressions could look like. In this example, a dot represents a single program. The space is divided in a

horizontal fashion, for selecting the first symbol, then vertical for the second symbol, and so forth, until all symbols

have been selected, at which point a dot is placed. It is worthwhile to note that in doing this, the combinatorial

program search space is effectively being viewed as a continuous one (albeit discrete), where differences in

programs are represented as spatial differences instead. This idea is essentially equivalent to an edit distance space

where symbols towards the root of the expression trees are given a larger weight. In this case, the symbol at the root

of the k-expression dictates the largest horizontal row in which the expression falls into.

To further illustrate this method, Algorithms 11 and 12 are presented. Algorithm 11 shows the process by which

an expression is added to the tree-based data-structure of the visualiser. Algorithm 12 is the method by which

the data-structure is drawn to the screen. Algorithms 11 and 12 are kept separate in the implementation, so that

interactive use of the program is more streamlined. The data-structure used is similar in concept to k-D trees, where
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FIGURE 4.23: Visual representation of a generation of agents using a tree structure.

space is successively subdivided along each of the principal axes, except not binary division, but space is divided

into the number of symbols (terminals and nonterminals).

To further align with visualisation techniques in continuous systems, an indication of movement through space

is added here. To indicate candidate movement through this pseudo-space in successive generations, a line is drawn

from the previous candidate to the new candidate in each generation. This makes certain dynamics of EAs more

clear, particularly the K-GPSO-GPU algorithm, which is discussed later.

In summary, for a new expression (or program) to be added to the program-space visualisation, the space is

first divided into n sections vertically, where n is the number of terminal and non-terminal symbols. Each section

represents a symbol. The first symbol in the expression determines the section next divided. Suppose this is the

third section from the top (ie. the third symbol in the entire set of symbols, both terminals and functions). This

section is then divided into n sections in a horizontal fashion. The next symbol in the expression determines which

section will then be divided further vertically, and so forth. Finally, when no symbols remain in the expression, a

dot is drawn to indicate the location of the expression. This allows an entire population of expression trees to be

shown in a single image.

The visualiser is best used interactively. Keystroke combinations allow the user to scale the image to magnify

specific locations within the program space, and translate the viewport to better understand how the algorithm under

scrutiny operates. As seen in Figure 4.23, from symbol 4 or 5, it becomes difficult to discern precisely which the

final symbols of a program are, but still allows a reasonable comparison among expression trees in a population.

The head section of the expression trees tend to be critically important in Karva, and have the ability to greatly

change the structure of a tree. This visualiser tends to give top-level symbols more emphasis.

To put this algorithm to the test, a number of visual frames of various algorithms are presented along with a

discussion of selected features. In particular, the characteristics of the K-GP-GPU and K-GPSO-GPU algorithms
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with n candidate programs

with p as the top-level symbol drawable

set c = p

for i = 0 to n do
with m symbols per program

exp = programs[i]

for j = 0 to m do
nextindex = getSymbolIndex(exp[i])

if p.children.get(nextindex) is null then
c = c.addChild(nextindex)

c.setLabel(exp[i])

else
c = c.children.get(nextindex)

end if
end for

end for

ALGORITHM 11: Algorithm for adding a k-expression to the tree data-structure for visualisation by recursive

space division.

with m symbols per program

render(top-level)

FUNCTION render(c)

for i = 0 to linecount do
lines[i].paint()

end for
if children is not null then

vector2d mystart = getMyStart();

vector2d myend = getMyEnd();

if orientation == Horizontal then
drawDivisionsHorizontal(mystart,myend)

else
drawDivisionsVertical(mystart,myend)

end if
for j = 0 to childrencount do

render(children[j])

end for
else

drawPoint(mycentre)

end if
END

ALGORITHM 12: Drawing the tree-based data-structure to the screen recursively.



100 4. COMBINATORIAL OPTIMISATION

described in Sections 4.6.1 and 4.4 are compared in terms of convergence for the 3D modified Santa Fe Ant Trail

problem. Figure 4.24 show successive generations of the K-GP-GPU algorithm. These figures show that the

K-GP-GPU is very effective at maintaining diversity. How this affects the final result will become more clear when

the K-GPSO-GPU is discussed.

FIGURE 4.24: Populations of programs in generations 1-4 (top), 5, 10, and 100 (bottom) of a sample run of the

K-GP-GPU algorithm, showing good diversity with a steady convergence upon the global optimum.

Figure 4.25 shows the second frame of a sample generation from the K-GPSO-GPU optimiser. Immediate

impressions that this image conveys is the clear use of a global optimum, which is used in crossover (analogous to

the gBest particle). It also indicates that there may be an issue in population diversity, as there is little exploration

of the top-level symbols. Instead, it seems that an irreversible loss of information is occurring.

To make this more clear, Figure 4.26 shows a plot of the unique candidates by generation for the sample run.

Having a good number of unique programs is important to ensure adequate diversity for future crossover operations.

The difference in diversity by generation for the K-GP-GPU and K-GPSO-GPU algorithms conclusively indicates

that there is a serious lack of diversity in the K-GPSO-GPU algorithm. This could potentially cast light on why

the GPSO specialised for expression trees is perhaps not as suitable for the problem of inducing expression trees.

Togelius et al. in their work proposing Particle Swarm Programming (the amalgamation of GPSO and expression

trees) condeded that it is possible the PSO is simply not well suited to the problem domain [280]. The investigation

here on diversity seems to support this, even with the Karva expression tree representation. An improvement upon

diversity statistics in the K-GPSO-GPU may bring about a better convergence rate.

Observing the scores from the sample generation of the K-GPSO-GPU revealed a large number of the programs

obtained a score of zero. Essentially, in the flow of the algorithm with score-weighted crossover, this would result

in a replication of the global best. It seemed that what is necessary is a higher mutation rate. Some empirical

experiments were carried out to determine whether calibrating this parameter would improve convergence.

Firstly, a much higher mutation rate of 0.3 is adopted, (as opposed to 0.1), which did not improve the

convergence of the algorithm. The standard deviation of the results was too high to be considered a reliable

optimiser. Unique diversity in the population was not maintained, since 0.3 still seemed too low. The problem with

increasing mutation probability further is that the algorithm would fail to converge at all, as the better solutions

would almost certainly be mutated to lower fitness values, by the loss of important information.
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FIGURE 4.25: A visualisation of an early generation in the K-GPSO-GPU optimiser, showing an instant

convergence to a potentially suboptimal program expression tree from generation 1 to 2.

FIGURE 4.26: Diversity plot of the K-GP-GPU and K-GPSO-GPU algorithms during a typical run.
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Lowering the crossover rate was also experimented with. This was more fruitful, and resulted in a much lower

standard deviation among averaged mean fitness values. A crossover probability of 0.1 seemed to improve the

convergence rate. A crossover rate this low does not perform well for genetic algorithms, however. Figure 4.27

shows frame 2 of a sample generation with this modification. In comparison to Figure 4.25, what is clear is that

most of the population remains stationary.

FIGURE 4.27: Visualisation of timestep 2 of the K-GPSO-GPU algorithm with modified parameters, at this

frame, 907 unique programs are present.

Figure 4.28 conveys a sense of how the visualiser might respond to human interaction. The top-level program

space is shown on the left (generation 100 of a sample run of K-GPSO-GPU), and successive scaling in on the area

where the most candidate programs are quickly indicates the global best candidate without a doubt.

4.8.2 Graph Rendering Methods

In this section, a simple technique is used to visualise populations of large k-expression candidates simultaneously.

Such a technique is useful, since the recursive space division technique discussed above becomes less effective

when candidates encode more information. Images of large expression trees rendered as a single tree are shown in

Figures 4.29, 4.30 and 4.31.

The trees are rendered using a popular graph rendering suite known as GraphViz, particularly the sfdp tool

for rendering large trees. Populations of k-expressions are first pre-processed to construct a graph file. The root

node is blank, and the first level of symbols indicate the first symbol of the k-expression. The trees shown subsume

all expression trees in a population, and re-uses nodes representing symbols that are in the same index location

in k-expressions. Colours are used to indicate the root (red), progressing through the colours to the leaves (blue).

Tracing from the root to a leaf reconstructs an entire k-expression. In Figure 4.29 a two dimensional visual

representation is given for the first generation of a run with best decay value of 0.008.
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FIGURE 4.28: Successive scaling to the location of the global optimum.

FIGURE 4.29: 2D visualisation of the first generation from the run with the best decay value of 0.008
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FIGURE 4.30: 2D visualisation of the 500th

generation from the run with the best decay

value of 0.008

FIGURE 4.31: 2D visualisation of the last gen-

eration from the run with the best decay value

of 0.008

Figures 4.30 and 4.31 show simpler structures as the algorithm has progressed to converge upon a solution.

They show the populations of the 500th and 1000th generation respectively. Features such as bias for a particular

strand of symbols is clearly seen, and the number of blue nodes give an indication of the diversity in the generation,

while fewer nodes near the root of the tree indicates that there is less diversity in expression head sections.
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CHAPTER 5

DOMAIN SPECIFIC LANGUAGE FOR ABM

Domain-Specific Languages (DSLs) have long been a method of choice for easing the development of software.

XML-based markup languages such as HTML and Cascading Style Sheets are prime examples. Agent-based

Modelling (ABM) on the other hand, has remained somewhat of an art, where software packages seem either too

simple or too complex. DSLs have previously been examined in the context of ABM, and have brought the power of

ABM to those in disciplines completely unrelated to computer science. This has greatly increased inter-disciplinary

interest and cooperation in the field of ABM.

Though progress has been made, there still exist some shortcomings. Performance is a concern for two reasons.

The first being that large systems are either impractical, or completely inaccessible. The second is that temporally

distant system configurations are also impractically compute intensive. Improving computing efficiency is therefore

important for both these issues. Another shortcoming is that current ABM-related DSLs do not seem to be capable

of providing the power that a library can afford, and they are not inherently extensible either.

This chapter and chapter 6 extend upon work previously published by the author in The 13th IASTED Int. Conf.

on Artificial Intelligence and Applications1 and the proceedings of the INMS Postgraduate Conference, Massey

University in 20132.

5.1 Introduction

T HIS CHAPTER CONSIDERS A NEW EXTENSIBLE DSL for lattice-oriented ABM, focussing carefully on

providing as much power as possible while keeping the language simple enough to comprehend easily. The

language is also capable of compiling for Graphics hardware or CPU without any additional configuration

or syntax changes. This affords both simplicity and high performance concurrently.

Despite the widespread success of ABM in various fields (see Chapter 2), other issues have emerged. Many

disciplines do not teach programming as part of their curriculum. It follows that many scientists are not able to

leverage the power of ABM [212]. Efforts to mitigate this issue have resulted in a plethora of software packages

such as SWARM [186, 276], MASON [169], RePast [38], Netlogo [279], and others3. Each of these systems

1A. V. Husselmann and K. A. Hawick. Multi-stage high performance, self-optimising domain-specific language for spatial agent-based

models. In The 13th IASTED International Conference on Artificial Intelligence and Applications, Innsbruck, Austria, February 2014. IASTED
2A. V. Husselmann and K. A. Hawick. Towards high performance multi-stage programming for generative agent-based modelling. In INMS

Postgraduate Conference, Massey University, October 2013
3For additional information on these, the reader is referred to the work of Railsback, Lytinen and Jackson [234]
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have their own particular merits [234]. NetLogo is of interest particularly because of its built-in DSL to assist the

operator [279].

Significant coding efficiency can be achieved through the use of DSLs [99]. Domain-specific knowledge can

often carry syntax that is much more clear and concise and therefore ease usage considerably [70]. Though such

languages are less general by definition, they serve their specific application domain much more naturally than

general purpose languages [182]. Another advantage is that such a language is easy to learn, especially by those

who are experts in the domain, but less adept to writing code. These advantages make DSLs very applicable to

agent-based modelling platforms. As mentioned above, NetLogo enjoys the use of a DSL [279], and there have

been other ABM-related DSLs that have emerged [70, 91].4

In recent years, increasing interest in large-scale ABM has created a demand for more research effort, because

current methodologies are generally less effective with larger systems [220, 247]. In Microbiology, the sheer

number of cells in 100mL of substrate [235] is daunting, and its mass transfer simulation would be extremely

expensive to compute [252]. Being able to represent large populations is sometimes a necessity. For example, in

ecology, a technique was even developed for approximating the influence of multiple agents in a “super-agent”

[252]. In this chapter, focus is given to parallel computing techniques using Graphical Processing Units (GPUs)

which will assist in larger scale agent-based models, faster timestep computations, and later, the execution of several

agent-based models reinterpreted as objective functions in the realm of optimisation (see Chapter 6). The nature of

the architecture discussed here is carefully formulated to allow extension in this direction.

If a simulation is extremely expensive to compute, it will not be practical to compute hundreds of thousands

of time steps in reasonable time. Consider the simulation of Boids [240]. If there were 107 agents in a simple

simulation, theO(n2) complexity of a simple implementation would see to it that one timestep is computed perhaps

once every ten minutes. To observe time step 106 would take more than a decade. For example, it would depend on

configuration whether the Boids simulation would exhibit behaviour of interest, and it may not reach equilibrium

instantly, or quickly either.

Although NetLogo is programmed by a DSL, it appears to lack certain tools and useful libraries from general

purpose languages such as Java and C++ [70]. Effort has recently been expended towards rectifying issues such as

these, for example the integration of R (a statistical computing suite) into NetLogo [278]. Though the NetLogo DSL

leaves much to be desired in flexibility and extensibility, Lytinen and Railsback recommend NetLogo to scientists

both new to ABM and those with software programming experience [173]. Disagreements on the usefulness

of particular languages such as the Netlogo DSL cast doubt on precisely how applicable these general purpose

platforms are in various arbitrary situations.

To date, there have been much research towards the combination of ABM and GPUs. Some of these include

applications in medicine [51], other lattice-oriented agent-based models [220] and even marketing [287]. Not many

have included the use of a domain-specific language, however. There have been extensive projects in this area

for generating parallel code for various other simulations, such as PyCUDA [146]. FLAMEGPU is agent-based

however, and transforms agent definitions into parallel code [244].

There have been several DSLs proposed to enhance applications of ABM. Apart from NetLogo [279], BRAHMS

is another interpreted language which was initially used for work practice simulation [263], and later applied more

generally to social science [264]. There has been limited research in the area of DSLs and parallelism. These

particular languages, while interpreted, are not implemented upon a parallel platform such as OpenCL [270] or

CUDA [202].
4Beal et al. gives a brief overview of several ABM and MAS related DSLs [16].
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In the literature it appears that parallel ABM platforms are mostly in the form of a framework, or an interpreted

DSL. For example, using FLAMEGPU [244], agents are specified using XML in the form of a specialised finite

state machine known as an X-machine [37]. This XML is then transformed using XSLT into compilable GPU-

parallel code. Not all of these languages compile to GPU code, however. The CARPET language is built upon an

environment which is implemented across a Multiple-Instruction Multiple-Data computer consisting of Transputers

[268]. Compilers generate code that is typically much faster than interpreted code, but a great deal of knowledge and

time is necessary to implement them, quite often more than interpreters [272]. A paradigm known as Multi-stage

Programming (MSP) is discussed below, which can alleviate the difficulties in writing such compilers for DSLs.

Cellular Automata (CA) have some similarities with agent-based models, and have also enjoyed some research

with regards to parallel computing. For instance, there has been efforts to parallelise existing CA models written in

C to single static assignment representation, then to parallelised OpenMP code [49]. There has also been a language

for CAs named CAOS which uses OpenMP [86].

In this chapter, a new language specifically for ABM code-named MOL5 is proposed. What sets this language

apart from others is listed below. The language is built upon Terra, a MSP language [46].

1. It is based on the MSP paradigm

2. Benefits from being a compiled language using Terra

3. Uses LLVM indirectly (through Terra) in order to support run-time code generation

4. Internals of the language are extensible by Terra and C++, and third party libraries

5. Specialising to lattice-based ABM makes the language simple and easy to learn

Two objectives for this language which are important for the work presented in Chapter 6 include machine-code

generation for speed, and run-time code generation (RTCG). This is to ensure that code can be modified at run time

as necessary, and still be executed quickly.

The rest of this chapter is organised as follows. Firstly, a short introduction to the Terra language and the MSP

paradigm is provided in Section 5.2, followed by details in Section 5.3 on the proposed new DSL compiler. Some

selected models are briefly used to demonstrate the utility of this new language in Section 5.4.

5.2 Multi-stage Programming and Terra
The language developed in this chapter is itself built using Terra [46], a very recent low-level extension of the

Lua language [131]. It is a fast language which compiles to memory just-in-time (JIT) before being executed on a

stack separate to Lua [131, 130]. Terra incorporates the notion of MSP, which is a technique that specialises code

for when data arrives in “stages” [274, 275]. It does so by using the LLVM [159] internal representation, compiling

code assembled at run-time into machine code using standard backends to LLVM. Although Terra is not the only

language which is capable of run-time code generation (RTCG), it was chosen for its elegance and simplicity. Other

languages which are also capable of RTCG include MetaOCAML [42] and PyCUDA [146]. PyCUDA is based on

the notion of building programs by constructing a string [146], which is generally considered less effective [274]

than more integrated approaches such as MetaML.

5MOL is not to be confused with many-optimising-liaisons in MOLPSO.
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There are a few advantages to using multi-stage programs, including efficiency, productivity and quality [274].

To illustrate the first advantage, Taha gives the example of a power function, which can raise its input to any

exponent by recursion [272]. The idea in this example was to point out that if the power of 2 is frequently evaluated,

then it could sometimes be useful to define it separately. Should there be other powers that are computed, then MSP

allows to automatically generate these. Another example given by Taha and Sheard is that of matrix multiplication

[275]. Should the information required to compute an inner product of two vectors arrive in different time frames,

such as the size of the vectors, the first vector, and then the second vector, different optimisations can be done for

each stage. This concept was even used by Reinholtz in 2000 to postulate that the Java language will eventually

exceed C++ in performance due to Just-in-time (JIT) run-time compiling of code using additional information

available to the compiler to make further optimisations [238].

Increased productivity from MSP can be achieved by storing problem-specific information in the form of a

program generator using MSP [274]. Program generators are capable of much more than simple macro expansion.

Taha also indicates that this gives increased reliability, because a program could have the capability to adapt itself,

and therefore not require error-prone human intervention [274].

The Terra language makes full use of the MSP paradigm and also conveniently integrates with Lua. So much so

that the lexical environment of Lua is made available to Terra-specific code [46]. An example of the ubiquitous

“Hello World” program in Terra is given in Listing 5.1.

1 C = terralib . includec(”stdio .h”)
2 terra helloworld(argc: int , argv: &rawstring)
3 C. printf ( ”Hello, world.\n”)
4 end
5 helloworld(0, nil )
6 terralib .saveobj(”hello ” , {main=helloworld})

LISTING 5.1: The “Hello World” example in Terra.

Scripts are interpreted as Lua, until a terra symbol is encountered. A Terra function is then parsed, and stored

as an untyped tree until it is called in the same style as a Lua function. At this point, the function is JIT compiled to

memory, and executed. In fact, the script files in which Terra is used are JIT compiled by LuaJIT [209], which is a

complete reimplementation of Lua.

Terra uses Clang to provide some C++ interoperability, and in this case, the C printf function was used. In

addition to this, terralib saves the compiled Terra function to the “hello” executable. saveobj requires the correct

signature in the Terra function declaration, however. Terra functions are not restricted to a certain set of arguments.

Listing 5.2 gives an example of how a power function might be specialised to increase performance and

reusability. Here, the Lua function make power func takes an integer exponent and uses an inner recursive Lua

function to generate an expression which will compute the required power of the abstract symbol x. Finally, the

expression is spliced into a Terra statement within a Terra function, and the function is returned. A useful property

of Terra functions is that they are first-class Lua values, and can be passed from function to function as variables.6

The essence of the architecture presented in the next section effectively relies on the proof-of-concept code

shown in Listing 5.3. This code is entirely valid Lua-Terra, except for the second line mol move towards ex a done

is invalid syntax, made valid by extending the Lua lexer and parser with a separate script using a Pratt parser

6For a more thorough introduction to Terra, the reader is referred to the work of DeVito and colleagues [46].
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1 function make power func(int exponent)
2 local x = symbol(int)
3 local list = terralib . newlist ()
4
5 local function rec( i )
6 if i == 1 then return x end
7 return ‘x∗[rec( i−1)]
8 end
9

10 return terra ([ x ]): int
11 return [ rec(int exponent) ]
12 end
13 end
14
15 local test = make power func(3)
16 print ( test (2)) −− output is 8.

LISTING 5.2: An example of staging using Terra. The end result is a function which creates a JIT-compiled
power function.

1 a = {0.1,0.2,0.3}
2 tempf = mol move towards ex a done
3 tempfunc = tempf.impl
4
5 agent = {}
6 agent.step = terra ( all pos : &float , all vel : &float ,
7 pos: &vector( float ,3), vel : &vector( float ,3), agent count: int )
8 var t = tempfunc()
9 @vel = @vel + (t −@pos) ∗ 0.001

10 @pos = @pos + @vel ∗ 0.1
11 end
12
13 terra stepAll (positions : &float , velocities : &float )
14 agent.setall pos(positions );
15 agent. setall vel ( velocities );
16 for i = 0, [ agent count ] do
17 [ agent.step ]( positions , velocities ,
18 [&vector( float ,3)]( positions+3∗i ),
19 [&vector( float ,3)]( velocities +3∗i ),
20 [ agent count ]
21 )
22 end
23 end
24
25 stepAll :compile()
26 parameters.setStepallFunc(getFunctionPointer(stepAll))

LISTING 5.3: Proof of concept Lua-Terra code for exposing a JIT-compiled Terra function to compiled host
code.
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[228] provided as a library extending the Terra parser. The same line is actually JIT compiled as well, using the

Terra quote operator to combine statements together. The grammar of this short code segment is very simple,

and extensions are described in the next section. The rest of the code in this listing is library code. The stepAll()

function is a Terra function which maps the agent.step() function to all agents in the simulation, splicing in a

variable from Lua named agent count, as well as the Lua table containing the step function. The variables position

and velocities are host-allocated memory segments.

Having established some advantages of MSP and Terra, it is perhaps more clear why its use as a DSL constructor

would be desirable in the context of ABM. The rest of the chapter is dedicated to presenting and giving details on

this new DSL for lattice-oriented ABM, including its implementation and examples of its use.

5.3 The MOL Compiler
Using Terra and making use of the advantages of MSP in a fully custom language is not entirely trivial. A

special separate compiler architecture is needed, which constructs Terra statements and functions using multi-stage

operators. In this instance, this additional compiler architecture includes a parser, a type checker, and a code

generator. The Terra libraries provide good support for writing these in Lua. The addition of dynamic typing and

garbage collection in Lua allows for simpler tree structures and simpler traversals.

5.3.1 Lattice-oriented ABM

At this point, the language caters for lattice-oriented agent-based models only, where agents are homogeneous.

That is to say that agents are identical, and therefore execute the same code. They are, however, not restricted to

exactly the same code flow. The final objective of the compiler is to generate a valid and semantically correct Terra

function which conforms to the following signature:

terra ( rolattice : &int , wolattice : &int ,scores: &double,frame: long).

This permits the host program to maintain the lattice itself and visualise the results in real time. It is not necessary

to force the host program to maintain lattices, however. Terra is capable of using C functions to allocate memory

very simply. In this instance, it was chosen to allocate and maintain these in the host program in order to simplify

rendering.

Figure 5.1 indicates the flow that the DSL framework would follow during startup. When the Lua parser

encounters a mol token, the special MOL parser will process this syntax, then hand a parse tree to a type checker,

and finally the type-checked parse tree is passed to a code generator. During the code generation phase, the compiler

will emit Terra statements and expressions, which are combined together to form a Terra function with the signature

given above, which is then JIT-compiled.

MOL is equipped with an extensible custom library, which makes available common functionality in lattice-

based simulations. Features such as random numbers and movement are provided in this library. This also presents

an opportunity to specialise code for the benefit of the simulation, as library functionality is made available in

the form of Terra statements and expression generators. Thanks to meta-methods and Terra structures, data types

such as 3D integer vectors and 3D floating point vectors can support various binary and unary operators. These

structures can be used within the DSL described here quite simply, due to the shared lexical environment of Lua

and Terra. Introducing other structures would be almost trivial.
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Parser

Type Checker

DSL-specific Compiler Architecture

Compile to LLVM IR

Code Generator

DSL Code

Terra

Terra Code 
Generator

Resolve DSL Library Usage

Resolve Variables

Build expressions

Build Terra Statements

Simulation Constructor

Generate n calls to agent function

Splice into new Terra function

Return Function

Compile Reset Function

Compile Frame Event Function

Pass function pointer through 
Lua to Host C++ program

Host calls function

FIGURE 5.1: A flow diagram indicating the initial program flow of the DSL framework presented here.
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Following the code generation phase, Terra statements are then passed to Terra, which compiles the syntax

tree to the internal representation (IR) of LLVM [159]. This is then compiled using one of the standard LLVM

backends for the X86 instruction set (in this case). At this point however, the process is not complete. What has

been compiled to machine code is a function with the following signature:

terra ( rolattice : &int , wolattice : &int ,me: int , score: &double, x: int , y: int , z: int )

When called with the correct arguments, this function will execute the set of agent instructions for precisely one

agent. What is needed is to construct another Terra function which calls this function n times with the correct

arguments each time in order to cover the entire lattice. This is indicated as the “simulation constructor” in

Figure 5.1. For n lattice sites, a call to this function is generated and spliced into a list of Terra statements.

Listing 5.4 contains a short code excerpt showing how a Terra function is constructed for computing the same

agent behavioural code on all lattice sites. Essentially, it is possible to change this framework into a heterogeneous

agent-based simulation platform by either differentiating between different types of agents in the DSL code, or

linking different programs within this code.

1 local myprogram = molcompiler.compile(prototype.typedtree)
2 local temp = terra ([ rolattice ], [ wolattice ], [scores])
3 for x = 0, [ sim grid x ] do
4 for y = 0, [ sim grid y ] do
5 for z = 0, [ sim grid z ] do
6 [myprogram](rolattice, wolattice ,
7 rolattice [ z∗[sim grid x ]∗[ sim grid y] + y∗[sim grid x] + x ],
8 [&double](scores), x,y,z
9 )

10 end
11 end
12 end
13 end
14 temp:compile()
15 parameters.setStepallFunc(getFunctionPointer(temp))

LISTING 5.4: Lua-Terra code excerpt showing how a Terra function is constructed to execute the same agent
program on all lattice sites.

The escape operator [ ] is used to splice Lua values into Terra code. These may include Terra statements or

expressions and these are evaluated at compile time (therefore Lua values are essentially constant). More details on

this is available [46]. Once the function is constructed, it is compiled and the function pointer is passed back to

the host program using a Lua function. Along with this function which will compute an entire time step given the

lattice arrays from the host, two other functions are also compiled and passed to the host program. These functions

facilitate a lattice reset and an extra function to execute on every timestep computation. Additional computation

during frames can be costly, and therefore, the frame event can be disabled easily. This is useful for gathering data

into separate files, and the reset function is simply used to initialise the lattice.

As an example of the process of compiling staged code, the example shown in Listing 5.2 is specialised into the

code shown in Listing 5.5. This code is then compiled into the LLVM IR code shown in Listing 5.6. Finally, this IR

code is then compiled using a backend of LLVM, which in this case would be the X86 backend.

The parser, type checker and the code generator for MOL are implemented in a recursive manner, which are

highly influenced by the example code provided with Terra [46]. Syntax trees (type-checked and otherwise) are
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1 terratest t 14 0 = terra ($x : int32) : {int32}
2 return $x ∗ $x ∗ $x
3 end

LISTING 5.5: The Terra code generated by the staging example shown in Listing 5.2. The result is a compiled
function which computes the cube of an input integer.

1 define i32 @__terratest_t_14_0(i32) {
2 entry:
3 %1 = mul i32 %0, %0
4 %2 = mul i32 %1, %0
5 ret i32 %2
6 }

LISTING 5.6: The LLVM IR code generated by the staging example shown in Listing 5.2. This code is the final
stage before a LLVM backend compiles the code to machine instructions.

constructed using Lua tables, making full advantage of the fact that Terra statements, expressions and functions are

all first-class Lua values.

5.3.2 Spatial ABM

Though the emphasis in this chapter is given to lattice-oriented ABM, a spatial version of the MOL language was

also experimented with. It is easier to see the efficacy of MOL on lattice-based models, but it is certainly possible

to cater for spatial ABM also, and this will be briefly detailed here.

Where the compiler would generate an agent Terra function which takes int -lattices, the spatial version generates

an agent function with the following signature:

terra (positions : &float , velocities : &float ,scores: &float ,frame: long)

In fact, the spatial version of MOL demonstrates an interesting effect which is a direct consequence of the use

of LLVM. A very short performance comparison is given here to illustrate this.

Although one might normally expect that code which has been automatically generated would be slower than

hand written code due to the abstraction penalty, in this case it is found that the generated code is in fact almost

an order of magnitude faster. The large difference in performance shown in Figure 5.2 is made less surprising by

trivial inspection of the generated LLVM IR code, which yielded use of vectorised instructions, due to LLVM’s

optimisers (in this case, for the AVX and SSE enabled Intel processor). All vectors in the spatial MOL language are

stored as Terra vector types, which are consequently mapped to AVX and SSE structures. This allows LLVM to

make straightforward code optimisations. The MOL library stores various functionality for linear computations

using vectors by providing abstracted Terra operators specified in meta-methods. Terra automatically applies these

by inspecting metatables.

Listing 5.12 gives a very simple example of the spatial version of the MOL language. A similar structure can be

seen to the Lattice-based MOL language. More examples of both are found in the next section.

The code shown in Listing 5.8 was compared in terms of raw performance against the C++ code in Listing 5.7.

The results of this were given in Figure 5.2.

Another advantage of MSP in this instance is obtained. Automatic parallelism is an important concept, especially

since clock speeds are no longer increasing, but the number of processors and cores are [221, 161]. Unfortunately
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FIGURE 5.2: Performance comparison between hand written GNU C++ code (Listing 5.7) and Terra (LLVM)

compiled code (Listing 5.8).

1 float3 goal = make_float3( 0.1f,0.2f,0.3f );

2 for (int i=0; i < params->agent_count; ++i) {

3 float3 *mypos = (float3*)(h_positions + i*3);

4 float3 *myvel = (float3*)(h_velocities + i*3);

5

6 *myvel = *myvel + (goal - *mypos) * 0.001;

7 *mypos = *mypos + *myvel * 0.1;

8 }

LISTING 5.7: C++ code used for comparison against the

MOL code in Listing 5.8. The code uses some typedefs

from CUDA.

1 mol

2 defvar goal = {0.1,0.2,0.3}
3 move towards goal by 0.001

4 pos = pos + 0.1∗vel

5 end

6

LISTING 5.8: Custom

DSL code used to compare

against the GNU C++ code

in Listing 5.7.
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parallel computing is not always trivially easy to accomplish. It would be interesting to explore the role that recent

paradigms such as MSP play in automatic parallel code generation. It is known that expertise can be embedded as

function generators using MSP, and it appears that parallelism can also be. Also interesting to note is that the MOL

compiler is itself unaware that there is automatic vectorisation of the vector structures. It is very encouraging to

observe automatically generated code which performs well in terms of objective and wall-clock performance. This

is demonstrated in Chapter 6, where different parallelisation strategies automatically generate suitable code for

GPUs.

In the next section, some examples of MOL syntax are given. This will serve to showcase the major features of

this language.

5.4 Examples and Selected Results
Two examples of the lattice-oriented MOL language are given in this section, and also a more brief example of

the spatial version. First, Conway’s Game of Life [75] is given in MOL and Lua-Terra in its entirety, followed by

a variant of the Predator-prey model [104, 257]. Then, a flocking model reminiscent of Boids [240] is given and

discussed.

5.4.1 Conway’s Game of Life(I, p. 15)

A sample program written in MOL for Conway’s Game of Life, including some extensions written in Lua-Terra is

shown in Listing 5.9. Lines 67–82 contain the special DSL syntax. Some additional code is provided as Lua-Terra

extensions, which make it possible to extend code using the lexical environment at parse time. Much of the

functionality presented as extensions could easily be moved into a separate library for future use. In the spirit of the

advantages that MSP afford, this also allows an opportunity to write self-specialising code for future models. The

code as shown is placed in a Terra script file (extension .t). Lines 1–67 in fact contain valid Lua code, where any

constructs beginning with the keyword terra are first converted to first class Lua values.

Extensions to MOL are written in the form of a Lua function which constructs a Terra expression. This is later

spliced into the Terra code generated by the MOL compiler. The MOL compiler passes the lexical environment

with all its symbols by reference through the argument env. Examples of these are on lines 3, 19 and 38. It is

also possible to write Terra functions and use these directly in MOL code, operating on variables and globals in

scope. The macro-style MOL extensions take the form of a function, which accesses local and global variables by

name. The env Lua table contains all parsed symbols, including ones that are defined by the compiler: wolattice ,

rolattice , me, agent count, score, posx, posy, posz, up, down, left , right , back, front , neighbour, nx, ny and nz.

Currently, MOL supports the bare minimum of program control constructs. As seen in Listing 5.9, if-then

constructs are supported, along with local variables and constant global variables.

The frame compute event function discussed earlier was used to gather data on the Game of Life simulation in

Listing 5.9. Some metrics are computed over this simulation, including live/dead fractions as well as like-like (LL)

bond fractions (shown in Figure 5.3). In this case, there are only two cell states (unlike Q-state generalisations

of the Game of Life [94]), therefore it can be expected that LL-bond fractions would loosely correlate with the

cell live/dead fractions. Nevertheless these are still provided to serve as demonstration. As can be seen, the model

reaches equilibrium around time step 275.

Quantitative measures are not to be ignored during the development of a modelling platform. Packages such as

NetLogo [279] demonstrate this to some extent, using real-time graphing facilities to aid understanding of various
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1 −− not shown: reset function.
2
3 function birth (env)
4 local wolattice
5 local posx = env:localenv()[ ”posx”]
6 local posy = env:localenv()[ ”posy”]
7 local posz = env:localenv()[ ”posz”]
8 wolattice = env:localenv ()[ ” wolattice ” ]
9

10 local lbirth =
11 terra ( wolattice : &int , x: int , y: int , z: int )
12 wolattice [
13 [ library . scalar index periodic (x,y,z )]
14 ] = 1
15 end
16 return ‘ lbirth ( wolattice , posx,posy,posz)
17 end
18
19 function death(env)
20 local wolattice
21 local posx = env:localenv()[ ”posx”]
22 local posy = env:localenv()[ ”posy”]
23 local posz = env:localenv()[ ”posz”]
24
25 wolattice = env:localenv ()[ ” wolattice ” ]
26
27 local ldeath =
28 terra ( wolattice : &int ,x: int ,y: int ,z: int )
29 wolattice [
30 [ library . scalar index periodic (x,y,z )]
31 ] = 0
32 end
33 return ‘ ldeath(wolattice , posx,posy,posz)
34 end
35
36 −− function to compute number of
37 −− adjacent live cells
38 function get neighbour count(env)
39 local rolattice
40 local posx = env:localenv()[ ”posx”]
41 local posy = env:localenv()[ ”posy”]
42 local posz = env:localenv()[ ”posz”]
43 rolattice = env:localenv ()[ ” rolattice ” ]

44
45 −− opportunity to specialise for
46 −− 2D or 3D here without effort
47 local getcount =
48 terra ( rolattice : &int , x: int , y: int , z: int ): int
49 var c: int = 0
50 for a=−1,2 do
51 for b=−1,2 do
52 if not (a == 0 and b == 0) then
53 if rolattice [
54 [ library . scalar index periodic (‘ x+a,‘y+b,‘z )]
55 ] ˜= 0 then
56 c = c + 1
57 end
58 end
59 end
60 end
61 return c
62 end
63 return ‘getcount( rolattice ,posx,posy,posz)
64 end
65
66 −− MOL DSL specific code
67 agent = mol
68 defvar adjacent live cells = get neighbour count
69 if me == 0 then
70 if adjacent live cells == 3 then
71 birth −− this cell will become live
72 end
73 else
74 if adjacent live cells >= 4 then
75 death −− this cell will die
76 else
77 if adjacent live cells <= 1 then
78 death −− this cell will die
79 end
80 end
81 end
82 end

LISTING 5.9: Conway’s Game of Life written
in MOL with some Lua-Terra extensions.
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FIGURE 5.3: Live/dead cell count fractions including like-like (LL) bond fractions.

models. While MOL does not support real-time graphing automatically, it can be done with external utilities. In

this case, data was collected through the use of a Terra function which uses standard C I/O to write to a file. This

file was then plotted.

5.4.2 Predator-Prey Model(I, p. 18)

The Predator-prey model is an agent-based model which posits the problem of predators pursuing prey, and the prey

attempting to flee [104, 257]. This model was used to show interesting properties of predator behaviour, including

that cooperation among predators by communication is more effective for trapping prey [133]. A very simple

variant of this model on a lattice is given in Listing 5.10.

Like the example of the Game of Life in the previous section, this model also uses extensions written as function

generators. The computing of the nearest 6 neighbours (NN) or the Moore neighbourhood of 8 cells adjacent

to a cell is common in models such as these. This was therefore built into the language instead of requiring an

extension to be written for it. This is shown on lines 5–13 in Listing 5.10. In this case, it is used to compute the

number of cells of species 1 and 2 (ie. prey and predators). The neighbour keyword is used to refer to the cells

independently. This construct was created using the MOL compiler by looping over the adjacent cells (defined

by using the neighbours6 or moore8 keywords) emitting the code within the construct once for every cell. The

adjacent cells are loaded into the variable denoted by neighbour, and its (x, y, z) position is stored in the variables

nx, ny and nz. These special variables are only accessible within such a construct. Another built-in language feature

used is the computing of distance. In future, this could be extended to other metric spaces such as Hamming or

edit-distances [22].

The code shown in Listing 5.10 generated the results shown in Figure 2.5 in Chapter 2, which is reproduced

here for convenience (see Figure 5.4).
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1 mol
2 defvar count = 1
3 defvar pred = 1
4
5 query neighbours6
6 if neighbour == 1 then
7 count = count + 1
8 else
9 if neighbour == 2 then

10 pred = pred + 1
11 end
12 end
13 done
14
15 defvar predator = 2
16 defvar prey = 1
17
18 if me == predator then
19 defvar temp = get closest prey
20 move towards temp
21
22 if pred == 6 then
23 die
24 end
25 split
26 end
27
28
29 if me == prey then
30 defvar closepred
31 = get closest predator ()
32 if (distance to (closepred)) < 2
33 then
34 die

35 else
36 defvar closeprey
37 = get closest prey ()
38 defvar com = get predator com
39
40 −− flee predator (F)
41 if (distance to (closepred)) < 3
42 then
43 move awayfrom closepred
44 end
45 −− breed (B)
46 if (distance to(closeprey)) < 2
47 then
48 split
49 end
50 −− overcrowding
51 if (count > 7) then
52 die
53 end
54 −− move randomly
55 move random 4
56 −− seek mate (M)
57 if (distance to(closeprey)) >= 2
58 then
59 move towards closeprey
60 end
61 end
62
63 end
64
65 end

LISTING 5.10: A program written for a variant
of the Predator-prey model in MOL.

FIGURE 5.4: A plot of the predator and prey lattice coverage (discussed in Chapter 2), duplicated here for

convenience).
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Performance

It is reasonable to doubt the performance characteristics of the system due to its high level of abstraction. Fortunately,

the ability of Terra to generate machine code using the MSP methodology and LLVM ensures that high performing

code is generated. As an example, consider version 1 of the reference model which Lytinen and Railsback used

[173]. It is an informal and highly simplified model to indicate certain key concepts of agent-based models7.

Version 1 simply deals with diffusive agents on a lattice. This model was implemented using MOL, and the code

for this is provided in Listing 5.11.

1 function diffuse (env)
2 local posx,posy,posz = get pos(env)
3 local rolattice , wolattice = get lattices (env)
4
5 makeran = ‘std.randint(8) −− library function
6
7 local mdiffuse = terra ( wolattice : &int , lattice : &int , x: int , y: int , z: int ): int
8 for i=0,100 do −− 100 attempts
9

10 var a = makeran − 4
11 var b = makeran − 4
12 var c = 0
13 var newindex = [ library . scalar index periodic (‘ x+a,‘y+b,‘z+c)]
14
15 if lattice [newindex] == 0 then
16 var oldindex = [ library . scalar index periodic (x,y,z) ]
17 wolattice [oldindex] = 0
18 wolattice [newindex] = rolattice [oldindex]
19 return 0
20 end
21 end
22 return 0
23 end
24 return ‘mdiffuse(newlattice, lattice ,posx,posy,posz)
25 end
26
27 agent = mol
28 if me == 1 then
29 diffuse
30 end
31 end

LISTING 5.11: Implementation in MOL of the first reference model used by Lytinen and Railsback [173]. The
lattice reset function is not shown.

As before, the special DSL code is located towards the end of the Terra script file (lines 27–31). Features such

as the diffuse function could be easily implemented within the compiler, and just as easily placed within a separate

library as well. In this case, the DSL syntax is very minimal.

Though in testing only one CPU was used in the multi-core Intel i7 testing machine, this is a more powerful

machine than the i3 CPU used by Lytinen and Railsback [173]. Therefore, the comparison here should be taken as

being purely indicative and approximate. With display enabled, the MOL code in Listing 5.11 completed 1000

frames of the first testing model in 1.87 sec which was the total runtime, excluding setup8. This is less than the 6.3

7Lytinen and Railsback use this to compare NetLogo with ReLogo.
8This was averaged over five separate run times.
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sec reported by Lytinen and Railsback for Netlogo (Java-based), however, they note that the peculiarities of their

testing models meant that performance results obtained from them is also only indicative. The simulation contained

100 agents, which is the same size Lytinen and Railsback used.

A somewhat larger divide in performance was observed in display-less execution. Lytinen and Railsback note

that performance increased from 3− 20% from the 6.3sec reported when rendering was disabled. In the case of

MOL, the speed-up achieved with no display was 91%. Ignoring all memory copies and other overheads, the raw

computing time spent by the compiled MOL code in computing a single time step is approximately 11.5 msec.

A more thorough example of the usage of MOL and its applicability in ABM can be found in Chapter 7, where

a carefully designed algal photobioreactor was implemented.

5.4.3 Flocking (I, p. 16)

Presented here is a flocking model reminiscent of the Boids model [240]. It showcases the spatial version of the

MOL language. An example of what this model could look like when executed is shown in Figure 5.5. Similar

constructs are used in this version of the language (see Listing 5.12), including the query construct. The main

difference is that the concept of neighbourhood is replaced with a sphere which has a restrictive radius. Each agent

has a spherical neighbourhood. Arguably, this is more compute intensive than lattice-based simulations because

spatial locality in memory is not always guaranteed.

1 agent = mol
2 defvar count = 0
3 defvar av vel = {0,0,0}
4 query neighbours
5 count = count + 1
6 av vel = av vel + nvel
7 done
8 defvar closest = select closest in group
9

10 if (distance to closest) < 4 then
11 move awayfrom closest
12 end
13 move towards groupcentre
14 move towards {0,0,0}
15 vel = vel + 0.5∗av vel
16
17 vel = 0.9∗vel
18 pos = pos + vel
19 end

LISTING 5.12: Spatial MOL code for a simple Boids-like model. Here, continuous space is assumed, instead of
a discrete lattice.

So far, only a portion of the ABM process has been discussed in terms of MOL. What remains is to calibrate and

validate models that are written in MOL. This is typically a tedious and time-consuming process. It is uncommon

to have a lack of ambiguity in parameter settings in systems like these. A good example is that of the Particle

Swarm Optimiser (PSO) discussed in Chapter 3. Depending on the two parameters given by the operator, the

global optimum of a function can be found consistently, inconsistently, or never. Unfortunately, the majority of

parameter sets tend to provide inconsistent results. A similar problem which is related to this is that of model

structure. Sometimes there are ambiguities in model design, and one is left to experiment empirically. This problem

is discussed in detail in the next chapter.
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FIGURE 5.5: A screenshot of a flocking model implemented in MOL, using code similar to that of Listing 5.12.

5.5 Discussion
A new domain-specific language named “MOL” has been introduced. It makes use of the recent development

of multi-stage programming (in tandem with LLVM) in order to compile programs written in a simple, extensible

syntax to machine code at runtime. The use of LLVM ensures that up-to-date code optimisations are used without

any additional effort.

Due to the platform-independence of LLVM IR and the higher level Terra code, it is possible to extend the

compiler simply by wrapping the code generator with external libraries such as multi-threading, MPI or CUDA.

MOL was designed from the beginning to be capable of extension in this direction with relative ease, and this is

what the next chapter concerns itself with.

There are some additional advantages to this language which supplement the requirements of the next chapter.

It is a very simple language, which usefully shares its lexical environment with Lua. Models can be described

easily and with a clean syntax, and all the power of a general purpose language is subsumed by Terra and Lua.

Extensions can be written using Terra, and can also be written using C/C++ code, which is a direct consequence of

the use of Clang from within Terra.

Extensions can also be made modular, and reused in different models. Compiled external libraries can also be

used from within the same Lua-Terra file containing the model. It is also possible to use another domain-specific

language in the same model script file. These advantages are obtained simply by the use of Terra.

This language does not, however, provide simple conversion between continuous and discrete lattice spaces.

While Terra supports some debugging functionality, this has not been integrated into this language either, making it

difficult to debug, especially when an error is made within an extension.

A greater problem is that of extension writing. It is anticipated that when this language is used by the public,

it would have had sufficient development effort to make a substantial library of common functions. However,

it is not unreasonable to assume that users may require an extension for certain functionality from time to time.

This requires being able to write Terra code, which is a low-level language. It is certainly possible to forego the

special syntax of the MOL language and simply write the model entirely within Terra. However, as will be detailed
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in the next chapter, this special syntax is indeed very useful for providing pre-processor–like functionality for

optimisation.



CHAPTER 6

PARALLEL DOMAIN-SPECIFIC OPTIMISATION IN ABM

Optimisation in the context of Agent-based Modelling (ABM) has been previously reported in the literature,

particularly efforts in parameter tuning. Though calibration of parameters is extremely important, the behaviour of

a model depends perhaps more on the processes which use these parameters. Improvements in machine learning

and combinatorial optimisers have cast new light upon the concept of model induction and structure optimisation.

Yet, performance issues plague these algorithms.

This chapter presents critical modifications to MOL, the ABM language proposed in Chapter 5, in order to

accomplish structural optimisation of agent-based models in a pragmatic manner. Performance improvements are

paramount due to the complexity of this optimisation task. Further extensions of MOL in terms of data-parallelism

are presented in this chapter in order to reduce difficulties brought on by performance issues.

This chapter and Chapter 5 extend upon work previously published by the author the proceedings of The

13th IASTED Int. Conf. on Artificial Intelligence and Applications1, the proceedings of the INMS Postgraduate

Conference, Massey University in 20132 and an article which was submitted to the International Journal of

Modelling and Simulation3.

6.1 Introduction

NOT ONLY IS ABM CONSIDERED A GENERATIVE APPROACH to macro-level phenomena [59], the pro-

cess of ABM has itself become the subject of top-down approaches. Epstein earmarked Evolutionary

Algorithms (EAs) in 1999 for optimising the processes within agent-based models by noting that current

research examining the parameter space of an agent-based model systematically is far easier than examining the

immense behaviour space (in terms of the possible rules) [59]. Literature dealing with parameter calibration for

ABM essentially reinterpret the hand calibration process as an optimisation problem [29, 28, 271]. Similarly, the

choice of precisely how a model is formulated in terms of rules, processes and structure can also be reinterpreted as

an optimisation problem, but perhaps a more difficult one.

There have been several attempts in the past towards applying automatic optimisation techniques to ABM to

calibrate parameters. Calvez and Hutzler combined genetic algorithms and ABM [28], as did Said et al. [250], both
1A. V. Husselmann and K. A. Hawick. Multi-stage high performance, self-optimising domain-specific language for spatial agent-based

models. In The 13th IASTED International Conference on Artificial Intelligence and Applications, Innsbruck, Austria, February 2014. IASTED
2A. V. Husselmann and K. A. Hawick. Towards high performance multi-stage programming for generative agent-based modelling. In INMS

Postgraduate Conference, Massey University, October 2013
3A. V. Husselmann, K. Hawick, and C. Scogings. Model structure optimisation in lattice-oriented agent-based models. Technical Report

CSTN-222, Computer Science, Massey University, 2014. Submitted to the International Journal of Modelling and Simulation (ACTA Press)

125
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of which focus on calibrating the parameter sets of the models. Stonedahl and Wilensky combined the popular

ABM platform NetLogo with a parameter calibration algorithm [271]. In these systems, there is only provision

for calibrating scalar parameters. While adequate in some cases, such optimisers are invariably limited in that

they cannot extensively modify the semantic structure of the model on which they are built. Instead, suboptimal

structure can render the meaning of a well-calibrated parameter useless.

There have been numerous attempts to induce models and to optimise the structure of agent-based models in

the past. Examples include the recent work of van Berkel [283, 284] in 2012, which involved the Grammatical

Evolution [249] algorithm to generate NetLogo [279] programs from a set of predetermined “building blocks”.

While van Berkel concedes that determining a good fitness function is a difficult challenge, not much emphasis is

given on the choice of building blocks, other than being user-provided, and that some can be reused from other

distributed algorithms. Both these issues are portrayed as open problems in Genetic Programming (GP) by O’Neill

and colleagues [205]. One may argue that carefully articulating the set of components from which to induce a

model is in itself a problem with comparable difficulty to model construction [205]. It is difficult to choose the set

of “building blocks” necessary to limit the search space sufficiently and to ensure the optimum can still be found.

As a further example, Junges and Klügl in 2010 evaluated learning classifier systems, Q-learning and Neural

Networks for behaviour generation [134]. No clear winner among the algorithms was found by the authors. Later

in 2011, the authors investigated Genetic Programming in the same context [135], integrating it with SeSAm, a

Java-based platform [147], but did not compare directly with reinforcement learning or other techniques. They

did note in 2012 that Reinforcement Learning and GP proved to be more useful for their ability to generate

human-readable results [136].

The most recent work of Junges and Klügl focus on a specialised modelling methodology adapted for machine

learning [137] termed MABLe (Modelling Agent Behaviour by Learning). The optimisation algorithm is abstracted

as a “learning core”, and may be any one of Q-learning, the XCS learning classifier system, or Genetic Programming.

This perhaps further signifies that none of these is clearly better than the others in all cases. This finding is further

supported by the “No Free Lunch” theorems of Wolpert and Macready [294], previously discussed in Chapter 3.

A single overarching objective function is among the steps of the Junges and Klügl MABLe methodology.

Objective functions are notoriously difficult to craft, and its successful derivation is often in fact a considerable

portion of research, such as in softbot team coordination [170] (a multi-agent example).

The work of Privošnik in 2002 resulted in an evolutionary optimiser which evolved agents operated by finite

state machines (FSMs) to solve the Ant Hill problem [231]. Like Jim and Giles, Privošnik et al. observed an

increase in fitness with an increase in the number of states in the FSMs. The potency of representing an agent in

terms of FSMs can be demonstrated by the formalism of the X-Machine specifically for ABM [37]. However, like

other techniques, a well-articulated set of observations (percepts) and actions is still predetermined.

A considerably limiting factor in these experiments is that of performance. Quite often, these algorithms

are so intensely compute-bound that scaling to a reasonable system size, achieving a desired timestep, or even

reaching a desired outcome is impractical. As exemplified by meta-optimisation discussed in Section 3.5, evaluating

the fitness of a candidate model involves executing it and gathering some quantity; in the case of stochasticity,

several times for an average. Evaluating a time step of a population-based model optimiser involves computing the

fitness of n models in a population. This expense quickly becomes unmanageable for larger n. This motivated

Privošnik to propose a heuristic method in fitness evaluation to reduce computation expense [230]. Trajectory-based

methods (single candidate successively improved) such as Simulated Annealing [145] are perhaps more suitable for
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optimising models with regards to performance, but they do not benefit from other concurrent explorations and

communications elsewhere in the search space.

Though the Java language has advanced considerably in recent years, it is still at least 1.09 times slower than

C++ for computing benchmarks such as the Delaunay triangulation algorithm [78]. As shown in Chapter 5, there

is also some performance increases obtainable from custom written software as opposed to Java-based ABM

platforms. With these drawbacks in mind, the integration to the modelling platform SeSAm simplifies the process

greatly for the user. However, like Netlogo [279] and RePast [38], SeSAm [147] is also Java-based. It appears that

the larger and more mature ABM platforms are Java-based, which perhaps further alludes to the demand for ease of

use from users.

Though there are several algorithms which are capable of calibrating structure in an agent-based model, they do

not always produce human-readable results, and this is counterproductive for ease of use. It is common knowledge

that algorithms such as Neural Networks are more difficult to interpret once calibrated, especially when compared

against code constructed from the recombination of human-written code. Junges and Klügl, however, demonstrate

how rules can be extracted from Neural Networks [134] by providing inputs and tracing activation through the

network to obtain an input/output pair, which can be essentially interpreted as a rule. An advantage of Genetic

Programming is that its outputs are inherently human-readable, a property shared by other similar evolutionary

algorithms, and does not require post-processing.

The problems described above are all addressed in this chapter by making modifications to a Domain-Specific

Language (DSL) described in the previous chapter. Optimisation is approached by using work from previous

chapters on EAs for combinatorial optimisation. Performance is then also addressed by using data-parallel

techniques used in earlier chapters. Figure 6.1 shows a visualisation of the built-in optimiser developed in this

chapter searching through suitable rule sets for the Predator-Prey model. In this case, the optimiser was searching

for a ruleset for prey agents which minimises the number of prey agents in the model. This is only an illustrative

example, but might even give some insight into the question “which prey behaviours cause predators to be more

effective?”, which is a question that ecologists might want an answer to or insight into.

FIGURE 6.1: A visualisation of a population of 8 candidate models being evaluated. The optimiser is attempting

to find a ruleset for the prey which minimises the number of prey in the model, an illustrative example. The

program for this is shown in Listing 6.2.

In Chapter 5 a DSL named MOL was proposed to improve the modelling experience with extensibility via

Multi-stage Programming (MSP), and added performance due to being machine-code compiled. However, MOL

was not necessarily enhanced beyond its ability to represent models. This DSL can be extended to assist in the

search for a suitable model structure or design, and do so while harnessing the parallel computing power of

Graphical Processing Units (GPUs). This is approached in this chapter.
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To give further rationale on the choice to extend the MOL language for this purpose, it is hypothesised this

language will:

1. Enable model induction with a simple and easily modifiable/extensible language

2. Allow selective fine- and coarse-grained model induction, allowing users the ability to optimise any aspect of

their model in variable granularity

3. Allow the user to define internal building blocks of the optimiser algorithm directly using domain-specific

knowledge

4. Avoid run-time code interpretation and abstraction penalties by using MSP

5. Take advantage of the inherent reduction in search space, and also encourage the operator to expose only

what is absolutely necessary to optimisation

6. Avoid manual re-compiling overhead during the modelling process

As in Chapter 5, focus in this chapter is given to lattice-oriented models, but spatial models are also briefly

discussed. The rest of this chapter deals with first extending the MOL compiler architecture to include an

optimisation phase in Section 6.2, and then the language is extended for data-parallelism using GPU hardware

in Section 6.5. Following these sections, some performance and convergence results are presented for selected

problems in Section 6.6.

6.2 Model Structure Optimisation using MOL
In the methodology described here, instead of a modeller providing fine-grained and carefully articulated local

behaviours, the modeller instead provides an objective function and some possible behaviour within simulation

code. The difficulty in both these tasks are comparable: small variations in local behaviours as well as different

choices of objective function can both lead to radically different results. However, the novelty in this approach

to the problem lies in the elegance with which a model can be prototyped with all aspects including optimisation

encapsulated within it, without suffering performance penalties. Performance received considerable attention in this

language. Also, in cases where an objective function is more natural to use, it can be a great advantage to have the

behaviour generated from it, or at least provide a suggestion which can be used as the basis for manual extension.

By allowing a modeller to express most of a simulation with reasonable certainty, and other parts with annotated

uncertainty and clear objectives, an underlying optimiser can be useful in assistance, as will be demonstrated later

in this chapter, and also Chapter 7.

Apart from choosing a suitable optimiser, a number of other issues must also be carefully considered in order to

successfully augment MOL for structural optimisation. The issues are (briefly):

1. Clear unambiguous syntax

2. Straightforward selection of optimisation constraints and strategies

3. Computing of objective functions

4. Limiting the search space as much as possible without compromising efficacy
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5. Straightforward selection of optimiser parameters

6. Effective elimination of stochastic variation in fitness

7. Improving prohibitive wall-clock performance

8. Appropriate visualisation and performance indications for user feedback

9. Careful implementation of primitive memory facilities

One of the factors which sets this new language apart from other model induction attempts is that the syntax

used for optimisation is itself a constraint upon the search space. Techniques such as Genetic Programming have

been used in the past for evolving entire models [284, 135] which were provided with user-defined actions and

perceptions of agents. In the case of MOL, only relevant actions and perceptions are provided, but they are given in

terms of a potential solution given by the user. This kind of syntax serves to (1) provide a good starting solution and

more importantly (2) limit the immense search space. It is reasonable to assume that the dynamics of a system is at

least partially known by the expert, and therefore, it is worth optimising only the uncertain portions. It is certainly

noteworthy that this kind of optimisation can also be done if a model was constructed and a suitable optimiser was

used for a portion of that model, but that requires model-specific optimisation. MOL differs in the sense that the

model is given in the same language, and optimisation requires only pre-processor style directives, completely

eliminating the need to write custom code for optimisation.

A method is needed to (1) express an objective function and (2) define when it is measured. At present, the

compiler adds a statement to the code of an agent which computes and adds the fitness to a running total for the

agent. For example, the MOL code shown in Listing 6.1 provided as part of an agent’s code will provide the

variable score with a value of zero for all but time step 1000. On every frame, the agent’s code is executed, and the

variable score will be added to a running total in an array maintained by the host C++ program. The if statement

serves to define when the number of live cells will be measured ( count live cells is a macro in this case). This is

assuming that one evaluation of the program is exactly 1000 time steps. The syntax for defining score as the fitness

will be given later. Of course, the code shown in Listing 6.1 is arbitrary. This can be replaced by any quantity and

any measurement method desired, even including agent memory, discussed later.

1 defvar score = 0
2 if timestep == 1000 then
3 score = count live cells
4 end

LISTING 6.1: User-defined MOL code to compute a quantity representing the score of an agent.

Given a method for expressing the objective function and for measuring it, some method of configuring the

output desired from the optimiser is required. Certain constraints apart from search space define, in large part, the

operation of the optimiser, or even what kind of optimiser is used. Three such configurations are implemented

by specifying one of the keywords recombination, single, or permutation. These qualifiers tell the compiler which

kind of optimisation is required. What is referred to by these qualifiers is some kind of reorganisation of statements

marked for optimisation. While single and permutation refer to the selection of a single statement only, or a

permutation of statements (with replacement), recombination refers to a disassembly of the provided code into
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terminals and nonterminals for recombination. These qualifiers are detailed in Sections 6.4.2 and 6.4.3. The single

qualifier is omitted, as it is less useful and applicable than the other two qualifiers.

A complete example of this is given in Listing 6.2. This example is similar to that described in Chapter 5, given

in Listing 5.10. In Listing 6.2, lines 41–63 contain what will be referred to as an “uncertain” construct. This term

is purely related to the structure of the model, and not of code semantics. The quantity is count sheep() and the

objective is to minimise this (hence the minimise keyword given on line 41).

1 mol
2 defvar count = 1
3 defvar pred = 1
4
5 query neighbours6 −−(NN)
6 if neighbour == 1 then
7 count = count + 1
8 else
9 if neighbour == 2 then

10 pred = pred + 1
11 end
12 end
13 done
14
15 defvar predator = 2
16 defvar prey = 1
17
18 if me == predator then
19 defvar temp = get closest prey
20 move towards temp
21
22 if pred == 6 then
23 die
24 end
25 split
26 end
27
28 defvar eq = count sheep()
29
30 if me == prey then
31 defvar closepred
32 = get closest predator ()
33 if (distance to (closepred)) < 2
34 then
35 die

36 else
37 defvar closeprey
38 = get closest prey ()
39
40
41 select permutation to minimise(eq)
42 −− flee predator (F)
43 if (distance to (closepred)) < 3
44 then
45 move awayfrom closepred
46 end
47 −− breed (B)
48 if (distance to(closeprey)) < 2
49 then
50 split
51 end
52 −− overcrowding
53 if (count > 7) then
54 die
55 end
56 −− move randomly
57 move random 4
58 −− seek mate (M)
59 if (distance to(closeprey)) >= 2
60 then
61 move towards closeprey
62 end
63 end
64 end
65 end
66 end

LISTING 6.2: A program written in the MOL
DSL for the Predator-Prey model, containing
an uncertain construct (lines 42–64).

As mentioned in Section 1.4 and Section 3.5, the selection of parameters for an optimiser is critically important,

and can also be reinterpreted as an optimisation problem itself. Similarly, it is important to choose suitable

parameters. The choice of parameters are discussed in Section 6.3, which are, at this point, manually chosen. It is

anticipated that this can be extended using concepts from meta-optimisation (see Section 3.5 in Chapter 3).

In cases where the fitness of a model is non-deterministic, it is important to obtain statistically significant scores.

This is typically done by averaging multiple evaluations of the objective function. The performance implications of

this is addressed in Section 6.3 by the use of data-parallelism on graphics hardware using Compute Unified Device

Architecture (CUDA). As with other parameters such as population size required by the optimiser, the number of

evaluations to average over is also important. This is chosen by the user (and noted in experiments in this chapter),

as a more thorough understanding of the precise variability in the model is necessary to make a suitable choice.
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As mentioned earlier, there is considerable computing time involved in this kind of optimisation. It is for this

reason that improved performance is sought from data-parallel architectures such as CUDA. While other parallel

architectures would also be suitable, graphics hardware was chosen for their high theoretical performance at a

reasonable cost. Though these devices are less expensive than grid computers, effort is required to ensure that a

program maximises their computing power.

It is also important to consider providing feedback to the user. Visualisation of the population of candidates

would involve rendering several different models in real time. Doing so requires a fast rendering method. In this

case, cells are rendered using a fast pixel shader with OpenGL. No other optimisations are used. It is noteworthy

that this visualisation pertains to the evaluation of a population of candidates, and not the syntactic structure of

them. Candidate populations have been discussed in terms of visualisation in Section 4.8.

In Section 6.5, the MOL language is modified to generate CUDA PTX instructions through Terra and LLVM.

Allowing the MOL compiler to generate CUDA code through Terra and LLVM places some restrictions on data,

since local variables in MOL programs only remain in scope for the length of a single execution. Alongside the

lattices, a suitable array for storing this data must therefore also be stored on the host. The only static variable

throughout all executions (until the end of the simulation) is the lattice site state, which is a 32 bit integer. It is

anticipated that future work could extend this to dynamically allocate a host structure array at runtime, and the

corresponding GPU memory also. This will allow individual lattice sites to declare static variables (as well as

arbitrary state variables) and store data that will remain in scope until the end of the simulation. Instead, static

variables are currently stored and accessed within this site state using the backwards compatibility of Terra with C.

Terra uses Clang (a C/C++ frontend for LLVM) to compile inline C code within Terra script files. Special C code is

written within a model script file to store and retrieve data using bitmasks on the integer cell state variable stored in

the lattices.

The next few sections describe various examples of MOL in the context of model structure optimisation.

Examples of optimiser configurations are given and discussed. Convergence results of experiments are given in

Section 6.4. Performance results are then provided in Section 6.6, following the CUDA-specific optimisations of

MOL in Section 6.5.

6.3 The Single-threaded Evolutionary Optimiser
There are many choices in optimisation algorithms, ranging from sophisticated multi-operator evolutionary

algorithms [64] to hill-climbing searches and the original Genetic Programming algorithm [149]. The optimiser

chosen for recombination is a single-threaded LuaJIT implementation of the algorithm presented in Section 4.4,

Chapter 4, and a much simpler evolutionary algorithm also written in Lua is used for single and permutation, as

these configurations do not require tree representations.

The software architecture involved in the DSL involves the usual compiler backend and frontend: a parser,

type checker and a code generator. A separate optimisation phase is added, not in which code is transformed

for optimisation purposes, but to allow for an evolutionary optimiser to adjust the typed internal parse-trees.

Optimisation is not intended to be a part of the model simulation process. In contrast, it is intended as a pre-

processor, which sees to it that a totally unambiguous program is constructed once optimisation has ended.

Figure 6.2 shows the complete process of the system. It is essentially identical to an evolutionary optimiser, except

that candidates are provided by the special parser as modifiable typed syntax trees, which are edited by the genetic
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FIGURE 6.2: A flow diagram indicating the underlying optimisation process. It is divided into the use of the

compiler frontend, then optimiser initialisation, followed by the runtime environment and fitness computations.

Genetic operators are then used to generate a new population of programs by modifying typed trees in memory,

and the process repeats.

operators. It should be noted that the compiler and parser were heavily inspired from code samples distributed with

Terra [46].

In this process, a user first provides a program with an uncertain code segment within a model. Upon execution

of the host program which is written in C++, the Terra runtime parses the provided code immediately, transforming

it into a type-checked abstract syntax tree (AST). This tree is what is modified by the optimiser in a later stage.

The host Lua script then duplicates this tree several times until a population of N trees is made. At this point, the

optimiser searches for an optimisation statement, of which there can be only one within a program. The optimiser

then initialises each program’s code segment with randomly chosen statements taken from within the provided

construct. Depending on the type of construct, there will be one chosen statement (single), or a combination of

statements (permutation) with replacement, or a complete recombination of code (recombination).

In summary, the overall process is detailed in Algorithm 13. This algorithm contains all the components

generally expected within an EA, and more specifically one which uses genetic operators. The termination criteria

shown is simply a maximum number of generations. Computing a new generation of programs is done by the

process shown in Algorithm 14.

It is worth noting that backwards-compatibility is maintained with MOL programs which do not contain any of

these constructs. This is done simply by disabling the optimiser if it cannot find an optimisation construct within a

parse tree. Execution then continues as normal.

6.4 Experiments and Convergence Results
In this section, examples of the different optimisation configurations are given (including single, permutation

and recombination), along with their convergence results. Emphasis is given to the recombination construct, since
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Terra custom parser reads agent description

Read user-provided parameters

Allocate & initialise space for n candidates

{small variations when no uncertainty is present}
Compute and compile a new generation of candidates

Zero all scores

while Termination criteria not met do
for x frames do

Execute model programs

Collect new scores into running totals by model

Visualise the result

end for
Compute a new generation using collected scores

end while
Output best candidate in final population.

ALGORITHM 13: The complete simulation process eliminating uncertain constructs.

Collect scores

for x candidate models do
Optimiser performs evolutionary operators

Pass modified typed tree through code generator

Wrap generated function code with arguments

Emit wrapped code

end for
Overall generated code is compiled to machine code

Fn pointer to compiled function passed to C++ via Lua

ALGORITHM 14: The process of generating a new generation of candidate models for evaluation.
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this is a considerably more sophisticated optimiser than that used for the former two constructs, and requires more

detailed explanation.

6.4.1 Single-statement Selection

The trivial case of selecting a single statement among a set of statements is accomplished by using the single

keyword. A hypothetical example of this which can be written is given in Listing 6.3. Any unresolved symbols such

as become plasma cell and count t cells are resolved to extensions, written in the style of a macro-like function

which generates Terra statements using MSP by the user, and/or stored in a library. Though this requires sufficient

programming ability, these can be written by experts and re-used easily. In this case, hypothetically the user might

be interested to see which antigen behaviour of die, split , become plasma cell and random movement may cause

a reduction in the number of T-Cells in the complex human immune response, implemented as a lattice-oriented

agent-based model.

1 mol

2 if me == ANTIGEN then

3 defvar fitness = count t cells

4

5 if tcell attached then

6 select single to maximise(fitness)

7 become plasma cell

8 split

9 move random 4 −−random movement

10 die

11 end

12 end

13 end

14 end

LISTING 6.3: An example of single-statement selection in a MOL uncertain construct.

6.4.2 Permutation Extraction

Listing 6.2 shows a simple predator-prey model [104, 257] which uses a select statement with the permutation

keyword. Statements such as these will be referred to as “permutation statements”, similarly for single and

recombination. More details of the predator-prey model are given in Chapter 2, specifically Section 2.1.3. Essentially

this type of model seeks to mimic the dynamics (and perhaps the reproduction of a specific phenomenon) in a

struggle for survival between prey and predator animals.

Another example of the permutation statement is a flocking simulation reminiscent of Boids [241, 240] shown

in Listing 6.5. This example uses the spatial version of MOL. The agent-based model is initialised with agents

at random locations and with random velocities. Then, through the query statement (reminiscent of the Proto

int−hood statement [15]), it is determined how many agents are in the neighbourhood of this agent (a sphere of

predetermined size). This program is executed by all agents, therefore, there are intrinsic vel and pos globals

giving access to an agent’s velocity and position vectors. The closest agent is computed by a statement of the form

select closest in group. The objective is arbitrarily defined to attempt the maximisation of the number of agents
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in the neighbourhood of each agent. The evolutionary optimiser chooses a combination of the statements in the

permutation statement with replacement. The algorithm is much simpler than that of a full Genetic Programming

implementation because the statements can be considered as terminals.

Should the user require, statements can be grouped so that the optimiser considers it as a single statement in

terms of optimisation. This is done by using syntax similar to that shown in Listing 6.4 on lines 6–9.

1 mol

2 defvar fitness = count t cells

3 select single to maximise(fitness)

4 become plasma cell

5 split

6 select all

7 kill surrounding cells

8 die

9 end

10 move random 4 −−random movement

11 die

12 end

13 end

14 end

LISTING 6.4: An example of a select all statement to group statements.

During testing, parallelism was disabled. Fitness values were not averaged, meaning that results from the

evaluation stage were subject to error, though this is only for the purpose of a proof of concept. Evolutionary

algorithms are capable of handling noise in objective functions, but this is a simple optimisation test. Selecting a

combination of the statements given in the select permutation statement is almost as trivial a problem as single-

statement selection. However, should there be a large number of these statements, then an optimiser such as this

would be more suitable. In this case, a simple example was chosen to illustrate the use of MOL in structural

optimisation.

Parameters used for various components of the language and optimiser are shown in Table 6.1.

The optimiser yielded the code shown in Listing 6.6 for the select permutation statement. A screenshot of the

model using this code block is shown in Figure 6.4, whereas all the models together during optimisation is shown

in Figure 6.3. As the optimisation goal was to maximise the number of agents in the neighbourhood, it makes sense

that agents should cluster together and not separate themselves. Of course, if it was necessary to ensure separation

between agents, the first statement specified as possible behaviour could be placed before the select permutation

statement, thereby making it mandatory.

6.4.3 Recombination(I, p. 71)

To evaluate the recombination statement, the Santa Fe Ant Trail problem was chosen [149]. This problem was

previously described in Section 4.1.2. For convenience, the function and terminal sets were

F = {IfFoodAhead (I),ProgN2 (P),ProgN3 (Q)}
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1 mol

2 defvar m = 0.001

3 defvar av vel = {0.0,0.0,0.0}
4 defvar count = 1

5 query neighbours

6 count = count + 1

7 done

8 defvar c = compute closest in group

9 defvar origin = {0,0,0}
10

11 select permutation to maximise(count)

12 if (distance to c) < 3 then

13 move awayfrom c

14 else

15 move towards c

16 end

17 move towards c

18 move towards origin

19 end

20

21 vel = 0.995∗vel

22 pos = pos + vel

23 end

LISTING 6.5: A spatial ABM program written in the custom DSL, with selective uncertainty.

Parameter Value

Time Steps per Generation 260

Number of Generations 10

Agents per candidate model 64

Number of candidate models 32

Max magnitude of initial velocities 0.16

Max turn velocity 0.1

P(crossover) 0.8

P(mutation) 0.01

Cube dimensions 30x30x30 units

TABLE 6.1: Additional parameters used in the simulation and optimiser.

1 move towards origin

2 vel = vel + 0.5∗av vel

3 move towards c

4 move towards c

LISTING 6.6: The optimised select permutation statement.
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FIGURE 6.3: A screenshot of the optimiser in evaluation stage, gathering fitness scores from 16 separate

candidate simulations, using the program specified in Listing 6.5 (with agents superimposed). All candidate

models are superimposed. The cube in the centre of the image is where all individual agents are intialised.

FIGURE 6.4: A screenshot of the optimised program from Listing 6.5 using the code block from Listing 6.6.
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and T = {Move Forward (M),Turn Right (R),Turn Left (L)}. It is not as straightforward to form a solution to this

problem which achieves full score.

1 if mytype == 1 then

2 defvar fitness = 0

3 if timestep == 200 then

4 fitness = count food

5 end

6 select recombination to minimise(fitness)

7 if food ahead == 1 then

8 move and consume

9 else

10 turn left

11 turn right

12 end

13 end

14 end

LISTING 6.7: The initial code given for the Santa Fe Ant Trail model induction attempt.

The MOL code excerpt provided for this is given in Listing 6.7. The only code not shown is a small piece of

code to ensure that only one terminal is processed during execution, this prevents the algorithm from expanding

rapidly and simply iterating over the entire lattice.

It is perhaps immediately clear that this initial code would not solve the problem, but it provides all but one of

the terminals and nonterminals to construct a working solution. Two other nonterminals are provided separately

within the optimiser. These are the ProgN2 nonterminal, and the ProgN3 nonterminal. These two functions simply

execute all their arguments sequentially.

Candidates in these populations are represented by using the Karva language of Ferreira [64], and expressions

(frequently abbreviated to K-expressions) are often written: Q-*+/-abca/a-bbadac. This string encodes a

tree, where the symbols Q,+,-,*,/ are 2-arity nonterminals and a,b,c,d are terminal symbols. This tree is

a “genotype”, since not all of its symbols are included in the final “phenotype” (ie. executable program). It is

interpreted by placing the first symbol at the root, and successively adding tree arguments one by one, from left to

right, level by level until the tree is complete.4

The initial parsing of the code given in Listing 6.7 would occur as normal, but a separate pass constructs the set

of nonterminal and terminal symbols from the code given in the select block. The if statement within the block

(including its condition) is stored as a 2-arity nonterminal and coded as I0. The I indicates that it is an if statement,

and the zero indicates that it is the first if statement encountered. Other if statements with different conditions

are stored as I1, I2 and so on. Terminals such as move and consume is stored as N0 (anonymous Lua expression),

and the other symbols are stored as N1 and N2. For these tests, the statements given in the construct are not used,

other than to construct a symbol database. Future work includes decomposing this code in the same fashion and

inserting it into the first generation. In the case of this simulation, the following unambiguous symbols will be

4For a complete discussion of Karva, see Section 4.2.
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used to ease readability: M–move and consume, P–ProgN2, Q–ProgN3, L–turn left, R–turn right,

I–IfFoodAhead. The fitness is computed at timestep 200, using the code just before the select block.

Together, the constructed function and terminal sets are used to construct random k-expressions, enable simple

crossover and mutation operators, and construct typed ASTs for inclusion into typed candidate program trees. The

most important purpose that conversion into, and out of k-expressions using code trees is to allow crossover and

mutation to take place on k-expressions.

In order to implement the terminals turn left and turn right , it is necessary to store a direction state variable.

This was embedded into the cell state variable (32-bit integer stored in the lattice). Bitmasking functions written in

C and used within a MOL extension allowed the agents to retrieve and update these state variables. Storing this

kind of information in this manner is not absolutely necessary, but it is done to enable simple compatibility with the

parallel code generator at a later stage.

Additional parameters chosen for this model are shown in Table 6.2.

Parameter Value

Total Generations 10000

Timesteps per Generation 200

Population Count 200

Grid Size 32 by 32

P (mutate) 0.1

P (crossover) 0.8

Program Head Length 17

Total Genotype Length 17 ∗ 2 + 1

TABLE 6.2: Parameters used for optimising model structure for the original version of the Santa Fe Ant Trail

problem.

Figure 6.6 shows 1000 generations of a sample model optimisation run. In this instance, lower scores indicate

less food tokens left on the lattice after execution of 200 time steps. The target is to reach zero. As seen in the plot,

mean fitness decreases steadily, and minimum fitness in the populations drop significantly at irregular intervals.

Finally, at around generation 950, the best possible fitness is achieved. The candidate found is discussed below.

Computing time was approximately two and half hours, and a program was generated which obtained the best

possible score. The program tree is shown in Figure 6.5, and the corresponding k-expression was:

QRPLQMQIPIILLRIIPRLRLRRRRL

Which does not show intron symbols. It is interesting to note that this program needed 26 symbols, whereas the

hand-written solution (which was IMPLPIPMRRPLPRPIMML), required 19.

At this point it is wise to consider the problem of performance. The Santa Fe Ant Trail problem is of

inherently low complexity, since there is only one active agent on a lattice, which must execute code. In addition,

it is completely deterministic, requiring no averaging to obtain a statistically significant score. However, two

performance characteristics are considered, the first is the time taken to compile the programs, and the second is to

execute them all for one timestep.
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PROGN3

RIGHT PROGN2 LEFT

PROGN3 MOVE

PROGN3 IF-FOOD-AHEAD PROGN2

IF-FOOD-AHEAD IF-FOOD-AHEAD LEFT LEFT RIGHT IF-FOOD-AHEAD IF-FOOD-AHEAD

PROGN2 RIGHT LEFT RIGHT

RIGHT LEFT

LEFT RIGHT RIGHT RIGHT

FIGURE 6.5: The best candidate generated by the MOL recombination optimiser (executed using the code

shown in Listing 6.7). The score this candidate achieved was zero, which is the best possible score.

FIGURE 6.6: An optimisation run showing fitness by generation of the Santa Fe Ant Trail problem using the

MOL code shown in Listing 6.7. As seen in this plot, a steady decrease in average fitness is followed by frequent

drops in minimum fitness until the best possible score (0) is achieved.
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For this single-threaded optimiser, it seems approximately 3.8 seconds is necessary to compile 200 random

programs for the host processor. This does change however, depending on the structure of the candidates. For

instance, if the tree of the program is sufficiently deep, many statements would need to be compiled, which will

increase this time considerably.

The time taken to execute 200 random programs is approximately 1.7msec. The Predator-prey model discussed

with regard to parallelism in the next section is far more computationally expensive, and requires careful consid-

eration, as it is also stochastic to a certain degree. In the case of the Santa Fe Ant Trail problem, the result is

deterministic, and only one agent is active, which makes it very suited to being computed on the host.

6.5 Parallel MOL(I, p. 112)

It was observed that the performance of the optimising MOL language was quite prohibitively low, should

the fitness evaluation phase be complex. Computing times vary, but are generally of the order of hours for a

single experiment. Lessons learned from meta-optimisation (see Section 3.5) reaffirm that performance would be

extremely problematic, mostly due to the averaging and re-averaging necessary to obtain a good fitness estimate

(should the problem be nondeterministic), and that candidates are actually entire simulations. Van Berkel’s effort

was distributed across a set of processor nodes, but performance results given indicated that the execution of a

single program took upwards from 350ms for a program of lowest complexity [283]; together with averaging, the

author reported total runtime of around three hours for one experiment.

Stronger interest in large-scale agent-based models is also surfacing, where a large number of agents are

simulated [220]. Being able to represent large populations is sometimes a necessity. For example, in ecology, a

technique was even developed for approximating the influence of multiple agents in a “super-agent” [252]. When

referring to a population of agents, of the order of 106+, it becomes impractical to use machine learning for

developing models. At this point in time, even with aggressive code optimisations, evolving large systems is still out

of reach, but efforts making use of GPU hardware bring this goal closer. Even if large systems are not used during

optimisation, these can be scaled up afterwards; though, the dynamics of the system may change dramatically.

Fortunately, NVIDIA have released a backend for LLVM which generates Parallel Thread Execution (PTX)

instructions for NVIDIA GPU hardware [165]. The implications of this is that any LLVM frontend can now (with

appropriate modifications) generate the appropriate LLVM IR code suitable for compiling to PTX instructions.

Terra [46], upon which MOL is built, is also capable of this. As explained earlier, agent-based model simulations

implemented on GPU hardware have in the past involved custom code, or code transformations [244] from agent

specifications such as the X-machine [37]. Also, previous implementations of Genetic Programming algorithms on

GPU hardware were implemented in a way that candidates would be evaluated by using an interpreter [156]. Very

sophisticated methods such as the evolution of CUDA PTX programs themselves in 2011 [41] using the CUDA

driver API was perhaps a sign of what was to come with the NVIDIA LLVM backend.

In order to enable the lattice-based MOL language to be compiled for execution on GPU hardware, it is

necessary to:

1. Adjust how the data is stored in the host C++ program

2. Support a population of models executing concurrently

3. Compile to a Terra function with a different signature
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4. Generate CUDA code instead of host code

5. Reimplement a suitable source of random deviates

6. Consider different parallelisation strategies and how to implement these automatically

7. Consider the possibility of concurrency race conditions

Focus is given to the efficient computation of the objective function, in other words, the simulation of the

candidate models so that fitness scores can be gathered quickly. In Chapter 4, genetic operators were themselves

implemented in parallel to cope with large numbers of candidates. While this provided some additional good

scaling characteristics, the computing of the objective function proved to be far more computationally expensive.

The successful mitigation of which will surely dwarf the potential benefit that can be achieved by parallelising the

genetic operators.

Previously, the lattice along with a temporary write-only lattice was allocated on the host. Should CUDA be

enabled in a MOL model, the data is instead allocated on the GPU hardware by using the CUDA API [202]. These

device pointers are provided to the Terra compiled function instead of pointers to host memory. The compiled

MOL code is therefore able to operate on the lattice, as allocated by the host on the GPU hardware. The code

parser and type checker are identical, but a separate CUDA code generator is used in order to accommodate the

restrictions imposed by the CUDA GPU architecture. Compiled code is then mostly PTX instructions, wrapped

with the necessary host code to launch CUDA kernels with the correct thread grid and block dimensions. Once a

timestep is computed, the data is copied back from the GPU to the host and then passed to the visualiser.

To accommodate a population of different candidate models as opposed to simply simulating a single given

MOL-implemented model, it is necessary to extend the visualisation module as well as allocating enough memory

in the above-mentioned GPU memory for n separate candidate models. In essence, the separate portions of the

allocated memory represent independent models, which are handed to their corresponding optimiser-modified MOL

programs.

Compiling Terra code for CUDA is straightforward, provided that the boundaries of the device in terms of

memory and thread resources are respected. The usual Terra code generated is essentially compiled into a single

CUDA kernel, which is launched with a grid and block configuration, and its arguments, by a separate host Terra

function. Given that an appropriate grid and block must be provided, this presents an opportunity to discuss different

parallelisation techniques.

Three parallelisation strategies are implemented from which the user may freely choose. The first is a simple

“one-thread, one-model” (1T1M) strategy, where a single CUDA thread is assigned a candidate model. This CUDA

thread is then responsible for executing the entire model simulation once per time step. This is unsuitable most of

the time, especially when one candidate model operates on a larger lattice, or the model is demanding of processing

time required. The second strategy is named “one-block, one-model” (1B1M), in which an entire CUDA block is

dedicated to computing a single model simulation once per timestep. While this may seem the obvious choice in

nearly all circumstances, the limitations of block sizes (1024 threads maximum at the time of writing), mean that

the lattice sizes have a limit. A great many candidate model simulations can be executed concurrently at reasonable

speeds using this, but the limitation in lattice size is a considerable issue. The third strategy is termed “many-blocks,

one-model” (*B1M), where multiple blocks are assigned to a single candidate model. This allows much larger

model sizes, but race conditions become more difficult to eliminate, which requires further strategies.

The user must choose a strategy to overcome potential race conditions in a model simulation. Two strategies

are provided from which the user may choose for the 1B1M and *B1M parallelisation strategies. The first is a
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“checkerboard” (or red/black) update scheme, which is common in lattice-spin models such as the Ising model

[98]. Using this method, cells are computed in a way such that the nearest neighbours of any cell operated on are

updated separately and independently. Using this “checkerboard” update, the Moore neighbourhood [94] can still

cause some race conditions, and as a result, the user can also choose an additional “coarse” checkerboard update.

Essentially the checkerboard is modified such that only 1/3 is updated at one time. For one complete update, the

grid of threads are offset so that each thread updates a 3x3 grid of cells. The Moore neighbourhood of these cells

are therefore readable and writable without race conditions.5

Another considerable issue is the source of random deviates on the GPU hardware. There are various methods

to accomplish this [161]. In this case, this was implemented by maintaining a separate GPU array with three

unsigned long integers for every candidate model. These integers represent the u, v and w parameters of the

Ran random number generator [229]. They are initialised by the host before being copied to the device. The

host computes a new Ran state for each candidate model using a master Ran for providing a seed. This allows

the MOL code to use as many random deviates as it needs to operate, since Ran also provides a colossal period

(approximately 3.138(1057) [229]). To generate a random number, code is automatically generated from a macro

function to update the Ran state and compute a random deviate of the specific thread.

6.6 Selected Results
Two experiments are conducted to evaluate the convergence and computing performance of the additional

architecture introduced in this chapter. The first is The Santa Fe Ant Trail problem (see Section 4.1.2) which Koza

solved using Genetic Programming [149]. This problem was approached using a select recombination structure

(as in Section 6.4.3, in order to evolve the appropriate decision tree (expression tree) for an ant to collect all food

placed on an irregular trail. The second experiment pertains to a more classical model: the Predator-prey model

[104, 257] (see Section 2.1.3). The objective in the Predator-prey model is to evolve a list of ordered rules which

are most suitable for the predators to catch the prey.

The original Santa Fe Ant Trail problem solved by Koza [149] used a ProgN3 nonterminal, which was more true

to the original Santa Fe Ant Trail problem. In addition, multiple move commands can be issued in one timestep. To

more closely resemble this, the MOL recombination code was altered and the ProgN3 nonterminal was introduced.

The implementation of the Santa Fe Ant Trail was also modified to allow more than one move command per time

step. In allowing the ant to make multiple movements in one timestep, the conceptual fitness landscape becomes

less deceptive. A more gradual descent to an optimum was observed than that shown in Figure 6.6. It should be

noted that the frequency of candidates which attempt to iterate over the entire lattice increased dramatically.

The parameters used for these experiments are shown in Table 6.3.

6.6.1 Santa Fe Ant Trail(I, p. 71)

The fitness plot for this experiment is shown in Figure 6.7. There is a gradual (though small) decrease in mean

fitness up to generation 120, and followed later by a slight drop around generation 280. The minimum fitness does

decrease over time, indicating progress in the search. Though, during this run, the optimum fitness (zero) was not

achieved, a number of semi-suitable programs were generated. It is worth noting that no generated program can

achieve maximum fitness by brute force iteration of the entire lattice due to the 400 time step maximum [149].

5For more information on this coarse checkerboard, see Section 7.2.1.
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Santa Fe Parameter Value

Population Size 500

P (mutate) 0.2

P (crossover) 0.8

Program head length 12

Timesteps per Generation 400

Predator-prey Parameter Value

Population Size 500

P (mutate) 0.2

P (crossover) 0.8

Timesteps per Generation 200

Generation Repeats 3

TABLE 6.3: Optimisation parameters used for the Santa Fe Ant Trail problem and the Predator-prey model.

FIGURE 6.7: Fitness plot by generation for the Santa Fe Ant Trail problem computed by the host using the

single-threaded version of MOL.
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After the MOL program is first parsed by the Terra parser, and a typed syntax tree is constructed, it is duplicated

500 times, and the MOL optimiser modifies these trees. The time taken to compile all 500 typed Terra trees to

host code (in single-threaded MOL) is approximately 14.8 seconds (averaged five times). Whereas, the time to

compile 500 unique typed trees to PTX is approximately 473 seconds. This is clearly an undesirable amount of

time, considering that this dwarfs the evaluation time.

The time taken to compute a single timestep of a system with 500 candidates is approximately 3.57msec

(averaged five times) for the single-threaded host version, whereas the GPU-parallel version computes a frame in

2.5msec (averaged five times). These are both of the order of a second for evaluating the entire population in the

current generation. Additional scaling data for increasing population sizes are shown in Figures 6.8(a) and 6.8(b).

In these plots it is clear that unless there is excessive computation necessary in the evaluation of a population of

candidates, then it is likely that the GPU version of MOL is not necessary. At this point it is not clear why there

appears to be an exponential rise in compute time required for compiling larger simulations at runtime for GPU,

though the use of CUDA RTCG in Terra is experimental at this point. Also interesting in the timestep plot is that

the GPU code surpasses the CPU code at relatively small population sizes. Though the CPU code is faster for

population sizes of 32 and less, it was expected that the CPU code will surpass the GPU until at least 128 candidate

programs. Altogether, the total lattice size operated on for the largest population was sized 512(32) = 16384 by 32

lattice sites. This is a colossal 524,288 lattice sites, which makes the computing time for one frame considerably

more reassuring for both CPU and GPU code.

6.6.2 Predator-Prey Model(I, p. 18)

For the Predator-prey model, timestep computation times were measured for the single-threaded and GPU-parallel

compilations for different population sizes and lattice sizes. This model is more computationally expensive to

compute per timestep than the Santa Fe Ant Trail. The reason for this is that both predators and prey must execute a

MOL program, meaning that at times, every lattice site will execute a program, whereas in the Santa Fe Ant Trail,

there was only one program being executed, that of the ant.

The optimisation objective is to select a permutation (with replacement) of rules for prey, to maximise the

number of prey. Usually, the evasion strategy for prey is to find the closest predator, and move directly away from

it. This is a simple but effective strategy. Emphasis here is given on performance results instead of convergence

results.

The measured data in log-linear plots are shown in Figure 6.9. Different configurations of candidate model

lattice sizes (8x8,16x16,32x32,64x64 and 128x128) were used, along with the “one-block, one-model” (1B1M)

CUDA parallelisation strategy, the “many-blocks, one model” (*B1M) strategy, as well as single-threaded CPU

configurations. The largest candidate model lattice (128x128) proved prohibitively expensive to compute by the

single-threaded CPU configurations. There exist rapid increases in computing time between candidate lattice

sizes, but increases in population size of these are relatively slower. The mere ability to simulate a lattice of size

128x128 with 64 heterogeneous candidates is enormously encouraging, considering that a population of this size is

advantageous with regard to population-based optimisers. Unfortunately, while timestep computation scales well,

compile time does not, however.

For the complete program shown in Listing 6.2, compile times from a MOL typed syntax tree to Terra code takes

between 25msec and 30msec, however, some programs take up to 130msec to compile for the predator-prey model

with heterogeneous programs (caused by the optimiser exploring the search space). The CUDA kernel compile time

for 32 heterogeneous programs is approximately 40 seconds. For a trivially simple program (mol move left end),

compile time from MOL typed tree to Terra is approximately 1msec, and kernel compilation is 530msec for 32
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(a) Generation population compilation. Data point for GPU at 512 population size not shown:

539000msec. Parallelisation strategy used was “one-block, one-model.”

(b) Timestep computation.

FIGURE 6.8: Performance plots of timestep computation and population compiling between CPU and GPU

compiled MOL code. Data is averaged over the first 300 time steps of randomly initialised runs.
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FIGURE 6.9: Performance plot for different system sizes both in candidate model lattice sizes and number of

candidates in populations for both the parallelisation strategies “one-block, one-model” (1B1M) and “many-

blocks, one model” (*B1M). CUDA block sizes in *B1M were restricted to 16x16.
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identical programs. A slightly more complex trivial program, but one still containing an optimisation construct

such as the following takes on average 5msec to compile from a MOL typed tree to Terra:

mol select recombination to minimise(1) move left end end

6.7 Discussion
The use of run-time code generation is a good method for improving performance, provided that the evaluation

phase of a population of candidate models is sufficiently complex. For models in which evaluation is less expensive

(such as the Santa Fe Ant Trail model), it is more appropriate to use the single-threaded version of MOL. This

allows programs to be compiled faster, while suffering a very small drop in timestep computation performance.

Systems larger than 512 candidate models appear to be out of reach of GPU run-time code generation. Such a

result was expected, given that Cupertino et al. chose to evolve PTX code itself rather than use the CUDA run-time

library to compile C code [41] noting that the latter would be too computationally expensive.

These limitations reaffirm that it is unwise to ignore the power of the newer multi-core processors available

[36]. At the same time, the GPU should be applied when most or all of its theoretical computing power can be

achieved. This demands proper choice in parallelisation strategy, which is anticipated to be automatically selected

using relevant model information in the future. It is certainly possible to generate multi-threaded code on the host

processor instead of CUDA code. This is a promising area for future work.

The next chapter makes a more thorough study using a lattice-based photobioreactor model. A thorough

discussion on the implementation of such a bioreactor using ABM is given, and comparisons with C++, CUDA,

and MOL are made and discussed. Some experiments in selective model induction are also conducted.



”...essentially, all models are wrong, but some are

useful.”

George E. P. Box

CHAPTER 7

PHOTOBIOREACTOR MODELLING

Biological processes such as growth kinetics [19] are difficult to model with precision. The numbers of cells under

consideration are often excessive, sometimes ranging between 5 and 6 million cells per mL [235]. This has led

to an increased emphasis on differential equations for understanding the process [181], as opposed to stochastic

individual-based simulations on cellular level. The advent of affordable and high performance graphics hardware

has allowed larger system sizes to be scrutinised, but there is still room for improvement. Agent-based Modelling

(ABM) is used in this chapter, due to its natural application to this field. ABM is best used in situations where a

system can be naturally divided into small discrete decision-making entities, which is entirely applicable in this

instance [215].

This chapter carefully considers the problem of stochastically modelling algaculture with some aimed accuracy,

particularly the growth kinetics associated with such systems. Some models in the literature are briefly considered,

and a new model is proposed. The purpose of synthesising this model is to provide an additional test bed for

complex individual-based models, where parameter optimisation is often not enough for computationally inducing

an appropriate model. The MOL language presented in the previous two chapters is used to implement the model

and compare against CUDA and C++ implementations. Examples of structural optimisation are also given and

discussed.

This chapter extends upon work previously published by the author in Modelling and Simulation in Engineering1,

the Proceedings of the 14th IASTED International Symposium on Intelligent Systems and Control (ISC 2013)2,

and also the Proceedings of the 14th International Conference on Bioinformatics and Computational Biology

(BIOCOMP13)3.

7.1 Introduction

ALGAE IS DELIBERATELY CULTURED FOR SEVERAL REASONS, such as carotenoid production [74], biodiesel

[158] (though in infancy), Spirulina nutritional supplements [243], and effluent treatment [194]. Each

of these applications involve a different species of algae. Cultivating these strains is not always trivial,

1A. V. Husselmann and K. A. Hawick. Simulating growth kinetics in a data-parallel 3D lattice photobioreactor. Modelling and Simulation in

Engineering, 2013
2A. V. Husselmann and K. Hawick. Intelligent individual agent-based simulation of photobioreactors and growth control. In Proceedings of

the 14th IASTED International Symposium on Intelligent Systems and Control (ISC 2013), 2013
3K. A. Hawick and A. V. Husselmann. Photo-penetration depth growth dependence in an agent-based photobioreactor model. Technical

Report CSTN-204, Computer Science, Massey University, Auckland, New Zealand, Las Vegas, USA, July 2013
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especially in the case of Haematococcus pluvialis. This algae is used to naturally produce a valuable carotenoid

known as Astaxanthin: a pigment found in certain aquatic animals [90] and often used for pigmenting salmon and

trout [74]. It is also a powerful antioxidant [235]. To induce carotenogenesis (the production of carotenoids), it

is necessary to incite growth to reach a suitable culture density, and then stress the culture by way of salinity or

excessive illumination. This causes the culture to form Haematocysts which accumulate Astaxanthin, which can

then be extracted by centrifuging and drying the biomass [74].

There are also different methods of cultivating algae, some of which include: outdoor ponds, column photo-

bioreactors, flat-plate photobioreactors and tubular photobioreactors [281]. In addition to these, there are also airlift

bioreactors [35].4

Each of these methods have disadvantages and advantages. In this chapter, a focus is given to bubble-column

photobioreactors. These are common for temperature and light controlled indoor production facilities. Nutrients

are fed to the reactor by bubbling gas such as nitrate or phosphate through a manifold in the bottom of the column

named the sparger.

Regardless of reactor geometry and location, illumination is extremely important. Among the factors which

influence the growth kinetics of algae, light is the most important [211, 181, 74]. For this reason, much focus is

given to modelling illumination in the reactor. The major factors related to illumination which affect photosynthesis

in aquatic ecosystems include light scattering and absorption [144] as well as mutual cell shading [181], which

collectively cause photo-limitation or photo-inhibition in the absence of light or low photon flux density [57].

Microbiological simulations are by no means new. There have been several simulations in the past of mi-

crobiological phenomena, which have (for the most part) been collectively known as individual-based models

[65, 87, 233]. Particularly prominent among these are bacterial growth simulators, such as BacSim [153] and BSim

[83]. These simulators are suitable for a wider audience and hence stimulate cross-discipline inquiry in this area.

Individual-based Modelling (IBM) is closely related to ABM, and hence, they have much in common. One example

of a simulator for algal reactors is the work of Greenwald, who proposed a stochastic simulation of a rectilinear

photobioreactor (PBR) [85] in 1 dimension with Brownian motion [73].

In general, previous agent-based algal growth models typically assume a 1-dimensional lattice [85, 211].

This work focusses on a 2-dimensional lattice in an attempt to better model the local interactions caused by

hydrodynamics in order to more accurately determine illumination history. Illumination history is important to

the cell division rates in a culture [74, 181, 296], and factors such as fluid dynamics determine the effects of

mutual shading between cells, as well as their exposure (or over-exposure) to the illumination source. In the

simulation discussed here, this combination of photo-limitation, photo-inhibition and mutual shading determine the

illumination history of a cell.

IBM has recently become a concept which has gained much interest in the field of microbiology in general [65].

In the past, IBM was only really applied to microbiology, and has very recently become a synonym for Agent-based

modelling. Railsback and Grimm in their work of 2012 use the terms ABM and IBM interchangeably [233]. In that

sense, models with autonomous entities have been developing concurrently in more than one field over the past few

decades.

The objective of the modelling process in this case is to closely model the growth kinetics of H. pluvialis. A

model of such a process would be immensely helpful to gain insight in to how to improve a production facility to

increase the yield of the highly valuable carotenoid Astaxanthin, without brute force iteration. In order to produce

Astaxanthin from H. pluvialis, it is necessary to first cultivate vegetative cells where no carotenogenesis takes place.

4This list is by no means exhaustive, however.
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Once a suitable culture is achieved (high cell density), then the culture is stressed in some fashion. This is done by

causing nutrient deficiency, or increasing temperature, or introducing NaCL into the medium. Haematocysts for

example, develop 2-3 days after the culture has begun to be stressed. Another 3-5 days after this and these cysts

would have accumulated between 1 and 3% Astaxanthin, and would be ready for harvest. Harvesting is a delicate

process, where drying of biomass is done and centrifuging is used to separate out the desired products. In terms of

productivity it is optimal if the bioreactor vessel is harvested as soon as possible.

Maximising the output of Astaxanthin can be done by inciting rapid cell growth to obtain a high cell density;

from when the culture can be stressed to increase yield. In the literature, it is reported that the only aspect that

changes growth rate considerably when the cells are not under significant stress from photoinhibition, photo-

limitation, nutrient deficiency, temperature stress, or shear-stress, is light availability [74, 235]. In a production

facility, all of these factors would be carefully regulated, however, cells closer to the surface of the vessel (hence

illumination source) tend to absorb more light and shade other cells. This is further complicated by bubbles from

the feeding lines, which tend to move cells through the medium. The literature also reports that the ability of cells

to grow and divide also further depends on the history of illumination on those cells [160]. This means that an

approximation to fluid dynamics in such a reactor simulation could improve accuracy to some degree.

The overarching goal of this model is ultimately to represent the system as a set of individual, autonomous,

interacting agents [65]. The process of doing so requires at least a set of behaviours for each agent and interaction

specifications. Three important factors are taken into account. The first concerns some method of approximating

hydrodynamic flow, and hence illumination history. The second concerns some method to determine when and how

cell division occurs, and finally, some method to increase performance for larger system sizes.

The rest of this chapter is organised into a section first detailing the conventional approach to modelling

a photobioreactor with the above objectives (Section 7.2), followed by Section 7.3 which describes the same

modelling process using MOL, a language developed in the previous two chapters. MOL allows virtually automatic

parallelism along with a structural optimiser which is experimented with in the context of agent-based modelling of

algae in a photobioreactor.

7.2 Conventional ABM(I, p. 11)

As mentioned, this section considers what is necessary to obtain an agent-based photobioreactor model such as

that shown in Figure 7.1, which is capable of demonstrating the dynamics of algal growth, and more importantly,

its associated growth kinetics.

Modelling in this section is accomplished using custom-written C++ and CUDA code. This serves as a

base-level comparison against the technique discussed in Section 7.3 in terms of both utility and performance.

Three aspects of the model requirements organised into three phases include the approximation of hydrodynamics

and illumination, and secondly, cell division, and finally mutual cell shading. All three of these phases were

implemented using C++ and Compute Unified Device Architecture (CUDA).

7.2.1 Hydrodynamic Flow and Illumination Approximation

The first phase of the modelling effort concerned the use of the Kawasaki site exchange model [141] for a baseline

mass transfer approximation. The Kawasaki exchange model is reminiscent of the Ising model for ferromagnetic

lattice simulations. Using a ferromagnetism model such as this is somewhat unorthodox; however, the lattice-gas

characteristics of the Kawasaki exchange model [92] certainly indicates otherwise. Further, a probability of cell
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FIGURE 7.1: A visualisation of a simulated photobioreactor at a very late time step. Cubes represent algal cells.

division dependent on exponential decay of illumination intensity was used. This used the lateral distance from the

closest of the left and right vessel walls. Additionally, a weak gravitational force was also used, which has been

previously researched in the context of sedimentation simulation [92].

The Kawasaki model itself depends on energy minimisation and stochasticity. Essentially, the species in a

lattice would diffuse until they make contact with other identical species. Contact between identical species is

considered a bond, which requires energy to break. Exchanges occur between two neighbour species should a

decrease in local energy result. Otherwise, a temperature parameter along with a random deviate and Metropolis

probability is used to decide whether to accept an exchange, regardless of the bonds that may be broken as a result.

A visualisation of this with a relatively low temperature is shown in Figure 7.2.

FIGURE 7.2: The canonical Kawasaki exchange model.

To facilitate some additional inquiry into the movement of cells, a site has an age counter, which is incremented

should it be exchanged with a neighbouring cell. This results in the coloured lattice sites shown in Figure 7.2,
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which are normalised and spread across the hue parameter of the HSV colour space where red is close to zero. To

conserve computing effort required (and allow compatibility with parallel MOL), both the species state variable

(empty or occupied) and age counter are stored within the same 32-bit integer. The most significant byte is used for

the state variable, and the first three bytes as the age counter. Empty lattice sites are denoted by 32 zero-bits.

Computing cell division is based loosely on the illumination upon the lattice sites, which shall be known as

the cells henceforth. For modelling light penetration into the vessel, a standard exponential absorption function

was used in the spirit of the Lambert-Beer law from the study of optics [155, 20]. Scatterance is another aspect to

hydrological optics, in tandem with photo absorption [144], however, in this work, focus is given to absorption in

the medium by a constant attenuance exponent (β). The equation describing the cell division probability P (split) is

given in Equation 7.1.

P (split) = γe−βf
2

(7.1)

Here, f is the lattice width fraction of the site to the closest wall (shown in Equation 7.2, w is the width of the

lattice). The γ variable is a simple amplitude variable, and finally, β controls the slope of the decay.

f = 1−
∣∣∣∣1− 2x

w

∣∣∣∣ (7.2)

Gravitational bias is introduced by widening the probability that a cell will exchange into the site below it,

should that site be chosen for a potential exchange; as well as narrowing the probability that the cell will exchange

into a site above it. The motivation behind this is that in the interest of energy minimisation, a site below a cell is

regarded as a drop in energy, and vice-versa with the upper site. At this point, 2-dimensional lattices are used for

explanation purposes.

To simulate heavier cells due to nutrient absorption, the gravitational bias was modified to accept influence

from the cell age counter, which was assumed to be proportional to nutrient absorption. This assumption, while

somewhat arbitrary, gives the effect of older cells sinking to the bottom of the vessel. The immediate effects of this

on the original Kawasaki site-exchange model is sedimentation, which is clearly seen when multiple species are

present in the lattice [92]. Figure 7.3 shows the effects of a weak gravity force in the Kawasaki model [92] with

multiple species in the lattice.

(a) An early timestep screenshot. (b) A later timestep screenshot.

FIGURE 7.3: Kawasaki model with weak gravitational forces at different timesteps during simulation.
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Larger sytems and more temporally distant system states can be attained by using Graphical Processing Units

(GPUs). The use of NVIDIA’s CUDA is discussed in Chapters 2, 3 and 4. Due to the larger neighbourhood of

cells that must stay in synchronisation, a “checkerboard update” is used to ensure that threads do not cause race

conditions. In the Kawasaki exchange model, cells in the lattice must be able to read/write in the Von Neumann

neighbourhood of Manhattan distance r = 1 from the cell index, and at least read from the extended Von Neumann

neighbourhood of Manhattan distance r = 2 [92]. This imposes some restrictions on the order the lattice cells are

processed. Sequential simulations typically overcome this problem by performing Monte Carlo updates of cell sites.

This work follows a similar path, except random order updates are performed in a 3x3 grid around each one lattice

site, and the CUDA thread grid is divided into a smaller lattice able to process 1/3 of the lattice at a time. This

ensures that there is a gap of two cells between each concurrently running thread. The process for this simulation is

outlined in Algorithm 15.

initialise sites empty with P (empty) = 0.5

for all time-steps do
for all 3x3 blocks in lattice do

for all 9 sites i in each block, random order do
choose a random neighbour site j

compute energy change if i, j exchanged

if energy falls then
accept change and do exchange

else
compute Metropolis probability p

add gravitational bias

obtain random probability r1
accept change conditionally on r1 < p

compute cell division probability P (split)

obtain random probability r2
divide on r2 < q

end if
end for

end for
end for

ALGORITHM 15: A GPU-parallel Kawasaki model algorithm with simple cell division.

An interesting effect of the Kawasaki model is that of multiple species. By increasing the number of species, it

is possible to see the effects of competing growth. This was accomplished by “inoculating” the bioreactor vessel at

the edges with different species. This data was incorporated into the 32-bit integer by reserving a few of the most

significant bits. The ability to do this may be of interest, considering the very important task of ensuring that a

bioreactor is not contaminated with foreign algal or bacterial strains. Being able to observe the effects of a foreign

strain could be useful for detection purposes. Results of this are shown in Figure 7.4.

Some qualitative and quantitative results gathered from the simulation described by Algorithm 15 are shown

in Figures 7.6 and 7.5. By gathering such data, it is possible to gain a sense of the simulation dynamics and

more clearly notice limitations and shortcomings when compared to expected growth rates given certain lighting

conditions.
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(a) Two competing species at an early timestep. (b) Two competing species at at apparent equlibrium.

FIGURE 7.4: Competing species in a Kawasaki site-exchange model.

FIGURE 7.5: Visualisation of culture growth stagnation at illumination exponent values of 0, 20, 50, and 100 in

order from left to right for sample runs. It is interesting to note that although 50 and 100 appear similar, they

have different spatial densities.
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(a) Average age of the cells, by frame, for a sample run

with T = 0.4 and β = 15.

(b) A plot of the fill fraction against frame number for

differing values of the decay exponent parameter β. The

data in this plot have been average over 100 independent

runs for each frame.

(c) Average density of each column in one sample run. (d) A typical bioreactor nearing full capacity. In

this sample run, the influence of gravity was set

10 times higher to make the effects more clear.

FIGURE 7.6: Qualitative and quantitative results gathered from the first phase in agent-based modelling of the

algal photobioreactor.
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The average ages of cells during a typical simulation run is shown in Figure 7.6(a). Due to the small inoculation

at either side of the vessel, it is expected that the first thousand frames have low ages. This is followed by a period

of rapid growth, where cells are constantly moving, and ages are increasing rapidly. Finally, when the vessel is near

capacity, ages reach approximately 125 and stagnate as less movement is possible. The temperature parameter was

at a constant 0.4 during this experiment.

A fill fraction plot by timestep for the vessel is shown in Figure 7.6(b). The data was averaged over 100

independent runs, and for three different values of the β illumination exponent (0,50 and 100). The exponential

drastically reduces the probability of a cell division towards the centre of the tank for values less than 50.

In Figure 7.6(c), the column density is shown on the lattice as an average, and maximum. These were averaged

over a single sample run. As can be seen clearly, density is much less in the centre, even at the maximum measured.

The variability in the data is due to the stochasticity of the algorithm. Averaging the results over separate runs as

well will yield a smoother curve, however this was simply intended to cast light on the spatial configuration of cells.

Figure 7.5 shows the states in which the photobioreactor’s growth stagnates due to insufficient illumination.

The different values of β used to generate these images were β = 0, β = 20, β = 50 and β = 100. Smaller values

of β (left two images) cause more cell division in the centre of the tank, whereas larger values cast darkness over

the centre of the tank. While cells are able to survive in the centre of the tank, the probability that they divide is

much lower.

Though there seems to be a growth rate attained which is loosely reminiscent of actual growth rates, important

factors such as photoinhibition and mutual cell shading are ignored in this prototype. Cells do shade one another

from the source of illumination to some extent, which is difficult to model in a discrete lattice simulation. In this

case, an exponential light decay was used through the medium, assuming constant density. This may not always be

the case. Instantaneous differences, particularly when the culture is relatively young, may have a significant impact

on culture growth rates.

7.2.2 Cell Division

Having established a very simple 2D bioreactor model in the previous section with a rough approximation to

hydrodynamics and cell illumination history, this section focusses on providing a more accurate cell division system.

The combination of the Photosynthetic Factory Model (PSF) [57, 58] with the Kawasaki site-exchange model is

presented and discussed in this section.

A thorough discussion of the PSF model is out scope. However, a brief summary is provided for self-containment.

The PSF model facilitates a simplification of the photosynthetic process by considering it as a Markov process [57].

Three discrete states are allowed: activated, resting and inhibited. Cells may transition between these states with

certain probabilities. The state diagram is shown in Figure 7.7. Modifications added are simply the addition of cell

division and increment states. The former allows the cell to split depending on P (split), and the latter increments a

counter. The counter is used to influence the growth rate, and is described later.

State transitions depend on the probabilities specified in the diagram shown. Parameters were hand-selected for

Pα, Pβ , Pγ and Pδ (the symbols in the state diagram are subscripted to avoid conflicting use) to 0.7, 0.5, 0.3 and

0.4 respectively. A cell may divide if it is in the resting state, and depending on P (split), which is discussed below.

In order to observe the effects of photo-inhibition and limitation, the counter (now the activation state counter) is

modified to measure how long a cell spends in the activated state. This is then used to add a small contribution on

to the cell division probability, P (split), which is also discussed below.

The changes to the process shown in the previous simulation (Algorithm 15) are shown in Algorithm 16.
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Cell Division

Open (Resting)
State

Activated State

Inhibited State Increment Count

δ βI

αI

γ

P(split)

FIGURE 7.7: State diagram of the Photosynthetic Factory model and additional flow.

N = L2 for square lattice

blank lattice, initialise 10 random cells

for all time-steps do
for all 3x3 blocks in lattice do

for all 9 sites i in each block, random order do
choose a random neighbour site j

compute energy change if i, j exchanged

if energy falls then
accept change and do exchange

else
compute Metropolis probability p

obtain random probability r1
accept change conditionally on r1 < p

end if
if in activated state then

increment activated state counter

end if
if in resting state then

compute cell division probability P (split)

obtain random probability r2
divide on r2 < P (split)

end if
state transition

end for
end for

end for

ALGORITHM 16: Kawasaki Exchange Monte-Carlo Algorithm including the PSF model.
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Computing P (split) is modified to include a contribution from the activated state counter. The effect of light

intensity decay is still included. The new formula for computing this quantity is shown in Equation 7.3. This

equation shows the probability of a cell dividing where f is the distance to the nearest wall of the reactor vessel.

In this equation, β is set to a constant 15, unless noted otherwise. The second and third terms in the equation are

the effects of the activation state counters. This is added to ensure that the time a cell spends in the activated state

corresponds to a slightly higher cell division rate [211]. The curve this produces against a is logarithmic with a

y-intercept of zero.

P (split) = γe−βf
2

− ln(
a

40
+ 2)−1 + (ln 2)−1 (7.3)

An additional modification from the initial design presented in the previous section is that the medium is now

inoculated by choosing a set of random sites. This method attempts to mimic the effect of injecting a sample of a

strain of algae into a well-mixed medium. The system state after such a sample inoculation some 100 timesteps

from t = 0 is shown in Figure 7.8.

FIGURE 7.8: Model configuration showing photo stimulated agent preferential growth at right and left of

simulated bioreactor.

A plot of the activation state counters are shown in Figure 7.9. The plot shows the highest and lowest counter,

as well as a standard deviation and mean. The data shown has been averaged across 100 independent runs.

Modifying the light decay parameter γ has a dramatic effect on the fill rate of the bioreactor. Several curves for

different values of γ are shown in Fig. 7.10. Each curve was averaged over 100 independent runs. The horizontal

line through the curves at the centre indicate the point (t1/2) the half-life of the system is considered to have been

reached. The quantity t1/2 is defined here as the number of time steps taken to reach a fill fraction of 50% in the

bioreactor.

As can be seen from the fill fractions (growth curves), the maximum of 100% fill fraction is reached logarithmi-

cally. In practice, bioreactors are harvested after having reached a suitable culture density, which could perhaps

be described as a fill fraction from 40% to 60%, considering that the lattice the simulation is built on is discrete.

It may therefore be useful to compute the time that is likely needed for the reactor to fill to a certain level. This

“half-life” of the system t1/2 can be determined from the data collected.
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FIGURE 7.9: Plot of the activation state counters by time step. The data shown is averaged over 100 independent

runs.

FIGURE 7.10: Plot of fill fractions by frame and decay parameter, averaged over 100 independent runs.
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Plotting the light intensity parameter values γ against t1/2 obtained in the system yields the plot shown in

Figure 7.11. This plot suggests a relationship between t1/2 and γ shown in Equation 7.4. Each point in this plot is

averaged over 100 separate runs, and the error bars represent the standard deviations of the points.

FIGURE 7.11: Log-log Plot of the brightness scale parameter (γ) against the time steps taken to reach a fill

fraction of 0.5 (t1/2).

t1/2 ≈ ec · γm (7.4)

The negative slope in the plot shown in Figure 7.11 suggests m = −0.26 ± 0.02 and c = 5.34 ± 0.09. As

expected, increasing illumination intensity while keeping the exponential light decay in the medium can only reduce

t1/2 to a certain degree. The effects of mutual cell shading is still not considered, but will be discussed in the next

section.

The light decay parameter β variation in Figure 7.12 appears to show a very weak linear relationship with t1/2.

Such a relationship reaffirms that lower values of β (corresponding to a more clear liquid with less light decay)

improves growth rates. In practice, mutual cell shading is the major contributor in controlled environments to light

decay in the medium. The use of the Lambert-Beer law for light decay in the medium in this sense, was simply

approximating this mutual cell shading while crudely assuming that all cells are distributed equally throughout the

medium.

It would appear that the amalgamation of the PSF model with the Kawasaki site spin exchange model provides

loosely realistic growth kinetics in the simulation of a photobioreactor. However, negative cell growth is not

accounted for (cell deaths), and also mutual cell shading is disregarded but approximated assuming that culture
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FIGURE 7.12: Plot of the (β) exponent against the time taken to reach t = t1/2 = 0.5. Here, each point is

averaged over 100 independent runs, and error bars represent standard deviations. The γ value for these runs

was 0.032.
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density is uniform across the entire reactor. In the next section, these two assumptions are eliminated, and the

simulation is expanded to 3 dimensions, so as to mimic the geometry of a flat panel photobioreactor.

7.2.3 Mutual Cell Shading and Negative Biomass Growth

As described earlier, the probability of cell division is key to the simulation, and depends directly on the number of

state transitions a cell has had between activated and resting states. Illumination is indirectly important also, since

the number of state transitions between activated and resting depend on how much illumination the cell receives,

augmented by cell shading and decay. The new full equation describing illumination across the bioreactor vessel is

shown in Eq. 7.5.

I = γ((1− SL
L

)e−β(x/L) + (1− SR
L

)e−β(1−x/L)) (7.5)

Here, cell shading is represented by SL and SR. These are simply the number of cells between the current cell,

and the left and right vessel walls. x is the position of the cell and L is the width of the reactor. β and γ provide

attenuation and scale to the degradation of the light penetration.

Finally, the actual formula for P (split) is simply a scaled d(a) from Eq. 7.6 using Equation 7.5.

d(a) = − ln(
a

40
+ 2)−1 + (ln 2)−1 (7.6)

This function simply tails off probabilities for larger values of a (state transitions from activated to resting)

which can be between 0 to 200 in the experiments conducted here.

Figure 7.13 gives a visual representation of illumination from the left to the right sides of the vessel. x/L = 0

represents the left edge, and x/L = 1 the right edge. While this surface describes the general availability of

irradiance on cells, it does not take into account the effects of mutual shading. Mutual shading applies a further

fractional coefficient to the illumination, and its landscape is shown in Figure 7.14. The “Shading” axis represents

how much of the vessel is obstructed for the cell under consideration. The inflection at x/L = 0.5 divides the left

edge from the right edge.

FIGURE 7.13: Plot of illumination function with γ = 1 and without mutual cell shading effects.

The final process developed for the photobioreactor model is shown in Algorithm 17. Notable differences with

Algorithms 16 and 17 include the 3x3x3 block sizes which are also used with a Monte Carlo style update scheme

as described earlier. In addition, a cell death probability is introduced, alongside cell shading. Parameters used in

experiments for this final algorithm are shown in Table 7.1.
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FIGURE 7.14: Mutual shading effects on illumination, assuming shading symmetry (ie. SL = L − SR):

I = (xe−βy + (1− x)e−β(1−y)). The two peaks in this plot represent the left and right edges of the cultivation

vessel.

N =W ∗H ∗D for 3D lattice

blank lattice, initialise 10 random cells

for all time-steps do
compute cell shading map, CUDA

for all 3x3x3 blocks in lattice do
for all 33 sites i in each block, random order do

thread return if out of bounds

thread return if empty cell

compute left and right shading (scalar values, [0,1])

compute illumination on site, I

kill cell and return on probability cell death prob * I .

choose random neighbour site

perform state transitions and state imperatives

perform Kawasaki site exchange

end for
end for

end for

ALGORITHM 17: Kawasaki site exchange algorithm including the PSF model and mutual shading effects.
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Parameter Name Value Description
Temperature 0.4 Constant temperature for metropolis probability calculations.

Gravity 0.1 A weak gravitational bias on the metropolis probability.

Growth Rate Scale 0.3
This value is used to scale the aggregate transition counts from activated

to resting, in order to determine cell division probability.
Illumination γ 0.5 Scaling of illumination I , where 0 ≤ I ≤ 1.

Illumination β 5.0

Exponent of photo attenuation into the medium. Higher values attenuate

light faster, and cause less light to penetrate toward the centre of the

vessel.
α 0.8 Probability that a cell transitions from resting state to activated state.

β 0.7 Probability that a cell transitions from activated state to inhibited state.

γ 0.1 Probability that a cell transitions from activated state to resting state.

δ 0.01 Probability that a cell transitions from inhibited state to resting state.

Cell Death Probability 0.001

Probability coefficient applied to I and 1 − I to determine whether

to destroy a cell (Used for including biomass reduction at over- and

under-illumination.)

TABLE 7.1: Parameter settings and their descriptions. Values are held constant unless noted otherwise.

It is prudent to point out that it is unrealistic to assume that all agent-based systems can be modelled as elegantly

as “Boids” [240]. Models with excessive numbers of parameters are limited in their prediction capabilities to a

certain extent, however. For instance, Eilers and Peeters conceded that their updated model of 1993 [58] with

six parameters was a large number, presenting possible difficulty in fitting to collected data. Nevertheless, the

parameters in Table 7.1 are hand-calibrated.

The first observation made was that while overilluminating the vessel, resulting in photoinhibition of the cells,

cells that spontaneously form clusters are able to grow (albeit slowly) and thrive, due to mutual shading reducing

illumination to more acceptable levels. An example of this is shown in Fig. 7.15. The CUDA kernel computing the

shading map proved quite computationally expensive however, at around 3.3ms.

FIGURE 7.15: Example of how dense cultures thrive under photoinhibition due to cell shading.
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Shown in Figure 7.16 is the vessel fill ratio with illumination conditions varying at timesteps 0 (I = 1.0), 104

(I = 0.01) and 2 ·104 (I = 1.0). The purpose of this was to see the effects of underillumination. What is interesting

to note, is that while there is an immediate decline at t = 10000, there is a slow increase towards t = 20000,

during which illumination was still prohibitively low. Observations would suggest that this is caused by cell deaths

decreasing mutual shading, and hence allowing more light towards the centre of the vessel.

Another observation made is that various values of the light attenuation exponent (β) resulted in a different

spatial configuration of the culture. Lower values of β (very clear liquid) saw the culture thriving in the centre of

the vessel, due to overillumination at the edges. Higher values of β (cloudy liquid) saw the culture adhering to the

left and right walls.

The image shown in Figure 7.17 is rendered using isosurface extraction with Phong shading and a marching

cubes algorithm implementation in a modified CUDA SDK sample “Marching Cubes” [202]. An appreciation of

depth is much easier in this image. Clusters on the edge of the vessel are not closed, however.

Cursory performance indications were concerning, since for every random site chosen in the 3x3x3 sub-lattice,

one CUDA kernel must be executed synchronously across the entire lattice. A total of 33 CUDA kernels5 are

computed for one timestep (cubes of dimensions 3x3x3). Moreover, each of these individual kernels, while fast for

a relatively sparse vessel, become more cumbersome as the vessel becomes more dense. While the vessel has a

< 1% fill ratio, one such kernel executes for a duration of approximately 93µs, including synchronisation, which

accounts for around 2/3 of this. At approximately 80% fill, this increases to around 300µs, for each of the 27

kernels. This equates to little more than twice the shading map kernel. Given that mutual cell shading is not giving

much more realism than an appropriate global illumination attenuance, this result would suggest that computing

cell shading manually is simply too computationally expensive, moreover, system size scaling would be heavily

affected.

Having arrived at a bioreactor model which takes into account mutual cell shading, negative biomass growth,

illumination, cell division, approximate hydrodynamics and parallelisation, the next stage in this chapter is to

consider the use of the MOL language in terms of utility and performance, and examine the differences by

comparison.

7.3 Modelling using MOL (I, p. 107)

MOL is a high-level, extensible language previously proposed and discussed in Chapters 5 and 6 which compiles

at runtime to machine code. It uses the run-time program compilation features of Terra, indirectly facilitated by

LLVM (backends including X86 and PTX) and supported by the high-level nature of Lua.

Certainly of immediate interest in MOL is automatic parallelism. Once a model is written, it can be compiled for

CPU or GPU architectures without additional code. Extensions to MOL do have to take this into account, but future

versions will eliminate this requirement. The objective of this section is to discuss the complete implementation of

the agent-based photobioreactor model presented in section 7.2 in MOL. The MOL model is then quantified and

performance characteristics are analysed. Following this, some structural optimisation experiments are carried out.

The results of this are detailed and discussed.
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FIGURE 7.16: Sample photobioreactor

fill fractions for varying parameters at se-

lected intervals.

FIGURE 7.17: An example of isosurface

rendering of a partially occupied photo-

bioreactor.

1 mol
2 if me > 0 then
3
4 defvar I = compute illuminance
5 defvar state = get my state
6 defvar myspecies = get my species
7 defvar activated counter
8 = get activated state counter
9

10 if state == ACTIVATED then
11 if (randomfloat) < GAMMA then
12 increment activated state counter
13 go to resting
14 else
15 if randomfloat < BETA ∗ I then
16 go to inhibited
17 end
18 end
19 else
20 if state == INHIBITED then
21 if randomfloat < DELTA then
22 go to resting
23 end
24 else
25 if state == RESTING then
26
27 if randomfloat

28 < ( get split probability ) then
29 select all
30 make split
31 end
32 else
33 if randomfloat < (ALPHA∗I) then
34 go to activated
35 end
36 end
37
38 end
39
40 end
41 end
42
43 defvar dir = get kawasaki move
44
45 if dir ˜= −1 then
46 move dir
47 end
48 d = 1
49 end
50 end

LISTING 7.1: Photobioreactor model from
Section 7.2 reimplemented in MOL.
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Extension Description

compute illuminance Calculates the influence of left and right illumination sources,

and takes into account mutual cell shading from either side of the

reactor vessel.

compute left shading Calculates the cell shading effect on illumination from the left of

the reactor vessel.

compute right shading Calculates the cell shading effect on illumination from the right
of the reactor vessel.

get my species Computes the species of the current cell.

get my state Computes the state the current cell is in.

go to activated Transitions the cell to the activated state.

go to resting Transitions the cell to the resting state.

go to inhibited Transitions the cell to the inhibited state.

get split probability Computes the probability that a cell will divide.

count current like like bonds Counts the current like-like (LL) bonds for the current cell by

examining nearest neighbours (NN).

get kawasaki move Computes energy and Metropolis probability, returns a direction

if the exchange is accepted.

increment activated state counter Increments the cell’s activated state counter.

make split Creates the code necessary to cause cell division to take place.

TABLE 7.2: MOL extensions written to incorporate bioreactor states and transitions.
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7.3.1 Implementation Detail(I, p. 117)

The MOL code for the photobioreactor model is shown in Listing 7.1. A table of the MOL extensions used in

Listing 7.1 is provided in Table 7.2. For some of the extensions listed, bitwise operations are implemented in C,

which is compiled by Clang into LLVM IR. This means that ordinary C code is also able to be compiled to CUDA

PTX alongside Terra (and therefore, MOL).

Some variables and keywords previously unused in MOL are put to use in this program. The keyword

randomfloat computes a random floating point number in the range [0, 1] using the Ran random number generator

[229]. In addition to having one Ran and its internal state, when compiled for GPU, each executing thread has its

own Ran and internal state initialised at the start of the program. This allows the algorithm to use as many random

deviates as necessary without additional storage.

It is certainly notable that these extensions can be placed in a library. It is envisioned that this will be done

in future versions of MOL. At this point in time, the user is able to write the model with parts in MOL, Terra,

and C/C++, depending on how extensive the libraries of extensions are. Certainly providing easy access to more

powerful languages aside from MOL makes it much easier for experts to use.

This implementation focusses on a 2-dimensional implementation, as the 3-dimensional version of the model

discussed above did not contribute as much to the growth rates as was expected.

In the next section some system size scaling experiments are performed for various parallel configurations, and

this is followed by a structural optimisation experiment.

7.3.2 Results

(a) Log-log plot of the time taken to compute a single

timestep across a range of system sizes for the *B1M

MOL parallelisation strategy for CUDA, the X86 compile

of the identical MOL code, and finally the custom-written

C++/CUDA code discussed in Section 7.2.

(b) Log-linear plot of timestep computation time (in loge
scale) against population size of heterogeneous programs.

FIGURE 7.18: Performance results of MOL, including comparison with custom C++ code.

5Excluding the mutual cell shading map kernel.
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Performance results collected are compared against that of the custom written C++/CUDA code given in

Section 7.2. Figure 7.18(a) shows that for the smallest system size (16x16), the X86 compiled version of the MOL

code is superior. This is expected, considering that the memory copies involved for the use of GPU hardware are

very costly. The CUDA compiled version of the MOL code quickly surpasses the single-threaded code, and also

keeps an edge in computing time over the custom written code previously discussed until much larger system sizes

are reached. This change in performance is likely due to minor algorithmic differences in the two implementations,

most notably the computation of mutual cell shading. In the custom written C++/CUDA code, a “shading map” is

computed using a separate kernel, which has a CUDA grid with a single yz plane, which sweeps through the rest of

the lattice, first from left-to-right, then right-to-left. The MOL version uses the same kernel for computing these

values, which results in redundant computations. For the next section on structural optimisation, extremely large

systems sizes are less important, however.

In both Figures 7.18(b) and 7.18(a) the coarse checkerboard update was disabled to reduce algorithmic

differences as much as possible.

Figure 7.18(b) is a log-linear plot of time taken to compute a single timestep, against the size of the population.

The population refers to the number of candidate models of size 32x32. Each data point is averaged across the first

60 frames of a randomly initialised set of candidate models. The data was collected for a heterogeneous population

of candidates. This was accomplished by adding an arbitrary select recombination statement around the state

transition code in Listing 7.1. The objective function is unimportant, as the goal was to produce a heterogeneous

population and determine how this scales with respect to the number of candidates. As shown, the CPU timestep

compute times increase much faster than the GPU counterpart. A population size of 256 is very suitable for an

evolutionary algorithm, which is tolerable for the GPU code, but not for CPU. Population sizes smaller than 32

seem to lack in diversity and have generally less success in optimisation than when population sizes are 64 or

greater.

7.3.3 Structural Optimisation Experiment (I, p. 128)

The task of evolving a very simple finite state machine to accomplish an arbitrary goal will be examined. Suppose a

modeller wanted to determine if a state machine of similar complexity to that shown in Listing 7.1 could produce a

large number of cells and absorb as much illumination as possible, given the effects of mutual cell shading and light

penetration. A very simplistic objective function could be the sum of the total number of cells and total illumination

units absorbed. The modifications to the code is shown in Listing 7.2.

Another important modification added to the code is on line 33. The reason for wrapping the crucial cell

division code segment in a select all block (disallowing the optimiser to deconstruct and recombine within it) is to

impose the importance of P (split) on the actual cell division operation. Should the optimiser be able to use only

the cell division extension (make split) then an overwhelming number of cells will be created. Effectively, this

accomplishes a certain search-space limit. Any modification may be made, except within the select all block.

The fitness function is somewhat peculiar in this arrangement. At this point, the fitness function is evaluated

for every cell, in order to cover the broadest possible range of fitness function specifications. This means that the

expression total + I/1000 will be evaluated once every timestep, for every live cell and added to the score of the

candidate model. The total value, however, will be evaluated only on timestep 1000, but it will be executed by all

live cells. The score given is therefore dependent on the number of live cells. It is for this reason that total was

moved to lines 3–6, in order to ensure that only one cell does this computation, and only on the final timestep. This

is the purpose of the timestep if statement. The I /1000 term of the fitness function is the computed illuminance for

all cells, averaged over 1000 time steps.
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1 mol
2 defvar d = 0
3 defvar total = 0
4 if timestep == 1000 then
5 total = count live cells / (30∗30)
6 end
7 if me > 0 then
8
9 defvar I = compute illuminance

10 defvar state = get my state
11 defvar myspecies = get my species
12 defvar activated counter
13 = get activated state counter
14
15 select recombination
16 to maximise(total+I/1000)
17 −−[[I0]] if state == ACTIVATED then
18 −−[[I1]] if (randomfloat) < GAMMA then
19 −−[[N0]] increment activated state count
20 −−[[N1]] go to resting
21 else
22 −−[[I2]] if randomfloat < BETA ∗ I then
23 −−[[N2]] go to inhibited
24 end
25 end
26 else
27 −−[[I3]] if state == INHIBITED then
28 −−[[I4]] if randomfloat < DELTA then
29 −−[[N3]] go to resting
30 end
31 else
32 −−[[I5]] if state == RESTING then
33 −−[[L0]] select all

34 if randomfloat
35 < ( get split probability ) then
36 select all
37 make split
38 end
39 else
40 if randomfloat < (ALPHA∗I) then
41 go to activated
42 end
43 end
44 end
45
46 end
47
48 end
49 end
50 end
51
52 if d == 0 then
53 defvar dir = get kawasaki move
54
55 if dir ˜= −1 then
56 move dir
57 end
58 d = 1
59 end
60 end
61 end

LISTING 7.2: Photobioreactor model from
Section 7.2 with a recombination structure de-
signed to search for candidates which max-
imise cell count and illumination.
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The lines in the code which are marked with a comment in the form of a letter and a digit are lines which are

stored as functions and terminals in the database of the optimiser. Those which start with ‘I’ are 2-arity functions,

those which start with ‘L’ are statement lists which cannot be broken down, and ‘N’ denotes anonymous expressions,

which are in fact MOL extensions in this case.

To execute this test, parameters from Table 7.1 are used. Lattice sizes were set to 30x30 to facilitate the coarse

checkerboard update ensuring that no race conditions take place. Finally, the number of candidates in the population

was set to 64; which ensures that code compilation is not completely overwhelming.

In terms of performance, some rough indications are given here. To evaluate a single generation of candidate

models, 1000 timesteps were computed, and repeated 16 times to obtain an average. One timestep lasted approxi-

mately 0.38msec, and CUDA kernel compile times lasted approximately 26.8s, and 28.7s for the entire generation

compilation from MOL to machine code. MOL code was compiled to Terra ranging between 7msec and 315msec,

the average being about 15msec.

FIGURE 7.19: Fitness plot of the recombination of state transition code over 300 runs.

Following the recommendations of Ferreira [63], GP-style elitism was used to bias the search more towards

fitter programs. This was done by selecting the best program in a given generation, and then duplicating this

program into randomised locations in the programs array. For the purposes of this experiment, three such copies are

made per generation. This follows that generations will never have a decrease in maximum fitness. However, due to

the fact that several functions and terminals are stochastic, several successive evaluations may differ slightly. To

combat this, results were averaged 16 times as discussed above. However, some small differences may still present

themselves, as is evident in the fitness plot shown in Figure 7.19.

In Figure 7.19 the mean fitness increases steadily. A slight increase in maximum fitness is present until around

generation 100. Candidates steadily increase in fitness, occasionally discovering a model program which performs

better than the previous ones. The maximum fitness data points are created by the most “fit” programs generated.

One of these programs were taken and is analysed below.

Figure 7.20 a visual representation of the k-expression:

P0P0I2L0I1P1L0I2P0P0I5N1P1N2P1I5N3L0L0N1N1N0N1L0N3N0N2N0
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Cell Divide
Decision

if randomfloat<GAMMA

if randomfloat<Beta*I

Go to Resting State

Increment
Counter

Go to Inhibited State
false

true

Cell Divide
Decision

Increment
Counter

if state==RESTING

Go to Inhibited State

Increment
Counter

false

true

if randomfloat<Beta*I

Cell Divide
Decision

Cell Divide
Decision

Cell Divide
Decision

Go to Resting State

Finish

false

true

false

true

if state==RESTING
false

true

if randomfloat<P(split)

Cell Division

if randomfloat<Alpha*I

true

false

Go to Activated State

true

Cell Divide
Decision

FIGURE 7.20: Candidate model program with redundancies removed, as a flow diagram.

ProgN2

ProgN2 if randomfloat<Beta*I

split block if randomfloat<GAMMA ProgN3 split block

if randomfloat<Beta*I ProgN2

ProgN3 go_to_inhibited ProgN3 if state == RESTING

go_to_resting increment_counter go_to_resting split block go_to_resting increment_counter go_to_inhibited increment_counter

ProgN2 if state == RESTING go_to_resting

go_to_resting split block split block go_to_resting

FIGURE 7.21: Candidate model program in the form of an abstract syntax tree.
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The figure is in the form of a flow diagram, constructed from the abstract syntax tree of the above expression shown

in Figure 7.21. The expression above excludes 25 introns of the genotype, which have no effect on the phenotypic

interpretation shown in Figure 7.21. The cell division section is shown at the bottom left.

It is immediately clear that there are several redundancies in the program shown in Figure 7.21, which is not

unlike that experienced by Koza in the Santa Fe Ant Trail problem [149]. Figure 7.20 shows a flow diagram

representing the actual flow of the program without redundancies. Though some semantic meaning is lost from

the original intention of the nonterminals and terminals provided, the split probability restriction (facilitated by

the select all block) forced the optimiser to search for a program which increases P (split) as well as increasing

the amount of illumination absorbed. Since P (split) depends on illumination and the activated state counter, the

optimal program is less intuitively created. Hence, it is appropriate to use an optimiser to find a program which may

satisfy this requirement. The reason why there were many redundancies in the program is because the objective

function does not favour simpler programs.

It is interesting to note from the flow diagram, that it still contains a number of state transitions. The multiple

cell division attempts is simply due to the fact that it increases the probability of a split occurring, without affecting

P (split) which it cannot.

It is difficult to interpret the flow diagram, but from visual inspection of the simulation, it appeared that cell

growth was fast, and the counters were increased quickly, except for cells in relatively high lighting conditions.
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FIGURE 7.22: Symbol histograms of k-expressions for generations 0, 5, 10, and 40 in a sample run.

Figures 7.22 gives two symbol histograms indicating the frequency that various symbols occur in specific

indices in the k-expressions of four generations (0, 5, 10 and 40). The dark black region exists because no 2- or

3-arity functions may be present in the tail-section of a k-expression. Therefore, a higher agreement is shown for

terminal symbols and indices 17–53. Indices 0 to 17 may contain any symbol. Generation 0 is a freshly initialised

set of candidates, and it is therefore unsurprising that they do not agree on symbols and their placements.
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What is interesting to note on these graphs is that symbol and index agreements surface quite quickly, and may

reach as high as 30 for certain symbols in only 40 generations. The contour lines provide an easier to interpret

representation. The fourth image shows high numbers of candidates which have the I0 or P0 nonterminals at

index 0. Candidates with a terminal symbol at index 0 earn very low scores. The N0 terminal (which increments a

counter) seems to be very highly used in generation 40, as opposed to the other generations. In summary, these

graphs usefully show that over time, candidates begin to agree over their choices of symbols while still preserving

the crucial diversity for the optimiser to function.

7.4 Discussion
In summary, a concerted effort was made in first proposing an agent-based model of a photobioreactor. This

model was adapted three times to include the effects of cell division, mutual cell shading, negative biomass growth,

and approximate hydrodynamic flow. This model was implemented in C++ with CUDA. Finally the model was

quantified and performance measurements were gathered. The model was then reimplemented in MOL, a language

proposed and discussed in the previous two chapters. The two models were then compared qualitatively and

performance-wise.

The purpose of the chapter was to demonstrate the utility of MOL in modelling, performance and selective

model induction. MOL appeared to suit modelling well, though it must be admitted that a great many extensions

had to be written to implement the model (see Table 7.2). Though these extensions can now be reused in other

models, they are very model-specific. It is possible to use Terra functions in global scope directly in MOL programs,

which could also simplify the code. In this case, to keep the model code as simple as possible, only extensions were

used.

The model optimisation experiment conducted was successful in generating programs which satisfied the

objective function to some extent. Criticisms of genetic programming and evolutionary algorithms in general

certainly still apply in this situation. Most notably, the considerable problem of specifying the actual objective

function is placed firmly on the user. One significant issue of specifying objective functions is to ensure that the

search space is sufficiently small. This is made somewhat easier by allowing the user to restrict the search space

in a variety of ways, and to observe the result qualitatively while the optimiser is running. Statements such as

select all and timestep-specific objective function computation were more useful than previously anticipated.

In summary, the MOL code allowed the model to be described in a fashion which was easy to read. The code

compiles to machine code through Terra and LLVM, allowing it to be optimised. The ability of MOL code to be

compiled as single-threaded or GPU-parallel without additional modifications also makes it very useful in cases

where larger systems are necessary. In this case, GPU-parallelism was used to improve optimisation performance.

The built-in optimisation algorithm also produced interesting results, which would otherwise require extensive

modifications to the C++ code.

There remains future scope in multiple areas of this research. Improvements in syntax, extensions of libraries,

user interface design, other optimisation algorithms and debug tools would help tremendously to bring this research

in ready-to-use form to the end-user.
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CHAPTER 8

DISCUSSIONS

Major areas covered in this dissertation include parallel agent-based modelling and simulation, parallel continuous

optimisation, parallel combinatorial optimisation, a new domain-specific language for ABM and the addition of

an optimiser in this language. Finally, a thorough study was done on the use of this language and its features, in

comparison to a more conventional approach using custom written parallel C++ code. The major contributions of

the dissertation are discussed here, and conclusions are made in Chapter 9.

8.1 Parallel Agent-based Modelling and Simulation

IT HAS BEEN DEMONSTRATED (in Chapter 2) that the inherent parallel nature of large-scale agent-based

models is exploited with relative ease across graphics processing hardware. The increased performance brings

with it access to larger systems, which are gaining increasing interest in recent years. For instance, biological

systems such as algal photobioreactors can be modelled only at very small scale at present. Graphics processing

hardware certainly show great promise to accelerate such simulations on the laboratory desktop computer. The use

of Graphical Processing Units (GPUs) in some of the world’s fastest supercomputers further attest to this.

Although there appears to be good scaling characteristics of models such as Boids across GPUs, a significant

issue remains. Computational complexity of models such as Boids cause a very fast increase in timestep computing

time as system sizes increase. This complexity arises from the interaction between agents. Where an agent must

determine whether another agent is within communication distance, it must compute a distance and test it for

every agent. The vast majority of authors in the Agent-based Modelling (ABM) community agree that agent-agent

interaction is a crucially important aspect of ABM.

Fortunately, this problem has been considered in the N-body literature [203] as early as 1985 by Andrew Appel

[3] since before the wide acceptance of ABM. Two major schools of thought exist in the reduction of complexity

in systems such as these: approximations such as the Barnes-Hut method [12], and redundancy elimination. The

former deals with approximating the collective effect of a cluster of agents (such as that of Scheffer et al. [252],

though, for a different purpose), the latter deals with the elimination of redundant interactions. Should an agent only

communicate and interact with agents in close proximity, then any method which reduces the number of distance

computations which do not result in interaction, should be employed. A good method of accomplishing this is by

using spatial partitioning techniques, which uses fast sorting algorithms to group together agents with a guarantee

that all agents within range will still interact.

While spatial partitioning techniques acceptably accelerate simulations in single-threaded environments, the

use of these on a data-parallel architecture is less trivial. Many spatial partitioning algorithms construct their

179
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datastructures by recursion using pointer trees. Although recent advances in graphics hardware have improved

support for recursion and dynamic memory allocation, these are still less trivial to utilise effectively. Warp

divergence caused by branching code also reduces throughput due to the fact that the SIMT architecture forces

threads to execute the same instructions, meaning that threads which diverge are simply disabled (executing NOOPs)

until their execution paths align again. For these reasons, a number of spatial partitioning algorithms have surfaced

for graphics hardware.

Chapter 2 discussed a spatial partitioning technique commonly termed the uniform grid [84] in the context of

ABM. Green [84] used the algorithm and datastructure to accelerate collision detection computations in a particle

simulation accelerated by NVIDIA’s CUDA. Considerable performance improvements are obtainable from using

this technique. Results from testing this algorithm in the context of ABM reiterated this, but presented a shortfall.

Assuming that particles are uniformly distributed across the space (a condition always satisfied in the simulation

of Green), then an acceptably smaller number of adjacent particles will be iterated over for each particle during

timestep computations. However, in the case of Boids, where collision detection is less important (more flocking

behaviours), agents can contract around a specific location, causing complexity increases beyond O(n2) due to

the fact that all agents must again communicate. Not only this, but a datastructure must still be computed which

(depending on the algorithm) sometimes reaches O(n2) itself.

In summary, it seems that spatial partitioning can be useful, but the appropriate algorithm must always be

chosen. The multi-stage programming paradigm which features in this dissertation in Chapters 5 and 6 provide the

ability to “store” such algorithms and their datastructures for later use. The addition of compile-time checks may

also yield the appropriate choice of algorithm, alongside “hints” from the user and run-time information collection.

With the improved performance afforded by using a single graphics processing unit, it is not unreasonable to

consider the use of several. Section 2.2.3 considers this along with the use of a uniform grid spatial partitioning

algorithm. Given that algorithmic improvements could be made, it was encouraging to see that the multiple-GPU

version of the model was able to be supported by the same spatial partitioning algorithm and datastructure. The

result was a reasonably scalable simulation, bounded by host memory. With additional improvements, storing the

simulation entirely upon graphics hardware would see this restriction removed and a model could then be arbitrarily

scalable, bounded only by the number of graphics processors on a single machine. The next step would be to use

multiple host nodes in a high performance cluster with multiple graphics processors each.

Throughout the discussion of these techniques in Chapter 2, visualisation took a secondary role consistently

providing qualitative feedback, complemented by quantitative methods including techniques such as clustering and

spatial histogramming. Visualisation methods are very important and deserve developmental efforts proportional to

that of the model itself. Building a model without qualitative feedback is a difficult and error-prone endeavour.

Visualisation also presents its own problems, particularly that of performance. It is for this reason that

performance measurements were always taken with no visualisation. Rendering a set of agents upwards of one

million is particularly time consuming. For these simulations, pixel shaders were used to render agents as spheres.

The alternative was to render Boids, for example, as agents indicating their current heading. While helpful for

debugging purposes, rendering slows tremendously. Concepts similar to laboratory-bench scale experiments in

building large-scale agent-based models seem more and more appropriate. A technique not taken into account in

Chapter2 was the use of pixel buffer objects (PBOs), which take advantage of the fact that computation of data

destined to be rendered take place on the graphics processing unit itself. While this removes some of the need to

constantly copy memory between host and device (a computationally costly process), it would still be necessary

to endure the waits for rendering many triangles, which could be mitigated by the same point-rendering methods

already mentioned.
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8.2 Parallel Continuous Optimisation
The similarities between agent-based models and continuous-space optimisers such as the Particle Swarm

Optimiser (PSO) can perhaps best be demonstrated by the time it takes to convert one to the other. There is a

special relationship between the PSO and the Boids model. As the authors of the PSO note [142], it was inspired

by flocking and schooling behaviour of birds and fish. This interrelationship enables one to apply techniques for

performance from one on the other.

Introductions to global continuous optimisation algorithms were given in Chapter 3, with a particular focus on

population-based evolutionary algorithms. Like agent-based models, these algorithms offer a natural description

which can easily be related to analogous processes in biological evolution. In addition, they also have an inherent

parallel nature, which can be effectively exploited.

The work of Wolpert and Macready [294] provides proofs (in the form of “No Free Lunch” theorems) with

far-reaching implications on the global optimisation literature. Their work formalises the notion that choosing an

algorithm for a particular optimisation problem is indeed subject to error. Effectively their theorems infer that there

is no algorithm which performs better than all others across all problem domains.

Therefore, efforts towards implementing new algorithms continue in earnest. Section 3.3 considered the use of

advanced space exploration techniques to improve the search for the global optimum. These were tested across a

range of test functions, eventually leading to (albeit limited) convergence performance increase. Although there is

some disagreement in the literature on the validity of Lévy flights in some areas, it appears that such a searching

tactic does indeed aid the exploration of the search space. Lévy flights should be used with caution however, as

they are computationally expensive to generate. Although they can be approximated [300], they may not always be

an improvement upon the usual random walk, as demonstrated by the Rastrigin function in Section 3.3.1.

Two global optimisation algorithms and their parallelisations were discussed in Chapter 3: the parallel Many-

optimising-liaisons PSO (MOLPSO) and the Firefly Algorithm (FA). It was found that saturating the search space

with searching particles for either the FA or MOLPSO would generally improve the quality of the solution found.

This was especially the case with the Schwefel function, which is a test function traditionally tackled with large

bounds. The same could not be said with certainty for the Rosenbrock function. The variable dependence in this

function and large neurtal valley makes searching very difficult, even for a large number of particles. Regardless,

the performance increase attained using graphics processing hardware with Lévy flights does improve the chances

of finding a good solution dramatically, and in much less time than single-threaded algorithms.

Even the simplest global optimisation algorithms require some form of calibration. The MOLPSO, a simplified

PSO still requires two parameters to be specified. The FA is no different. Depending on these parameter settings,

algorithms can behave radically different. This often makes the difference between finding an optimum, and

succumbing to a local optimum. Recommended settings may suit some problems, but not all. In an effort to

mitigate this, meta-optimisation was examined. Meta-optimisation seeks to use an optimiser on another optimiser

for parameter calibration. This was considered in Section 3.5.

A concern of using a meta-optimisation process to pre-calibrate an optimiser is the loss of generality involved.

As discovered in the experiments conducted, over-fitting can become a problem. Should parameters be optimised

with respect to a specific function such as the Rastrigin function, then that optimiser will tend to be less effective on

other test functions. This is not unlike similar problems encountered in the training of neural networks, where it is

now widely recognised that separate sample sets are necessary for reducing the chance of over-fitting.

Another considerable issue is the computational complexity involved in the process of using an optimiser on

itself. Particularly when both optimisers involve populations of candidates. For this reason, the meta-optimisation
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algorithm discussed in Section 3.5 was again parallelised across graphics hardware. It is perhaps the same reason

why meta-optimisation has received relatively little interest. In summary, experimenting with optimisers in this

sense has given some useful feedback on calibrating agent-based models, given that the PSO is in principle, directly

related to flocking agent-based models.

Having discussed optimisers which search through the n-dimensional hyperspace of certain test functions, it is

certainly also useful to gain a qualitative sense of how these operate in order to improve them. It is worthwhile

to inspect an optimiser on its ability to optimise 2-parameter or even 3-parameter functions, which are trivial to

visualise. Higher dimensions are less trivial, however, but quite common. A simple technique was developed

to visualise particles in higher dimensions. The overly simple method used had at least resulted in the ability to

visually identify the optimum from distinctive features.

8.3 Parallel Combinatorial Optimisation
The use of parallel hardware such as graphics processing units on combinatorial optimisation problems are

not straightforward, and arguably less so than global continuous optimisation problems. This is especially true for

problems which require the search for a suitable program. The first problem one might encounter is the choice in

representation. Linear representations do exist, and are most suitable for graphics hardware, as they can be stored

in memory without the use of pointer datastructures.

The reason for considering geometric optimisation in a less formal manner in Chapter 4 was to facilitate some

cross-discipline synergy between continuous global optimisers and combinatorial optimisers. By bringing the

Firefly Algorithm from continuous optimisation to program-space optimisation, an interesting effect was that

the fitness decay seemed to improve convergence performance, as it did in continuous space. Moreover, decay

parameters have a dramatic effect on the outcome of the optimiser, more so than anticipated. While an improvement,

it does introduce one additional parameter that may require problem-dependent calibration, which is undesirable.

The linear representation of candidate programs named Karva proved to be particularly useful. It more closely

aligns to the natural phenomena which inspired Genetic Algorithms and Genetic Programming. The concept of

intron symbols in a program provides a simple and elegant method for storing disabled symbols, which can later be

potentially reactivated. Using this representation on graphics processing units is very successful, even including the

genetic operators themselves, but some special considerations are necessary to maintain the structure of these and

traverse them correctly.

Although implementing genetic operators to operate on Karva expressions is relatively simple, the traversal

of these trees is less trivial. The trees must be interpreted in a somewhat awkward manner, which prompted the

development of an additional CUDA kernel to be executed simply to map arguments to their functions. This tradeoff

with a loss of some performance was beneficial, in order to gain the elegant advantages of Karva such as intron

symbols.

It should be noted that the algorithm for which the Karva language was developed, Gene Expression Program-

ming (GEP), is indeed much more complex. It contains several genetic operators in addition to simple mutation and

crossover which ensure that effective circulation of genetic information takes place [63]. It is therefore appropriate

to consider the entire set of GEP operators, and not only simple point mutation and one-point crossover. Even

though these were not considered, good performance was still attained. This area is promising for future research.

Another algorithm discussed in the context of Karva and GPUs is K-GPSO-GPU. This modified version of the

PSO was made using the geometric paradigm, in order to adapt the PSO for program-space search. It was compared
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to a parallel Genetic Programming algorithm also operating on Karva-expressions (the K-GP-GPU algorithm).

Interestingly, results suggest that the K-GP-GPU algorithm was more suited to solving the problem. Further, it

would appear as though the K-GPSO-GPU algorithm lacked the necessary population diversity to maintain a

successful search. While the algorithm did not fare well on the modified 3-dimensional Santa Fe Ant Trail problem,

it may still be possible that this algorithm is more suited to a different problem domain.

Further to the concept of geometric optimisation, it is important to consider appropriate distance metrics.

Measuring the distance between two candidates by Hamming distance was accurate but somewhat arbitrary. The

optimisers could benefit from a different measure, such as the various edit distances [22]. Once again, this may be

subject to problem-domain variation.

Finally, program-space visualisation was considered in the context of the algorithms presented in Chapter 4.

Two techniques were presented. One involved the use of a graph rendering package to render a population in the

form of a tree, where nodes are shared among candidates, and each level of the tree represents the next symbol

index in the Karva expression. The other technique was perhaps more simple, and involved the recursive division

of space, which could be inspected by scaling and translating the viewport. Two different methods were used to

compensate for their relative weaknesses. The recursive method suffers from a fast loss of its comparative qualities

with larger Karva expressions, and the graph-based method lacks the ability to describe the specific symbols used

without viewing the image in large scale. Together, these methods complement each other well, are simple to

implement, and provide useful information which may assist the designer of a program-space (or indeed, in a more

general sense, combinatorial) optimiser.

Most of the insights obtained from visualisation seemed to give more and more credit to Poli and McPhee’s

concept of Homologous Crossover [226], where crossover preserves information already shared between candidates.

The problem observed with the K-GPSO-GPU algorithm is that the global best weighted score is often so great in

comparison, that it is simply duplicated due to the weighted crossover operator. It should be noted again that the

Karva language was intended for multiple genetic operators, however. This may serve to reduce the excessive loss

of diversity in the GPSO algorithm.

8.4 Domain-specific Languages for ABM
A new domain-specific language named MOL designed specifically for lattice-oriented agent-based models

was presented in Chapter 5. The major aspects of this language which make it well suited to ABM include its use

of multi-stage programming to provide high performance and extensibility without compromise. It is also able

to accept extensions written in C/C++ thanks to Clang. Terra is an example of what a well-executed multi-stage

programming language can achieve, and it is truly impressive.

Good results from simple MOL programs were achieved, which initially had inexplicably outperformed

semantically identical C++ code, compiled with the GNU C++ compiler. It was not until the LLVM internal

representation (IR) code was obtained from disassembling the Terra code that it became clear why this happened.

LLVM’s automatic optimisations include code vectorisation, which in this case had automatically generated SIMD

AVX instructions, whereas the C++ code was not vectorised.

At this point in time, the MOL language is in infancy. The language is restricted to lattice-oriented models

(spatial ones are very restrictive), and lack a number of syntactic improvements. A significant amount of work

remains to expose the system to the public. In particular, it was found that debugging extensions written in Terra is

exceptionally difficult. The low-level nature of Terra sometimes cause unhelpful run-time errors, and the perils of
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memory corruption as a result are also not infrequent. Debugging support would need to be well implemented for

this system to be usable by the public.

Although some problems are still to be addressed, the language appears to be well suited to describing lattice-

oriented agent-based models. To the best of the author’s knowledge, no other compiled multi-stage agent-based

modelling language exists at the time of writing.

Specific aspects of the MOL language were carefully chosen to facilitate the addition of an optimiser. Specifi-

cally, the choice of a multi-stage architecture was to enable run-time code generation, and therefore the recombina-

tion, reconstruction and run-time compiling of code for candidate solutions to specific objective functions.

8.5 Parallel Domain-specific Optimisation in ABM
Chapter 6 considers the addition of both high performing data-parallelism as well as a program-space optimiser.

It was shown that it is indeed viable to optimise written code, and portions of it towards a specified objective

function. Though, along the lines of the usual issues associated with using evolutionary algorithms, a number of

issues arose during development.

Firstly, the problem of providing terminals and nonterminals (the search space) for an algorithm to effectively

search through is difficult. In MOL, a user provides a section of code that is either recombined, or permuted

(or a single statement is extracted). It is possible that a user may provide all but one statement necessary for an

optimal solution, and therefore, they will receive a suboptimal solution. A similar problem exists in general with

evolutionary algorithms such as Genetic Programming.

A separate problem is that of the objective function. In many evolutionary algorithms, providing an objective

function is as much of an art as providing terminals and nonterminals, and even to the point where it may compete

with the effort involved in hand-producing a suitable (but probably suboptimal) solution. In cases like these, one

is essentially trading one complexity for another. It is worth noting however, that evolutionary algorithms still

certainly have their place, and have resulted in surprising results particularly in co-evolution literature [170, 167].

Though the problem of functions, terminals and objective functions still produce undesirable effects in MOL

programs with uncertainty, the problem of the search space is another issue which has been handled to some extent.

Quite often in evolutionary algorithms, the search space is simply too large. The number of combinations of a

set of functions and terminals can become very large, and coupled with problems such as search space neutrality,

optimisers struggle tremendously to converge or bias towards good solutions. The advantage of allowing a user to

specify precisely the area in which they require structural optimisation assists grealy in reducing the search space.

The rationale for this is that frequently a user may know precisely which aspects of a model are certain, which is

not necessary to include in the optimisation efforts. In custom-written source code, it is all too easy to subject an

entire model to the same process. In MOL it is also quite easy to modify the search space tremendously by simply

moving one line of code, should a previous attempt to optimise a section of code not be successful.

Another consideration is that of the timeframe required for an optimiser to obtain a reasonable solution. In the

modelling process, any time lost to an optimiser is undesirable, so it therefore follows that it should be minimised

as much as possible. Unfortunately, issues such as stochasticity and model complexity significantly increase

computational cost. It is for this reason that the use of graphics processing hardware was pursued. Some problems

such as lattice size configurations demanded that different parallelisation strategies be made, but fortunately, it is

possible for the underlying code to pre-determine a suitable strategy given the size of the lattices.
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But perhaps a greater issue was that of concurrency and its related resource contention characteristics. Graphics

processing units were built to cater for large quantities of pixel data, not scientific data. As a result, the after-thought

of commodity-priced parallel scientific computing placed several restrictions on code design, with regards to

memory hierarchies and synchronicity. These issues were reduced significantly with the advent of Compute Unified

Device Architecture (CUDA) and related technologies. The specific issues encountered in MOL were those of race

conditions on lattice sites and model scores. In an effort to eliminate these, checkerboard (or “red-black”) update

patterns were implemented, along with more coarse patterns (3x3 grid blocks per thread) to cater for models in

which read/write access were necessary for neighbour sites.

An additional issue which is not to be ignored is that of the parameter set necessary to operate the MOL

optimiser. Being an evolutionary optimiser, there are mutation and crossover probabilities, the k-expression head

length, and candidate model numbers (population size). In addition, it is also necessary to specify a lattice size

for the model, suitable for the parallelisation strategy chosen. While at this point a user must choose a strategy

manually, this can be automated in the future.

8.6 Photobioreactor Modelling
Chapter 7 presents a thorough study on the use of ABM for algal photobioreactor modelling. The purpose

of introducing this modelling sample was to facilitate a thorough study of MOL and its utility in developing a

sophisticated model, and assisting the user to obtain useful inspiration from code-based optimisation. The same

model was first implemented in a conventional manner, using C++.

A considerable issue which is the likely cause of infrequent application of ABM in algaculture is that of

computational complexity. Without some form of parallelism or super-agent strategy [252], it would be impossible

to model more than 1mL of undried biomass. While possible that a whole bioreactor could be simulated using a

powerful cluster computer, the purpose in considering graphics processing units for this task is the dramatically

lower cost and high theoretical throughput. Such devices are now common in laboratory bench desktop computers,

and while they may not provide enough power to simulate an entire reactor, they are sufficient to simulate smaller

reactors which are still very much able to provide valuable insights.

The useful ability of MOL to compile for graphics processing hardware for both optimisation and automatic

parallelism of sophisticated models such as these is very encouraging. Automatic parallelism has been under

intense investigation for some time [221]. The most influential factor behind this movement is the fact that chip

manufacturers are no longer increasing clock speeds, but rather focussing on the addition of extra cores on general

purpose processors [161]. It is for this reason that parallelism is becoming more important in the context of high

performance applications.

As a final remark, it is useful to consider this system in the context of emergence engineering. Though the

term is somewhat vague, the author believes what it refers to in the general sense is a field that deserves more

investigation. The invention of algorithms for explaining flocking and schooling behaviour in the 1970s and 80s

were very enlightening, and concepts previously thought fundamentally unexplainable are being unmasked slowly.

Interest in larger systems in recent years which were previously out of reach now show great promise. Such

ideas are at the forefront of scientific inquiry, and while optimisation algorithms and technologies such as MOL

and others may be relatively deterministic in the sense that they must be operated wisely, the very least they can

accomplish is inspiration leading to great scientific discoveries in the years to come.





CHAPTER 9

CONCLUSIONS

To conclude this dissertation, the original objectives are reiterated and findings are presented. In Section 9.1 a brief

overview of the thesis as a whole is presented. Section 9.2 presents findings regarding Domain-Specific Languages

(DSLs) and their use in the context of ABM. Work towards high performance ABM is then concluded in Section 9.3,

and finally, findings from the main objective of the dissertation are presented in Section 9.4. A summary is provided

in Section 9.5. Opportunities for future work are numerous, and some of these are outlined in Section 9.6.

9.1 Overview
The main overarching objectives of this dissertation were to facilitate a single objective. It was to arrive at a

DSL which is capable of optimising model structure itself using a preprocessor-style optimiser and special syntax

to ease its use. The purpose of which was twofold. First, it was to ease modelling by reducing or eliminating

tedious trial-and-error processes and secondly to automatically generate inspiration from hypotheses manifested

by hand-written objective functions. Neither of these would be possible in this manner without also preventing

the architecture from succumbing to heavy abstraction penalties. However, it is not a strict requirement to use the

structural optimisation algorithms within the language. In fact, a useful auxiliary attribute of this language is that it

is a high-performance platform for any lattice-oriented agent-based model.

As mentioned above, two considerable problems needed to be addressed before such an architecture could

be constructed. Firstly, the implementation of a domain-specific language with the ability to describe models

and selective optimisation problems with ease and clarity. The second problem was to mitigate the excessive

computational complexity of model optimisation.

9.2 Domain-specific Languages for ABM
Domain-specific languages for ABM had already been discussed in the context of ABM, but none used the

multi-stage programming paradigm of Taha [274]. An enormously helpful aspect of the multi-stage programming

mindset is that of code specialisation, and the ease of implementing domain-specific languages. One such language

named Terra, a very recent language, was investigated in detail. It was found that Terra is extremely well suited to

constructing and maintaining a domain-specific language. Particular aspects of it which were very helpful include

its use of LLVM (a mature compiler architecture), run-time code generation (RTCG), its design goals of low-level
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support and high performance, and seamless integration into a high-level dynamically typed LuaJIT language (high

performance Lua) environment.

A new language named MOL was developed in Chapter 5, given with examples. Chapter 6 presented a

considerable enhancement of the DSL to incorporate an optimiser. Examples were given, and a short performance

comparison with a spatial version was made with conventional code, which showcased the considerable advantages

of LLVM in high-level optimisations of its internal representation (IR, LLVM’s single static assignment intermediate

code). Another advantage is the ability of MOL to specify models using extensions written in Terra, or even C/C++

using Clang through Terra. This is a formidable advantage, considering that this allows easy extension not only

using specialising extensions compiled to machine code, but also other third party libraries.

In summary, the MOL language shows great potential as a modelling platform on its own. Much work remains

to ready the platform for public use, however. Cosmetic and technical features such as a well-designed user interface

and debugging tools are among the most important. For the purpose of model structure optimisation, this language

incorporates the most important features for both high performance and modifiable syntax trees.

9.3 High Performance ABM and Optimisation
Chapters 2, 3 and 4 for the most part, contributed directly to the implementation of optimisation techniques

using data-parallel algorithms in the context of ABM. Auxiliary objectives of these chapters included effective

visualisation (see Sections 3.6 and 4.8), and optimiser calibration (see Section 3.5). These techniques were found

very useful for improving algorithms.

High performance ABM was investigated in Chapter 2. This resulted in the combination of well-known spatial

partitioning techniques and graphics processing hardware. The result was a simulation which could simulate in real

time around 1 million interactive agents for an agent-based model given the right conditions. This was important

due to the increasing interest from the ABM community in large systems, but also because later optimisation efforts

of this work were notorious for excessive computational complexity. It was found that interactive agent-based

models which have sufficiently small communication radii respond well to spatial partitioning algorithms, especially

when agents are uniformly distributed. However, further research is necessary to adapt or to find a hybrid algorithm

to deal with situations where ideal conditions are partially, or not at all, satisfied. In particular, when agents cluster

tightly, an algorithm such as the uniform grid breaks down in performance very quickly.

A number of conclusions can be made from Chapters 3 and 4 (Continuous and Combinatorial Optimisation).

Specifically with regard to continuous global optimisation, evolutionary optimisers have shown themselves to be

capable of solving standard test functions. The addition of more advanced space exploration techniques are of use,

albeit limited, at least in the experiments conducted as part of this research. Apart from the usual Lévy flights,

similar stable distributions were also considered, with unfortunately similar results. Their utility may be better

founded in other problem domains, however.

The use of data-parallelism in these optimisers were particularly successful, and a particular focus was given to

the many-optimising-liaisons PSO (MOLPSO) and the Firefly Algorithm. While the PSO in general has enjoyed

research effort towards parallelisation, the FA has not. Results indicate that considerable performance increases are

obtainable from parallel versions of these algorithms, due to their inherent parallel nature. The interactive nature of

the FA did complicate efforts significantly, however. The MOLPSO was investigated for its simple and elegant

algorithm, as well as its small memory footprint, which are desirable attributes in the context of data-parallelism.

The FA was also considered, since it is commonly perceived as a more complex optimiser than the PSO due to its
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use of a reinterpreted Lambert-Beer law [155] for decaying observed fitness levels. Like many other metaheuristics,

both of these algorithms have problem domains in which they are more suited.

Brief experimentation was carried out in the investigation of meta-optimisation in Chapter 2. It was found

that while automatic parameter calibration of optimisers are useful, they appear to suffer tremendously from

excessive computing times. Apart from using graphics hardware to accelerate this, no other attempts to improve

performance were made other than to resign to using small systems. The characterisation of the process in terms of

fitness-by-generation across the different test functions were so varied that it indicated the problem of overfitting

was indeed present. The practical use of this experimentation was to arrive at suitable parameters for later use. The

performance characteristics of this experiment also alluded to similar problems with regard to model optimisation.

This was especially clear when the sub-optimiser was reinterpreted as a model with input parameters and output

behaviours, given that it was inspired from an agent-based model.

Chapter 3 concluded with a brief discussion of visualisation techniques, useful for gaining a qualitative sense

of the algorithm’s operation. Higher dimension systems were particularly difficult to visualise, but a very simple

technique was implemented which gives an adequate indication of both variation and specific desirable system

states (in particular, global optima).

Chapter 4 considered the related problem of combinatorial optimisation in the context of programs and

expression trees. It was found that a linear representation named Karva was very elegant and well suited to

parallelisation. As a first experiment, the venerable Genetic Programming algorithm was adapted to use Karva-

expressions and graphics processing hardware, and then tested against selected problems. While good performance

was achieved, it was prudent to consider more recent developments in the field of metaheuristics for this purpose.

The geometric unification framework of Moraglio [189] provided the necessary toolset to potentially further the

synergy between the related field of continuous and combinatorial optimisation. These divided disciplines have

received separate development efforts in the past. It followed that the cross-discipline synergy may follow. Both

the PSO and Firefly Algorithm (FA) were considered in the light of the geometric framework informally using

Karva, and adapted accordingly. Unfortunately the Karva-based PSO failed to impress in the context of expression

tree evolution. It is thought this resulted from the lack of higher quality genetic operators on Karva expressions, as

Karva was initially developed with several operators, instead of simple point-mutation and one-point crossover.

The geometric FA provided impressive results, however. Its use of fitness decay (reminiscent of the original

FA) seemed to produce some synergy from the use of the Hamming distance metric. In fact, a particular value of

the decay parameter (0.008) appeared to provide the best performance and highest chance of success on a symbolic

regression problem. In summary, while the original Genetic Programming algorithm may still be of use in this

context, it is less readily parallelisable, and great benefit is obtainable from the combination of Karva, graphics

processing units, and interactive optimisers such as the FA using geometric unification.

Chapter 4 concluded with a discussion of two techniques to visualise program-space. Both are simple techniques

but have their respective drawbacks. It is far more common to see a visualisation pertaining to the fitness evaluation

of a set of candidates, but not as common to see a visualisation of the population’s structural composition. Though

computationally expensive, these techniques can assist in improving optimisers and gaining a sense of how they

operate.

9.4 Model Structures, Parameters, and Calibration
Chapter 6 made the necessary enhancements and additions to the MOL language presented in Chapter 5

using considerations from earlier chapters to arrive at a ABM language with an embedded structural optimiser.
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Data-parallelism was also integrated into the MOL language, which, while sharing the parser and type checker,

resulted in a different code generator, as can be expected. The resulting system was able to generate Terra code,

which could then be compiled using either the official NVIDIA CUDA LLVM backend through Terra, or a standard

X86 LLVM backend for the processor architectures used during testing.

Three different optimisation configurations were developed: single for single-statement selection, permutation

for multi-statement selection with replacement, and recombination for a complete deconstruction and recombination

of code. The last configuration mentioned uses the Karva expression language discussed in Chapter 4, and related

optimisers. For this reason, the last configuration is given the most investigation.

It was found that given an appropriate selection of parameters, (such as population size, mutation/crossover

probabilities, k-expression head lengths), suitable program structures can certainly be generated for a given objective

function to be minimised, or maximised. Performance seemed to be adequate, except in the case where population

sizes exceed 256. In these cases, it appears that CUDA compilation takes an excessive amount of time. The faster

construction of MOL programs on CPU meant that smaller population sizes were sometimes better computed

on the CPU. The most convincing results collected from MOL was the successful recombination of a simple

set of terminals and nonterminals to solve the Santa Fe Ant Trail problem. The resulting trees were not without

redundancies, but considering the complexity of the problem, such a result is impressive.

Chapter 7 presented a comparison of the MOL language and a more conventional C/C++ custom coding process

for algal photobioreactors. Considerable effort was made to arrive at an agent-based model with a realistic set of

components, reminiscent of what an actual modelling process would generate. The model developed of a flat-plane

photobioreactor was then reimplemented using MOL, and compared with the conventional approach. It was found

that model-specific extensions needed to be written to implement the more complex features of the model. It is

anticipated that such extensions would be stored in problem-domain specific libraries. This will allow experts to

propagate their expertise in the form of specialising code.

A sample optimisation problem was investigated in the photobioreactor model. Performance was found to be

adequate to maintain a population of 64 candidate photobioreactor models. The seemingly opposing objectives of

increasing illumination on cells and the increase of biomass was the objective function. The purpose of this was

to see if the algorithm is capable of generating a code sample which is able to satisfy such an objective. While

clearly a difficult problem, results were quite interesting. Semantic meanings of the initial state transition code

were somewhat lost, however, they seemed to take on new meanings. Symbol histograms of populations across

several generations and a fitness plot by generation confirmed that the algorithm was indeed converging, as more

and more candidates were sharing the same symbols in the same k-expression indices.

9.5 Summary
In summary, the language developed is another complimentary tool to the considerable set of ABM modelling

apparatus. Automatic parallelism and structural optimisation allow the user to explore different simulation

configurations, obtain solutions for tedious problems, and simulate larger systems. The architecture on which MOL

is built is an incredibly malleable and extensible platform, which will surely attract efforts to incorporate large third

party libraries. In conclusion, the research shows that the use of data-parallelism by multi-stage programming in a

simple domain-specific language for high performance and extensibility are sufficient to give rise to the compute

intensive but beneficial task of automatic model structure optimisation.
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9.6 Future Work
There is scope for expanding on this research in multiple areas. Firstly, it is still relevant to consider spatial

partitioning in the context of MOL. This would change the architecture significantly, and given the correct

specialising code, it could be included automatically when needed. Secondly, the optimisers currently employed in

the language could benefit from more sophisticated genetic operators, or perhaps a completely different algorithm

such as Grammatical Evolution [249].

There is indeed an opportunity to extend the language by adding more optimisation constructs other than single,

permutation and recombination. Along the lines of Grammatical Evolution, it may be worth considering a “deep”

reconstruction of code where even conditions are decomposed into terminals, along with random variables.

In addition to other configurations, it would be beneficial to hybridise continuous and combinatorial optimisation

in order to construct expressions such as between 0.1 and 0.3 for constrained continuous optimisation alongside

structural optimisation. An extension of the Gene Expression Programming algorithm by Ferreira [64] is capable of

evolving constants in this manner.

A significant shortcoming of MOL is that a potential solution must be provided in order to facilitate a search. In

cases when the user cannot provide one, or can only provide a subset of the terminals and nonterminals needed,

the algorithm can only produce suboptimal results. The author admits that this problem is related to that of the

selection of terminals and nonterminals in the usual usage of Genetic Programming, and future research in this area

would be extremely helpful.

Further extensions of the MOL language could be to exploit the use of Terra’s support for multiple DSLs in one

script file. It would be useful to consider the addition of a syntax specifically for finite state machines, or perhaps to

allow X-Machine style agent descriptions.

Pre-compiling library code can also be useful. Significant portions of the Terra libraries themselves are pre-

compiled using LuaJIT. The advantage of this is a faster loading time, which given the size of the MOL libraries,

could significantly improve startup time.

It may be useful in future, to abstract the concept of structural optimisation to the alteration of Terra syntax trees

directly. At present, the MOL language is compiled to Terra syntax trees, and then the optimiser alters these trees.

It may be worthwhile to consider altering Terra syntax trees directly. Of course, generality in this sense pays a

considerable price. Having a specialised DSL to limit the search space is very important for this research. However,

it may still be useful when applying the same concepts to other DSLs, not necessarily related to ABM.





BIBLIOGRAPHY

[1] B. G. Aaby, K. S. Perumalla, and S. K. Seal. Efficient simulation of agent-based models on multi-GPU and multi-core

clusters. In Proc. SIMUTools 2010, 3rd International ICST Conference on Simulation Tools and Techniques, Torremolinos,

Malaga, Spain, pages 1–10, 15-19 March 2010.

[2] Apostolopoulos and Vlachos. Application of the firefly algorithm for solving the economic emissions load dispatch

problem. International Journal of Combinatorics, 1, 2011.

[3] A. W. Appel. An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput., 6:85–103, 1985.

[4] D. Augusto and H. J. C. Barbosa. Symbolic regression via genetic programming. In Neural Networks, 2000. Proceedings.

Sixth Brazilian Symposium on, pages 173–178, 2000.

[5] P. Aungkulanon, N. Chai-ead, and P. Luangpaiboon. Simulated manufacturing process improvement via particle swarm

optimisation and firefly algorithms. Proc. Int. Multiconference of Engineers and Computer Scientists, 2:1123–1128,

2011.

[6] R. Axelrod. The emergence of cooperation among egoists. The American Political Science Review, 75:306–318, 1981.

[7] R. Axelrod. Advancing the art of simulation in the social sciences. Complexity, 3(2):16–22, 1997.

[8] R. Axelrod. The dissemination of culture: a model with local convergence and global polarization. J. Conflict Resolution,

41:203–226, 1997.

[9] S. K. Azad and S. K. Azad. Optimum design of structures using an improved firefly algorithm. International Journal of

Optimization in Civil Engineering, 1:327–340, 2011.

[10] J. Bachrach, J. McLurkin, and A. Grue. Protoswarm: a language for programming multi-robot systems using the

amorphous medium abstraction. In Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems-Volume 3, pages 1175–1178. International Foundation for Autonomous Agents and Multiagent

Systems, 2008.
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In A. Tanguy C. Bertelle J. Sklenar et G. Fortino, éditeurs, Proceedings of the 2007 European Simulation and Modelling

Conference (ESM07), pages 415–419, 2007.

[30] M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia. A parallel cellular automata environment

on multicomputers for computational science. Parallel Computing, 21(5):803–823, 1995.

[31] A. Cano, J. L. Olmo, and S. Ventura. Parallel multi-objective ant programming for classification using GPUs. J.Parallel

and Distributed Computing, 73:713–728, 2013.

[32] T. Castle and C. G. Johnson. Evolving high-level imperative program trees with strongly formed genetic programming.

In Proceedings of the 15th European Conference on Genetic Programming, EuroGP, volume 7244, pages 1–12. Springer,

April 2012.

[33] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random variables. Journal of the

American Statistical Association, 71:340–344, 1976.

[34] A. Chatterjee, G. K. Mahanti, and A. Chatterjee. Design of a fully digital controlled reconfigurable switched beam

coconcentric ring array antenna using firefly and particle swarm optimization algorithms. Progress in Electromagnetic

Research, B:113–131, 2012.

[35] Y. Chisti. Airlift Bioreactors. Elsevier Applied Science, 1989.

[36] D. M. Chitty. Fast parallel genetic programming: multi-core cpu versus many-core GPU. Soft. Comput., 16:1795–1814,

2012.

[37] S. Coakley, R. Smallwood, and M. Holcombe. Using X-machines as a formal basis for describing agents in agent-based

modelling. In Proceedings of the 2006 Spring Simulation Multiconference, 2006.

[38] Collier. Repast: An extensible framework for agent simulation. Technical report, Social Science Research Computing,

University of Chicago, 2003.

[39] D. N. Coore. Botanical Computing: A Developmental Approach to Generating Interconnect Topologies on an Amorphous

Computer. PhD thesis, Department of Electrical Engineering and Computer Science, 1999.

[40] M. Crosbie and E. H. Spafford. Applying genetic programming to intrusion detection. Technical report, Department of

Computer Sciences, Purdue University, West Lafayette, 1995. AAAI Technical Report FS-95-01.

[41] L. Cupertino, C. Silva, D. Dias, M. A. Pacheco, and C. Bentes. Evolving CUDA PTX programs by quantum inspired



BIBLIOGRAPHY 195

linear genetic programming. In Proceedings of GECCO’11, 2011.

[42] K. Czarnecki, J. T. ODonnell, J. Striegnitz, and W. Taha. DSL implementation in MetaOCaml, template Haskell, and

C++. In Domain-Specific Program Generation, pages 51–72. Springer, 2004.

[43] J. M. Daida, A. M. Hilss, D. J. Ward, and S. L. Long. Visualizing tree structures in genetic programming. Genetic

Programming and Evolvable Machines, 6, 2005.

[44] P. Danilewski, S. Popov, and P. Slusallek. Binned SAh Kd-tree construction on a GPU. Technical report, Saarland

University, Germany, 2010. 15 Pages.

[45] S. Das. On agent-based modeling of complex systems: Learning and bounded rationality. Tech Report, 2006.

[46] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: a multi-stage language for high-performance computing.

In PLDI, pages 105–116, 2013.

[47] M. d’Iverno and M. Luck. Understanding Agent Systems. Springer, 2001. ISBN 3-540-41975-6.
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GLOSSARY

Agent-based Modelling A modelling methodology which has as its core the principle of generative, “bottom-up” design of

macro-level phenomena.

Agent-based Modelling and Simulation Refers to Agent-based Modelling and its simulation.

Domain-Specific Language A programming language intended specifically for one area of application, therefore specialising

in it, foregoing more general constructs in order to better serve its target domain.

Emergence A term used to refer to macroscopic patterns which result from seemingly unrelated local interactions. 13, 209

Evolutionary Algorithms Evolutionary Algorithms are stochastic algorithms which operate in a similar manner to Genetic

Algorithms where a population of candidates are maintained and new (better) generations are computed regularly using

operators inspired by evolution such as mutation, crossover and selection in the simplest case.

Evolutionary Optimisation Optimisation in either parametric or combinatorial space using an algorithm which could be

described as evolutionary.

Firefly Algorithm A parametric, metaheuristic search algorithm inspired by flashing behaviour of fireflies.

Gene Expression Programming A sophisticated evolutionary algorithm with several operators which more closely resemble

that of the natural analog.

Genetic Algorithm An evolutionary algorithm which traditionally involves the use of simple crossover, mutation and selection

to iteratively improve a population of candidates.

Genetic Programming An evolutionary algorithm which searches through “program space”, where candidates are composed

of building blocks.

Geometric Firefly Algorithm A new proposed evolutionary algorithm which searches through “program space”, based on the

Firefly Algorithm of Xin-She Yang.

Geometric Particle Swarm Optimiser Algorithm A Particle Swarm Optimiser formally generalised to arbitrary search spaces

by Moraglio, Chio and Poli.

Multi-agent Systems Normally used in referring to physical teams of robots which communicate in order to accomplish a

common goal.

Multi-stage Programming A programming paradigm in which code is assembled for processing data which arrives in stages

distinct from one another.

Particle Swarm Optimiser A stochastic population-based parametric optimisation algorithm.

209





ACRONYMS

ABM Agent-based Modelling. 3–5, 7, 10–17, 21, 22, 24, 27, 31, 90, 107–109, 112, 122, 125–127, 148–150, 179, 180, 183,

185, 187–190, 209, Glossary: Agent-based Modelling

ABMS Agent-based Modelling and Simulation. 3, 209, Glossary: Agent-based Modelling and Simulation

CUDA Compute Unified Device Architecture. 6, 7, 24, 25, 52, 54, 60, 73, 76, 77, 130, 131, 151, 154, 175, 185, 209

DSL Domain-Specific Language. 3, 4, 7, 14, 107–109, 112, 117, 121, 127, 131, 187, 188, 209, Glossary: Domain-Specific

Language

EA Evolutionary Algorithm. 3–6, 38, 40–42, 52, 125, 127, 132, 209, Glossary: Evolutionary Algorithms

EO Evolutionary Optimisation. 209, Glossary: Evolutionary Optimisation

FA Firefly Algorithm. 39, 41, 42, 47, 48, 52, 56–58, 88, 89, 189, 209, Glossary: Firefly Algorithm

GA Genetic Algorithm. 5, 41, 44, 45, 209, Glossary: Genetic Algorithm

GEP Gene Expression Programming. 5, 68, 209, Glossary: Gene Expression Programming

GFA Geometric Firefly Algorithm. 82, 83, 88, 92, 209, Glossary: Geometric Firefly Algorithm

GP Genetic Programming. 44, 68–71, 73, 76, 77, 82, 83, 85, 88, 126, 209, Glossary: Genetic Programming

GPSO Geometric Particle Swarm Optimiser Algorithm. 83, 88, 209, Glossary: Geometric Particle Swarm Optimiser Algorithm

GPUs Graphical Processing Units. 3, 6, 7, 22, 24, 27, 30–32, 52, 53, 59, 73, 76, 77, 88, 108, 117, 127, 154, 179, 182, 209

IBM Individual-based Modelling. 150, 209, Glossary: Agent-based Modelling

MAS Multi-agent Systems. 4, 21, 209, Glossary: Multi-agent Systems

MSP Multi-stage Programming. 109, 110, 112, 115, 117, 121, 127, 134, 209, Glossary: Multi-stage Programming

PSO Particle Swarm Optimiser. 39, 41, 42, 45, 48, 52, 53, 58, 59, 62, 76, 82, 83, 100, 122, 181, 182, 188, 189, 209, Glossary:

Particle Swarm Optimiser
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