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ABSTRACT

This paper investigates the performance and suitability
of evolutionary algorithms for music composition by en-
hancing representation schemes. First, we argue that ge-
netic programming (GP) is well suited to capture higher
order musical structures due to its hierarchical represen-
tation. Representational enhancements are proposed on
the standard GP tree: considering different branches for
different musical dimensions (pitch, duration, etc.), and
making use of “Automatically Defined Functions” to de-
fine reusable patterns in the generated music. Each repre-
sentation scheme is described, along with the role of ge-
netic operators in evolving compact representations. Rep-
resentations are compared for their ability to evolve a pop-
ulation over a range of different target melodies. The re-
sults illustrate performance improvements that result from
the enhancements to the basic GP tree representation.

1. INTRODUCTION

Evolutionary algorithms (EAs) are a group of methods in-
spired by processes from biological evolution. They have
been successfully applied to many problems in search, op-
timisation and learning, including in the field of algorith-
mic music composition (see, e.g. [13, 3, 16]). Music com-
position can be considered a process of creative explo-
ration and search of a musical space [7]. Any non-trivial
musical space is potentially vast and its structure often un-
known, so it comes as no surprise that EAs have been
a popular choice for algorithmic composition. But even
the performance of EAs in searching such vast spaces is
of limited success in many cases [11]. In this paper, we
examine a number of different representations of musical
structure and test them for suitability in evolutionary mu-
sic composition. A good representation will compactly
and succinctly represent the most common musical struc-
tures across a variety of genres, allowing fast and efficient
evolvability of musical compositions.

When designing an EA-based system, there are three
main issues to consider: genotype representation, evolu-
tionary operators, and phenotype fitness evaluation. Rep-
resentation – the scheme genotypes use to build a phe-
notypes (compositions) – effectively determine the type
of compositions evolution can produce. For example, a
linear representation of individual notes cannot produce a

chord. Operators determine how genotypes change during
the evolutionary process, affecting whether phenotypes
change slowly and gradually, or can perform large “jumps”
in the space of possible compositions. Finally, fitness pro-
vides a driving force by influencing the probabilities of
survival and reproduction of individuals.

We have designed a series of representation schemes
and genetic operators for music composition systems based
on standard genetic programming (GP) techniques [8]. In
order to compare each scheme’s performance, we used a
simple experiment: searching the musical space defined
by the representation for a variety of pre-defined target
melodies and comparing each representation’s ability to
evolve melodies similar to the target. The edit distance
of a candidate melody to the target melody was used as
a fitness measure. While not as accurate as perceptual-
based musical distance measures, edit distance provides
a reasonable and easily computable measure of similarity
between two melodies.

The next section (2) briefly examines existing musical
representations for evolutionary algorithmic composition.
This is followed by a discussion on music characteristics
and representation considerations in Section 3. Section 4
describes the representation schemes we have developed
and summarises their performance, which is followed by
a brief discussion of results and conclusions in the final
section.

2. REPRESENTATIONS FOR EVOLUTIONARY
ALGORITHMIC COMPOSITION

An important consideration for any algorithmic represen-
tation is that each musical note has many different at-
tributes, including pitch, duration, timbre, volume, and ar-
ticulations. This raises a critical design decision: should
these different attributes be grouped together as a single
unit of representation, or should they be kept separate,
coming together only when the representation is converted
to actual music?

Research in human music perception supports a dis-
tinction between pitch- and time-based relationships. Pitch
intervals and melodic contours are processed in different
regions of the brain than absolute pitch [15]. In contrast,
many evolutionary composition systems tend to tie differ-
ent attributes of the note together, probably because they

are traditionally considered as a whole (e.g. as in tradi-
tional Western notation). Dahlstedt, for instance, uses a
representation based on graphs (with custom edges con-
trolling the type of traversal) in which each leaf node con-
tains a note or a list of notes [4]. The information stored
for each note includes onset time, pitch, amplitude, du-
ration, and articulated duration. Fu et. al. employ a ge-
netic algorithm to compose musical phrases consisting ul-
timately of notes represented as (pitch, duration, intensity)
3-tuples [6]. Povel’s Melody Generator [14] generates hi-
erarchically organised temporal sequences of notes. Once
again, all the attributes (duration, timbre, etc.) have been
tied together in each note.

Somewhat differently, Biles utilises a string represen-
tation in his GA-based GenJam, describing it as “a coop-
erating, two-level, position-based, binary representation
scheme”. Each chromosome represents a series of eight
events, which could be a new note, a rest, or a hold; one
for each eighth note duration of a 4/4 measure [2]. In other
words, there is no explicit value indicating the duration of
each note.

3. TOWARDS A MORE DEVELOPED
REPRESENTATION SCHEME

Dahlstedt divides genetic representations into three cate-
gories: basic, structural, and generative [5]. In a basic
representation, such as a list of pitches and durations, the
genotype essentially is the phenotype. An improvement is
to incorporate structural information into the representa-
tion. For instance, musical structures can be grouped into
a hierarchy (e.g. each phrase consists of motifs, each mo-
tif consists of notes, and so forth). Generative representa-
tions draw on the ability of certain processes to generate
complexity far greater than their specification, a principle
known in computing as database amplification [12].

A number of authors have described the organisation
of tonal music as a hierarchy (e.g. [1, 9]). Experimental
work in psychology, neuroscience, and electrophysiology
supports the hypothesis of a hierarchical and modular or-
ganisation of music perception in brain [15]. The context
in which a musical note is set could be much further than
just a few previous notes. Distant notes or phrases are
often more related to a particular note semantically than
immediate neighbours. In contrast, traditional music no-
tation, event-based sound control codes (e.g. MIDI), rep-
resentations for computer applications (e.g. ABC), and
many algorithmic composition representations structure
music chronologically.

In contrast, structural (e.g. Melody Generator [14])
and generative representations (e.g. NEvMuse [10]) cap-
ture information about the hierarchical structure of music,
potentially making them more aligned with human mu-
sic perception and composition. A generative represen-
tation provides an efficient framework for encoding com-
plex, repetitive patterns [12].

4. EXPERIMENTAL RESULTS

We begin our experiments with a generative representa-
tion based on standard GP techniques. Notes (as a col-
lection of attributes such as pitch, duration, etc.) and a
set of musical functions form the nodes of a tree which is
then traversed to generate a melody. We denote this the
“standard GP-Rep”. Further developing this representa-
tion, attributes of notes are separated and stored on dif-
ferent branches under a common root of the GP tree. In
this case, which we refer to as “extended GP-Rep”, each
branch under the root node represents a different “dimen-
sion” of the composition (e.g. one branch for encoding the
pitch sequence, one for the duration sequence, or rhythm,
and so on). In a further modification, we utilised automat-
ically defined functions (ADFs) [8] as a means of further
compressing the information captured by this representa-
tion. This design, which we refer to as “extended GP-Rep
with ADFs”, permits definition of reusable musical pat-
terns, which in turn results in a compressed form of in-
formation encoding. The evolutionary algorithm for each
representation is based on standard GP [8], but is differ-
ent in terms of how crossover is performed, in addition to
some other details, which we describe shortly.

For all representations tested, each individual encodes
a melody, i.e. a sequence of notes; and each note is con-
sidered to be a (pitch,duration) tuple, for the sake of sim-
plicity. The convergence of populations to pre-defined
target melodies was compared for each of the three rep-
resentations. The goal was to minimise the fitness value,
defined as:

f itness(m) =
dimensions

∑
i

δ (dimi(t),dimi(m))

length(t)

where the function δ returns Levenshtein distance between
two arguments, dimi returns the ith dimension of the melody
(i.e. pitch or rhythm), t denotes the target melody, m is the
phenotype melody to be evaluated, and length(t) is the
number of the notes in the target melody. The parameters

Table 1. Parameters used for running the programs
Parameter Value
Population size 500
The number of generations 700
The maximum depth of tree 10
Crossover rate 0.65
Darwinian reproduction rate 0.20
Mutation rate 0.15

used for each experiment are shown in Table 1. In order
to assess the performance of each representation over a
variety of styles, two melodies from each of five differ-
ent genres (classical, jazz, pop, folk, and nursery rhymes)
were used as target melodies (see Table 4). The results for
each representation show the average of 100 independent
runs, i.e. 10 runs for each target melody.
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Table 2. Primitives for the standard GP-Rep. The argu-
ment S, is a string of notes i.e. (pitch,duration) tuples.

Functions
Concat(S1,S2) concatenate S1 with S2
Repeat(S) repeat S
ShiftUp(S) transpose pitches up by one semitone
ShiftDown(S) transpose pitches down by one semitone
Double(S) double durations
Half(S) half durations
RetroPitch(S) Retrograde only pitches of S
RetroDuration(S) Retrograde only durations of S

Terminals
(pitch,duration) pitch: an integer from 0 (C0) to 127

(G10). duration: an integer from 0 (dot-
ted whole) to 15 (128th note)

4.1. First representation: inspired by standard GP

As a first experiment, we used a representation from stan-
dard genetic programming [8], with a set of eight func-
tions (Table 2) and notes as terminals. Figure 1 illus-
trates an example individual for this implementation. The
three reproduction operators “Darwinian reproduction”,
“crossover”, and “mutation” follow the standard defini-
tion from Koza [8]. This algorithm was run with the pa-
rameters in Table 1 to find melodies similar to the target
melodies. Figure 4 illustrates the results averaged over
100 independent runs.

4.2. Second representation: multidimensional tree

In the second representation (extended GP-Rep), individ-
uals have one branch under the root entry for each attribute
dimension (here pitch and duration). This separation also
enables us to have common functions for branches by ab-
stracting their behaviour (e.g. Retrograde subsumes Retro-
Pitch and RetroDuration, see Table 3).

Figure 2 illustrates an example of an individual in ex-

Concat

ShiftUp

RetroPitch

Repeat

Concat

(61,5) (44,9)

Repeat

Concat

Double

(49,9)

RetroPitch

ShiftDown

RetroDuration

(53,7)

Figure 1. An example of an individual in the standard
GP-Rep

Table 3. Primitives for the extended GP-Rep. The argu-
ment S, is a string of integer values, which could be either
a pitch or duration sequence.

Functions
Concat(S1,S2) concatenate S1 with S2
Repeat(S) repeat S
ShiftUp(S) transpose pitches up by one semitone;

halve durations
ShiftDown(S) transpose pitches down by one semitone;

double durations
Retro(S) Retrograde S

Terminals
pitch an integer value (as per Table 2)
duration an integer value (as per Table 2)

Root
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ShiftDown

47
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DurationBranch
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Figure 2. An example of an individual in the extended
GP-Rep

tended GP-Rep. For reproduction, standard crossover was
modified to suit the multidimensional structure of the tree:
for each selected pair of parents one crossover is performed
for each dimension (i.e. child branches of the root node),
so the number of offspring from one crossover is double
the number of dimensions.

As Figure 4 shows, separating different attributes of
music into separate branches on the representation tree
can result in a substantial improvement in phenotype prox-
imity to the target melody.

4.3. Third representation: using ADFs

Musical information often contains repetitive patterns. As
repetitions are not necessarily consecutive, the function
Repeat cannot fully capture this feature efficiently. Fur-
thermore, repeated patterns can be found at different lev-
els of abstraction (e.g. intervals at a higher level abstrac-
tion from absolute pitches). Koza’s automatically defined
functions (ADFs) are used to evolve reusable components,
which can be invoked repeatedly, typically with different
inputs. In the third representation, we augmented the ex-
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ADF1
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ShiftDown
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... RPB

Repeat

Concat

Concat

51 ...

ADF1(55)

Figure 3. An example of an individual in the extended
GP-Rep with ADFs which shows only the pitch branch

tended GP-Rep with ADFs as a means of capturing repet-
itive patterns and storing them as reusable components.
In this representation, each dimension has one or more
function-defining branches (ADFs), and one main result-
producing branch (the RPB). An ADF is defined as a func-
tion which gets a terminal as its input and returns a se-
quence of terminals as output. Once defined, an ADF can
be called repeatedly by the RPB with different arguments.
Since one function can represent many musical phrases
(which are not necessarily the same, though follow the
same pattern) the representation is efficient in compress-
ing repeated information. Figure 3 shows an example of
an individual in the extended GP-Rep with ADFs. The
maximum number of ADF branches on each dimension
and the maximum depth of ADFs are set as program pa-
rameters. When initialising the population, ADFs are ran-
domly generated independently (i.e. they do not call each
other) for each individual from the primitives shown in
Table 3. Next, the RPB is randomly generated from the
union of the primitive and ADF sets. During evolution,
the crossover operator is applied only to the RPB branch.
If a crossover results in moving a branch which has a call
to an ADF, then the ADF needs to be copied to the ap-
propriate destination tree. The ADF is removed from the
original tree if it is no longer used. Mutation operators
may be applied to either of the branches, including ADFs.
A mutation in a frequently invoked ADF usually results
in an explorative change, whereas mutations on the RPB
could be either explorative or exploitative depending on
the branch undergoing the mutation.

To compare the performance of the extended GP with-
ADFs versus without-ADFs, the same set of target melodies
with the same algorithm parameters (shown in Table 1)
were applied. Additionally, there were two new param-
eters: the maximum number of ADF branches for each
individual (set to 3), and the maximum depth of the ADF
branches (5). Figure 4 shows how adding ADFs improves
performance.
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Figure 4. A comparison between “standard GP-Rep”,
“extended GP-Rep”, and “extended GP-Rep with ADFs”
on converging to the target melodies. This figure shows
an improvement for extended GP-Rep over standard GP-
Rep as a result of separating out different dimensions into
different branches on the representation tree. Further im-
provement using ADFs shows up after generation 100.
The results are the average of 100 independent runs for
each representation (i.e. 10 runs for each target melody).

Table 4. Best individual found for each target melody.
S-GP, E-GP, and E-GP* stand for standard GP-Rep, Ex-
tended GP-Rep, and Extended GP-Rep with ADFs respec-
tively. The first value in each cell shows the average of
the 10 independent runs, and the second value shows the
standard deviation. The best and the worst values for each
algorithm are shown in bold.

Melody Name S-GP E-GP E-GP*

For Elise (Beethoven) 0.65
0.27

0.62
0.25

0.53
0.34

Symphony No. 40 (Mozart) 0.68
0.37

0.60
0.16

0.50
0.29

West End Blues (Armstrong) 0.89
0.30

0.78
0.21

0.71
0.26

Wonderful World (Armstrong) 0.73
0.40

0.59
0.40

0.47
0.49

Hey Jude (Beatles) 0.91
0.15

0.80
0.13

0.80
0.23

A Man After Midnight (ABBA) 0.73
0.27

0.65
0.26

0.64
0.29

Turkish Folk 0.84
0.51

0.70
0.42

0.56
0.64

Persian Folk 0.55
0.19

0.44
0.17

0.48
0.27

Twinkle Twinkle Little Star 0.47
0.35

0.45
0.28

0.36
0.39

The Farmer in the Dell 0.50
0.27

0.47
0.27

0.45
0.32
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5. DISCUSSION AND CONCLUSIONS

The standard representation suffers from the problem of
its pitch and duration being tied together in one struc-
ture, the “Note”. This implies there may be cases where
one aspect of the music, say the duration sequence, gets
quite close to the duration sequence of the target melody,
while leaving much room for improvement in another as-
pect (i.e. pitch). For the target melody shown in Figure 5
for example, the individual in Figure 6 gets a relatively
good fitness value because its rhythm closely matches the
target melody, although it does not sound similar because
the pitches are quite distant. In this situation, most at-
tempts to fix the pitches would result in worse fitness,
due to a single mutation or crossover effecting pitch and
duration simultaneously. This situation is akin to being
trapped in a local optimum. We can avoid increases in
rhythm distance if we can modify pitches independently
of the durations. We attempted to minimise this problem
by separating out duration-related functions from pitch-
related functions (e.g. RetroPitch and RetroDuration), but
we found the problem inevitable because of the function
“Repeat”, which could not be split into separate functions.

Next, we evolved pitches and durations on different
branches for each individual. Providing functions that can
be applied to different aspects of music independently, al-
lowed the extended GP-Rep to find melodies closer to the
targets. Figure 4 shows how the standard GP-Rep fails
to get close to the target melody, whereas the population
in the extended GP-Rep converged, on average, closer to
the target. The problem of standard GP-Rep sometimes
getting trapped in local optima no longer exists for the ex-
tended GP-Rep. This is why the standard deviation values
for the standard GP-Rep, in most cases, are greater than
extended GP-Rep (refer to Table 4).

But the extended GP still did not take advantage of
repetitive musical patterns, so we modified the represen-
tation again to make use of ADFs as a means of capturing
reusable patterns. We use the term “pattern”, not “mo-
tif” or “phrase”, because, unlike using the Repeat func-
tion, calling the same ADF with different arguments gen-
erates different sequences, which share the same pattern.
Adding ADFs allowed the representation to get closer to
the target melody.

In the previous section, we noted that a mutation in a
frequently invoked ADF usually results in an explorative
change in the phenotype. One could say the effect of the
mutation operator has been enhanced in the extended GP-
Rep with ADFs. This can favour diversity, but may slow
convergence. This is why the version with ADFs is be-
hind the version without in the first generations, and needs

Figure 5. The beginning of the Turkish March by Mozart

Repeat

Concat

Repeat

Repeat

Repeat

(45,9)

Repeat

Repeat

(45,9)

Figure 6. An example of an individual in the standard
GP-Rep which gets a high fitness because of its rhythm
closeness to the target melody shown in Figure 5, although
it does not sound similar due to pitch differences.
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Figure 7. A comparison between Standard GP-Rep, ex-
tended GP-Rep, and extended GP-Rep with ADFs using
a section of “Symphony No. 40” (Mozart) as the target
melody. The figure shows how effectivly the extended
GP-Rep with ADFs can represent melodies with repeti-
tive patterns. The results are the average of 10 indepen-
dent runs for each algorithm.

around 100 generations before overall improvement is ob-
served.

As would be expected, extended GP-Rep with ADFs
demonstrated the best performance for target melodies with
a large number of repetitive patterns. As Figure 7 shows,
when a target melody with a large number of repetitive
patterns (such as “Symphony No. 40”) is used, the addi-
tion of ADFs improves performance. The best individuals
for this genre of music sounded very similar to the target
melodies, being easily recognisable to a human listener.
Conversely, the compositions without, or with fewer re-
peated patterns remained hard to find. Using a part of the
pop song “Hey Jude” (The Beatles) as the target melody,
as shown in Figure 8, ADFs did not result in significant
improvement. The best individuals did not sound similar
to the target melodies, and in many cases, they were not
recognisable to a human listener.
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Figure 8. A comparison between Standard GP-Rep, ex-
tended GP-Rep, and extended GP-Rep with ADFs using a
section of “Hey Jude” (The Beatles) as the target melody.
This figure shows that ADFs do not significantly improve
on the efficiency of the extended GP-Rep for melodies
without repetitive patterns. The results are the average
of 10 independent runs for each algorithm.

6. FUTURE WORK

The current design of the extended GP-Rep with ADFs
suffers from a lack of domain knowledge. For instance, a
pattern extracted from a perfectly valid phrase in a tonal
composition, can generate a phrase some of the pitches
of which fall outside the scale. In this case, this problem
could be avoided if the representation took care of tonal-
ity. So, one possible improvement is to encode the basics
of domain knowledge in the representation, such as key
and time signatures. Evolution will allow these features
to change as required.

Further improvements could be made to the fitness
measure. In this article, we proposed a simple fitness
function based on the edit distance for examining the per-
formance of representations in finding target melodies.
A more sophisticated measure based on perceptual sim-
ilarity was considered too difficult to use for these ex-
periments. This edit-distance fitness function, in its cur-
rent form, can not be used extensively for music composi-
tion. A more sophisticated fitness measure would focus on
subjective evaluation of compositions according to pref-
erences, or be capable of measuring a set of well-defined,
musically important features.
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