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Abstract—The research presented in the paper forms part of 
a larger initiative aimed at automatic algorithm induction using 
machine learning. This paper compares the performance of two 
machine learning techniques, namely, genetic programming and 
a variation of genetic programming, grammatical evolution, for 
automatic algorithm induction. The application domain used to 
evaluate both the approaches is the induction of data structure 
algorithms. Genetic programming is an evolutionary algorithm 
that searches a program space for an algorithm/program which 
when executed will provide a solution to the problem at hand. 
Grammatical evolution is a variation of genetic programming 
which provides a more flexible encoding, thereby eliminating the 
sufficiency and closure requirement imposed by genetic 
programming. The paper firstly extends previous work on 
genetic programming for evolving data structures, providing an 
alternative genetic programming solution to the problem. A 
grammatical evolution solution to the problem is then presented. 
This is the first application of grammatical evolution to this 
domain and for the simultaneous induction of algorithms. The 
performance of these approaches in inducing algorithms for the 
stack and queue data structures are compared. 

Keywords—algorithm induction; genetic programming; 
grammatical evolution; automatic programming 

I.  INTRODUCTION  
The paper reports on a study that forms part of a project 

investigating automatic algorithm induction and design using 
machine learning. One of the areas researched as part of this 
project is automatic algorithm induction as a means of 
automatic programming. Genetic programming, a machine 
learning technique for solving optimization problems, appears 
to be apt for this purpose. Genetic programming searches a 
program space for a program, which when executed will 
produce a solution to the problem at hand[1]. Each program is 
generally represented as a parse tree. Genetic programming 
has been successfully applied to various domains including 
data mining, natural language processing, image processing 
and electronic circuit design [2].  

There have been various attempts at using genetic 
programming for automatic programming. In [3] genetic 
programming is used to evolve algorithms according to the 
imperative programming paradigm, using memory, iteration 
and modularization. Algorithms are evolved in an internal 
representation language to facilitate language independence 
and can be converted into any procedural programming 

language. As the field of genetic programming advanced, 
researchers started looking to good programming practices to 
improve the scalability and problem solving ability of genetic 
programming. One such practice is object-oriented 
programming which led to the extension of genetic 
programming to object-oriented genetic programming 
(OOGP) [4-7]. OOGP evolves object-oriented programs. This 
work has essentially focused on the induction of algorithms 
for method implementation rather than the evolution of classes 
and interfaces. Methods for a class are generally evolved 
simultaneously. 

 OOGP has also been used for purposes of automatic 
programming [8-10]. Bruce [8] compares the sequential and 
simultaneous induction of methods to evolve object-oriented 
programs. Each method is an automatically defined function 
[11] and all methods are stored in indexed memory. The 
proposed approach for OOGP is evaluated in the domain of 
data structure algorithm induction. A similar approach is taken 
by Langdon [9]. This study researches the induction of both  
methods for classes and programs using instances of the 
classes. The approach is also tested for the evolution of data 
structure algorithms as well as solution algorithms for 
problems requiring the use of the evolved data structures. In 
[10] a rule-based expert system is used to induce an object-
oriented design (OOD) from a program specification.  The 
OOD forms input to a genetic programming component which 
evolves the methods for the program sequentially, allowing 
function calls between methods. 

More recent studies in the area of OOGP include initial 
investigations into grammar-based genetic programming for 
the evolution of object-oriented programs [12] and a 
combination of OOGP and linear genetic programming [13]. 
Grammatical evolution is a variation of genetic programming 
which aims at providing a more flexible encoding of programs 
thereby allowing for programs to be generated in any language 
[14]. Grammatical evolution (GE) essentially evolves a 
population of binary strings which represent programs. The 
execution of a program involves converting the binary string 
into an integer which is then mapped onto a grammar, 
resulting in a production rule of the grammar being executed 
[14]. We hypothesize that grammatical evolution has the 
potential to contribute to the domain of automatic object 
oriented programming. To the authors' knowledge there has 
been no previous work into grammatical evolution for object-
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oriented program induction or the simultaneous induction of 
algorithms. This study compares both OOGP and GE for the 
simultaneous induction of algorithms.  The application domain 
for evaluation of the proposed approaches is the induction of 
algorithms for data structures.  This domain has been chosen 
as it is a problem  that has previously been used for the 
evaluation of OOGP performance and has proven to be 
suitable to test such approaches.  Furthermore, this will also 
allow for a comparison of the approaches proposed in this 
study to previous methods used for automatic algorithm 
induction. Hence the research presented makes the following 
contributions: 

1. A variation of OOGP, namely, GOOGP which uses a 
greedy method to create the initial population. 

2. A grammatical evolution solution to automatic object-
oriented programming. 

3. An evaluation of GE for simultaneous induction of 
algorithms. 

4. A comparison of the performance of the three approaches 
for automatic object-oriented programming. 

The following section presents an OOGP approach for 
automatic algorithm induction. Section III proposes a 
grammatical evolution solution to the problem. The 
experimental setup used to evaluate the performance of both 
the approaches is presented in section IV.  Section V discusses 
the performance of both approaches and provides an empirical 
comparison with previous work. A summary of the findings of 
this research and future extensions of this work are presented 
in section VI. 

II. OBJECT ORIENTED GENETIC PROGRAMMING (OOGP) 
APPROACH FOR AUTOMATIC PROGRAMMING 

This section describes the genetic programming approach 
implemented for automatic programming. The generational 
genetic programming algorithm in Fig. 1 is used. The 
algorithm begins by creating an initial population which is 
iteratively refined by means of evaluation, selection and 
regeneration until the termination criteria are met. These 
processes are described in the following sections. The 
algorithm is terminated when a solution chromosome is found 
or the maximum number of generations has been reached. 

A. Initial Population Generation 
As in the studies conducted by Bruce [8] and Langdon [9], 

each element of the population, i.e. a chromosome, represents 
a class and is comprised of parse trees, one for each method of 
the class. Each tree is a gene in the chromosome. The 
algorithms are generated by an internal representation 
language which is language independent. This allows for the 
evolved algorithms to be converted to any programming 
language. An example is illustrated in Fig. 2.   

 

 
 
 

 
 
 
 
 
 

 
The class has three methods. Each chromosome in the 

population is indexed memory, with each of the trees, i.e. 
genes, stored at an index. The internal representation language 
is defined by the function and terminal set.  Each parse tree is 
created by randomly choosing elements from the function and 
terminal sets until a preset maximum depth is reached. The 
grow method [1] is used for this purpose. The function set 
used for each problem is a subset of the following: 

• Arithmetic operators: +, -, *, / which perform the 
standard arithmetic operations. The division operator is 
a protected operator which returns a value of 1 if the 
denominator is 0. 

• Conditional operator: if  which performs the function 
of an if-then-else operator. 

• Arithmetic logical operators: ==, !=, <, >, <=, >= 
which perform the standard arithmetic logical 
operations and are used to create the subtree 
representing the condition of the if operator. 

• Indexed memory operators: Indexed memory is 
maintained which each program can write to or read 
from. The write and read operators are used to access 
indexed memory. The write operator takes two 
arguments, one the content to be written and the second 
the index in memory to which it should be written. The 
read operator takes a single argument, namely the 
index from which the content should be read. 

• Named memory operators - A single named memory 
location, aux, is maintained which a program can use 
as a temporary memory location. Two operators, 
set_aux and dec_aux, defined in [9] are used to access 
the memory location. The operator set_aux is used to 
write to this memory location. It takes one argument, 
which is the content to be written to the location. The 
operator dec_aux decrements the value in the memory 
location by one.  

• Multiple statement operators - block2 and block3 are 
used to combine programming statements, namely, two 
and three statements respectively. Both these operators 
return the value that the last argument evaluates to. The 
operator fblockn combines n programming statements 
but returns the value that the first argument evaluates 
to. 

• Iteration operator - The for operator defined in [15] is 
used to cater for iteration. The operator takes three 
arguments. The first two arguments represent the 
bounds of the loop and the third argument represents 
the body of the loop. The operator evaluates to the 
value of the body on the last iteration of the loop.  

Fig. 1. Generational genetic programming algorithm 
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Fig. 2. Example of a chromosome 



The terminal set is a subset of: 

• A named memory location: aux is a single memory 
location which can be used for temporary storage and 
serves the same function as a variable in programming. 

• Variables representing input to the problem, e.g. i 
representing the value to be stored in the data structure. 

• Constants: 0 and 1. 

Two methods are tested for creating the initial population. 
The first is the standard approach adopted in genetic 
programming where each element of the population is 
randomly created. We will refer to the genetic programming  
algorithm using the standard approach as OOGP in the 
sections that follow.  The second is a greedy approach which 
creates each chromosome in the population as follows: 

• A population of m parse trees is randomly created for 
each gene. 

• The population is evaluated using the process described 
in section B below to determine the fitness of each tree. 

• The fittest tree in the population is stored as the gene 
for the chromosome. 

 The genetic programming algorithm employing the greedy 
approach will be referred to as GOOGP. The following section 
describes fitness evaluation and selection. 

B. Fitness Evaluation and Selection 
The fitness is maximized, thus a fitter chromosome is one 

with a higher fitness value. For each run 15 fitness cases are 
randomly generated.  Each fitness case is a stack of length 
between 1 and 15. The elements of the stack are integer values 
in the range 1 to 99. Each method in the chromosome is 
applied to the 15 fitness cases. A set of problem dependent 
criteria that must be met by each method is defined and the 
method is scored on the number of criteria it has met.  An 
example of this is listed in Table 1 for the stack data structure. 
The class has five methods, namely, makeNull(), peek(), 
push(), pop() and empty(). The maximum score that each of 
the methods can attain respectively is 1, 4, 4, 3 and 3 giving a 
maximum fitness of 15 per fitness case and 225 over all 15 
fitness cases. However, when selecting parents the fitness is 
calculated relative to the best performing method in the 
current population. The best score obtained in the current 
population for each of the methods is stored (B1, B2, B3, B4, 
B5). The fitness is calculated relative to the best. For example, 
suppose that fitness scores for a chromosome are F1 to F5 for 
each of the five methods. The fitness of a potential parent is 
calculated using the following formula: 

Relative Fitness = Σ (Fi/Bi)*100    i=1, ...,no. of methods  

Tournament selection [1] is used to then choose the parent. 
This selection method chooses a tournament of t chromosomes 
from the population and calculates the relative fitness. The 
chromosome with the highest relative fitness is returned as a 
parent. Selection is with replacement so a chromosome can 
play the role of a parent more than once. 

TABLE 1. EXAMPLE PROBLEM SPECIFIC CRITERIA FOR FITNESS 
EVALUATION 

Method Criteria 
makeNull() • Stack pointer must be set to -1 
peek() • No change in pointer value. 

• Elements on stack should not be altered. 
• The value returned must be the topmost 

element of the stack. 
• Only one value must be returned. 

push() • Pointer must be updated correctly. 
• Elements on the stack should not be altered. 
• The pushed value must be at the top of the 

stack. 
• The value must be pushed on the stack only 

once. 
pop() • Pointer must be updated correctly 

• Elements on the stack should not be altered. 
• The correct value must be returned. 

empty() • No change in pointer value. 
• Elements on the stack should not be altered. 
• The correct position of the pointer must be 

returned. 
 

C. Regeneration 
The crossover operator performs two phases of crossover, 

namely, external crossover followed by internal crossover. 
External crossover performs uniform crossover used by 
genetic algorithms [16]. Two chromosomes are selected using 
tournament selection and genes are swapped between the 
chromosomes if the randomly generated probability in the 
range 1 to 100 is less than the preset  probability.  

For example suppose that the selected parents are 
G11G12G13G14 and G21G22G23G24. Each chromosome is 
comprised of four genes. Each gene Gij represents a parse tree. 
Given that the preset probability is 60% and the randomly 
generated probabilities for each gene are 34%, 75%, 80%, 
25% respectively, the resulting offspring are G21G12G13G24 
and G11G22G23G14. 

Once external crossover is applied a number is randomly 
generated in the range 1 to 100 again.  If this number is less 
than the preset probability of internal crossover (internal 
crossover probability) this operator is applied as follows. A 
chromosome index is randomly chosen. The standard genetic 
programming crossover operator [1] is applied to the parse 
trees at the selected index in both parents. This operator 
randomly selects crossover points in each of the parse trees, 
and the subtrees rooted at these points are swapped. The 
resulting trees replace the parents in the chromosomes.  The 
fitter of the two offspring forms part of the next generation.  

III. GRAMMATICAL EVOLUTION APPROACH FOR AUTOMATIC 
PROGRAMMING  

This section describes the grammatical evolution approach 
for automatic programming.  The main difference between this 
and the OOGP approach is that the each chromosome is a 
binary string. The space of binary strings is then mapped onto 
an integer space which is in turn mapped onto a grammar 
which represents the programming statements. The algorithm 
implemented for evolution is the generational algorithm in 
Figure 1. The GE approach uses the same termination criteria 
and processes as the GP approach for fitness evaluation and 



selection described in section II.  Initial population generation 
and regeneration for the GE are described below. 

A. Initial Population Generation 
GE requires each element of the population to be 

represented as a binary string.  In the OOGP approach each 
chromosome is represented as indexed memory with each 
gene in the memory a parse tree corresponding to a method of 
the class. A similar approach is taken in GE. Each 
chromosome is again indexed memory, but each gene is a 
binary string representing a method of the class. Each binary 
string is called a codon and is composed of n alleles of length 
m.  An example is illustrated in Fig. 3. The chromosome 
contains four binary strings, each representing one of four 
methods for the class. Each binary string is a codon of length 
3, i.e. contains 3 alleles. Each allele is of length 8. Each codon 
represents a program. In order to execute the program 
represented by each codon, each of the alleles in the codon are 
firstly converted to denary. For example, the first codon will 
be converted to 15, 5, 65. The denary values are mapped onto 
a grammar defining the valid programming statements for the 
class. For example the grammar used for inducing the methods 
of the stack class are illustrated in Fig. 4. Each denary value is 
then mapped to a production rule in the grammar for the 
method thereby converting the codon to a parse tree 
representing the program. For example suppose that the 
grammar start symbol  is <stmts>  and production rules for 
<stmts> are: 

<stmts> :: <stmt>  (0) 

<stmts>:: <stmt>;<stmts>  (1) 

There are two production rules for the non-terminal 
<stmts>. To decide which production rule to apply the 
modulus of the denary value and the number of production 
rules is taken. This process is continued to convert the codon 
into a parse tree representing a program. If there are still non-
terminal variables that need to be expanded once the codon 
has been processed, the process begins at the beginning of the 
codon again with the first allele. The construction of the parse 
tree ends when all non-terminals have been expanded. In order 
to prevent cyclic calls to non-terminals, a limit is set on the 
number of times a non-terminal can be called in the program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Regeneration 
The crossover and mutation operators are used for 

regeneration.  The crossover operator is essentially the same 
crossover operator defined for OOGP, but is applied to bits in 
the codon instead of parse trees. The external crossover 
operators swap bits between parents if the probability for the 
bit is less than the preset probability. As in the case of OOGP 
internal crossover is only applied if the random number 
generated is less than the preset probability. Internal crossover 
is essentially one-point crossover [16].  A crossover point is 
chosen in the parents and codons are crossed over at that point 
to produce two offspring.  As in the case of OOGP the fitter of 
the two offspring is returned as the result of the operation. 

The mutation operator is applied to the offspring created 
by crossover. A mutation probability and bit flip probability is 
set for mutation. The values of these parameters are problem 
dependent. A random number between 1 and 100 is generated. 
If this value is less than the mutation probability, mutation is 
performed. A random number between 1 and 100 is generated 
for each bit in the codon. If this number is less than the bit flip 
probability the bit is flipped, i.e. if the bit is 0 it becomes 1 and 
vice versa. 

IV. EXPERIMENTAL SETUP 
This section describes the experimental setup for testing 

OOGP, GOOGP and GE in algorithm induction for automatic 
programming. The first section describes the problem domain 
that the approaches were tested on.  Section B presents the 
parameter values used for the approaches and section C 
technical specifications. 

A. Problem Domain 
Data structure algorithm induction was used to evaluate 

the approaches.  Each of the approaches was tested on the 
simultaneous evolution of methods for the stack and queue 
data structures. Table 2 lists the methods that need to be 
induced for the array-based stack ADT and Table 3 those for 
the array-based queue ADT as defined in [9]. 

B. Parameter Values for Approaches 
The function and terminal sets used for the stack and 

queue ADTs are listed in Table 4. The parameter values used 
for OOGP, GOOGP and GE were obtained empirically by 
performing trial runs. These are listed in Table 5 for GP and 
Table 6 for GE. Various values were tested for each of the 
parameters and those performing the best were selected. Due 
to the stochastic nature of the approaches tested, 30 runs, each 
with a different random number generator seed, was 
performed for the stack and queue ADTs.   

Chromosome 

00001111 00000101 01000001 

00000101 00010001 11111110 

01000001 00001001 00000110 

01011101 00000010  00000101 

Fig. 3. Example of a chromosome 

< stmts > ∷ = < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >; < stmts >; | < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >; 

< 𝑣𝑣𝑣𝑣𝑣𝑣 > | < 𝑣𝑣𝑣𝑣𝑣𝑣 > 
< 𝑣𝑣𝑣𝑣𝑣𝑣 >∷ =  0 | 1  | 𝑁𝑁 | 𝑎𝑎𝑎𝑎𝑎𝑎 

 

< 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >∷ = < 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ( 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) >| < read ( expr)   > 
|< 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎  (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) > |< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 

< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 >∷ =   < + >< 𝑣𝑣𝑣𝑣𝑣𝑣 >< 𝑣𝑣𝑣𝑣𝑣𝑣 >  |  < −>< 𝑣𝑣𝑣𝑣𝑣𝑣 > 

 
Fig. 4. Grammar for the Stack class 



TABLE 2. METHODS FOR THE STACK ADT 
Methods Function 

makeNull() Sets the pointer to the stack to -1.  
The return value is ignored.  

push() Push an integer onto the stack. Return 
value is ignored. 

peek() Returns the topmost value on the stack. 

pop() Returns the topmost value in the stack, 
removes the value from the stack and 
decrements the aux by 1.  

empty() Returns an integer less than zero if the 
stack is empty, otherwise it returns an 
integer greater or equal to zero. 

 
TABLE 3. METHODS FOR THE QUEUE ADT 

Methods Function 
makeNull() Sets the pointer to the stack to -1.  

The return value is ignored.  

enqueue() Enqueue an integer. Return value is ignored. 

front() Returns the value in the front of the queue. 

dequeue() Returns the value in the front of the queue, 
removes the value from the queue and 
decrements the pointer by 1.  

empty() Returns an integer less than zero if the queue 
is empty, otherwise it returns an integer 
greater or equal to zero 

 
TABLE 4. FUNCTION AND TERMINAL SET 

Data 
Structure 

Function Set Terminal Set 

Stack +, -, *, /, if, >=, <=, ==, !=, 
block2, block3, write, read, 
set_aux 

i (integer to push on 
stack), 0, 1, aux 

Queue +, -, *, /, if, >=, <=, ==, !=, 
fblockn, write, read, for, 
set_aux, dec_aux 

i (integer to enqueue), 
0, 1, aux 

 
TABLE 5.  PARAMETER VALUES FOR OOGP AND GOOGP 

Parameter Stack Queue 
Population size  100 500 
Maximum depth range 3-5 3-5 
Tournament Size  2 2 
External crossover probability 50 50 
Internal crossover probability 50 50 
Maximum offspring depth range 4-10 4-10 

Number of Generations  50 50 
Population size (n) for GOOGP 500 500 

 
TABLE 6.  PARAMETER VALUES FOR GE 

Parameter Stack Queue 
Population size  500 500 
Codon length 10 10 
Allelle length 8 8 
Tournament size  4 4 
Mutation probability 30 40 
 Bit flip probability 70 70 
External crossover probability 50 80 
Internal crossover probability 70 50 
Number of Generations  100 100 

C. Technical Specifications 
The system was implemented in Java using Netbeans IDE 

7.2.1 with JDK 1.7.2_25.  Simulations were run on an Intel 
Core 3.1GHz machine with 8192 MB of RAM. 

V. RESULTS AND DISCUSSION 
This section discusses the performance of OOGP, GOOGP 

and GE in inducing methods for the stack and queue ADTs. 
The performance of the approaches is evaluated in terms of 
their ability in evolving solution methods for each ADT. This 
is reported as a success rate.  Thirty runs have been performed 
for each approach for each ADT. The success rate is the 
number of the 30 runs that have produced a chromosome with 
solution algorithms for all methods of the class. Table 7,  
Table 8 and Table 9 lists the success rate, average fitness and 
the average runtimes (in milliseconds) for each of the 
approaches for both the ADTs.  The best fitness that can be 
obtained is 225. For 29 of the 30 runs conducted for both GE 
and GOOGP solution chromosomes were found with a fitness 
of 225 for the stack ADT. OOGP did not perform as well, 
producing a solution chromosome on only one of the runs with 
an average fitness of 197.47 over the 30 runs for the stack 
ADT. GE was able to produce solutions quicker than GOOGP 
with lower average runtimes. Hypothesis tests were conducted 
to test statistical significance of these results. Three 
hypotheses were tested: 

• Hypothesis 1: GOOGP performs better than OOGP. 

• Hypothesis 2: GE performs better than OOGP. 

• Hypothesis 3: Runtimes of GE are better than GOOGP. 

The hypotheses were tested at 5%, 10% and 15% levels of 
significance and were found to be significant at all levels. The 
Z values are listed in Table 10.  

GE performs better than both GOOGP and OOGP in 
evolving the queue data structure. GE finds solution 
chromosomes on all 30 runs, while GOOGP finds solutions on 
24 of the 30 runs and OOGP was not able to find a solution 
chromosome.  

TABLE 7. SUCCESS RATES 
ADT OOGP GOOGP GE 
Stack 1 29 29 
Queue 0 24 30 
 

TABLE 8. AVERAGE FITNESS 
ADT OOGP GOOGP GE 
Stack 197.47 224.50 224.57 
Queue 195.37 222.4 225 
 

TABLE 9. RUNTIMES 
ADT OOGP GOOGP GE 
Stack 1623 16326 4287 
Queue 21501.33 157874.33 7127.87 

 
TABLE 10. Z-VALUES FOR HYPOTHESIS TESTS: STACK ADT 

Hypothesis Z-Value 
Hypothesis 1 13.81 
Hypothesis 2 13.96 
Hypothesis 3 15.42 



Hypothesis tests were conducted to test the statistical 
significance of these results. The hypotheses tested is that GE 
performs better than OOGP and GE performs better than 
GOOGP in evolving the queue data structure. The hypotheses 
were found to be significant at all levels of significance with Z 
values of 2.72 and 21.84 respectively. 

GOOGP and GE have performed comparatively to the 
OOGP approaches employed by Bruce [8] and Langdon [9] in 
evolving the stack data structure with GE outperforming GP. 
In [8] 20 runs were performed and one solution that correctly 
induced all the five methods in the stack class was found. In 
[9] 4 solution chromosomes were found on the 60 runs 
performed for the stack class. Similar performance was 
attained for the evolution of the queue data structure. A 
chromosome that could evolve all queue methods correctly 
could not be found by the OOGP employed in [8]. It was 
however reported that 2 of the generated individuals correctly 
induced 3 of the 5 required methods. In [9] the OOGP 
approach found a solution on one of the 379 runs performed. 

Fig. 5 illustrates one of the solutions found for the stack 
ADT using OOGP. This is a push down stack which 
increments the stack pointer when an element is pushed onto 
the stack and decrements the pointer when an element is 
popped. Introns are redundant code which genetic 
programming is known to generate as part of solution 
programs [2]. The introns have been removed from the 
solution programs displayed in Fig. 5 to improve the 
readability of programs. The named memory location aux is 
used as a stack pointer. The solution for the makeNull method 
sets the stack pointer to -1. The evolved method for push 
firstly increments the stack pointer by 1 and then writes the 
element i to the position in indexed memory pointed to by the 
stack pointer. The set_aux operator evaluates to zero so the 
method returns the value pushed onto the stack. The method 
evolved for peek reads the value currently pointed to by the 
stack pointer. The pop method firstly reads the value in 
memory indexed by the stack pointer and then decrements the 
stack pointer by 1.  The empty method returns the value of the 
stack pointer, if this value is negative it means the stack is 
empty. 

An example of an evolved queue ADT evolved by GE is 
depicted in Fig 6. As in the case of the stack solution in Fig. 5, 
the named memory location aux is used as a queue pointer to 
the queue which is stored in indexed memory.  

Method Solution 
makeNull() set_aux(0-1) 
push() set_aux(1+aux) + write(i,aux) 
peek() read(aux) 
pop() read(aux) + set_aux(aux -1) 
empty() aux 

Fig. 5. Stack solution evolved by OOGP 
 

Method Solution 
makeNull() set_aux(0-1) 
enqueue() set_aux(1+aux)  write(i,aux) 
front() read(0) 
dequeue() for(aux, dec_aux, write(lvar5,cvar5) ) 
empty() aux 

Fig. 6. Queue solution evolved by GE 

The makeNull method sets the queue pointer to -1 to 
indicate that the queue is empty. The evolved enqueue method 
firstly increments the queue pointer.  The integer value is then 
written to the memory location pointed to by the queue 
pointer. The front method reads the element stored at index 0 
in the indexed memory.  The dequeue method uses the for 
operator to achieve its aim. The first argument of the for 
operator is the queue pointer stored in aux. The second 
argument decrements the queue pointer by 1 and returns a 
value of zero. The for operator implemented in this study 
maintains a counter variable (cvar) and an iteration variable 
(ivar) for each for operator instance [15]. The counter variable 
stores the counter value for the iteration.  For example if a for 
loop beings at 1 and ends at 3, then the value of cvar will be 1, 
2 and 3 respectively on each iteration. The iteration value 
stores what the body has evaluated to on the last iteration.  The 
iteration variable is given an initial value of 0.  

VI. CONCLUSION AND FUTURE WORK 
The aim of this study was to compare the performance of 

object-oriented genetic programming and grammatical 
evolution for the automatic induction of algorithms. Three 
approaches, namely, object-oriented genetic programming 
(OOGP), object-oriented genetic programming using a greedy 
method to create the initial population (GOOGP) and 
grammatical evolution (GE) were implemented to evolve the 
stack and queue data structures.  Grammatical evolution was 
found to perform better than both GOOGP and OOGP in the 
simultaneous induction of algorithms with lower runtimes than 
GOOGP. GOOGP produced much better results than OOGP.  
GE and GOOGP were also found to perform better than 
previous OOGP approaches evaluated for the evolution of the 
stack and queue data structures. Future work will include a 
further analysis of the results to identify the theoretical 
justification for the performance of the three approaches. The 
application of GE to additional automatic object-oriented 
programming problems, including the evolution of programs 
that use instances of classes, will also be investigated as future 
extensions of this work.  
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