
A Comparative Study of Genetic Programming and
Grammatical Evolution for Evolving Data Structures

Kevin Igwe
School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal
Pietermaritzburg, South Africa

igwekevin@gmail.com

Nelishia Pillay
School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal
Pietermaritzburg, South Africa

pillayn32@ukzn.ac.za

Abstract—The research presented in the paper forms part of
a larger initiative aimed at automatic algorithm induction using
machine learning. This paper compares the performance of two
machine learning techniques, namely, genetic programming and
a variation of genetic programming, grammatical evolution, for
automatic algorithm induction. The application domain used to
evaluate both the approaches is the induction of data structure
algorithms. Genetic programming is an evolutionary algorithm
that searches a program space for an algorithm/program which
when executed will provide a solution to the problem at hand.
Grammatical evolution is a variation of genetic programming
which provides a more flexible encoding, thereby eliminating the
sufficiency and closure requirement imposed by genetic
programming. The paper firstly extends previous work on
genetic programming for evolving data structures, providing an
alternative genetic programming solution to the problem. A
grammatical evolution solution to the problem is then presented.
This is the first application of grammatical evolution to this
domain and for the simultaneous induction of algorithms. The
performance of these approaches in inducing algorithms for the
stack and queue data structures are compared.

Keywords—algorithm induction; genetic programming;
grammatical evolution; automatic programming

I. INTRODUCTION
The paper reports on a study that forms part of a project

investigating automatic algorithm induction and design using
machine learning. One of the areas researched as part of this
project is automatic algorithm induction as a means of
automatic programming. Genetic programming, a machine
learning technique for solving optimization problems, appears
to be apt for this purpose. Genetic programming searches a
program space for a program, which when executed will
produce a solution to the problem at hand[1]. Each program is
generally represented as a parse tree. Genetic programming
has been successfully applied to various domains including
data mining, natural language processing, image processing
and electronic circuit design [2].

There have been various attempts at using genetic
programming for automatic programming. In [3] genetic
programming is used to evolve algorithms according to the
imperative programming paradigm, using memory, iteration
and modularization. Algorithms are evolved in an internal
representation language to facilitate language independence
and can be converted into any procedural programming

language. As the field of genetic programming advanced,
researchers started looking to good programming practices to
improve the scalability and problem solving ability of genetic
programming. One such practice is object-oriented
programming which led to the extension of genetic
programming to object-oriented genetic programming
(OOGP) [4-7]. OOGP evolves object-oriented programs. This
work has essentially focused on the induction of algorithms
for method implementation rather than the evolution of classes
and interfaces. Methods for a class are generally evolved
simultaneously.

 OOGP has also been used for purposes of automatic
programming [8-10]. Bruce [8] compares the sequential and
simultaneous induction of methods to evolve object-oriented
programs. Each method is an automatically defined function
[11] and all methods are stored in indexed memory. The
proposed approach for OOGP is evaluated in the domain of
data structure algorithm induction. A similar approach is taken
by Langdon [9]. This study researches the induction of both
methods for classes and programs using instances of the
classes. The approach is also tested for the evolution of data
structure algorithms as well as solution algorithms for
problems requiring the use of the evolved data structures. In
[10] a rule-based expert system is used to induce an object-
oriented design (OOD) from a program specification. The
OOD forms input to a genetic programming component which
evolves the methods for the program sequentially, allowing
function calls between methods.

More recent studies in the area of OOGP include initial
investigations into grammar-based genetic programming for
the evolution of object-oriented programs [12] and a
combination of OOGP and linear genetic programming [13].
Grammatical evolution is a variation of genetic programming
which aims at providing a more flexible encoding of programs
thereby allowing for programs to be generated in any language
[14]. Grammatical evolution (GE) essentially evolves a
population of binary strings which represent programs. The
execution of a program involves converting the binary string
into an integer which is then mapped onto a grammar,
resulting in a production rule of the grammar being executed
[14]. We hypothesize that grammatical evolution has the
potential to contribute to the domain of automatic object
oriented programming. To the authors' knowledge there has
been no previous work into grammatical evolution for object-

Create an initial population
Repeat
 Evaluate the population
 Selection parent
 Apply genetic operators
Until the termination criterion is met

oriented program induction or the simultaneous induction of
algorithms. This study compares both OOGP and GE for the
simultaneous induction of algorithms. The application domain
for evaluation of the proposed approaches is the induction of
algorithms for data structures. This domain has been chosen
as it is a problem that has previously been used for the
evaluation of OOGP performance and has proven to be
suitable to test such approaches. Furthermore, this will also
allow for a comparison of the approaches proposed in this
study to previous methods used for automatic algorithm
induction. Hence the research presented makes the following
contributions:

1. A variation of OOGP, namely, GOOGP which uses a
greedy method to create the initial population.

2. A grammatical evolution solution to automatic object-
oriented programming.

3. An evaluation of GE for simultaneous induction of
algorithms.

4. A comparison of the performance of the three approaches
for automatic object-oriented programming.

The following section presents an OOGP approach for
automatic algorithm induction. Section III proposes a
grammatical evolution solution to the problem. The
experimental setup used to evaluate the performance of both
the approaches is presented in section IV. Section V discusses
the performance of both approaches and provides an empirical
comparison with previous work. A summary of the findings of
this research and future extensions of this work are presented
in section VI.

II. OBJECT ORIENTED GENETIC PROGRAMMING (OOGP)
APPROACH FOR AUTOMATIC PROGRAMMING

This section describes the genetic programming approach
implemented for automatic programming. The generational
genetic programming algorithm in Fig. 1 is used. The
algorithm begins by creating an initial population which is
iteratively refined by means of evaluation, selection and
regeneration until the termination criteria are met. These
processes are described in the following sections. The
algorithm is terminated when a solution chromosome is found
or the maximum number of generations has been reached.

A. Initial Population Generation
As in the studies conducted by Bruce [8] and Langdon [9],

each element of the population, i.e. a chromosome, represents
a class and is comprised of parse trees, one for each method of
the class. Each tree is a gene in the chromosome. The
algorithms are generated by an internal representation
language which is language independent. This allows for the
evolved algorithms to be converted to any programming
language. An example is illustrated in Fig. 2.

The class has three methods. Each chromosome in the

population is indexed memory, with each of the trees, i.e.
genes, stored at an index. The internal representation language
is defined by the function and terminal set. Each parse tree is
created by randomly choosing elements from the function and
terminal sets until a preset maximum depth is reached. The
grow method [1] is used for this purpose. The function set
used for each problem is a subset of the following:

• Arithmetic operators: +, -, *, / which perform the
standard arithmetic operations. The division operator is
a protected operator which returns a value of 1 if the
denominator is 0.

• Conditional operator: if which performs the function
of an if-then-else operator.

• Arithmetic logical operators: ==, !=, <, >, <=, >=
which perform the standard arithmetic logical
operations and are used to create the subtree
representing the condition of the if operator.

• Indexed memory operators: Indexed memory is
maintained which each program can write to or read
from. The write and read operators are used to access
indexed memory. The write operator takes two
arguments, one the content to be written and the second
the index in memory to which it should be written. The
read operator takes a single argument, namely the
index from which the content should be read.

• Named memory operators - A single named memory
location, aux, is maintained which a program can use
as a temporary memory location. Two operators,
set_aux and dec_aux, defined in [9] are used to access
the memory location. The operator set_aux is used to
write to this memory location. It takes one argument,
which is the content to be written to the location. The
operator dec_aux decrements the value in the memory
location by one.

• Multiple statement operators - block2 and block3 are
used to combine programming statements, namely, two
and three statements respectively. Both these operators
return the value that the last argument evaluates to. The
operator fblockn combines n programming statements
but returns the value that the first argument evaluates
to.

• Iteration operator - The for operator defined in [15] is
used to cater for iteration. The operator takes three
arguments. The first two arguments represent the
bounds of the loop and the third argument represents
the body of the loop. The operator evaluates to the
value of the body on the last iteration of the loop.

Fig. 1. Generational genetic programming algorithm

+

+

0

+
-

y x
x

y 1

*
- 2

1X

1 2

Fig. 2. Example of a chromosome

The terminal set is a subset of:

• A named memory location: aux is a single memory
location which can be used for temporary storage and
serves the same function as a variable in programming.

• Variables representing input to the problem, e.g. i
representing the value to be stored in the data structure.

• Constants: 0 and 1.

Two methods are tested for creating the initial population.
The first is the standard approach adopted in genetic
programming where each element of the population is
randomly created. We will refer to the genetic programming
algorithm using the standard approach as OOGP in the
sections that follow. The second is a greedy approach which
creates each chromosome in the population as follows:

• A population of m parse trees is randomly created for
each gene.

• The population is evaluated using the process described
in section B below to determine the fitness of each tree.

• The fittest tree in the population is stored as the gene
for the chromosome.

 The genetic programming algorithm employing the greedy
approach will be referred to as GOOGP. The following section
describes fitness evaluation and selection.

B. Fitness Evaluation and Selection
The fitness is maximized, thus a fitter chromosome is one

with a higher fitness value. For each run 15 fitness cases are
randomly generated. Each fitness case is a stack of length
between 1 and 15. The elements of the stack are integer values
in the range 1 to 99. Each method in the chromosome is
applied to the 15 fitness cases. A set of problem dependent
criteria that must be met by each method is defined and the
method is scored on the number of criteria it has met. An
example of this is listed in Table 1 for the stack data structure.
The class has five methods, namely, makeNull(), peek(),
push(), pop() and empty(). The maximum score that each of
the methods can attain respectively is 1, 4, 4, 3 and 3 giving a
maximum fitness of 15 per fitness case and 225 over all 15
fitness cases. However, when selecting parents the fitness is
calculated relative to the best performing method in the
current population. The best score obtained in the current
population for each of the methods is stored (B1, B2, B3, B4,
B5). The fitness is calculated relative to the best. For example,
suppose that fitness scores for a chromosome are F1 to F5 for
each of the five methods. The fitness of a potential parent is
calculated using the following formula:

Relative Fitness = Σ (Fi/Bi)*100 i=1, ...,no. of methods

Tournament selection [1] is used to then choose the parent.
This selection method chooses a tournament of t chromosomes
from the population and calculates the relative fitness. The
chromosome with the highest relative fitness is returned as a
parent. Selection is with replacement so a chromosome can
play the role of a parent more than once.

TABLE 1. EXAMPLE PROBLEM SPECIFIC CRITERIA FOR FITNESS
EVALUATION

Method Criteria
makeNull() • Stack pointer must be set to -1
peek() • No change in pointer value.

• Elements on stack should not be altered.
• The value returned must be the topmost

element of the stack.
• Only one value must be returned.

push() • Pointer must be updated correctly.
• Elements on the stack should not be altered.
• The pushed value must be at the top of the

stack.
• The value must be pushed on the stack only

once.
pop() • Pointer must be updated correctly

• Elements on the stack should not be altered.
• The correct value must be returned.

empty() • No change in pointer value.
• Elements on the stack should not be altered.
• The correct position of the pointer must be

returned.

C. Regeneration
The crossover operator performs two phases of crossover,

namely, external crossover followed by internal crossover.
External crossover performs uniform crossover used by
genetic algorithms [16]. Two chromosomes are selected using
tournament selection and genes are swapped between the
chromosomes if the randomly generated probability in the
range 1 to 100 is less than the preset probability.

For example suppose that the selected parents are
G11G12G13G14 and G21G22G23G24. Each chromosome is
comprised of four genes. Each gene Gij represents a parse tree.
Given that the preset probability is 60% and the randomly
generated probabilities for each gene are 34%, 75%, 80%,
25% respectively, the resulting offspring are G21G12G13G24
and G11G22G23G14.

Once external crossover is applied a number is randomly
generated in the range 1 to 100 again. If this number is less
than the preset probability of internal crossover (internal
crossover probability) this operator is applied as follows. A
chromosome index is randomly chosen. The standard genetic
programming crossover operator [1] is applied to the parse
trees at the selected index in both parents. This operator
randomly selects crossover points in each of the parse trees,
and the subtrees rooted at these points are swapped. The
resulting trees replace the parents in the chromosomes. The
fitter of the two offspring forms part of the next generation.

III. GRAMMATICAL EVOLUTION APPROACH FOR AUTOMATIC
PROGRAMMING

This section describes the grammatical evolution approach
for automatic programming. The main difference between this
and the OOGP approach is that the each chromosome is a
binary string. The space of binary strings is then mapped onto
an integer space which is in turn mapped onto a grammar
which represents the programming statements. The algorithm
implemented for evolution is the generational algorithm in
Figure 1. The GE approach uses the same termination criteria
and processes as the GP approach for fitness evaluation and

selection described in section II. Initial population generation
and regeneration for the GE are described below.

A. Initial Population Generation
GE requires each element of the population to be

represented as a binary string. In the OOGP approach each
chromosome is represented as indexed memory with each
gene in the memory a parse tree corresponding to a method of
the class. A similar approach is taken in GE. Each
chromosome is again indexed memory, but each gene is a
binary string representing a method of the class. Each binary
string is called a codon and is composed of n alleles of length
m. An example is illustrated in Fig. 3. The chromosome
contains four binary strings, each representing one of four
methods for the class. Each binary string is a codon of length
3, i.e. contains 3 alleles. Each allele is of length 8. Each codon
represents a program. In order to execute the program
represented by each codon, each of the alleles in the codon are
firstly converted to denary. For example, the first codon will
be converted to 15, 5, 65. The denary values are mapped onto
a grammar defining the valid programming statements for the
class. For example the grammar used for inducing the methods
of the stack class are illustrated in Fig. 4. Each denary value is
then mapped to a production rule in the grammar for the
method thereby converting the codon to a parse tree
representing the program. For example suppose that the
grammar start symbol is <stmts> and production rules for
<stmts> are:

<stmts> :: <stmt> (0)

<stmts>:: <stmt>;<stmts> (1)

There are two production rules for the non-terminal
<stmts>. To decide which production rule to apply the
modulus of the denary value and the number of production
rules is taken. This process is continued to convert the codon
into a parse tree representing a program. If there are still non-
terminal variables that need to be expanded once the codon
has been processed, the process begins at the beginning of the
codon again with the first allele. The construction of the parse
tree ends when all non-terminals have been expanded. In order
to prevent cyclic calls to non-terminals, a limit is set on the
number of times a non-terminal can be called in the program.

B. Regeneration
The crossover and mutation operators are used for

regeneration. The crossover operator is essentially the same
crossover operator defined for OOGP, but is applied to bits in
the codon instead of parse trees. The external crossover
operators swap bits between parents if the probability for the
bit is less than the preset probability. As in the case of OOGP
internal crossover is only applied if the random number
generated is less than the preset probability. Internal crossover
is essentially one-point crossover [16]. A crossover point is
chosen in the parents and codons are crossed over at that point
to produce two offspring. As in the case of OOGP the fitter of
the two offspring is returned as the result of the operation.

The mutation operator is applied to the offspring created
by crossover. A mutation probability and bit flip probability is
set for mutation. The values of these parameters are problem
dependent. A random number between 1 and 100 is generated.
If this value is less than the mutation probability, mutation is
performed. A random number between 1 and 100 is generated
for each bit in the codon. If this number is less than the bit flip
probability the bit is flipped, i.e. if the bit is 0 it becomes 1 and
vice versa.

IV. EXPERIMENTAL SETUP
This section describes the experimental setup for testing

OOGP, GOOGP and GE in algorithm induction for automatic
programming. The first section describes the problem domain
that the approaches were tested on. Section B presents the
parameter values used for the approaches and section C
technical specifications.

A. Problem Domain
Data structure algorithm induction was used to evaluate

the approaches. Each of the approaches was tested on the
simultaneous evolution of methods for the stack and queue
data structures. Table 2 lists the methods that need to be
induced for the array-based stack ADT and Table 3 those for
the array-based queue ADT as defined in [9].

B. Parameter Values for Approaches
The function and terminal sets used for the stack and

queue ADTs are listed in Table 4. The parameter values used
for OOGP, GOOGP and GE were obtained empirically by
performing trial runs. These are listed in Table 5 for GP and
Table 6 for GE. Various values were tested for each of the
parameters and those performing the best were selected. Due
to the stochastic nature of the approaches tested, 30 runs, each
with a different random number generator seed, was
performed for the stack and queue ADTs.

Chromosome

00001111 00000101 01000001

00000101 00010001 11111110

01000001 00001001 00000110

01011101 00000010 00000101

Fig. 3. Example of a chromosome

< stmts > ∷ = < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >; < stmts >; | < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >;

< 𝑣𝑣𝑣𝑣𝑣𝑣 > | < 𝑣𝑣𝑣𝑣𝑣𝑣 >
< 𝑣𝑣𝑣𝑣𝑣𝑣 >∷ = 0 | 1 | 𝑁𝑁 | 𝑎𝑎𝑎𝑎𝑎𝑎

< 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >∷ = < 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) >| < read (expr) >
|< 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) > |< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 >

< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 >∷ = < + >< 𝑣𝑣𝑣𝑣𝑣𝑣 >< 𝑣𝑣𝑣𝑣𝑣𝑣 > | < −>< 𝑣𝑣𝑣𝑣𝑣𝑣 >

Fig. 4. Grammar for the Stack class

TABLE 2. METHODS FOR THE STACK ADT
Methods Function

makeNull() Sets the pointer to the stack to -1.
The return value is ignored.

push() Push an integer onto the stack. Return
value is ignored.

peek() Returns the topmost value on the stack.

pop() Returns the topmost value in the stack,
removes the value from the stack and
decrements the aux by 1.

empty() Returns an integer less than zero if the
stack is empty, otherwise it returns an
integer greater or equal to zero.

TABLE 3. METHODS FOR THE QUEUE ADT

Methods Function
makeNull() Sets the pointer to the stack to -1.

The return value is ignored.

enqueue() Enqueue an integer. Return value is ignored.

front() Returns the value in the front of the queue.

dequeue() Returns the value in the front of the queue,
removes the value from the queue and
decrements the pointer by 1.

empty() Returns an integer less than zero if the queue
is empty, otherwise it returns an integer
greater or equal to zero

TABLE 4. FUNCTION AND TERMINAL SET

Data
Structure

Function Set Terminal Set

Stack +, -, *, /, if, >=, <=, ==, !=,
block2, block3, write, read,
set_aux

i (integer to push on
stack), 0, 1, aux

Queue +, -, *, /, if, >=, <=, ==, !=,
fblockn, write, read, for,
set_aux, dec_aux

i (integer to enqueue),
0, 1, aux

TABLE 5. PARAMETER VALUES FOR OOGP AND GOOGP

Parameter Stack Queue
Population size 100 500
Maximum depth range 3-5 3-5
Tournament Size 2 2
External crossover probability 50 50
Internal crossover probability 50 50
Maximum offspring depth range 4-10 4-10

Number of Generations 50 50
Population size (n) for GOOGP 500 500

TABLE 6. PARAMETER VALUES FOR GE

Parameter Stack Queue
Population size 500 500
Codon length 10 10
Allelle length 8 8
Tournament size 4 4
Mutation probability 30 40
 Bit flip probability 70 70
External crossover probability 50 80
Internal crossover probability 70 50
Number of Generations 100 100

C. Technical Specifications
The system was implemented in Java using Netbeans IDE

7.2.1 with JDK 1.7.2_25. Simulations were run on an Intel
Core 3.1GHz machine with 8192 MB of RAM.

V. RESULTS AND DISCUSSION
This section discusses the performance of OOGP, GOOGP

and GE in inducing methods for the stack and queue ADTs.
The performance of the approaches is evaluated in terms of
their ability in evolving solution methods for each ADT. This
is reported as a success rate. Thirty runs have been performed
for each approach for each ADT. The success rate is the
number of the 30 runs that have produced a chromosome with
solution algorithms for all methods of the class. Table 7,
Table 8 and Table 9 lists the success rate, average fitness and
the average runtimes (in milliseconds) for each of the
approaches for both the ADTs. The best fitness that can be
obtained is 225. For 29 of the 30 runs conducted for both GE
and GOOGP solution chromosomes were found with a fitness
of 225 for the stack ADT. OOGP did not perform as well,
producing a solution chromosome on only one of the runs with
an average fitness of 197.47 over the 30 runs for the stack
ADT. GE was able to produce solutions quicker than GOOGP
with lower average runtimes. Hypothesis tests were conducted
to test statistical significance of these results. Three
hypotheses were tested:

• Hypothesis 1: GOOGP performs better than OOGP.

• Hypothesis 2: GE performs better than OOGP.

• Hypothesis 3: Runtimes of GE are better than GOOGP.

The hypotheses were tested at 5%, 10% and 15% levels of
significance and were found to be significant at all levels. The
Z values are listed in Table 10.

GE performs better than both GOOGP and OOGP in
evolving the queue data structure. GE finds solution
chromosomes on all 30 runs, while GOOGP finds solutions on
24 of the 30 runs and OOGP was not able to find a solution
chromosome.

TABLE 7. SUCCESS RATES
ADT OOGP GOOGP GE
Stack 1 29 29
Queue 0 24 30

TABLE 8. AVERAGE FITNESS
ADT OOGP GOOGP GE
Stack 197.47 224.50 224.57
Queue 195.37 222.4 225

TABLE 9. RUNTIMES
ADT OOGP GOOGP GE
Stack 1623 16326 4287
Queue 21501.33 157874.33 7127.87

TABLE 10. Z-VALUES FOR HYPOTHESIS TESTS: STACK ADT

Hypothesis Z-Value
Hypothesis 1 13.81
Hypothesis 2 13.96
Hypothesis 3 15.42

Hypothesis tests were conducted to test the statistical
significance of these results. The hypotheses tested is that GE
performs better than OOGP and GE performs better than
GOOGP in evolving the queue data structure. The hypotheses
were found to be significant at all levels of significance with Z
values of 2.72 and 21.84 respectively.

GOOGP and GE have performed comparatively to the
OOGP approaches employed by Bruce [8] and Langdon [9] in
evolving the stack data structure with GE outperforming GP.
In [8] 20 runs were performed and one solution that correctly
induced all the five methods in the stack class was found. In
[9] 4 solution chromosomes were found on the 60 runs
performed for the stack class. Similar performance was
attained for the evolution of the queue data structure. A
chromosome that could evolve all queue methods correctly
could not be found by the OOGP employed in [8]. It was
however reported that 2 of the generated individuals correctly
induced 3 of the 5 required methods. In [9] the OOGP
approach found a solution on one of the 379 runs performed.

Fig. 5 illustrates one of the solutions found for the stack
ADT using OOGP. This is a push down stack which
increments the stack pointer when an element is pushed onto
the stack and decrements the pointer when an element is
popped. Introns are redundant code which genetic
programming is known to generate as part of solution
programs [2]. The introns have been removed from the
solution programs displayed in Fig. 5 to improve the
readability of programs. The named memory location aux is
used as a stack pointer. The solution for the makeNull method
sets the stack pointer to -1. The evolved method for push
firstly increments the stack pointer by 1 and then writes the
element i to the position in indexed memory pointed to by the
stack pointer. The set_aux operator evaluates to zero so the
method returns the value pushed onto the stack. The method
evolved for peek reads the value currently pointed to by the
stack pointer. The pop method firstly reads the value in
memory indexed by the stack pointer and then decrements the
stack pointer by 1. The empty method returns the value of the
stack pointer, if this value is negative it means the stack is
empty.

An example of an evolved queue ADT evolved by GE is
depicted in Fig 6. As in the case of the stack solution in Fig. 5,
the named memory location aux is used as a queue pointer to
the queue which is stored in indexed memory.

Method Solution
makeNull() set_aux(0-1)
push() set_aux(1+aux) + write(i,aux)
peek() read(aux)
pop() read(aux) + set_aux(aux -1)
empty() aux

Fig. 5. Stack solution evolved by OOGP

Method Solution
makeNull() set_aux(0-1)
enqueue() set_aux(1+aux) write(i,aux)
front() read(0)
dequeue() for(aux, dec_aux, write(lvar5,cvar5))
empty() aux

Fig. 6. Queue solution evolved by GE

The makeNull method sets the queue pointer to -1 to
indicate that the queue is empty. The evolved enqueue method
firstly increments the queue pointer. The integer value is then
written to the memory location pointed to by the queue
pointer. The front method reads the element stored at index 0
in the indexed memory. The dequeue method uses the for
operator to achieve its aim. The first argument of the for
operator is the queue pointer stored in aux. The second
argument decrements the queue pointer by 1 and returns a
value of zero. The for operator implemented in this study
maintains a counter variable (cvar) and an iteration variable
(ivar) for each for operator instance [15]. The counter variable
stores the counter value for the iteration. For example if a for
loop beings at 1 and ends at 3, then the value of cvar will be 1,
2 and 3 respectively on each iteration. The iteration value
stores what the body has evaluated to on the last iteration. The
iteration variable is given an initial value of 0.

VI. CONCLUSION AND FUTURE WORK
The aim of this study was to compare the performance of

object-oriented genetic programming and grammatical
evolution for the automatic induction of algorithms. Three
approaches, namely, object-oriented genetic programming
(OOGP), object-oriented genetic programming using a greedy
method to create the initial population (GOOGP) and
grammatical evolution (GE) were implemented to evolve the
stack and queue data structures. Grammatical evolution was
found to perform better than both GOOGP and OOGP in the
simultaneous induction of algorithms with lower runtimes than
GOOGP. GOOGP produced much better results than OOGP.
GE and GOOGP were also found to perform better than
previous OOGP approaches evaluated for the evolution of the
stack and queue data structures. Future work will include a
further analysis of the results to identify the theoretical
justification for the performance of the three approaches. The
application of GE to additional automatic object-oriented
programming problems, including the evolution of programs
that use instances of classes, will also be investigated as future
extensions of this work.

ACKNOWLEDGMENT
This work is based on the research supported in part by the

National Research Foundation of South Africa for the Grant
CSUR13091742778. Any opinion, finding and conclusion or
recommendation expressed in this material is that of the
author(s) and the NRF does not accept any liability in this
regard.

REFERENCES
[1] J. R. Koza, Genetic Programming I : On the Programming of Computers

by Means of Natural Selection - John R. Koza, MIT Press, 1992.
[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic

Programming - AnIntroduction - On the Automatic Evolution of
Computer Programs and Its Applications, Morgan Kaufmann Publishers,
Inc., 1998.

[3] K. Igwe and N. Pillay, “Automatic Programming Using Genetic
Programming,” in Proceedings of the World Congress on Information
and Communication Technologies., Hanoi, Vietnam., pp. 339 – 344,
December 2013.

[4] R. Abbott, “Object-oriented GeneticPprogramming, An Initial
Implementation,” in proceedings of the International Conference on

Machine Learning: Models, Technologies and Applications, pp. 26-30,
2003.

[5] S. M. Lucas, “Exploiting Reflection in Object Oriented Genetic
Programming,” in Genetic Programming, Lecture Notes in Computer
Science, Vol. 3003, Springer, pp. 369–378, 2004.

[6] A. Agapitos and S. M. Lucas, “Learning Recursive Functions with
Object Oriented Genetic Programming,” in Genetic Programming,
Lecture Notes in Computer Science, Vol. 3905, Springer, pp. 166–177,
2006.

[7] A. Agapitos and S. M. Lucas, “Evolving Modular Recursive Sorting
Algorithms,” in Genetic Programming, Lecture Notes in Computer
Science, Vol. 4445, Springer, pp. 301–310, 2007.

[8] W. S. Bruce, “The Application of Genetic Programming to the
Automatic Generation of Object-Oriented Programs,” Phd Thesis, Nova
Southeastern University, 1995.

[9] W. B. Langdon, Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Kluwer
Academic Publishers, 1998.

[10] N. Pillay and C. K. Chalmers, “A Hybrid Approach to Automatic
Programming for the Object-Oriented Programming Paradigm,” in
proceedings of the 2007 conference of the South African Institute of
Computer Scientists and Information Technologists, pp. 116–124, 2007.

[11] J. R. Koza, Genetic Programming II, Automatic Discovery of Reusable
Programs, MIT Press, 1994.

[12] Y. Oppacher, F. Oppacher, and D. Deugo, “Evolving Java Objects Using
a Grammar-Based approach,” in proceedings of the conference on
Genetic and Evolutionary Computation (GECCO 2009), pp. 1891–1892,
2009.

[13] M. R. Medland, K. R. Harrison, and B. Ombuki-Berman, “Incorporating
Expert Knowledge in Object-Oriented Genetic Programming,” in
proceedings of the conference on Genetic and Evolutionary
Computation (GECCO 2014), pp. 145–146, 2014.

[14] M. O'Neil and C. Ryan, Grammatical Evolution, Evolutionary
Automatic Programming in an Arbitrary Language, Kluwer Academic
Publishers, 2003.

[15] N. Pillay, “Evolving Solutions to ASCII Graphics Programming
Problems in Intelligent Programming Tutors,” in proceedings of the
International Conference on Applied Artificial Intelligence
(ICAAI’2003), pp. 236–243, 2003,.

[16] D. Goldberg D, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Longman Publishing Company,
1989.

	Introduction
	object oriented genetic programming (OOGP) approach for automatic programming
	Initial Population Generation
	Fitness Evaluation and Selection
	Regeneration

	grammatical evolution approach for automatic programming
	Initial Population Generation
	Regeneration

	experimental setup
	Problem Domain
	Parameter Values for Approaches
	Technical Specifications

	results and discussion
	conclusion and future work
	Acknowledgment
	References

