Skip to main content
Log in

Evolutionary Synthesis of Stochastic Gene Network Models Using Feature-based Search Spaces

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise and/or stochastic behaviour. This paper explores a fitness measure determined from a set of statistical features characterizing the time series’ sequence of values, rather than the actual values themselves. Through a series of experiments involving modular gene regulatory network models based on the stochastic π-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando S., Sakamoto E., Iba H.: modeling and inference of gene network”. Information Sciences 145(3-4), 237–259 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bar-Joseph Z.: “Analyzing time series gene expression data”. Bioinformatics 20(16), 2493–2503 (2004)

    Article  Google Scholar 

  3. Blossey, R. and Cardelli, L. and Phillips, A.,“A Compositional Approach to the Stochastic Dynamics of Gene Networks,” Transactions on Computational Systems Biology IV, LNCS 3939, Springer Berlin/Heidelberg, pp. 99–122, 2006.

  4. Blossey R., Cardelli L., Phillips A.: “Compositionality, Stochasticity and Cooperativity in Dynamic Models of Gene Regulation”. HFSP Journal 2(1), 17–28 (2008)

    Article  Google Scholar 

  5. Borrelli A., De Falco I., Della Cioppa A., Nicodemi M., Trautteura G.: “Performance of genetic programming to extract the trend in noisy data series”. Physica A: Statistical and Theoretical Physics 370(1), 104–108 (2006)

    Article  Google Scholar 

  6. Cardelli, L., “Abstract Machines of Systems Biology,” Transactions on Computational Systems Biology III, LNCS 3737, Springer, pp. 145–168, 2005.

  7. Cho D.-Y., Cho K.-H., Zhang B.-T.: “Identification of biochemical networks by S-tree based genetic programming”. Bioinformatics 22(13), 1631–1640 (2006)

    Article  Google Scholar 

  8. Chu, D., “Evolving Genetic Regulatory Networks for Systems Biology,” 2007 IEEE Congress on Evolutionary Computation (Srinivasan, D. and Wang, L. eds.), IEEE Press, pp. 875–882, 2007.

  9. Dellaert, F. and Polzin, T. and Waibel, A., “Recognizing emotion in speech,” in Proc. of 4th International Conference on Spoken Language Processing, ICSLP 96, IEEE, pp. 1970–1973, 1996.

  10. Drennan, B. and Beer, R. D., “Evolution of repressilators using a biologically-motivated model of gene expression,” Artificial Life X : Proc. of the Tenth International Conference on the Simulation and Synthesis of Living Systems, The MIT Press (Bradford Books), pp. 22–27, 2006.

  11. Elowitz M.B., Levine A.J., Siggia E.D., Swain P.S.: “Stochastic Gene Expression in a Single Cell”. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  12. Elowitz M.B., Leibler S.: “A synthetic oscillatory network of transcriptional regulators”. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  13. Fisher J., Henzinger T.A.: “Executable cell biology”. Nature Biotechnology 25(11), 1239–1249 (2007)

    Article  Google Scholar 

  14. François P., Hakim V.: “Design of genetic networks with specified functions by evolution in silico”. Proc. of the National Academy of Science 101, 580–585 (2004)

    Article  Google Scholar 

  15. Gagné C., Parizeau M.: “Genericity in Evolutionary Computation Software Tools: Principles and Case-study”. International Journal on Artificial Intelligence Tools 15(2), 173–194 (2006)

    Article  Google Scholar 

  16. Gillespie D.T.: “Exact stochastic simulation of coupled chemical reactions”. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  17. Guet C.C., Elowitz M.B., Hsing W., Leibler S.: “Combinatorial Synthesis of Genetic Networks”. Science 296(5572), 1466–1470 (2002)

    Article  Google Scholar 

  18. Hinchliffe M.P., Willis M.J.: “Dynamic systems modelling using genetic programming”. Computers & Chemical Engineering 27(12), 1841–1854 (2003)

    Article  Google Scholar 

  19. Imada, J., “Evolutionary Synthesis of Stochastic Gene Network Models using Feature-based Search Spaces,” MSc thesis, Brock University, Canada, 2009. http://www.cosc.brocku.ca/files/downloads/research/cs0910.pdf

  20. Imada, J. H. and Ross, B. J., “Using feature-based fitness evaluation in symbolic regression with added noise,” GECCO ’08: Proc. of the 2008 GECCO conference companion on genetic and evolutionary computation, ACM, pp. 2153–2158, 2008.

  21. Jin Y., Branke J.: “Evolutionary optimization in uncertain environments-a survey”. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  22. Jin, Y. and Sendhoff, B., “Evolving in silico Bistable and Oscillatory Dynamics for Gene Regulatory Network Motifs,” in 2008 IEEE World Congress on Computational Intelligence (Wang, J. ed.), IEEE Press, pp. 386–391, 2008.

  23. Kadous, M.W., “Learning comprehensible descriptions of multivariate time series,” in Proc. of the 16th International Conference on Machine Learning, Morgan Kaufmann, pp. 454–463, 1999.

  24. Kikuchi S., Tominaga D., Arita M., Takahashi K., Tomita M.: “Dynamic modeling of genetic networks using genetic algorithm and S-system”. Bioinformatics 19(5), 643–650 (2003)

    Article  Google Scholar 

  25. Kitagawa, J. and Iba, H., “Identifying metabolic pathways and gene regulation networks with evolutionary algorithms,” in Evolutionary Computing in Bioinformatics (Fogel, G. B. and Corne, D.W.), Morgan Kaufmann, pp. 255–278, 2002.

  26. Koza, J. R., Mydlowec, W., Guido Lanza, G., Yu, J. and Keane, M. A., “Automatic Computational Discovery of Chemical Reaction Networks Using Genetic Programming,” in Computational Discovery of Scientific Knowledge (Dzeroski, S. and Todorovski, L. eds.), LNCS 4660, Springer, pp. 205–227, 2007.

  27. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press, 1992.

  28. Larrañaga P., Calvo B., Santana R., Bielza C., Galdiano J., Inza I., Lozano J.A., Armañanzas R., Santafé G., Martínez A.P., Robles V.: “Machine learning in bioinformatics”. Briefings in Bioinformatics 7(1), 86–112 (2006)

    Article  Google Scholar 

  29. Leier, A. and Kuo, P. D., Banzhaf, W. and Burrage, K., “Evolving Noisy Oscillatory Dynamics in Genetic Regulatory Networks,” in Proc. of the 9th European Conference on Genetic Programming (Collet, P., Tomassini, M., Ebner, M., Gustafson, S. and Ekárt, A. eds.), LNCS 3905, Springer, pp. 290–299, 2006.

  30. Leier, A. and Burrage, K.,“Evolving genetic regulatory networks performing as stochastic switches,” Artificial Intelligence and Simulation of Behaviour (AISB) Conference 2006: Adaptation in Artificial and Biological Systems (Kovacs, T. and Marshall, A. R. eds.), 3, Society for the Study of AI and Simulation of Behaviour, pp. 150–157, 2006.

  31. Lewin, B., Genes IX, Jones and Bartlett, 2008.

  32. Montana D.J.: “Strongly Typed Genetic Programming”. Evolutionary Computation 3(2), 199–230 (1995)

    Article  Google Scholar 

  33. Moore, D. S., The Basic Practice of Statistics (3rd edition), W. H. Freeman and Company, 2004.

  34. Nanopoulos, A., Alcock, R. and Manolopoulos, Y., “Feature-based classification of time-series data,” Information processing and technology, Nova Science Publishers, Inc., pp. 49–61, 2001.

  35. Phillips, A., “The Stochastic Pi Machine (SPiM),” accessed at http://research.microsoft.com/en-us/um/people/aphillip/spim/index.html, 2008.

  36. Poli, R. and Langdon, W. B. and McPhee, N. F., A field guide to genetic programming, published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008.

  37. Qian L., Wang H., Dougherty E.R.: “Inference of Noisy Nonlinear Differential Equation Models for Gene Regulatory Networks Using Genetic Programming and Kalman Filtering”. IEEE Transactions on Signal Processing 56(7), 3327–3339 (2008)

    Article  MathSciNet  Google Scholar 

  38. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, http://www.R-project.org, ver. 2.5.1, 2007.

  39. Raj A., van Oudenaarden A.: “Nature, Nurture, or Chance: Stochastic Gene expression and Its Consequences”. Cell 135(2), 216–226 (2008)

    Article  Google Scholar 

  40. Rodriguez-Vazquez K., Fleming P.J.: “Evolution of mathematical models of chaotic systems based on multiobjective genetic programming”. Knowledge and Information Systems 8(2), 235–256 (2005)

    Article  Google Scholar 

  41. Rodríguez-Vázquez K., Fonseca C.M., Fleming P.J.: “Identifying the Structure of NonLinear Dynamic Systems Using Multiobjective Genetic Programming”. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 34(4), 531–545 (2004)

    Article  Google Scholar 

  42. Ross, B. J., “Using Genetic Programming to Synthesize Monotonic Stochastic Processes,” Computational Intelligence (CI 2007) (Andonie, R. ed.), pp. 71–78, 2007.

  43. Ross, B. J. and Imada, J., “Evolving Stochastic Processes Using Feature Tests and Genetic Programming,” GECCO ’09: Proc. of the 11th Annual conference on genetic and evolutionary computation, ACM, pp. 1059–1066, 2009.

  44. Ross, B. J. and Imada, J., “Using multi-objective genetic programming to synthesize stochastic processes,” Genetic Programming Theory and Practice VII, Genetic and Evolutionary Computation, Springer US, pp. 159–175, 2010.

  45. Sakamoto, E. and Iba, H.,“Inferring a System of Differential Equations for a Gene Regulatory Network by using Genetic Programming,” in Proc. of the 2001 Congress on EvolutionaryComputation CEC2001, IEEE Press, pp. 720–726, 2001.

  46. Schwaerzel, R. and Bylander, T., “Predicting currency exchange rates by genetic programming with trigonometric functions and high-order statistics,” in GECCO ’06: Proc. of the 8th annual conference on Genetic and evolutionary computation (Cattolico, M. ed.), ACM, pp. 955–956, 2006.

  47. Streichert, F., Planatscher, H., Spieth, C., Ulmer, H. and Zell, A., “Comparing Genetic Programming and Evolution Strategies on Inferring Gene Regulatory Networks,” in Genetic and Evolutionary Computation – GECCO-2004, Part I, Springer-Verlag, LNCS 3102, pp. 471–480, 2004.

  48. Tkačik, G. and Bialek, W., “Cell biology: Networks, regulation, pathways,” arXiv/0712.4385, 2007.

  49. Wang X., Smith K., Hyndman R.: “Characteristic-Based Clustering for Time Series Data”. Data Mining and Knowledge Discovery 13(3), 335–364 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Imada.

About this article

Cite this article

Imada, J., Ross, B.J. Evolutionary Synthesis of Stochastic Gene Network Models Using Feature-based Search Spaces. New Gener. Comput. 29, 365–390 (2011). https://doi.org/10.1007/s00354-009-0115-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-009-0115-7

Keywords

Navigation