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This paper introduces a two-stage strategy for multi-class classification problems. The proposed

technique is an advancement of tradition binary decomposition method. In the first stage, the classifiers

are trained for each class versus the remaining classes. A modified fitness value is used to select good

discriminators for the imbalanced data. In the second stage, the classifiers are integrated and treated as

a single chromosome that can classify any of the classes from the dataset. A population of such

classifier-chromosomes is created from good classifiers (for individual classes) of the first phase. This

population is evolved further, with a fitness that combines accuracy and conflicts. The proposed

method encourages the classifier combination with good discrimination among all classes and less

conflicts. The two-stage learning has been tested on several benchmark datasets and results are found

encouraging.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Data classification finds its application in many real world
problems, like fraud detection, face recognition, speech recogni-
tion and knowledge extraction from databases. The field of data
classification is receiving increased importance due to unpredict-
ability and complexity of real-world data. Evolutionary algorithms
have shown evident performance for classification tasks. Genetic
Programming (GP) is one of the evolutionary algorithms intro-
duced by Koza [1] for automatic evolution of computer programs
(including classifiers). GP has been successfully used for evolution
of classifier-programs like decision trees [2]. Other GP based
classification approaches include evolution of neural networks
[3–5], autonomous classification systems [6], rule induction algo-
rithms [7], fuzzy rule based systems and fuzzy petri nets [5,8].
Most of these methods involve defining a grammar that is used to
create and evolve classification algorithms using GP.

Various researchers [9–13] have used GP for evolution of
classification rules. The rule based systems include, atomic repre-
sentations proposed by Eggermont [14,15] and SQL based repre-
sentations proposed by Freitas et al. [12]. Tunsel and Jamshidi
[16], Berlanga et al. [17] and Mendes et al. [18] introduced
evolution of fuzzy rules using GP. Chien et al. [19] used fuzzy
discrimination function for classification. Falco et al. [20] discov-
ered comprehensive classification rules that use continuous value
attributes. Bozarczuk et al. [21,22] used different set of functions
applicable to different type of attributes that represent rules as
ll rights reserved.
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disjunctive normal form. This type of GP is also referred as
constrained syntax GP. Tsakonas et al. [23] introduced two GP
based systems for medical domain and achieved noticeable
performance. Lin et al. [24] proposed a layered GP, where different
layers correspond to different populations that perform feature
extraction and classification. Another method is evolution of
arithmetic expressions for classification. The arithmetic expres-
sions can be used for numerical data and they output a real value.
This real value is translated into the classification decision using
different thresholds. This includes static thresholds [25,26],
dynamic thresholds [26,27] and slotted thresholds [28].

Multi-class classification problems are common in the real
world applications for the tasks like object recognition, character
recognition, person recognition, disease diagnosis and several
others. Many classification algorithms are binary in nature and
must be extended for multi-class classification. These include
neural networks, decision trees, k-nearest neighbor, naive Baye’s
classifiers, and support vector machines [29]. GP also needs to be
extended for multiclass classification problems. Several methods
have been presented to use GP for multi-class classification
problems. Most noticeable among them is the one-versus-all
method also known as binary decomposition method. This
method has been used widely in GP based multi-class classifica-
tion. In this method, one classifier is evolved for each class,
discriminating a particular class from other classes present in
the data. The final decision is made by presenting the input vector
to classifiers of all classes. The classifier with positive or highest
output is declared the winner. This method has been explored by
many researchers [30–34]. Another relatively different method
proposed by Muni et al. [35], uses a multi-tree representation,
where a single classifier is an integrated version of individual
ing for multi-class classification using genetic programming,
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classifiers for all classes. This amalgamated classifier is evolved in
search of best classifier that has the ability to classify any of the
class in one evolution.

Several other methods like ‘all versus all’ [36], error correcting
output codes [37], and generalized error correcting output codes
[38] have also been used to tackle multi-class classification
problems by binary classification algorithms. However, none of
them has been used in GP due to the large number of
computations.

The drawback of binary decomposition method is the conflict-
ing situations, where more than one classifier outputs a positive
signal or none of the classifier outputs a belong-to signal. This
situation degrades the classification accuracy. Several conflict
resolution methods have been devised for this problem but they
require extra processing during training and classification step.
Another problem is the presence of skewed data. The data appears
unbalanced for classification of a single class versus remaining
classes. This problem is solved by increasing the number of
training instances to make them appear balanced for each class
[30,36]. This is named ‘interleaved data format’ where the samples
belonging to class under consideration are repeated and alter-
nately placed between samples belonging to other classes. This
strategy increases the training data as well as the training time.

The proposed staged approach overcomes these two problems.
It evolves the classifiers in two different stages that perform
discrimination and integration, and incorporates a discriminative
fitness function which takes care of skewed data without increas-
ing the computation. The integrated evolution eliminates the
conflicting situations decreasing the evaluation time required for
conflict resolution. The proposed algorithm is detailed in the next
section.
2. Proposed methodology

Many attempts have been made to develop general approaches
to multi-class classification. One of the well known methods, in
machine learning community, is one vs. all method. It involves
learning a discriminator for each pair of class labels. The proposed
classification mechanism uses the same principle but divides the
training process into two phases. The first stage resembles the
traditional binary decomposition method. The output, given by
this phase, is a set of classifier populations for each class in the
data. The second phase uses this population to populate the
individual chromosomes using some selection criteria. Once the
chromosome population is created, it is evolved in search of better
accuracy. The output of second phase is a single chromosome that
can classify any class present in the data.

2.1. Stage 1

In this stage, populations of arithmetic classifiers are trained to
discriminate between absence and presence of a particular class
amongst many classes present in the training data. Therefore we
will have as many populations, as there are classes in the
training data.

2.1.1. Classifier representation

The arithmetic classifier expression (ACE) is represented as a
binary tree created using the function set¼{þ ,� ,/,n} and terminal
set¼{real attributes of the data, ephemeral constant}. The classi-
fier represents an arithmetic relationship between attributes of
the data. For each instance, it outputs a real value. For binary
classification, the positive real value indicates the presence of a
class and a negative value represents the absence of that class.
Please cite this article as: H. Jabeen, A.R. BaigTwo-stage learn
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For example, consider a dataset with four attributes
[A1,A2,A3,A4] and two classes C1 and C2. two classes.

An arbitrary classifier for class C1 can be

ðA3� A4Þ=ðA1þA2Þ ð2Þ

For an instance with values

½1,2,3,4� belonging to the class C1 ð3Þ

The classifier will output a real value ‘4’.
This indicates that the instance belongs to the class C1.
2.1.2. Initialization

Initialization plays an important role in success of any evolu-
tionary algorithm. A diverse and efficient initialization technique
can lead to effective search during the evolutionary process. We
have used the well known ramped half and half method [1] for
initialization of the population. The ramped half and half method
utilizes advantages of both full and grow initialization schemes
with equal probability for each depth level till the maximum
allowed depth. This method has been widely used for initialization
in classification problems [30,35].
2.1.3. Fitness

For a particular class, the classifier should be trained to output
a positive response (accept) for the class under consideration and
negative response (reject) for the instances belonging to the other
classes. This measure leads to the problem of skewed data i.e. the
number of positive, and a negative instance is not same. The
researchers suggest that, in case of skewed data high accuracy
may not represent good discrimination ability of a classifier [44].
On the other hand, a classifier with high area under the convex
hull AUC has better discrimination ability. Therefore, we have
used the discriminative power of the classifier as its fitness
function.

The AUC function is considered better than accuracy in case of
skewed data, a classifier with 80% accuracy may represent a case
where a classifier always output a negative value and 80% of the
data does not belong to the class Ci. On the other hand, 80% of AUC
means the classifier can successfully discriminate between 80% of
the samples, as belonging or not belonging to the class Ci. Several
classifiers like rotation forests also deal with the skewed data
[42,43].

Let ‘n’ be the number of classes present in the data. Let Ci be the
class under consideration, Pi be the number of samples belonging
to the class Ci (positive samples) and Ni be the number of samples
belonging to other classes Ci

0 (negative samples).
The fitness function for evolving classifiers for class Ci is

F i ¼ 1=2½ ðtrue�positives=PiÞþðtrue�negatives=NiÞ� � 100 ð4Þ

A classifier is evolved to discriminate between one class and
rest of the classes such that output O of classifier F for class Ci is
positive for instances belonging to class Ci and negative for
instances not belonging to class Ci.

O½FðCiÞ�AþZ 8 instances of class Ci ð5Þ

and

O½FðCiÞ�A�Z 8 instances of class Ci
0

ð6Þ

where

Ci
0
¼ ½C1,C2. . .Cn��Ci ð7Þ

These positive and negative real values are converted into
boolean values by considering positive values as 1 and negative
values as 0.
ing for multi-class classification using genetic programming,
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Fig. 1. DepthLimited crossover operator.
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Fig. 2. A classifier chromosome for ‘n’ classes.
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Let the number of samples be ‘k’

true�positives=Pi¼
Xk

i ¼ 1
O½FðCiÞ� ¼ 18k A Ci

h i
=pi,kACi� ð8Þ

true�negatives=Ni¼
Xk

i ¼ 1
O½FðCiÞ� ¼ 08k =2 Ci

h i
=Ni,k=2Ci� ð9Þ

We have used two layered fitness [39,40]. The classifier with
better fitness is always preferred and if the fitness of two
classifiers is equal, then, the one with less number of nodes is
selected. The fitness algorithm for one class is explained in
Algorithm 1.

Algorithm 1. Fitness for individual classifiers for Stage I.

2.1.4. Operators

The operators used in the proposed algorithm are depthlimited
crossover [40], point mutation [35] and reproduction [35].

Algorithm 2. DepthLimited Crossover.

The depth limited crossover selects two parents using tourna-
ment selection and selects a random subtree from larger parent;
the other subtree of same depth is selected from the second
parent. Both subtrees are then swapped. The algorithm of depth-
limited crossover is explained in Algorithm 2 and illustrated in
Fig. 1.

We have used the point mutation operator which selects a
random point from the tree and replace a function node with the
function node and a terminal node a random terminal node until a
probability is met. The reproduction operator selects a random
classifier to be the part of the next generation.

The description of the classifier evolution algorithm is given in
Algorithm 3. The output of this phase is a population of ACE that is
trained to differentiate between two classes by its response. It
would output zero or greater value for one class and negative
value for the other classes.

The process is repeated for each class. At the end of first phase
there will be ‘n’ populations corresponding to each class. The next
phase takes an amalgamated view of the classifiers and evolves
them in a single run.
Please cite this article as: H. Jabeen, A.R. BaigTwo-stage learn
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Algorithm 3. Stage I.

2.2. Stage II

This stage takes the individual discriminators from the pre-
vious phase and combines them in a single chromosome. These
chromosome classifiers are evolved for a few more generations, in
search of a good integrated classifier. This stage eliminates the
need of any conflict resolution mechanism that requires extra
computations.

2.2.1. Classifier representation

In this stage, a chromosome is an integrated version of
individual classifiers for each class. An example classifier is shown
in Fig. 2

The amalgamated version of classifier will output a vector of
real values corresponding to each classifier/class. Only one value
must be positive in ideal case. This means that the classifier for
exactly one class generates a ‘belong to’ signal and other classifiers
do not recognize that sample. As mentioned in the previous phase,
a positive value represents ‘belong to’ signal, whereas the negative
output represents absence of the particular class.

Let the vector be V and size of vector will be ‘n’ (number of
classes/classifiers), each ‘i’ corresponds to one class present in the
ing for multi-class classification using genetic programming,
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Table 1
Datasets used for experimentation.

Datasets Referred

as

Classes Attributes Type Instances

Iris IRIS 3 4 Real 150

Wine WINE 3 13 Integer,

Real

178

Statlog (Vehicle

Silhouettes)

VEHICLE 4 18 Integer 946

Glass identification GLASS 6 10 Real 214

Yeast YEAST 10 8 Real 1484
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data. This vector can be converted into binary vector as follows:

8iAnfif ½V i�4 ¼ 0, Vi ¼ 1 else Vi ¼ 0g ð10Þ

In ideal case, this vector must have exactly one non-zero
output. If more than one value is positive, this means a conflict
has occurred, which will reduce the classification accuracy of the
amalgamated-chromosome classifier.

2.2.2. Initialization

A population of amalgamated classifiers is created using
populations from previous phase. A tournament of given size is
performed on each population and one member is selected,
similarly one member is selected from each population and these
‘n’; members are integrated into one chromosome. This process is
repeated for each chromosome in the new population.

2.2.3. Fitness

The fitness function for each classifier is the number correctly
classified samples associated with the conflict measure. The
accuracy is number of samples classified correctly divided by the
number of conflicts incurred. This decreases the accuracy of
classifier which suffers from more conflicts. On the other hand,
the classifiers with better accuracy and less conflict will be
selected more often during the evolution process. The algorithm
classification is explained in Algorithm 4.

Algorithm 4. Fitness of chromosome classifiers for stage II.

 

2.2.4. Operators

The evolution operators are crossover and point mutation,
where crossover selects a random tree in the chromosome and
swaps two sub-trees from that tree whilst other trees are swapped
as whole. This is represented in Fig. 3, where crossover between
classifier chromosomes for three class problem is shown.

In mutation operator, a chromosome is selected randomly. A
tree is selected from this chromosome, inversely proportional to
its fitness, to undergo the mutation operation. The mutation is
point operation where a function node is replaced by a randomly
selected function node and a terminal node is replaced by a
randomly selected terminal node.
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Fig. 3. Crossov
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The reproduction operation simply selects a random chromo-
some and copies it into the new population.

The new population of chromosome classifiers is evolved for
certain number of generations and the best classifier is returned at
the end of the evolutionary process.
3. Results

Five benchmark multi-class classification problems have been
selected from UCI ML repository [41], for performance evaluation
of this work. We have selected the datasets based on following
properties:
(1)
 

2

7

er op

ing
1.04
Dataset should be real or numerical valued.

(2)
 Problem should be multi-class classification.

(3)
 There should be no missing values.
The datasets have been chosen from various dimensions of life
to show the applicability of GP classification as well as general-
ization of our proposed optimization technique.

3.1. Experimental settings

The properties of datasets used for experimentation is
summarized in Table 1 given below.

For each data set, a ten-fold partitioning is created and GP is
applied ten times for each fold. This process of creation of folds
and GP is repeated ten times. This makes a total hundred GP runs
and ten times ten-fold-cross-validation process. The parameters
used for GP evolution are mentioned in Table 2.

3.2. Accuracy

The result of classification accuracy of the proposed algorithm
is presented in Table 3. The BDGP column represent the average
results obtained by using the traditional binary decomposition
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Table 2
GP parameters.

Parameters

Population size 600

Crossover rate 0.50

Mutation rate 0.25

Reproduction rate 0.25

Selection for DepthLimited

cross over

Tournament selection with size 7

Selection for mutation Random

Selection for reproduction Fitness proportionate selection

Mutation type Point mutation

Initialization method Ramped half and half method with initial depth 6

Function set þ ,� ,n,/ (protected division,division by zero is

zero)

Terminals Data attributes A1,A2yAn, Ephemeral constant

[0,10]

Termination criteria User specified generations(120) or 100% training

accuracy of classifier

PhaseI generations Variable

PhaseII generations 50

Table 3
Accuracy achieved using binary decomposition (BDGP) and the two stage learning (S2GP).

Gen

BDGP

IRIS WINE VEHICLE GLASS YEAST

BDGP

(%)

S2GP

(%)

BDGP

(%)

S2GP

(%)

BDGP

(%)

S2GP

(%)

BDGP

(%)

S2GP

(%)

BDGP

(%)

S2GP

(%)

10 92.5 94.2 77.9 81.4 42.3 47.9 44.7 53.7 38.7 50.9

20 93.1 94.3 78.5 81.5 43.3 50.2 48.1 54.9 40.9 51.0

30 93.2 94.5 78.6 81.7 44.9 50.3 52.2 55.1 45.9 51.4

40 93.7 94.6 79.3 82.0 46.6 51.6 52.3 55.2 49.1 52.6

50 93.7 94.6 80.3 82.7 47.1 52.9 52.4 55.3 50.0 53.3

60 94.1 95.0 81.4 83.6 47.2 52.9 52.9 55.4 50.8 54.4

70 94.6 95.2 81.4 84.4 47.6 53.3 53.1 56.9 52.3 56.1

80 95.0 95.3 81.5 84.8 47.9 53.7 54.0 58.9 54.3 56.9

90 95.0 95.5 81.6 85.0 48.7 54.1 54.3 60.2 55.8 57.4

100 95.0 95.8 81.7 85.2 48.8 54.9 54.4 61.1 56.4 58.8

110 95.0 96.0 82.0 85.4 48.8 55.0 54.5 62.5 56.6 60.4

120 95.0 96.0 82.7 85.5 49.0 55.5 54.7 63.7 56.8 61.1

Table 4
Comparison with other algorithms.

Dataset One nearest

neighbor (%)

Decision

tree (%)

Support vector

machine (%)

Two stage genetic

programming (%)

IRIS 95 91 94 96

WINE 84 84 83 85

VEHICLE 54 51 51 56

GLASS 60 62 63 64

YEAST 50 55 58 61
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method [30]. The results presented in S2GP are average results
obtained for the proposed staged-learning algorithm with variable
first stage generations and 50 generations of second stage.

The results for all the datasets show considerable increase in
accuracy using an amalgamated training approach. These results
are better for all the data sets. The second phase adds 50 more
generations of training to the first phase, but we can see that
additional 50 generations of first phase alone (presented in the
row 6), cannot achieve the accuracy obtained by the first phase.
The proposed two-stage method has outperformed the traditional
binary decomposition method for all the five datasets presented in
this work.
Please cite this article as: H. Jabeen, A.R. BaigTwo-stage learn
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We have also compared the proposed classification algorithm
with state of the art classification algorithms in Table 4. This
includes Support Vector Machines [45], Decision Trees [46] and
[47] k-Nearest Neighbors with parameters from Galar et al. [48].

The results show that the performance of the proposed scheme
is compatible with other state of the art classification algorithms.
4. Conclusions

The proposed two stage learning mechanism for multi-class
classification using Genetic Programming has yielded better
results when compared to one-versus-all or binary decomposition
method. This is due to the fact that binary decomposition method
suffers from conflicting situations. On the other hand, we have
used a fitness measure that favors accurate classifiers and less
conflicting outputs. The proposed method reduces the computa-
tion required to perform the conflict resolution during the classi-
fication process. This method has shown promising results on the
benchmark problems from the UCI ML repository. The future work
includes exploring this method for more complex problems and
reducing the time complexity associated with more number of
GP evolutions.
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