
AutoChef: Automated Generation of Cooking
Recipes

Hajira Jabeen
Informatik III

University of Bonn,
Bonn, Germany

jabeen@cs.uni-bonn.de

Jonas Weinz
Informatik III

University of Bonn,
Bonn, Germany

s6jowein@uni-bonn.de

Jens Lehmann
Informatik III

University of Bonn,
Bonn, Germany

jens.lehmann@cs.uni-bonn.de

Abstract—Cooking is an endeavour unique to humans. It is
mainly considered an art requiring culinary intuition acquired
through practice. The preparation of food is a complex and
subjective process that makes it challenging to determine under-
lying rules for automation. In this paper, we present AutoChef,
the first open-source autonomous recipe generator. AutoChef
extracts the data from existing recipes using natural language
processing, learns the combination of ingredients, preparation
actions and cooking instructions, and autonomously generates
the recipes. Furthermore, AutoChef uses Genetic Programming
to represent and evolve the recipes. The fitness of recipes is
designed to evaluate the combination of ingredients, actions and
cooking-processes learned from the existing recipe data. Finally,
the resulting recipes are translated back into text format and
evaluated by human experts.

I. INTRODUCTION

Food plays an important and diverse role in our life, ranging
from the necessity to eat to pleasure, culture, recreation and
art. Recipe preparation or culinary practice is an intricate
combination of art and science that integrates flavours, tex-
tures, nutrients and aromas, and results in a food that is
edible, tasty, healthy and presentable. Different cultures enjoy
a diverse set of traditional recipes in different parts of the
world. These diverse groups of food preparation methods,
ingredients and spices make up the cultural cuisines. These
cuisines have implicit embedded knowledge of geographical
preferences related to health, climate, nutritional needs, taste,
texture and aroma. Encoding this information automatically
into a machine-understandable format is a challenging task,
let alone learning from this information to create new recipes
by combining ingredients and spices from different cuisines.
Contrary to the abundance of artificial creativity in applications
like music, pictures, and graphics, its application in culinary
arts has remained limited to recipe recommendations, cuisine
detection, or ingredient substitution. There are no known
autonomous recipe creators apart from (now closed) IBM
ChefWatson [1], This closure can be attributed to the un-
derlying complexity of the problem, and direct-yet-subjective
impact of the outcome.

In this paper, we present the initial results of open-source
AutoChef [2] that evolves new recipes by integrating ideas
from machine learning, natural language processing, evolu-
tionary algorithms and genetic programming. We analyze the

AutoChef Overview

Datasets Entity
Recognition

Recipe
Analysis

Adjacency
Matrices

Evolutionary
Algorithm

User Input

New Recipes

Recipe Analysis

Fig. 1: Overview of AutoChef

cooking actions on ingredients, the intermixing of ingredients,
and further use this extracted information to generate recipes
automatically. We encode the recipes as genetic programs and
evolve them through specialised operators aiming to optimise
the proposed fitness criteria. The fitness function is designed to
evaluate the combination of ingredients, actions, and cooking
methods. An overview of our proposed approach AutoChef
is shown in Figure 1 and discussed in detail in Section III.
Section II covers related work and Section IV shows the
evaluation of the approach. Finally, Section V concludes the
work presented in this paper.

II. RELATED WORK

Various lines of research are being conducted for food,
cooking, and flavouring. For example, detection of recipes
from images [3] [4], recipe recommendation systems [5], and
cuisine transformation [6]. In this paper, we briefly cover the
automated recipe generation endeavours covering computa-
tional arts. One of the prominent efforts in recipe creation was
performed by IBM, named “IBM Chef-Watson”, and presented
in 2014 [1]. IBM built a system that produced novel recipes
by introducing new ingredients in existing recipes taken from
bon-appetit [7]. The quality of the recipe was determined
by novelty measured as the deviation from common recipes,
and aroma measured by evaluating the chemical properties of
flavour molecules used in the recipe [8]. Chef-Watson often
resulted in hard to find ingredients. For unidentified reasons,
the project seems to be discontinued and the web reference
is no longer functional. The Evolutionary Meal Management
Algorithm (EMMA) [9] generates recipes using a machine
learning algorithm. The resulting recipes often lack clear
instructions and quantities. Erol et al. [10] have developed
an approach to discover novel ingredient combinations for the
salads. However, they ignore the instructions and the quantities

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

of ingredients, which is one of the crucial elements of any
recipe. EvoChef [11] is one of the prototypes developed for
evolving recipes. However, it is constrained by limited data
ingestion as well as manual fitness evaluation. A further step in
recipe evolution is the semi-automated SmartChef [12], which
has successfully performed the semi-automated evolution and
created more complex recipes with a partially automated
fitness evaluation.

An approach to transforming existing recipes into different
cuisine style is presented by Kazama et al. [6]. They create
embeddings for the recipe ingredients to make it possible
to transform the regional style of a recipe. They used the
word2Vec [13] approach to find the embeddings for all in-
gredients. They measure the distances in the embedding space
of different cuisine styles and use these difference vectors to
transform recipes into another cuisine style. The information
of a particular recipe is only represented by its ingredient list.
In comparison, the work of Marin et al. [4] builds recipe
embeddings by considering the instructions as well. Their
approach uses embeddings generated for each instruction and
the ingredient list. They train a neural network to learn a joint
embedding of recipes and images that are used to retrieve
recipes for given images. The prominent approaches outlined
above demonstrate that substantial research is being done in
this area. However, we are still far from a fully automated and
functional recipe generator.

III. AUTOCHEF: THE RECIPE GENERATOR

Autochef works in three main steps, as shown in Figure
1. The first step is data curation, in the second step, we
perform ingredient detection and recipe analysis to correlate
ingredient and cooking instructions. In the last step, this
inferred information is used to automatically create and evolve
cooking recipes.

A. Datasets

We have selected the following two datasets for the analysis
and to extract information about the usage of ingredients and
cooking actions
One Million Recipe Dataset The [4] contains one million
recipes in English collected from various popular cooking
websites. Each item in the data contains a title, an ingredient
list, an instruction list and an image of the final product. The
recipes are provided in plain text as a JSON array (listing 1)
Yummly Dataset The cooking website Yummly (see also [14])
provides a dataset containing the ingredient list of 39,774
recipes annotated with the regional cuisine style, provided as
JSON.

B. Recipe Analysis

AutoChef aims to extract information from existing recipes
to learn to generate new recipes. To detect ingredients and
instructions, we have used Conditional Random Field (CRF)
classifier [15]. We detect cooking actions and ingredients by
using part of speech tags generated with the “nltk toolkit” [16]
and features like the position in the sentence, word endings and

{
"ingredients": [
{

"text": "8 tomatoes, quartered"
},
{

"text": "..."
}

],
"url": "http://www.foodnetwork.com/\

recipes/gazpacho1.html",
"partition": "train",
"title": "Gazpacho",
"id": "000035f7ed",
"instructions": [
{

"text": "Add the tomatoes to a food processor
with a pinch of salt and puree until smooth."

},
{

"text": "..."
}

]
}

Listing 1: Example JSON recipe [4]

Boil noodles.

Drain and return to pan.

Add cheese powder,
butter, milk, and soup.

Mix well and bring to
a low boil.

Drain tuna and corn.

Add tuna and corn.

Season to your tastes.

Boil1. noodles

drain2. boiled noodles

add/mix
4. butter
5. milk
6. soup

7. drained boiled noodles

8. tuna
9. corn

4. butter
5. milk
6. soup

7. drained boiled noodles
10. drained tuna
11. drained corn

drain

add/mix

ActionsIngredients Recipe Instructions

3. cheese powder

3. cheese powder

Fig. 2: Information extraction from a recipe

surrounding words. These features are used as input values for
CRF training. It turns out that the entity recognition works-
better on ingredients than on actions. Therefore, we used a
hand-curated list of around 50 fixed cooking actions and used
CRF classifier to detect ingredients only.

To connect the actions with corresponding ingredients we
assume that cooking actions and matching ingredients occur in
the same recipe instruction. We match actions and ingredients
together by the following handcrafted decision model, based
on the distances of the entities in the sentence and their types.
We assume that all ingredients in the same instruction are
mixed. If a cooking verb does not have a matching ingredient
in the same instruction, we assume that this action is applied
on the result of the previous instruction. Additionally, if a
cooking action is an action of mixing things (e.g. “mix”
and “combine”) we treat the corresponding ingredients being

mixed.

1 2 3 4 5 6 7 8 9 10 11

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

1 2 3 4 5 6 7 8 9 10 11

boil
drain

Fig. 3: Adjacency matrices for Figure 2. (mix matrix I ∗I and
action-ingredient matrix A ∗ I)

As a result, a new recipe state is created that contains
the used ingredients, the actions that are applied on those
ingredients (up to the last processed instruction), the infor-
mation which ingredients are mixed, and the state in which
the ingredients are mixed. It can be seen in Figure 2 that the
state is represented by appending the ingredient list and the
action for each instruction. Additionally, we store the detected
occurrences for each ingredient-state in an adjacency matrix
(Figure 3).

After covering all the individual recipes, we merge the
adjacency matrices such that we have a big set of actions,
ingredients and their interrelations that can be used to build a
scoring system for the unseen recipes. We create the following
adjacency matrices for our scoring system.
• Matrix A∗I: a matrix that contains the relations between

actions and ingredients.
• Matrix I ∗ I: a symmetrical matrix that contains the

ingredients (with states) that are mixed. This helps in
deciding that raw ingredients (beef) are not mixed with
cooked ingredients (boiled rice).

• Matrix A ∗ Ibase: like A ∗ I but only with ingredients
without their state (so instead of “noodle” and “boiled
noodle” there exists a single entry for “noodle”)

• Matrix Ibase ∗ Ibase: like I ∗ I but without the states of
the ingredients

For A∗I and A∗Ibase we build another matrix that is based on
cooking action groups (“heat”, “prepare” and “cool”) instead
of specific actions so that we can assess if some ingredients are
commonly “heated” or “prepared”. We denote these matrices
as Agrp ∗ I and Agrp ∗ Ibase. Finally, we apply a threshold
on all matrix values to select the relations that occur multiple
times. This information is also used in recipe evaluation later.

Tree ScoringExternal
Selection

Tree Mutation

Tree
Initialization

Evolutionary Cycle

User Input

Adjacency
Matrices

New Recipes

Fig. 4: Overview of the evolutionary algorithm

C. Recipe Evolution

In this section, we explain the process of creation of trees
from the recipe data and evolution of recipes in search of new
and optimal recipes.

1) Recipe representation: Inspired from Genetic Program-
ming, AutoChef represents each recipe as a tree. A tree
contains three types of nodes:
• Ingredient Nodes (yellow rectangle): Ingredient Nodes

are the leaf nodes or terminal nodes in our tree and they
store the ingredients (before any cooking action is applied
to them).

• Action Nodes (blue ellipse): Action Nodes are function
nodes that represent cooking actions applied on the sub-
tree. Actions are further separated into different groups:
preparation actions (e.g. “cut” or “peel”), heating actions
(e.g. “cook”) and cooling actions (e.g. “refrigerate”)

• Mix Nodes (green diamond shape): Mix Nodes are also
function nodes. They represent the action of mixing the
results of their subtrees.

An example tree is shown in Figure 5.

 mix

bake wash cheese heat

 mix

 salt mozarella cheese noodle dice

 onion

 spinach spring onion

Fig. 5: Example recipe tree

2) Initial Population: To generate the initial population of
recipe trees, we let the user define a list |m| with at least one
main ingredient and |d| additional side ingredients. Given the
user input n+, we choose further ingredients that are likely to

be mixed with the ingredient lists. Using the adjacency matrix
Ibase ∗ Ibase, we select the n most mixed ingredients for each
ingredient i, creating an additional list of possible ingredients.
Later we merge the lists as C and keep the count of the number
of occurrences s(c) for each ingredient candidate c ∈ C. We
build the inverse rank r for all candidates with r(c) = 1 for
candidate c ∈ C with the lowest sum s(c) and r(c) = |C| for
candidate c ∈ C with the highest sum. For each ingredient, we
design the probability to be chosen as additional ingredient as

p(c) =
r(c)

1
2 · |C| · (|C|+ 1)

(1)

Depending on the user given parameter n+, AutoChef
chooses n+ distinct additional ingredients by the probabilities
given with p from the set of given ingredients. In this process it
chooses the first α·n+ ingredients using |m| and the remaining
ones using |d|. In our experiments α is set to 1

3 .
We group the ingredients and choose compatible cooking

actions from the set of “heating” actions. We also check
whether an ingredient should be connected to a “preparing”
action first. To do this, we use the action group adjacency
matrix Agrp ∗ Ibase to measure the likelihood of an ingredient
preparation and combine it with a small gaussian distribution
to add some randomness in the process. The preparation
function is:

fprep(i) =

{
0, if p(i)

h(i) + χ < t

1, else
(2)

where i denotes the ingredient, p(i) is the number of seen
preparation actions on the ingredient and h(i) the number of
seen heating actions. χ ∼ N (0, σ2) is a randomly chosen
value with a small variance. And t is a threshold for the
adjacency matrices. Value p(i)

h(i) measures the ratio between
heating and preparing actions. Similarly, we have defined a
function to select a heating action as:

fheat(i) =

{
0, if 1− p(i)

h(i) + χ < t

1, else
(3)

If fprep(i) = 1 for an ingredient i we choose a valid
preparation action by using the adjacency matrix A ∗ Ibase
and a rank based probability distribution as seen in equation
1. We randomly choose matching heating actions similarly. If
some ingredients have the same actions, they are mixed first,
then the action is applied. If the result is not a single tree yet,
we merge the subtrees with a mix node as the final step.

3) Mutation: The mutation is used to update the tree struc-
ture to explore new cooking mechanics that were overlooked in
the initialization phase. The mutation used by AutoChef differs
by the node type as shown below. To restrict the exploration
of the algorithm (e.g. we have an initial set of ingredients that
must remain in the final recipe) every node can be set to be a
constant. The mutation is only applied to non-constant nodes.
Mutation of Mix Nodes: For mutating the mix nodes, we
separate the mix Node (nold) in a “lower” (nl) and an “upper”

(nu) mix node. Then we choose a subset of the old mix node’s
children (Cold) randomly to build the child set of the “lower”
node (Cnl ⊂ Cnold). The children of the upper node are defined
as the remaining set of children (Cnu = (Cnold \Cnl)∪ {nl}).
See Figure 6 for an example.

Mix Node

Action Node

Ingredient A Ingredient B Ingredient C

lower
Mix Node

Action Node

Ingredient A Ingredient B Ingredient C

upper
Mix Node

Mutate

Fig. 6: Mutation of a Mix Node

Mutation of Action Nodes: For an Action Node, we can either
delete the node itself (mutating the node itself) or insert a new
action node at the edges as shown in Figure 7.

Mix Node

Action Node

Ingredient A Ingredient B Ingredient C

Mix Node

Mix Node

Ingredient A Ingredient B Ingredient C

Mix Node

Mutate:

Delete Action Node

Mix Node

Action Node

Ingredient A Ingredient B Ingredient C

Mix Node

Mutate:

Insert new Action Node

Action Node

Ingredient A Ingredient B Ingredient C

Mix Node

New
Action Node

Mix Node

Fig. 7: Mutations of an Action Node

Note that the removal of the Action Node in the delete
mutation may result in two adjacent Mix Nodes. To avoid the
tree fragmentation with many mix nodes, we merge them in
an additional step.

Mutation of Ingredient Nodes
For the Ingredient Nodes, we can either change the ingredi-

ent with another random ingredient or insert a random action
node on the ingredient node’s edge.

4) Fitness Evaluation: An ideal scoring function for a
recipe is to prepare, taste and rate the meal. However, it is
not practically doable to cook a whole generation and assign
a fitness based on the resulting meal. AutoChef measures
the recipe-tree score with the help of the initially generated
adjacency matrices.

Ingredient Node Scores The ingredient nodes have three
scores combined. The binary heat score sheat(i) for the
ingredient i is defined similar to equation 3

sheat(i, bh) =

0, if 1− p(i)

h(i) > t+ ε ∧ bh = 0

0, if 1− p(i)
h(i) < t− ε ∧ bh = 1

1, else

(4)

bh ∈ 0, 1 is a binary value, indicating whether i is heated
in the recipe tree or not. 2 × ε defines a corridor around the
threshold t in which we do not punish unheated or heated
ingredients. Similar to sheat we can define sprep

sprep(i, bp) =

0, if p(i)

h(i) > t+ ε ∧ bp = 0

0, if p(i)
h(i) < t− ε ∧ bp = 1

1, else

(5)

we also have scores to punish duplicate actions. The first
score punishes duplicate actions in the tree

sa(i) =
na(i)− nda(i)

na(i)
(6)

where na(i) defines the number of actions applied on i and
nda(i) defines the number of duplicate actions applied on i

The final ingredient node score is then defined by the
normalized sum of the scores without sa, weighted with
sa (since this is a harder punishment than using it in the
normalized sum)

sing(i) =
1

2
· (sprep(i) + sheat(i)) · sa(i) (7)

Action Node Scores For the action node score sact(a) we
first traverse the ingredients in the subtrees of the action node.
For each ingredient ik we apply all actions upon to the node
corresponding to a on it. Then we take a look in the adjacency
matrix A ∗ I whether a is a valid action on the ingredient. If
yes, we set sik = 1, otherwise sik = 0. The resulting score is

sact(a) =
1

N

N∑
i

sik (8)

Mix Node Scores The mix node’s score is the normalized sum
of binary values corresponding to the subtrees of the particular
node. We traverse the ingredients and actions for each child
subtree. Later, we build all possible pairs of ingredients from
the subtree ingredient sets and lookup in our adjacency matrix
I ∗ I . if this is a known combination. If yes, this combination
is rated with 1, otherwise 0. The final score smix(m) for the
mix node m is then the normalized sum of all pairwise binary
ratings.
Tree Score The final tree score stree is a combination of all
single node scores combined with weights to rate the overall
structure of the tree. The node score is:

snodes =

∑I
i∈I sing(i) +

∑A
a∈A sact(a) +

∑M
m∈M smix(m)

|I|+ |A|+ |M |
(9)

and the final tree score is defined as

stree = snodes · sduplicates · bacts≥3 · bings≥3 (10)

where bacts≥3 and bings≥3 are binary values with bacts≥3 =
0 if the total number of action nodes is below 3 and bings≥3 =
0 if the total number of ingredient nodes is below 3. Otherwise
both components are set to 1. To avoid complex recipes, we
also punish the occurrence of duplicate actions:

sduplicates =
nd
na

(11)

where nd denotes the number of distinct actions in the tree
and na the total number of actions. In this way, AutoChef uses
the knowledge extracted from the existing recipes to score the
unseen recipes.

D. Selection

For the population selection, we randomly group the new
and old population pairwise and measure the tree scores. The
tree with the better score is selected for the next generation.
The tree score is based on tree nodes as detailed in the previous
section.

E. Textual Tree Representation

Finally, the resulting recipes trees are converted into corre-
sponding text representation for readability. We traverse each
node in the tree using depth-first search and insert the node-
text into predefined sentence patterns. To avoid having a lot
of small instructions, we merge instructions of action nodes
which have only ingredients as a child with the text of the
instruction of the next layer. Additionally, if the root node is
a mix Node, this mix node also generates an instruction set.
As an example, the textual representation of the tree in Figure
5 is shown in Table 2.

ingredients
spring onion
noodle
salt
spinach
mozarella cheese
cheese
onion

step instruction
1 dice onion and mix it with salt,

mozarella cheese and noodle. Then bake it.
2 wash spinach, heat spring onion and mix it with cheese

and mix it together with the results of step 1.

Listing 2: Instructions for recipe tree shown in Figure 5

IV. EXPERIMENT AND EVALUATION

We have created a population of 75 individuals that are
evolved for 35 generations. Given the flexible usage in the
ingredients and actions, we have decided to use evolutionary
strategies [17]. We have used the mutation rate of 2 · 1

|E|+|N |
where |E| is the number of edges and |N | the number of nodes
for an individual.

We have tested our approach over several test runs and
initial ingredient lists.

For the user evaluation, we selected ten random recipes with
“rice” as the only input ingredient and ten with “noodle” as
the only input ingredient. We created a survey in which each
user was shown a few randomly chosen recipes for evaluation.
The questions each user had to answer are:

1) Is this a valid recipe?
2) Does it seem eatable?
3) Are the instructions understandable?
4) Is this a good combination of ingredients?
5) Are the used cooking actions suitable for the ingredi-

ents?
6) How tasty is it probably?
7) Would you cook it?
8) How creative is this recipe?

Question 1) and 2) are binary questions, the other ones had
to be answered in a range from 0 (negative) to 3 (positive).
In Table 3 we present some examples from the final recipe
survey pool. Recipe (a) is an instance from the set of rice
recipes, recipe (b) from the noodle recipe pool. Both recipes
are understandable and can be cooked to yield edible meal.
Using the above questions we defined two evaluation criteria;

1) Correctness, that can be shown by combining results
from questions 1,2 and 5, related to valid ingredients,
edible recipe, and applied actions, and

2) Innovation, that can be reported by combining re-
sults from questions 4, 6, 8 and 7 about ingredient-
combination, taste, creativity and cook-ability

Below, we present the average results over a total of 17 survey
evaluations with four recipes rated in each survey. For 1) we
can see in Figure 8 (a) that only 19.8 % of recipes are found to
be incorrect. On the other hand, for 2), Figure 8 (b), only 6.8
% recipes are rated as non-innovative (0). Figure 11 shows the
convergence of fitness over the generations. Table III(a) shows
that approximately 88 - 89 % of recipes are rated as valid
and edible. Table III(b) shows the average ratings over all the
recipes. The table shows that AutoChef recipes have received
overall good ratings with only 10% receiving lowest scores
on cooking actions, and 17% for preference to cook. Similar
behaviour can be observed from Figure 9(a,b). Although the
recipes (both rice and noodles) are understandable, there is
relatively less interest in cooking them. We attribute this
trend to personal preferences and that fact that our fitness
criteria favour the ’normal trend’ we have converged to a more
common set of ingredients and cooking methods.

V. DISCUSSION OF RESULTS AND FUTURE WORK

AutoChef demonstrates that it is possible to create valid
recipes using an evolutionary algorithm supported by the
knowledge extracted from user-generated recipes freely avail-
able on the web. Especially creating clear and understandable
instructions and finding a good mix of ingredients seems to
work well (Figure 8, 9 and Table I). However, it is still
challenging to create recipes that fulfil personal preferences

ingredients
rice
clove garlic
egg
chicken broth
safron
parsley
sausage

step instruction
1 beat and cut egg
2 slice clove garlic and mix it with sausage,

saffron, chicken broth, parsley and rice. Then boil it.
3 Mix together the results of step 1 and step 2.

(a) a rice recipe from the survey pool

ingredients
zucchini
red pepper
water
tomato sauce
onion
noodle

step instruction
1 chop onion, chop zucchini and mix it with water,

red pepper, tomato sauce and noodle. Then heat it.

(b) a noodle recipe from the survey pool

Listing 3: Example recipes from our survey

Recipe property Yes No
Validity (1) 88.42% 11.58%
Edibility (2) 89.42% 10.58%

(a) Evaluation of the binary questions
Recipe property 0 1 2 3
Understandable (3)

1.47% 5.88% 26.47% 66.18%
Tasty (6) 2.94% 27.94% 44.12% 25.00%
Would you cook it (7) 17.65% 30.88% 29.41% 22.06%
Creativity (8) 1.47% 29.41% 50.00% 19.12%
Ingredient combination (4) 4.41% 19.12% 35.29% 41.18%
Cooking actions (5) 10.29% 26.47% 41.18% 22.06%

(b) Evaluation of the non binary answers (with question numbers). The
range goes from 0 (negative) to 3 (positive)

TABLE I: Average results over all recipes

generically. A user may not be interested to cook even if the
result is probably a tasty and creative meal. For future work,
more data related to food replacements, spice combinations,
and chemical properties of foods for better combination can
be exploited to introduce interesting food combinations and
cooking methods.

REFERENCES

[1] “IBM Chef Watson (closed),” http://www.ibmchefwatson.com.
[2] “Autochef source code,” (last visited: 2020-05-15). [Online]. Available:

https://github.com/SmartDataAnalytics/AutoChef/
[3] J.-J. Chen, C.-W. Ngo, F.-L. Feng, and T.-S. Chua, “Deep Understanding

of Cooking Procedure for Cross-modal Recipe Retrieval,” in 2018
ACM Multimedia Conference on Multimedia Conference - MM ’18.
Seoul, Republic of Korea: ACM Press, 2018, pp. 1020–1028. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3240508.3240627

80.4%

19.6%

correct

incorrect

correctness

(a) The average of correctness parameters for all recipes:
validation (Question 1), edibility (Question 2) and cook-
ing actions (Question 5, all values ≥ 2)

26.8%

39.7%

26.8%

0

1

2

3

innovation

(b) Innovation measure: the average values of the an-
swers from Questions 4,6,7 and 8

Fig. 8: Measuring correctness and innovation of the recipes

noodle rice0

5

10

15 3
2
1
0

(a) Question 3: Are the instructions understandable?

noodle rice0

2

4

6

8

10 3
2
1
0

(b) Question 7: Would you cook it?

Fig. 9: Evaluation results from survey. Question 3, with the highest positive ratings, Question 7, with the subjective answers

0 5 10 15 20 25 30 35

Generation

0.9150

0.9175

0.9200

0.9225

0.9250

0.9275

0.9300

A
v
e
ra

g
e
 F

it
n
e
ss

Fig. 11: Average population-fitness for 35 generations over 10
runs

[4] J. Marin, A. Biswas, F. Ofli, N. Hynes, A. Salvador, Y. Aytar,
I. Weber, and A. Torralba, “Recipe1m+: A Dataset for Learning
Cross-Modal Embeddings for Cooking Recipes and Food Images,”
arXiv:1810.06553 [cs], Oct. 2018, arXiv: 1810.06553. [Online].
Available: http://arxiv.org/abs/1810.06553

[5] J. Freyne and S. Berkovsky, “Intelligent food planning: personalized
recipe recommendation,” in Proceedings of the 15th international
conference on Intelligent user interfaces, IUI ’10. United States:
Association for Computing Machinery (ACM), 2010, pp. 321–324.

[6] M. Kazama, M. Sugimoto, C. Hosokawa, K. Matsushima,
L. R. Varshney, and Y. Ishikawa, “A Neural Network
System for Transformation of Regional Cuisine Style,”
Frontiers in ICT, vol. 5, Jul. 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fict.2018.00014/full

[7] “Bon Appetit,” (last visited: 2020-01-26). [Online]. Available:
https://www.bonappetit.com/

[8] “A New Kind of Food Science: How IBM Is Using Big Data to Invent
Creative Recipes,” Nov. 2013, (last visited: 2020-05-09). [Online].

Available: https://www.wired.com/2013/11/a-new-kind-of-food-science/
[9] “Cover:Cheese,” (last visited: 2020-01-26). [Online]. Available:

https://covercheese.appspot.com/
[10] E. Cromwell, J. Galeota-Sprung, and R. Ramanujan, “Computational

Creativity in the Culinary Arts,” p. 5.
[11] H. Jabeen, N. Tahara, and J. Lehmann, “EvoChef: Show Me What

to Cook! Artificial Evolution of Culinary Arts,” in Computational
Intelligence in Music, Sound, Art and Design, A. Ekárt, A. Liapis,
and M. L. Castro Pena, Eds. Cham: Springer International
Publishing, 2019, vol. 11453, pp. 156–172. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-16667-0 11

[12] C. Draschner, J. Lehmann, and H. Jabeen, “Smart chef: Evolving
recipes,” EVO*, Leipzig, 2019.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–
3119. [Online]. Available: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

[14] “Yummly Dataset,” Jan. 2017, (last visited: 2020-01-26). [Online].
Available: https://www.kaggle.com/kaggle/recipe-ingredients-dataset

[15] J. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data,” p. 10.

[16] “Nltk website,” (last visited: 2020-01-26). [Online]. Available:
https://www.nltk.org/

[17] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehensive
introduction,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

