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Abstract 
In this paper, a new approach is presented for constitutive modelling of materials in finite element 
analysis. The proposed approach provides a unified framework for modelling of complex materials 
using evolutionary polynomial regression (EPR). A procedure is presented for construction of EPR-
based constitutive model (EPRCM) and its integration in finite element procedure. The main 
advantage of EPRCM over conventional and neural network-based constitutive models is that it 
provides the optimum structure for the material constitutive model representation as well as its 
parameters, directly from raw experimental (or field) data. It can learn nonlinear and complex 
material behaviour without any prior assumption on the constitutive relationships. The proposed 
algorithm provides a transparent relationship for the constitutive material model that can readily be 
incorporated in a finite element model. The developed EPRCM-based finite element model is used to 
analyse a 3D shallow foundation and the results are compared with conventional methods. It is shown 
that the proposed approach provides an efficient alternative to conventional constitutive modelling in 
finite element analysis. 
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1 Introduction 
Finite element method has, in recent years, been widely used as a powerful tool in the analysis of 
engineering problems. In this numerical analysis, the behaviour of the actual material is approximated 
with that of an idealized material that deforms in accordance with some constitutive relationships. 
Therefore, the choice of an appropriate constitutive model that adequately describes the behaviour of 
the material plays an important role in the accuracy and reliability of the numerical predictions. 
During the past few decades several constitutive models have been developed for various materials. 
Most of these models involve determination of material parameters, many of which have little or no 
physical meaning (Shin and Pande, 2000). Despite considerable complexities of constitutive theories, 
due to the erratic and complex nature of some materials such as soils, rocks, composites, etc., none of 
the existing constitutive models can completely describe the real behaviour of these materials under 
various stress paths and loading conditions.  

In the past few decades, the use of artificial neural networks (ANN) has been introduced as an 
alternative approach to constitutive modelling of materials. The application of ANN for modelling the 
behaviour of concrete was first proposed by Ghaboussi et al. (1991). Ghaboussi & Sidarta (1998) 
presented an improved technique of ANN approximation for learning the mechanical behaviour of 
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drained and undrained sand. The role of ANN in constitutive modelling was also studied by a number 
of other researchers (Ellis et al., 1995; Zhu et al., 1998; Javadi et al., 2003; 2004; 2009). These works 
indicated that neural net-work based constitutive models can capture nonlinear material behaviour 
with a high accuracy. It has been shown that the neural network-based constitutive models can be 
incorporated in finite element (or finite difference) codes (eg, Shin and Pande, 2000, Hashash et al. 
2004, Javadi et al., 2003, 2009).  

Although it has been shown by various researchers (including the authors) that the ANNs have a 
great potential in modelling of material behaviour, it is generally accepted NNCMs also have a 
number of drawbacks (Javadi & Rezania 2009). One of the main disadvantages of the NNCM is that 
the optimum structure of the ANN (such as number of inputs, number of hidden layers, transfer 
functions, etc.) must be identified a priori which is usually done through a time consuming trial and 
error procedure. Another major drawback of the NNCM approach is the large complexity of the 
network structure as it represents the knowledge in terms of a weight matrix together with biases that 
are not accessible to user. The lack of interpretability of ANN models has inhibited them from 
achieving their full potential in real world problems (Javadi & Rezania 2009).  

This paper presents a new approach for constitutive modelling using EPR that overcomes the 
shortcomings of the ANN-based approach. In the proposed approach the optimum structure for the 
material constitutive model representation and its parameters are determined directly from raw data. 
Furthermore, it provides a transparent and structured representation of the constitutive relationships 
that can be readily incorporated in a finite element code. Although some work has been done in 
literature in the field of application of intelligent finite element method in engineering problems, 
however almost all of them were limited to 2D planar problems. In this paper the application of 
intelligent FEM in analysis of a 3D problem (a 3D shallow foundation) has been presented and the 
results have been compared to the other conventional material models. Moreover in this paper the 
implementation of the presented methodology in a well known general-purpose finite element code 
(ABAQUS) has been introduced.   In what follows, the main principles of EPR will be outlined. The 
application of EPR in modelling of nonlinear constitutive relationships and the implementation of the 
obtained models in FE analysis will be illustrated with an example.  

2 Evolutionary polynomial regression 
Evolutionary polynomial regression (EPR) is a data-driven method based on evolutionary computing, 
aimed to search for polynomial structures representing a system. A general EPR expression can be 
presented as (Giustolisi & Savic 2006) 
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where y is the estimated vector of output of the process;  is a constant; F is a function constructed by 
the process; X is the matrix of input variables; f is a function defined by the user; n is the number of 
terms of the target expression. The general functional structure represented by F is constructed from 
elementary functions by EPR using a GA strategy. The GA is employed to select the useful input 
vectors from X to be combined. While the selection of feasible structures to be combined is done 
through an evolutionary process the parameters are estimated by the least square method.  

3 EPR for constitutive modelling 
In constitutive modelling using EPR, the raw experimental or in-situ test data are directly used for 
training the EPR model. In this approach, there are no mathematical models to select and as the EPR 
learns the constitutive relationships directly from the raw data it is the shortest route from 



   
 

 

experimental research to numerical modelling. There are no material parameters to be identified and 
as more data become available, the material model can be improved by re-training of the EPR using 
the additional data. Furthermore, the incorporation of an EPR in a finite element procedure avoids the 
need for complex yield/failure functions, flow rules, etc. An EPR equation can be incorporated in a 
finite element code/procedure in the same way as a conventional constitutive model. It can be 
incorporated either as incremental or total stress-strain strategies.  

3.1 Input and output parameters 
The choice of input and output quantities is determined by both the source of the data and the way the 
trained EPR model is to be used. A typical scheme to train most of the neural network based material 
models involves an input set providing the network with the information relating to the current state 
units (e.g., current stresses and current strains) and then a forward pass through the neural network 
yields the prediction of the next expected state of stress and/or strain relevant to an input strain or 
stress increment (Ghaboussi et al 1998). The same idea has been utilized in this work. Thus the mean 
stress p′ , deviatoric stress q , volumetric strain vε and distortional strain qε  are used as the input 
parameters representing the current state of stress and strain in a load increment i, and the devatoric 
stress corresponding to the input incremental deviatoric strain qΔε  is used as the output parameter. 
The database is divided into two separate sets. One set is used for training to obtain the EPR model 
and the other one is used for validation to appraise the applicability of the trained model. 

4 Intelligent finite element method 
The developed EPRCMs are implemented in the widely used general-purpose finite element code 
ABAQUS through its user defined material module (UMAT). UMAT updates the stresses and provide 
the material Jacobian matrix for every increment in every integration point. In the developed 
methodology, the EPRCM replaces the role of a conventional constitutive model. The source of 
knowledge for EPR is a set of raw experimental (or in situ) data representing the mechanical response 
of the material to applied load. When EPR is used for constitutive description, the physical nature of 
the input–output data for the EPR is determined by the measured quantities, e.g., stresses, strains, etc. 
The manner in which EPRCM is incorporated in ABAQUS is depicted in Figure 1. 

 
Figure 1. The incorporation of EPR-based material model in ABAQUS finite element software 
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In the EPR-based finite element procedure, during each load increment the Young’s modulus, EEPR , is 
calculated from the EPR relationship between the increments of relevant stress and strain and used to 
form the element stiffness matrix (D). The stiffness matrix is then updated for every single element. 
Consequently the global stiffness matrix for a particular problem is assembled. The whole procedure 
ensures that the constitutive model follows the actual behaviour of the material, both at the element 
level and the global level. 

5 Numerical example 
To illustrate the developed computational methodology and its ability to analyze intricate and realistic 
boundary value problems, a numerical example of application of the developed intelligent finite 
element method to a geotechnical problem is presented. In this example, the application of the 
methodology for settlement of a three dimensional shallow foundation is examined. 

The example involves analysis of a square shallow foundation subjected to applied displacement. 
Due to symmetry only a quarter of the domain is analyzed. The geometry of the foundation and the 
finite element mesh are shown in figure 2 (Helwany, 2007). 
 

Figure 2. Dimension and finite element mesh of a quarter of the square shallow foundation 

The finite element mesh includes 576 eight-node elements and 810 nodes. The aim of the analysis is 
to calculate bearing capacity of 3 m×3 m foundation on a 12 m thick homogeneous layer of a soil, 
using Mohr-Coulomb and EPRCM based finite element method. The foundation is situated at a depth 
of 0.38 m from ground level. A displacement of 50cm is imposed on footing as shown in figure 2. 
The results from a series of triaxial tests were used in this example for the training of the EPR based 
constitutive model with an incremental stress-strain (tangential stiffness) strategy. It was assumed that 
the soil tested was representative of the material of the soil around the foundation. The test data were 
arranged as shown in Table 1 and used to train an EPRCM to model the stress-strain relationship for 
the soil. The results from 3 tests conducted at confining pressures of 100, 150 and 350 kPa were used 
for training of the EPR model while those for the fourth test at the confining pressure of 250 kPa were 
used for validation of the trained EPR model. At the end of the training and testing procedure, the 
selected best EPR model representing the behaviour of the soil is: 
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Table 1. Input and output parameters used for training the EPR constitutive model. 
Input parameters Output parameters 

ip′  
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Figure 3a shows the results of the training of EPR model. It is clearly seen that, the EPR was able 

to capture the constitutive (nonlinear) stress-strain relationship for the soil with very good accuracy. 
The generalization capability of the EPRCM is shown in Figure 3b. The data from the test conducted 
at the confining pressure of 250kPa (which did not form a part of the training data) were used to test 
the trained EPRCM. The predicted output values of the EPR model are compared with the 
experimentally measured values in Figure 3b. It is seen that the generalization capability of the trained 
EPRCM is excellent. This shows that the EPR model was trained sufficiently to adequately model the 
stress-strain behaviour of the soil. The trained EPRCM was incorporated in the intelligent finite 
element (EPR-FEM) using UMAT in ABAQUS. The intelligent FE incorporating the EPR model was 
then used to simulate the behaviour of the foundation under applied displacement. For the 
conventional finite element analyses, the results of the triaxial tests were used to derive the material 
parameters for the Mohr-Coulomb model for the soil (see Table 2). 

 

                                                  (a)                    (b) 

Figure 3. (a) Results of training of the ANN, (b) stress-strain relationship predicted by the trained EPR 

Table 2. Material parameters for Mohr-Coulomb model  
c '  (kPa) ( )′ °φ  ν  γ  (kN/m3) 
8 30 0.33 18.14 

  
Figure 4 shows the pressure-settlement curves for the centre of the foundation predicted by 

standard finite element analysis using the Mohr-Coulomb elasto-plastic model as well as the 
intelligent finite element method where the raw data from the triaxial tests were directly used in 
deriving the EPR-based constitutive model. In the initial elastic zone, the predictions of the two 
models are almost the same. As loading progresses, inelastic deformations start and differences appear 
in the predicted modes of pressure-settlement behaviour of the foundation. This could be due to the 
idealisations adopted in the conventional Mohr Coulomb model. It can be argued that the intelligent 
FE results are more reliable, as this method used the original raw experimental data (representing the 
stress-strain behaviour of the soil) to learn the constitutive relationships for the material and it did not 
assume a priori any particular constitutive relationships, yield conditions, etc.  
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Figure 4. Comparison of results for foundation settlement, obtained from conventional FEA and intelligent FEA 

6 Conclusion 
An intelligent finite element method (EPR-FEM) has been developed based on the integration of an 
EPRCM in a finite element framework. In the developed methodology, the EPRCM is used as an 
alternative to the conventional constitutive models for the material. A procedure is presented for 
computing the stiffness matrix using the trained EPR model and incorporation of the EPRCM in a 
commercial finite element code ABAQUS. The efficiency of the proposed method has been 
demonstrated by successful application to a boundary value problem. The results of the analysis have 
been compared to those obtained from conventional FE analyses using the elastic-plastic models. The 
result shows that EPRCM can be successfully implemented in a finite element model as an effective 
alternative to conventional material models. 
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