
Research Article
Incremental Gene Expression Programming Classifier with
Metagenes and Data Reduction

Joanna Jedrzejowicz 1 and Piotr Jedrzejowicz 2

1 Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, 80-308 Gdansk, Poland
2Department of Information Systems, Gdynia Maritime University, 81-225 Gdynia, Poland

Correspondence should be addressed to Joanna Jedrzejowicz; jj@inf.ug.edu.pl

Received 27 March 2018; Revised 8 October 2018; Accepted 24 October 2018; Published 7 November 2018

Academic Editor: Vincent Labatut

Copyright © 2018 Joanna Jedrzejowicz and Piotr Jedrzejowicz. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

The paper proposes an incremental Gene Expression Programming classifier. Its main features include using two-level ensemble
consisting of base classifiers in form of genes and the upper-level classifier in the form of metagene. The approach enables us to
deal with big datasets through controlling computation time using data reduction mechanisms. The user can control the number
of attributes used to induce base classifiers as well as the number of base classifiers used to induce metagenes. To optimize the
parameter setting phase, an approach based on the Orthogonal Experiment Design principles is proposed, allowing for statistical
evaluation of the influence of different factors on the classifier performance. In addition, the algorithm is equipped with a simple
mechanism for drift detection. A detailed description of the algorithm is followed by the extensive computational experiment. Its
results validate the approach. Computational experiment results show that the proposed approach compares favourablywith several
state-of-the-art incremental classifiers.

1. Introduction

Learning from the environment throughdatamining remains
an important research challenge. Numerous approaches,
algorithms, and techniques have beenproposed during recent
years to deal with the data mining tasks. An important part of
these efforts focuses onmining big datasets and data streams.
Barriers posed by a sheer size of the real-life datasets, on one
side, and constraints on the resources available for perform-
ing the data mining task, including time and computational
resources, on the other, are not easy to overcome. Additional
complications, apart from the above-mentioned complexity
issues, are often encountered due to the nonstationary envi-
ronments.

One of the most effective approaches to mining big data-
sets and data streams is using online or incremental learners.
Online learning assumes dealing strictly with data streams.
Online learners should have the following properties [1]:

(i) Single-pass through the data.
(ii) Each example is processed very fast and in a constant

period of time.

(iii) Any-time learning: the classifier should provide the
best answer at every moment of time.

The incremental learning is understood as a slightly wider
concept, as compared with the online learning one. Incre-
mental learners can deal not only with data streams but also
with big datasets stored in databases forwhich using the “one-
by-one” or “chunk-by-chunk” approach could bemore effec-
tive than using the traditional “batch” learners, even if no
concept drift has been detected. An important feature of the
incremental learners is their ability to update the currently
usedmodel using only newly available individual data instan-
ces, without having to reprocess all of the past instances.

In fact, using incremental learners is, quite often, the
only possible way to extract any meaningful knowledge.
Usual for the contemporary databases is a constant inflow
of new data instances. Hence, the knowledge discovered in
databases needs to be constantly updated, which is usually
an infeasible task for classic learners. Data streams, and even
stored datasets, may be affected by the so-called concept drift.
In the above cases, online or incremental learners are needed.

Hindawi
Complexity
Volume 2018, Article ID 6794067, 12 pages
https://doi.org/10.1155/2018/6794067

http://orcid.org/0000-0003-4979-5476
http://orcid.org/0000-0001-6104-1381
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6794067

2 Complexity

In the paper, we propose a new version of the incremental
classifier based on Gene Expression Programming (GEP)
with data reduction and a metagene as the final, upper-level,
classifier. Classifiers using the GEP-induced expression trees
are known to produce satisfactory or very good results in
terms of the classification accuracy. Our approach uses GEP-
induced expression trees to construct learners with the ability
to deal with large datasets environment and with a concept
drift phenomenon. The rest of the paper is organized as fol-
lows. In Section 2 a brief survey of the related results is offer-
ed. In Section 3 we describe a new version of the proposed
approach. Section 4 contains a detailed description of the
validating computational experiment and a discussion of its
results including suggestions on how to deal with the real-life
datasets through the Orthogonal Experiment Design tech-
nique. Section 5 includes conclusions and ideas for future re-
search.

2. Related Work

Tomeet the required properties of the online learners several
approaches and techniques have been proposed in the litera-
ture.Themost successful ones include sampling, windowing,
and drift detecting. Sampling assumes using only some data
instances or some part of instances out of the available
dataset. In [14] random sampling strategy with a probabilistic
removal of some instances from the training set was pro-
posed. Later on, the idea was extended in [15]. Some more
advanced sampling strategies were proposed in [16]. Effects of
sampling strategy on classification accuracywere investigated
in [17].

As it has been observed in the review of [18], data sampl-
ing methods for machine learning have been investigated
for decades. According to the above paper, in recent years
progress has been made in methods that can be broadly cate-
gorized into random sampling including density-biased and
nonuniform sampling methods, active learning methods,
which are the type of semisupervised learning, and progres-
sive sampling methods, which can be viewed as a combina-
tion of the above two approaches.

Closely related to sampling is the sliding window model.
Sliding window can be seen a subset that runs over an
underlying collection. Several versions of the approach can be
found in [19–21].The idea is that analysis of the data stream is
based on recent instances only and a limited number of the
data instances, usually equal to the window size, are used to
induce a classifier. In machine learning, the concept can be
used for incremental mining of association rules [22]. Anoth-
er interesting application of the sliding window technique is
known as the high utility pattern mining [23].

For noisy environments or environments with a concept
drift the key question is when and how the current model
should be adopted. Possible solutions include explicit drift
detection models (see the survey by Ditzler et al. [24]) or ex-
plicit partitioning approaches (see, for example, [25]).

One of the most successful approaches to incremental
mining of data streams is using the drift detection techniques.
The aim of the drift detection is to identify changes in statisti-
cal properties of data distribution over time. Such changes are

often referred to as the concept drift. To minimize deteriora-
tion of learners accuracy caused by the concept drift, one can
apply change detection tests and modify or replace a learner
upon discovering the drift (see, for example, [26, 27]). The
above-described approach is known as an active solution as
opposed to a passive one, where the model is constantly re-
trained based on the most recent sample. More recently sev-
eral Extreme Learning Machine (ELM) approaches to incre-
mental learning have been discussed. For example, [28] pro-
posed a forgetting parameters concept named FP-ELM. Re-
cent surveys on data stream mining can be found in [24, 29].

Among incremental models, there are also those based on
exploiting a power of the ensemble classifiers. Ensemble
learners involve a combination of several models. Their pre-
dictions can be combined in some manner like, for example,
averaging or voting to arrive at the final prediction. Ensemble
learners for the data stream mining were proposed, among
others, in [30–34].

One of techniques used to construct incremental classi-
fiers is Gene Expression Programming (GEP). Gene Expres-
sion Programming was introduced in [35]. In GEP programs
are represented as linear character strings of a fixed length
called chromosomes which, in the subsequent fitness eval-
uation, evolve into expression trees without any user inter-
vention. This feature makes GEP-induced expression trees a
convenient model for constructing classifiers [36].

An improvement of the basic GEP classifiers can be achie-
ved by combining GEP-induced weak classifiers into a classi-
fier ensemble. In [37] two well-known ensemble techniques,
bagging and boosting, were used to enhance the generaliza-
tion ability of GEP classifiers. Yet another approach to build-
ing GEP-based classifier ensembles was proposed in [38].The
idea was to construct weak (base) classifiers from different
subsets of attributes controlling the diversity among these
subsets through applying a variant of niching technique. Fur-
ther extensions and variants of GEP-induced ensemble classi-
fiers were discussed in [39] where ideas of incremental learn-
ing and cluster-based learning were proposed. Approaches
to constructing ensemble classifiers fromGEP-induced weak
classifiers were also studied in [40].

3. The Proposed Incremental
GEP-Based Classifier

In this paper, we extend and improve the incremental GEP-
based classifier proposed in [41]. In the above paper, GEP
was used to induce base classifiers. Base classifiers serve
to construct an ensemble of classifiers. Such an ensemble
requires the application of some integration techniques like
for instance majority voting, bagging or boosting. Review of
the ensemble construction methods for the online learning
can be found in [42]. Alternatively, a metaclassifier can be
constructed following the idea of the stacked generalization
[43]. In our case, such a metaclassifier is called a metagene.

Our approach follows steps proposed in [41] as far as the
construction of base classifiers and respective metagenes are
concerned.The algorithm for learning the best classifier using
GEPworks as follows. Suppose that a training dataset is given
and each vector in the dataset has a correct label representing

Complexity 3

0 1 2 3 4
OR (>, 1, 0.57) NOT (≤, 10, 0.16) ···

Figure 1: Single gene example.

the class. In the initial step, the minimal and maximal values
of each attribute are calculated and a random population of
chromosomes is generated. Each chromosome is composed
of a single gene divided into two parts as in the original head-
tail method [35]. The size of the head (ℎ) is determined by
the user with the suggested size not less than the number of
attributes in the dataset. The size of the tail (𝑡) is computed as
𝑡 = ℎ + 1. The size of the chromosome is ℎ + 𝑡 = 2ℎ + 1.
For each gene, the symbols in the head part are randomly
selected from the set of functions AND, OR, NOT, XOR,
and NOR and the set of terminals of type (𝑜𝑝; 𝑎𝑡𝑡𝑟𝑖𝑏; 𝑐𝑜𝑛𝑠𝑡),
where the value of 𝑐𝑜𝑛𝑠𝑡 is in the range of attribute 𝑎𝑡𝑡𝑟𝑖𝑏 and
𝑜𝑝 is a relational operator. The symbols in the tail part are
all terminals. In Figure 1 an example of a gene is given. The
start position (position 0) in the chromosome corresponds to
the root of the expression tree (OR, in the example). Then,
below each function branches are attached and there are as
many of them as the arity of the function, 2 in our case.
The following symbols in the chromosome are attached to
the branches on a given level. The process is complete when
each branch is completed with a terminal. The number of
symbols from the chromosome to form the expression tree is
denoted as the termination point. For the discussed example,
the termination point is 4; therefore further symbols are not
meaningful and are denoted by ⋅ ⋅ ⋅ in Figure 1. The rule
corresponding to the chromosome from Figure 1 is

IF (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1 > 0.57) OR NOT (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒10 ≤ 0.16)
THEN Class 1.

To introduce variation in the population the following
genetic operators are used:

(i) mutation,
(ii) transposition of insertion sequence elements (IS

transposition),
(iii) root transposition (RIS transposition),
(iv) one-point recombination,
(v) two-point recombination.

Mutation can occur anywhere in the chromosome. We con-
sider one-point mutation which means that with a proba-
bility, called mutation rate, one symbol in a chromosome
is changed. In case of a functional symbol it is replaced
by another randomly selected function; otherwise for 𝑔 =
(𝑜𝑝, 𝑎𝑡𝑡𝑟𝑖𝑏, 𝑐𝑜𝑛𝑠𝑡) a random relational operator 𝑜𝑝󸀠, an attri-
bute 𝑎𝑡𝑡𝑟𝑖𝑏󸀠, and a constant 𝑐𝑜𝑛𝑠𝑡󸀠 in the range of 𝑎𝑡𝑡𝑟𝑖𝑏󸀠 are
selected. Note that mutation can change the respective ex-
pression tree since a function of one argument may bemutat-
ed into a function of two arguments or vice versa.

Transposition stands formoving part of a chromosome to
another location. Here we consider two kinds of transposable
elements. In the case of transposition of insertion sequence
(IS) three values are randomly chosen: a position in the chro-
mosome (start of IS), the length of the sequence and the target

site in the head, a bond between two positions. Then a cut is
made in the bond defined by the target site and the insertion
sequence is copied into the site of the insertion. The sequence
downstream from the copied IS element loses, at the end of
the head, as many symbols as the length of the transposon.
Observe that since the target site is in the head, the newly
created individual is always syntactically correct though it
can reshape the tree quite dramatically. In the case of root
transposition, a position in the head is randomly selected,
the first function following this position is chosen; it is the
start of the RIS element. If no function is found, then no
change is performed. The length of the insertion sequence is
chosen. The insertion sequence is copied at the root position
and at the same time the last symbols of the head (as many as
RIS length) are deleted.

For both kinds of recombination two parent chromo-
somes𝑃1,𝑃2 are randomly chosen and twonew child chromo-
somes 𝐶1, 𝐶2 are formed. In the case of one-point recombi-
nation, one position is randomly generated and both parent
chromosomes are split by this position into two parts. Child
chromosomes 𝐶1 (respectively, 𝐶2) is formed as containing
the first part from 𝑃1 (respectively, 𝑃2) and the second part
from 𝑃2 (and 𝑃1). In two-point recombination two positions
are randomly chosen and the symbols between recombina-
tion positions are exchanged between two parent chromo-
somes forming two new child chromosomes. Observe that
again, in both cases, the newly formed chromosomes are syn-
tactically correct no matter whether the recombination posi-
tions were taken from the head or tail.

During GEP learning, the individuals are selected and
copied into the next generation based on their fitness and the
roulette wheel sampling with elitism which guarantees the
survival and cloning of the best chromosome in the next
generation.

Further details on GEP operators and GEP learning can
be found in [39, 40, 44].

For a fixed training set 𝑇𝑅 and fixed gene 𝑔 the fitness
function counts the proportion of vectors from 𝑇𝑅 classified
correctly:

𝑓𝑖𝑡𝑇𝑅 (𝑔) =
∑𝑟𝑤∈𝑇𝑅, 𝑔(𝑟𝑤) 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑠𝑔 (rw is from class 1)

|𝑇𝑅|
(1)

where

𝑠𝑔 (𝜑) =
{
{
{

1 if 𝜑 is true

0 otherwise
(2)

Having generated a population of genes it is possible to create
a population of metagenes which corresponds to creating an
ensemble classifier. The idea is as follows. Let 𝑝𝑜𝑝 be a pop-
ulation of genes, with each gene identified by its 𝑖𝑑. To create
metagenes from 𝑝𝑜𝑝 we define the set of functions again
as Boolean ones as above and set terminals equal to identifiers

4 Complexity

0 1 2 3 4
OR AND g1 g2 g3

Figure 2: Single metagene example.

of genes. For example, the metagene 𝑚𝑔 shown in Figure 2
makes use of three genes g1, g2, and g3.

𝑔1 : 0 1 2
AND (=, 2, 0.8) (=, 3, 2.5)

𝑔2 : 0 1 2 3
AND NOT (=, 3, 0) (<, 2, 0)

𝑔3 : 0 1
(=, 1, 0) . . .

(3)

For a fixed attribute vector 𝑟𝑤 each terminal (i.e., gene) has a
Boolean value and thus the value of metagene can be com-
puted. For the metagene 𝑚𝑔 from Figure 2 and 𝑟𝑤 =
(1.2, 0.8, 2.5) we have

𝑔1 (𝑟𝑤) = 𝑡𝑟𝑢𝑒,

𝑔2 (𝑟𝑤) = 𝑓𝑎𝑙𝑠𝑒,

𝑔3 (𝑟𝑤) = 𝑓𝑎𝑙𝑠𝑒,

𝑚𝑔 (𝑟𝑤) = 𝑡𝑟𝑢𝑒

(4)

Similarly as in (1), for a fixed training set 𝑇𝑅 and fixed
metagene 𝑚𝑔 the fitness function counts the proportion of
vectors from the testing set classified correctly:

𝐹𝐼𝑇𝑇𝑅 (𝑚𝑔)

=
∑𝑟𝑤∈𝑇𝑅,𝑚𝑔(𝑟𝑤) 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑠𝑔 (rw is from class 1)

|𝑇𝑅|

(5)

The incremental GEP classifier with metagenes works in
rounds. In each round, a chunk of data is used to induce genes
and another chunk to inducemetagenes. Chunk size is one of
the incremental classifier parameters. Its role is to control the
frequency with which the model is updated with a view to
adapt to a possible concept drift. Main assumptions for such
an approach are as follows:

(i) Class labels of instances belonging to the first and
second chunks are known at the outset

(ii) Class labels of instances belonging to the chunk num-
ber 3, and to all the following chunks, are immediately
revealed after the class of each instance has been
predicted

(iii) All instances except those belonging to the first two
chunks are classified one by one in the “natural” order

Based on the above assumptions, in [2], the following pro-
cedure was implemented. In each round a chunk of training
data 𝑐1 is used to create a population of genes, next chunk
of data 𝑐2 is used to create the population of metagenes and

to choose one best-fitted metagene denoted 𝑚𝑔, and the
following chunk 𝑐3 is tested by metagene 𝑚𝑔. In the next
round, 𝑐1 fl 𝑐2, 𝑐2 fl 𝑐3 and next chunk is used as 𝑐3. For
further comparisons, the incremental classifier from [2] is de-
noted as Inc-GEP1.

Computational experiments confirmed that Inc-GEP1
performs quite well. Comparison with the state-of-the-art
incremental classifiers showed that the approach outper-
forms, in the majority of cases, the existing solutions in terms
of the classification accuracy. Unfortunately, Inc-GEP1 suffers
from a high demand on computational resources which, in
many situations, might prevent it from mining data streams
and datasets from the big data environment. One of the rea-
sons behind the above situation is that Inc-GEP1 has not been
equipped with any adaptation mechanism providing for
updating the model only upon detecting a concept drift.
Instead, themodel is induced anew each time after classifying
a chunk of instances.

To offer more flexibility and to shorten the computation
time as compared with Inc-GEP1 we propose two measures.
The first is an extensive data reduction option, and the second
is providing some adaptation mechanism with a view to
decreasing the number of required learner updates during
computations. Following the idea of the random sampling
proposed for the classic (nonincremental) learners [41], in the
proposed incremental learner, the user has an option to set
values of the following main parameters:

(i) Chunk size (𝑐ℎ)
(ii) Number of the base classifiers (𝑁𝐵)
(iii) Number of attributes used to induce the base genes

(𝑁𝐴)
(iv) Percent of instances used to induce the base genes

(𝑅𝐵)
(v) Percent of instances used to induce metagenes (𝑅𝑀)

Each of the above options can be used to control and effec-
tively decrease or increase the computation time of the whole
process, including learning models and predicting class labels
of the incoming instances. Setting value of the chunk size
determines how often the learner is updated. Smaller size
results in increasing the number of updates. In our case, this
number can be decreased through the proposed adaptation
mechanism described later in this section. The number of
base classifiers used to induce metagenes influences compu-
tation time needed to perform the job. A smaller number
of the base classifiers may, however, decrease the accuracy
of the resulting metagenes. The number of attributes used
to induce base genes should be smaller than the number of
original attributes in each instance of the considered dataset.
Once set, it results in selecting randomly as many attributes
as required from the set of all data attributes. The random
draw of attributes takes place each time when one of the base
classifiers is induced. This means that for inducing each base
classifier a combination of attributes is repeatedly randomly
drawn. Setting percent of instances used to induce the base
genes and metagenes results in randomly sampling chunks
used to induce the base genes and metagenes, respectively.

Complexity 5

Input: chunk𝐶, number of base classifiers𝑁𝐵, number of attributes𝑁𝐴, percent of instances 𝑅𝐵
Output: the population of base classifiers 𝐵𝐶

(1) 𝐵𝐶 ←󳨀 0
(2) for 𝑖 ←󳨀 1 to𝑁𝐵 do

/⋆ prepare chunk for learning ⋆/
(3) 𝐶𝐹 ←󳨀 𝐶 filtered onto𝑁𝐴 attributes chosen randomly
(4) 𝑁𝐼 ←󳨀 size(𝐶𝐹)×𝑅𝐵
(5) 𝐶𝑁 ←󳨀 0
(6) for 𝑖 ←󳨀to𝑁𝐼 do
(7) select random row 𝑟 from 𝐶𝐹
(8) add row 𝑟 to 𝐶𝑁
(9) apply GEP learning to 𝐶𝑁 ([2])
(10) add the best gene to base classifiers 𝐵𝐶
(11) return 𝐵𝐶

Algorithm 1: Inducing base classifiers.

Input: chunk𝐶, base classifiers 𝐵𝐶, percent of instances 𝑅𝑀
Output: best metagene𝑚𝑔
/⋆ prepare chunk for learning metagene ⋆/

(1) 𝑁𝐼 ←󳨀 size(𝐶)×𝑅𝑀
(2) 𝐶𝑁 ←󳨀 0
(3) for 𝑖 ←󳨀 0 to𝑁𝐼 do
(4) select random row 𝑟 from 𝐶
(5) add row 𝑟 to 𝐶𝑁
(6) apply metagene learning to 𝐶𝑁 and base classifiers 𝐵𝐶 ([2])
(7) select best metagene𝑚𝑔
(8) return𝑚𝑔

Algorithm 2: Inducing metagene.

Such filtering results in diminishing the number of instances
used to induce each of the base classifiers and each of meta-
genes, by a given percentage.

Apart from the data reduction measures, we also propose
to introduce a simple adaptationmechanism reducing unnec-
essary learner updates. After having used the first two data
chunks to induce the initial set of base classifiers and the cur-
rent metagene (𝑚𝑔), the following scheme is used. Class
labels of instances belonging to the third chunk 𝑐3 are pre-
dicted using 𝑚𝑔 and the average accuracy of class prediction
for that chunk (𝑎V3) is recorded. In the next step, 𝑚𝑔 is used
to predict class labels of the fourth chunk 𝑐4 and the average
accuracy of prediction 𝑎V4 is calculated and recorded. If 𝑎V4 <
𝑎V3, then the learner is updated using 𝑐3 and 𝑐4 producing
new current 𝑚𝑔. Else, the current metagene is used to pre-
dict class labels of instances belonging to the next incoming
chunk.The procedure is repeated until instances in all chunks
have been classified. Wherever the inequality 𝑎V𝑖 < 𝑎V𝑖−1
holds, the current metagene is replaced by a new one induced
using chunks 𝑐𝑖 and 𝑐𝑖−1. The above adaptation mechanism
is denoted as ADAPT1. Alternatively, the second version of
the adaptationmechanism, denoted asADAPT2, can be used.
Under ADAPT2 the current metagene is replaced by a newly
induced one only after the average classification accuracy for
two consecutive chunks is worse than the accuracy produced

by the metagene induced for their predecessor chunk. The
procedure using ADAPT1 is shown as Algorithm 3 and the
case for ADAPT2 is omitted, as being similar. The incremen-
tal classifier with data reduction and ADAPT1 mechanism is
further on referred to as Inc-GEP2. Such classifier equipped
with ADAPT2 mechanism is further on referred to as Inc-
GEP3.

Procedures for inducing base classifiers and metagenes
are shown as Algorithms 1 and 2, respectively. In both cases,
the fitness function is an accuracy of the class label prediction
calculated over the respective chunk of data.

4. Computational Experiment Results

To evaluate the performance of the proposed approach we
have carried out the computational experiment over a repre-
sentative group of the publicly available 2-classes benchmark
datasets including large datasets and datasets often used to
test incremental learning algorithms. Datasets used in the
experiment are shown in Table 1.

In Table 2 experiment settings used in Inc-GEP2 and Inc-
GEP3 are shown. There are 4 main parameters affecting the
proposed classifiers performance. Chunk size refers to the
number of instances classified one by one without interrup-
tion using the current metagene. The number of attributes

6 Complexity

Input: dataset𝐷, chunk size 𝑐ℎ, number of base classifiers𝑁𝐵
Output: overall prediction accuracy
/⋆ induce 𝑁𝐵 base classifiers using the first chunk and best metagene

using the second chunk ⋆/
(1) 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛 ←󳨀 first 𝑐ℎ rows from𝐷
(2) 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛𝑀 ←󳨀 next 𝑐ℎ rows from𝐷
(3) apply Algorithm 1 to 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛 to induce𝑁𝐵 base classifiers 𝐵𝐶
(4) apply Algorithm 2 to 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛𝑀 and 𝐵𝐶 to induce metagene𝑚𝑔
(5) 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡 ←󳨀 next 𝑐ℎ rows from𝐷
(6) 𝑎𝑐 ←󳨀 accuracy of classification performed on 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡 by metagene𝑚𝑔
(7) 𝑎𝑐𝑉 ←󳨀 𝑎𝑐
(8) while rows in 𝐷 not considered yet do
(9) 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡𝑁 ←󳨀 next 𝑐ℎ rows from𝐷
(10) 𝑎𝑐𝑁 ←󳨀 accuracy of classification performed on 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡𝑁 by metagene𝑚𝑔
(11) 𝑎𝑐𝑉 ←󳨀 𝑎𝑐𝑉 + 𝑎𝑐𝑁
(12) 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛 ←󳨀 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛𝑀
(13) 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛𝑀 ←󳨀 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡
(14) 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡 ←󳨀 𝑑𝑎𝑡𝑎𝑇𝑒𝑠𝑡𝑁
(15) if 𝑎𝑐𝑁 < 𝑎𝑐 then

/⋆ metagene updated by new learning ⋆/
(16) apply Algorithm 1 to 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛 to induce base classifiers 𝐵𝐶
(17) apply Algorithm 2 to 𝑑𝑎𝑡𝑎𝑇𝑟𝑎𝑖𝑛𝑀 to induce metagene𝑚𝑔
(18) 𝑎𝑐 ←󳨀 𝑎𝑐𝑁
(19) 𝑛𝑜𝐶 ←󳨀 number of chunks −2
(20) 𝑎𝑐𝑉 ←󳨀 𝑎𝑐𝑉/𝑛𝑜𝐶
(21) return 𝑎𝑐𝑉

Algorithm 3: Incremental classifier with data reduction and ADAPT1 adaptation mechanism.

refers to the number of randomly selected attributes used
to induce each gene. Reduction rate reflects the percent of
both instances used to induce genes and instances used to
inducemetagenes. Number of classifiers refers to the number
of base classifiers (genes). Method of setting values of the
above parameters is explained later. Other settings including
the number of iterations in GEP (set at 100) and probabilities
of applying genetic operators (set as in [2]) have been the
same throughout the whole experiment.

In Table 3 mean classification accuracy of Inc-GEP1, Inc-
GEP2, and Inc-GEP3 is shown. Accuracy and standard devia-
tion have been calculated as mean values obtained over 20
runs with parameter settings as shown in Table 2. For the Inc-
GEP1 chunk size and the number of attributes are identical
as in the case of the Inc-GEP2 and Inc-GEP3. In Inc-GEP1,
however, there is no reduction with respect to the percentage
of genes used to induce base classifiers and metagenes. Addi-
tionally, in Inc-GEP1 base classifiers and metagenes are
induced using the full set of attributes.

Parameter values shown in Table 2 have been selected
through the Orthogonal Experimental Design (OED) meth-
od. Since there are four main factors affecting classifier per-
formance, it has beendecided to use anL9 orthogonal array to
identify the influence of 4 different independent variables on
classifier performance. For each variable 3 level values have
been set. Selection of the level values was arbitrary, albeit
based on common sense.

The decision to use the OED method has been preceded
by a comparison of mean classification accuracy values for

Table 1: Benchmark datasets used in the experiment. The table
is reproduced from [2] (under the Creative Commons Attribution
License/public domain).

Dataset Source Instances Attributes
Airlines [3] 539383 8
Bank M. [4] 45211 10
Banknote Auth [4] 1372 5
Breast Cancer [4] 263 10
Chess [5] 503 9
Diabetes [4] 768 9
Electricity [6] 45312 6
Heart [4] 303 14
Image [4] 2086 19
Internet Adv [4] 3279 1559
Ionosphere [4] 351 35
Luxemburg [5] 1901 32
Sea [7] 5000 4
Usenet2 [7] 1500 100

each dataset and each combination of main factors out of 9
combinations under analysis. Thus, for each dataset, we had
9 groups of samples, each containing 10 classification accu-
racies obtained by running the considered classifier for 10
times for each combination of factors. The one-way ANOVA
with the null hypotheses stating that samples in all groups
are drawn from populations with the same mean values has

Complexity 7

Table 2: Experiment settings for algorithms Inc-GEP2 and Inc-GEP3.

Dataset name Chunk size No of attrib. Reduction rate (%) No of classifiers
Airlines 10000 4 50 20
Bank M 400 13 10 20
Banknote Auth. 120 4 80 50
Breast cancer 30 4 20 20
Chess 50 7 50 20
Diabetes 60 3 80 30
Electricity 4000 4 50 30
Heart 30 11 90 20
Image 100 15 50 20
Internet Adv. 500 500 70 60
Ionosphere 60 30 50 20
Luxemburg 50 11 80 30
Sea 2500 2 10 30
Usenet2 20 60 50 20

Table 3: Computational experiment results (mean accuracy and standard deviation, %).

Dataset name Inc-GEP1 Inc-GEP2 Inc-GEP3
Accuracy +/- Accuracy +/- Accuracy +/-

Airlines 62.56 2.339 63.79 2.029 61.24 3.108
Banknote auth 93.07 1.436 93.01 1.356 93.41 1.199
Bank M 93.31 1.867 88.79 0.461 89.98 0.985
Breast cancer 82.13 0.720 74.38 0.654 76.37 0.536
Chess 85.94 1.676 84.16 0.897 77.34 0.549
Diabetes 85.01 0.932 62.13 0.245 65.33 0.453
Electricity 88.13 3.247 95.39 1.298 92.67 1.541
Heart 83.91 1.127 78.95 1.457 77.33 0.914
Image 86.6 2.358 79.04 1.298 75.58 1.598
Internet Adv. 91.47 0.793 95.67 0.033 94.92 0.055
Ionosphere 92.9 1.002 89.61 0.972 87.06 0.839
Luxemburg 100.00 0.000 100.00 0.000 100.00 0.000
Sea 81.12 1.393 83.28 0.356 84.56 0.541
Usenet2 78.15 2.362 74.24 1.885 69.78 1.177

shown that, for all considered datasets with the exception
of the Bank Marketing dataset, null hypotheses should be
rejected. This finding assures sensibility of searching for the
best combination of factor values for each of the considered
datasets.

The procedure of the orthogonal experiment and selec-
tion of the parameter values is shown below on the example
of the Sea dataset. The similar procedure has been applied to
all considered datasets.

In Table 4 factor (term) levels for the orthogonal array
used in the experiment with the Sea dataset are shown. In
Table 5 response values representing classification accuracy
using the Inc-GEP2 classifier are displayed. The first col-
umn shows factor level numbers. Next ten columns contain
response values. The last column contains the average of
responses.

Response table for signal-to-noise ratio shown in Table 6
indicates that key role in maximizing the discussed ratio

plays the number of attributes while data in Table 7 showing
the response table for classification accuracy means indicate
that key factor in maximizing accuracy plays the number of
classifiers and next the number of attributes. The response
table for signal-to-noise ratios contains a row for the average
signal-to-noise ratio for each factor level, Delta, and rank.
Delta is the difference between the maximum and minimum
average response for the factor. The response table for means
shows the size of the effect by taking the difference between
the highest and lowest characteristic average for a factor.
Ranks in a response table allow to quickly identify which
factors have the largest effect. All factors, however, have
statistically significant effects on response. This is confirmed
by the main effect plot for means shown in Figure 3. Main
effect plot is constructed by plotting the means for each value
of a variable. A line connects the points for each variable.
When the line is horizontal (parallel to the x-axis), there is
no main effect present. The response mean is the same across

8 Complexity

Table 4: Factor levels for the orthogonal array used in the experiment with the Sea dataset.

Factor level Window size No of attrib. Reduction rate (%) No of classifiers
1 5000 3 30 30
2 2500 2 20 20
3 100 1 10 10

Table 5: Experiment response results (Sea dataset, Inc-GEP2 classifier).

Levels 1 2 3 4 5 6 7 8 9 10 AV
1,1,1,1 0.816 0.802 0.798 0.803 0.806 0.797 0.820 0.815 0.820 0.791 0.807
1,2,2,2 0.815 0.813 0.804 0.800 0.802 0.794 0.803 0.820 0.811 0.816 0.808
1,3,3,3 0.736 0.720 0.744 0.690 0.735 0.735 0.737 0.743 0.711 0.710 0.726
2,1,2,3 0.823 0.837 0.839 0.818 0.828 0.834 0.837 0.832 0.821 0.803 0.827
2,2,3,1 0.837 0.835 0.832 0.831 0.833 0.826 0.831 0.837 0.830 0.833 0.833
2,3,1,2 0.756 0.727 0.742 0.758 0.759 0.736 0.742 0.758 0.742 0.761 0.748
3,1,3,2 0.796 0.812 0.799 0.801 0.809 0.812 0.807 0.812 0.791 0.793 0.803
3,2,1,3 0.793 0.771 0.780 0.804 0.809 0.802 0.808 0.819 0.800 0.805 0.799
3,3,2,1 0.759 0.771 0.785 0.765 0.740 0.758 0.761 0.752 0.774 0.737 0.760

Table 6: Response Table for signal-to-noise ratios: Sea dataset.

Level Window Attributes Reduction Class.no
1 -2.080 -2.563 -2.092 -2.128
2 -1.920 -1.798 -1.962 -2.093
3 -2.166 -1.806 -2.113 -1.946
Delta 0.246 0.765 0.151 0.182
Rank 2 1 4 3

Table 7: Response table for means: Sea dataset.

Level Window Attributes Reduction Class.no
1 0.9214 0.9142 0.9242 0.9145
2 0.9402 0.9366 0.9334 0.9329
3 0.9254 0.9362 0.9294 0.9396
Delta 0.0189 0.0224 0.0092 0.0251
Rank 3 2 4 1

all factor levels. On the other hand, when the line is not
horizontal, there is a main effect present and the response
mean is not the same across all factor levels. The steeper the
slope of the line, the greater the magnitude of the main effect.

As data in Table 5 indicate, the best combination of factor
levels for the Sea dataset is window (chunk) size 2500, 2
attributes for inducing base classifiers, 10% of instances used
to induce genes and, respectively, metagenes, and 30 classi-
fiers. Similar analysis has been performed for all considered
datasets with a view to find out the best combination of
parameter (factor) values.

Orthogonal array analysis can be also carried out with
respect to the computation times. For example, in the case
of the Sea dataset the respective response table for compu-
tation times means indicates that key role in minimizing
computation time plays the window size and number of clas-
sifiers used to construct the ensemble. The respective main

effects plot displaying how the considered factors affect com-
putation times for the Sea dataset is shown in Figure 4. In this
Figure “means” refers to times in seconds needed to classify
a single instance. In Table 8 comparison between mean com-
putation times for all the considered dataset and for settings
of parameters from Table 2 is shown. Respective values refer
to times in seconds needed to classify 100 instances by the
considered algorithms run on Dell Precision 3520 worksta-
tion with Xeon processor and 16GB RAM. Columns Speed-
up1 and Speed-up2 contain speed-up factors comparing Inc-
GEP1 with Inc-GEP2 and Inc-GEP1 with Inc-GEP3, respec-
tively. As can be observed from Table 8, there are significant
differences in computation times needed to run algorithms
under comparison. On average, the proposed Inc-GEP2 clas-
sifier is over 2 times quicker as compared with the incremen-
tal Gene Expression Programming with metagenes without
data reduction (Inc-GEP1). Moreover, the proposed Inc-
GEP3 classifier is, on average, over 7 times quicker than the
control algorithm Inc-GEP1. To properly evaluate both Inc-
GEP2 and Inc-GEP3 one has to evaluate also their perform-
ance in terms of the classification accuracy. Assuming equal
variances, one-way ANOVA allows observing that null hypo-
thesis stating that all three mean accuracies are equal
under the confidence level 0.05 holds. Hence, the alternative
hypothesis stating that not all the considered means are equal
should be rejected. The above finding is confirmed by Fisher
and Tukey tests.

In Table 9 comparison of the proposed GEP-based incre-
mental classifiers with some literature reporting state-of-the-
art incremental classifiers in terms of the mean classification
accuracy is shown. The abbreviations used for incremental
classifiers are as follows: FTDD, Fisher Test Drift Detec-
tion; IncSVM, Incremental SVM; EDDM, Early Drift Detec-
tion Method; IncN-B, Incremental Näıve Bayes; KFCM,
Online distance based classifier with Kernel Fuzzy C-means;
IncEnsemble, Incremental Ensemble; and FISH, Unified
Instance Selection Algorithm.

Complexity 9

Window Attributes Reduction Class. No.

100 201032150002500 302030 10

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

M
ea

n
of

 M
ea

ns

Figure 3: Main effects plot for classification accuracy means: Sea dataset.

Table 8: Mean computation times (seconds per 100 instances).

Dataset Inc-GEP1 Inc-GEP2 Inc-GEP3 Speed-up1 Speed-up2
Airlines 1.07 0.39 0.16 2.7 6.7
Banknote auth. 6.63 4.30 1.09 1.5 6.1
Bank M. 0.75 0.39 0.20 1.9 3.8
Breast 26.24 11.03 1.14 2.4 23.0
Chess 5.37 3.58 2.39 1.5 2.3
Diabetes 4.56 3.65 2.86 1.3 1.6
Electricity 7.27 2.53 0.50 2.9 14.5
Heart 18.81 10.56 5.61 1.8 3.4
Image 14.43 2.92 0.91 4.9 15.8
Internet Ad 13.08 5.58 2.10 2.3 6.2
Ionosphere 10.54 7.69 3.70 1.4 2.8
Luxemburg 0.79 0.26 0.16 3.0 5.0
Sea 0.76 0.34 0.18 2.3 4.3
Usenet2 17.80 8.07 3.13 2.2 5.7

10 Complexity

Table 9: Comparison of the proposed GEP-based incremental classifiers with some literature reporting incremental classifiers in terms of
the mean classification accuracy.

Dataset Inc-GEP1 Inc-GEP2 Literature reported acc Incremental classifier Source
Airlines 63.79 61.24 65.44 FTDD [8]
Bank M. 88.79 89.98 86.90 IncSVM [9]
Breast C. 74.38 76.37 72.20 IncSVM [10]
Chess 84.16 77.34 71.80 EDDM [11]
Diabetes 62.13 65.33 75.70 IncN-B [12]
Electricity 95.39 92.67 90.70 KFCM [13]
Heart 78.95 77.33 83.80 IncSVM [10]
Ionosphere 89.61 87.06 92.40 IncEnsemble [12]
Luxemburg 100.00 100.00 88.11 FISH2 [5]

Window Attributes Reduction Class. No.

100 201032150002500 302030 10

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

M
ea

n
of

 M
ea

ns

Figure 4: Main effects plot for classification time means: Sea dataset.

From Table 9 it can be seen that the proposed classifiers
performwell and are competitive to several other approaches.
In several cases, GEP-based incremental classifiers outper-
form earlier available solutions.

5. Conclusions

The main contribution of the paper is to propose the incre-
mental Gene Expression Programming classifier with meta-
genes and data reduction.The concept ofmetagenes increases

the classification accuracy while data reduction allows con-
trolling computation time. The proposed approach extends
earlier incremental GEP-based classifier [2]. Additionally, the
extended version contains a simple drift detection mecha-
nism allowing dealing more effectively with data streams.

Another important novelty introduced in the paper is
using the Orthogonal Experimental Design principles to set
up classifier parameters values. The approach allows us to
easily evaluate the statistical importance of main parame-
ters (factors) showing through main effects plots and the

Complexity 11

respective response tables key factors and their influence on
classifier performance and signal-to-noise ratios.

An extensive computational experiment confirms that the
proposed classifier offers better performance in respect to
the required computation times as compared with its earlier
version. At the same time, it provides similar results in terms
of classification accuracy.The algorithm offers also scalability
through the possibility of adjusting computation times to the
user needs, which might be a useful feature even at a cost of
possibly a bit lower classification accuracy.

Comparison of the proposed GEP-based incremental
classifiers with some literature reporting state-of-the-art in-
cremental classifiers in terms of the mean classification accu-
racy proves that our approach offers quite satisfactory solu-
tions, outperforming inmany cases the existingmethods.The
proposed approach can be useful in data analytics and big
data processing where single-pass limited-memory models
enabling a treatment of big data within a streaming setting
are increasingly needed [45].

Future research would concentrate on incorporating
more sophisticated drift detectionmechanisms and to further
improve efficiency by implementing the algorithm in a paral-
lel environment.

Acronyms and Abbreviations

GEP: Gene Expression Programming
IS: Sequence insertion
RIS: Root transposition
TR: Training set
pop: Population of genes
mg: Metagene
fit: Fitness function for genes
FIT: Fitness function for metagenes
ch: Chunk size
NB: Number of base classifiers
NA: Number of base classifiers
RB: Percent of instances used to induce

base classifiers
RM: Percent of instances used to induce

metagenes
BC: Base classifiers
ADAPT1, ADAPT2: Adaptation procedure in two versions
Inc-GEP1: Incremental classifier
Inc-GEP2: Incremental classifier with adaptation

ADAPT1
Inc-GEP3: Incremental classifier with adaptation

ADAPT2.

Data Availability

Previously reported datasets data were used to support this
study and are publically available at UCI Machine Learn-
ing Repository (see [36]) with respect to Bank Marketing,
Banknote Authentication, Breast Cancer, Diabetes, Heart,
Image, Internet Advertisement, and Ionosphere. Airlines
dataset is publically available at Open Machine Learning site
(https://www.openml.org/). Chess and Luxemburg datasets

are available from Indre Zliobaite (see [4]). Electricity dataset
is publically available from UCI Repository–Massive Online
Analysis (see [15]). SEA and Usenet2 datasets are publically
available from Joaquin Vanschoren et al. (see [41]). These
datasets are cited at relevant places within the text.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. I. Kuncheva, “Classifier ensembles for changing environ-
ments,” in Proceedings of the 5th International Workshop Multi-
ple Classifier SystemsMCS ’04, F. Roli, J. Kittler, and T.Windeatt,
Eds., vol. 3077 of Lecture Notes in Computer Science, pp. 1–15,
Springer, Berlin, Germany, 2004.

[2] J. Jedrzejowicz and P. Jedrzejowicz, “Incremetal GEP-Based
Ensemble Classifier,” in Intelligent Decision Technologies 2017,
vol. 72 of Smart Innovation, Systems and Technologies, pp. 61–
70, Springer International Publishing, Cham, 2018.

[3] Airlines dataset, 2017.
[4] M. Lichman, “Uci machine learning repository,” 2013.
[5] I. Žliobait, “Combining similarity in time and space for training

set formation under concept drift,” Intelligent DataAnalysis, vol.
15, no. 4, pp. 589–611, 2011.

[6] Massive Online Analysis, Uci machine learning repository,
2013.

[7] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, Openml:
networked science in machine learning, 2014.

[8] D. R. Cabral and R. S. Barros, “Concept drift detection based on
Fisher’s exact test,” Information Sciences, vol. 442/443, pp. 220–
234, 2018.

[9] K.Wisaeng, “A comparison of different classification techniques
for bank direct marketing,” International Journal of Soft Com-
puting and Engineering, vol. 3, no. 4, pp. 116–119, 2013.

[10] L. Wang, H.-B. Ji, and Y. Jin, “Fuzzy Passive-Aggressive classifi-
cation: A robust and efficient algorithm for online classification
problems,” Information Sciences, vol. 220, pp. 46–63, 2013.

[11] I. Žliobaitė, “Controlled Permutations for Testing Adaptive
Classifiers,” in Discovery Science, vol. 6926 of Lecture Notes
in Computer Science, pp. 365–379, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[12] S. B. Kotsiantis, “An incremental ensemble of classifiers,”Artifi-
cial Intelligence Review, vol. 36, no. 4, pp. 249–266, 2011.

[13] J. Jȩdrzejowicz and P. Jȩdrzejowicz, “Distance-based online
classifiers,” Expert Systems with Applications, vol. 60, pp. 249–
257, 2016.

[14] J. S. Vitter, “Random sampling with a reservoir,” ACM Transac-
tions on Mathematical Software, vol. 11, no. 1, pp. 37–57, 1985.

[15] S. Chaudhuri, R. Motwani, and V. Narasayya, “On Random
Sampling over Joins,” SIGMOD Record, vol. 28, no. 2, pp. 263–
273, 1999.

[16] J. Xu, Y. Y. Tang, B. Zou, Z. Xu, L. Li, and Y. Lu, “The generaliza-
tion ability of online svm classification based on markov sam-
pling,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 3, pp. 628–639, 2015.

[17] M. S. Esfahani and E. R. Dougherty, “Effect of separate sampling
on classification accuracy,” Bioinformatics, vol. 30, no. 2, pp.
242–250, 2014.

https://www.openml.org/

12 Complexity

[18] A. ElRafey and J. Wojtusiak, “Recent advances in scaling-down
sampling methods inmachine learning,”Wiley Interdisciplinary
Reviews. Computational Statistics (WIREs), vol. 9, no. 6, e1414,
13 pages, 2017.

[19] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, “Sliding
window-based frequent pattern mining over data streams,”
Information Sciences, vol. 179, no. 22, pp. 3843–3865, 2009.

[20] M. Deypir, M. H. Sadreddini, and S. Hashemi, “Towards a
variable size sliding windowmodel for frequent itemset mining
over data streams,” Computers & Industrial Engineering, vol. 63,
no. 1, pp. 161–172, 2012.

[21] H. Chen, L. Shu, J. Xia, and Q. Deng, “Mining frequent patterns
in a varying-size sliding window of online transactional data
streams,” Information Sciences, vol. 215, pp. 15–36, 2012.

[22] C. Lee, C. Lin, and M. Chen, “Sliding-window filtering: an effi-
cient algorithm for incremental mining,” in Proceedings of the
10th International Conference on Information and Knowledge
Management, CIKM ’01, pp. 263–270, ACM, New York, NY,
USA, 2001.

[23] H. Ryang and U. Yun, “High utility pattern mining over data
streams with sliding window technique,” Expert Systems with
Applications, vol. 57, pp. 214–231, 2016.

[24] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in
nonstationary environments: a survey,” IEEE Computational In-
telligence Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[25] J. P. Fan, J. Zhang, K. Z.Mei, J. Y. Peng, and L. Gao, “Cost-sensi-
tive learning of hierarchical tree classifiers for large-scale image
classification and novel category detection,” Pattern Recogni-
tion, vol. 48, no. 5, pp. 1673–1687, 2015.

[26] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers -
Part I: Detecting nonstationary changes,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 19, no. 7, pp. 1145–
1153, 2008.

[27] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence—SBIA
2004: Proceedings of the 17th Brazilian Symposium on Artificial
Intelligence, Sao Luis, Maranhao, Brazil, September 29–Ocotber
1, 2004, vol. 3171 of Lecture Notes in Computer Science, pp. 286–
295, Springer, Berlin, Germany, 2004.

[28] D. Liu, Y. Wu, and H. Jiang, “FP-ELM: An online sequential
learning algorithm for dealing with concept drift,” Neurocom-
puting, vol. 207, pp. 322–334, 2016.

[29] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M.
Woźniak, “Ensemble learning for data stream analysis: A sur-
vey,” Information Fusion, vol. 37, pp. 132–156, 2017.

[30] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà,
“New ensemble methods for evolving data streams,” in Pro-
ceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’09), pp. 139–147,
Paris, France, July 2009.

[31] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and cluster
ensembles for mining concept drifting data streams,” in Pro-
ceedings of the IEEE International Conference on Data Mining,
pp. 1175–1180, 2010.

[32] I. Czarnowski and P. Jędrzejowicz, “Ensemble classifier for
mining data streams,” in Proceedings of the 18th International
Conference in Knowledge Based and Intelligent Information and
Engineering Systems, KES ’14, P. Jedrzejowicz, L. C. Jain, R. J.
Howlett, and I. Czarnowski, Eds., vol. 35 of Procedia Computer
Science, pp. 397–406, Elsevier, Gdynia, Poland, 2014.

[33] X.-C. Yin, K. Huang, and H.-W. Hao, “De2: Dynamic ensemble
of ensembles for learning nonstationary data,”Neurocomputing,
vol. 165, pp. 14–22, 2015.

[34] D. Mejri, R. Khanchel, and M. Limam, “An ensemble method
for concept drift in nonstationary environment,” Journal of
Statistical Computation and Simulation, vol. 83, no. 6, pp. 1115–
1128, 2013.

[35] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” Complex Systems, vol. 13, no.
2, pp. 87–129, 2001.

[36] C. Ferreira,Gene Expression Programming: Mathematical Mod-
eling by an Artificial Intelligence, vol. 21 of Studies in Computa-
tional Intelligence, Springer, Berlin, Germany, 2006.

[37] Q. Li, W. Wang, S. Han, and J. Li, “Evolving classifier ensemble
with gene expression programming,” in Proceedings of the 3rd
International Conference on Natural Computation, ICNC ’07,
vol. 3, pp. 546–550, China, 2007.

[38] W. Jiang, T. Changjie, Z. Jun et al., “An attribute-oriented
ensemble classifier based on niche gene expression program-
ming,” in Proceedings of the 3rd International Conference on
Natural Computation, ICNC ’07, vol. 3, pp. 525–529, China,
August 2007.

[39] J. Jȩdrzejowicz and P. Jȩdrzejowicz, “A family of gep-induced
ensemble classifiers,” in Proceedings of the 1st International
Conference Computational Collective Intelligence, SemanticWeb,
Social Networks and Multiagent Systems, ICCCI ’09, N. T.
Nguyen, R. Kowalczyk, and S.-M. Chen, Eds., vol. 5796 of
Lecture Notes in Computer Science, pp. 641–652, Springer Berlin
Heidelberg, 2009.

[40] J. Jȩdrzejowicz and P. Jȩdrzejowicz, “Experimental evaluation of
two new GEP-based ensemble classifiers,” Expert Systems with
Applications, vol. 38, no. 9, pp. 10932–10939, 2011.

[41] J. Jedrzejowicz and P. Jedrzejowicz, “Gene expression program-
ming ensemble for classifying big datasets,” in Proceedings of
the Computational Collective Intelligence - 9th International
Conference, ICCCI ’17, T. N. Ngoc, A. George, P. Jedrzejowicz,
B. Trawinski, and G. Vossen, Eds., vol. volume 10449 of Lecture
Notes in Computer Science, pp. 3–12, Springer, Berlin, Germany,
2017.

[42] A. Fern and R. Givan, “Online ensemble learning: an empirical
study,”Machine Learning, vol. 53, no. 1-2, pp. 71–109, 2003.

[43] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol.
5, no. 2, pp. 241–259, 1992.

[44] J. Jedrzejowicz and P. Jedrzejowicz, “Gep-induced expression
trees as weak classifiers,” in Proceedings of the 8th Industrial
Conference Advances in Data Mining, Medical Applications, E-
Commerce, Marketing, and Theoretical Aspects, ICDM ’08, P.
Perner, Ed., vol. 5077 of Lecture Notes in Computer Science, pp.
129–141, Springer, Berlin, Germany, 2008.

[45] B. Hammer, H. He, and T. Martinetz, “Learning and modeling
big data,” in Proceedings of the 22th European Symposium on
Artificial Neural Networks, ESANN ’14, 2014.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

