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Abstract— This paper presents a heterogeneous microproces-
sor for low-energy sensor-inference applications. Hardware
acceleration has shown to enable substantial energy-efficiency
and throughput gains, but raises significant challenges where
programmable computations are required, as in the case of
feature extraction. To overcome this, a programmable feature-
extraction accelerator (FEA) is presented that exploits genetic
programming for automatic program synthesis. This leads to
approximate, but highly structured, computations, enabling:
1) a high degree of specialization; 2) systematic mapping
of programs to the accelerator; and 3) energy scalability
via user-controllable approximation knobs. A microproces-
sor integrating a CPU with feature-extraction and classi-
fication accelerators is prototyped in 130-nm CMOS. Two
medical-sensor applications (electroencephalogram-based seizure
detection and electrocardiogram-based arrhythmia detection)
demonstrate 325× and 156× energy reduction, respectively, for
programmable feature extraction implemented on the accelerator
versus a CPU-only architecture, and 7.6× and 6.5× energy
reduction, respectively, versus a CPU-with-coprocessor architec-
ture. Furthermore, 20× and 9× energy scalability, respectively,
is demonstrated via the approximation knobs. The energy-
efficiency of the programmable FEA is 220 GOPS/W, near that
of fixed-function accelerators in the same technology, exceeding
typical programmable accelerators.

Index Terms— Approximate computation, feature extraction,
machine learning, programmable accelerator, sensor inference.

I. INTRODUCTION

HARDWARE accelerators have shown to substantially
enhance energy efficiency. Going from CPU to GPU

to dedicated accelerators, energy-efficiency improvement by
up to 1000× is commonly seen [1]. This can be under-
stood by looking at the energy breakdown of a typical CPU
instruction, where over 90% of the energy goes toward pro-
grammability overheads, such as instruction/operand decod-
ing/fetching. While accelerators largely avoid these, thereby
deriving energy-efficiency and performance gains, program-
mability is also critical. Thus, many architectures have begun
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Fig. 1. Energy-efficiency versus programmability tradeoff observed for
accelerator designs. Programmable acceleration has mostly focused on vector
processing to amortize overheads.

to focus on programmable acceleration. However, as seen
in Fig. 1, balancing the overheads in state-of-the-art designs
still incurs 10–100× degradation in energy efficiency [2]–[5].
Additionally, the approach most commonly used for program-
mable acceleration has been vector processing and parallelism
(as in GPUs), where the aim is to amortize programmability
overheads by applying a single instruction to multiple data.
Unfortunately, such an approach is only effective if the data
types in an application can be represented by vectors and/or
parallelization can be made possible in other ways.

A further problem with programmable acceleration is that
accelerators are extremely difficult to program. First, even
slight changes in a computation graph can preclude mapping to
the accelerator. Second, the mapping process typically requires
intimate knowledge of the accelerator’s microarchitecture in
order to exploit the efficiency gains, making programming
difficult even for expert users.

This paper attempts to address both the programmability
versus energy-efficiency tradeoff, as well as the challenges
of application mapping. This is done by taking the advan-
tage of approximation [6]. Fig. 2 shows the programmability
versus energy-efficiency tradeoff introduced previously. The
approach taken is to approximate the computations using
highly structured models, which offer configurability through
specific parameters. The structured models enable a high level
of accelerator specialization, as well as systematic methods of
mapping to the accelerator. As described later, genetic pro-
gramming (GP) is employed for setting the model parameters.
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Fig. 2. Approximation of computations via highly structured models is
exploited to address energy-efficiency versus programmability tradeoffs.

Fig. 3. Block diagram of a typical sensor-inference system.

The remainder of this paper is organized as follows.
Section II provides an overview of the rationale behind the
microprocessor architecture, including how GP is exploited
and how tolerance to approximation errors is enhanced through
classifier training, thereby enabling a large range for energy-
approximation scalability. Section III describes the architec-
tural and microarchitectural design of the microprocessor.
Section IV presents the flow, both for program synthesis
(via GP) and program mapping to the accelerator, as well
as for classifier training. Section V presents the prototype-
measurement and application-demonstration results, and pro-
vides the detailed analysis of how the observed energy savings
are derived. Finally, Section VI concludes.

II. SYSTEM OVERVIEW AND RATIONALE

Fig. 3 shows a block diagram of a typical sensor-inference
system, consisting of feature-extraction and classification
stages. The feature extractor takes digitized sensor data x[n],
and maps them to feature vectors �utest that are conducive
for pattern recognition. Namely, the feature vectors should
exhibit generalization with respect to the inference of interest,
so that patterns to be recognized are well expressed, while
enabling the definition of metrics for pattern recognition,
such as the level of similarity between data instances (often
this is done by vector distances). Then, the classifier uses
a model, learned through training on feature vectors �utrain

from previous data, in order to make decisions d from �utest .
For example, Fig. 3 shows the stages in an electroencephalo-
gram (EEG)-based seizure-detection system, where the feature
extractor takes an epoch of time-domain EEG data and maps
it to a vector space. Here, seizure and non-seizure data are
distributed with good separation. Then the classifier, having

TABLE I

ENERGY BREAKDOWN OF SENSOR-INFERENCE APPLICATIONS ON
MICROPROCESSOR WITH CLASSIFICATION ACCELERATOR [7]

learned a model (representing a decision boundary between the
distributions), declares incoming feature vectors as belonging
to seizure or non-seizure classes.

A key point here is that the feature computations that result
in well-separated distributions depend strongly on the applica-
tion signals and the classifications of interest. Consequently,
feature extraction requires a high level of programmabil-
ity across applications. On the other hand, classification
involves specific computational kernels (e.g., support vector
machine (SVM), neural network, decision tree), employing
the model from training and the input feature vector. Conse-
quently, classification is readily delegated to a fixed-function
accelerator. We point out that increasingly diverse machine-
learning models are being proposed for addressing different
application characteristics. While such diversity again applies
primarily to feature extraction (e.g., in deep learning), some
level of configurability in classification algorithms and hard-
ware is also showing value [6]–[8].

Indeed, many previous systems have focused on
configurable classification accelerators. As an example,
Table I shows the energy breakdown in one such system [7].
The top considers the system without using the classification
accelerator, while the bottom considers the system using the
classification accelerator. Before acceleration, we see that
classification dominates the compute cycles in two representa-
tive medical-sensor applications. However, after acceleration,
the classification cycles are greatly reduced, leaving feature
extraction to dominate, consuming 99% of the cycles. Thus,
the aim of feature-extraction acceleration is to address this
bottleneck but while maintaining a high level of programma-
bility. Sections II-A and II-B overview the approach taken
to enable programmable acceleration via energy-scalable
approximation.

A. Genetic Programming for Feature Extraction

GP is a program-synthesis framework which takes inputs
xn and outputs ym , and learns functions, called “GP models,”
which relate the inputs and outputs [9]. Its proposed applica-
tion, in this paper, to feature extraction is illustrated in Fig. 4.
What is important is that the GP models have very specific
structure. Specifically, they are composed of “genes” Gm,i ,
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Fig. 4. Illustration of how GP is used in this paper for programmable feature
extraction via structured models of computation.

which are computation trees in which nodes correspond to
“base functions” and edges correspond to intermediate out-
puts or primary inputs. The final output of a GP model
yG Pm (≈ ym) is a linear combination over gene-tree outputs.
GP employs evolutionary algorithms, involving mutations,
perturbations, and crossovers on this structure, in order to
iteratively minimize a loss function, which may be set to
depend on the error between yG Pm and ym , so as to best
map the inputs to outputs. In GP, this gene-tree structure has
been important for generalization of the evolutionary search
process, enabling fitting to a broad range of computations.
In this paper, we exploit the structure toward a high level of
accelerator specialization, as well as automatic and systematic
mapping of computations to the accelerator.

In addition to specialization, we also exploit GP to enable
a knob for energy-approximation scaling. In GP, the number
and depth of gene trees as well as the choice of base functions
can be set by user-provided constraints, and we see that these
determine both the computation complexity and the ability to
accurately model functions via GP models. As an example,
for a seizure-detection system described later, Fig. 5(a) shows
how the number of computation nodes varies, as the depth
and the number of gene trees per GP model are constrained.
Accordingly, Fig. 5(b) shows the fitness of the approximated
function as the number of computation nodes varies. Here,
fitness is defined as the average variance explained over all
features, we are interested in computing

Fitness = 1

M

M∑

j=1

(
1 −

∑N
i=1(yi, j − ŷi, j )

2

∑N
i=1(yi, j − ȳ j )2

)
× 100% (1)

where M is number of different features of interest, N is
the number of tested values for each feature over which
the approximation is evaluated, yi, j is the true value of the
feature for the j th feature of interest and the i th tested
value, ŷi, j is the corresponding approximated feature, and
ȳ j is the mean of the true value for the j th feature over
the tested values. Furthermore, as shown in Fig. 5(c), in the

Fig. 5. Demonstration of energy-approximation scalability, seen by (a) how
the number of computation nodes varies with constraints on the number and
depth of gene trees, (b) how the fitness of GP models varies as a result, and
(c) how the number of clock cycles varies for different nodal base functions
implemented on the presented accelerator.

accelerator design described later, ADD/SUB/MULT base
functions require ∼3 clock cycles, while EXP/LN/SQRT/1/X
require ∼33 cycles. Thus, we see that GP can enable con-
trollable approximation for energy savings. In Section II-B,
we describe a method whereby the energy-approximation
tradeoff and scalability range are enhanced through the sta-
tistical learning.

B. Classifier Retraining

In the system proposed, feature vectors derived from
GP-model approximations are fed to a classification stage
(Fig. 4). In order to enhance the energy-approximation knob
for feature extraction, retraining of the classification model is
performed to the approximated feature-vector data. In [10] an
approach called data-driven hardware resilience is described,
where such retraining is analyzed in terms of its potential
and performance limits in the case of errors due to hardware
non-idealities. The resulting model is referred to as an error-
aware model. Using this approach, which is shown to enable
substantial tolerance to errors, this paper employs retraining to
construct an error-aware model to address GP-model approx-
imation, particularly as the GP model complexity is scaled as
described earlier.

To visualize this, Fig. 6 shows data from an EEG-based
seizure-detection system and electrocardiogram (ECG)-based
arrhythmia-detection system implemented on the prototype
described later. For plotting purposes, we show just the first
two principal components of the high dimensional feature-
vector data. In the left plots, the class distributions resulting
from feature vectors derived from the baseline algorithms
are shown. In the next plots, the class distributions resulting
from approximated feature vectors derived from GP models
constrained to have different complexities are shown. We see
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Fig. 6. Illustration of classifier retraining to derive decision boundaries
optimized to GP-model approximations of feature-vector data.

Fig. 7. Architecture of demonstrated heterogeneous microprocessor for
sensor inference.

that the decision boundaries associated with feature vectors
from the baseline algorithms (shown as dotted lines in next
plots) are not optimal in the presence of GP-model approx-
imations. However, classifier retraining, to derive an error-
aware model for the approximated feature vectors (represented
by decision boundaries shown as red solid-lines), provides
much better classwise discrimination, thereby substantially
restoring classification performance (as will be shown later).
Our recent work looking at the software implementation of
GP models provides additional validation of this approach
on an algorithmic level [11]; here, we focus on a hardware
architecture and application-mapping flow to exploit this.

It is important to note that a new classifier model derived
from retraining can have system-level implications. For
instance, in the case of an SVM, the new class distributions
resulting from approximation can lead to an increased number
of support vectors, and thus higher classification complexity.
We examine this further in Section V-A.

III. ARCHITECTURAL AND MICRO-
ARCHITECTURAL DESIGN

Fig. 7 shows the architecture of the demonstrated heteroge-
neous microprocessor. The key blocks include the following:

Fig. 8. Details of FEA.

1) CPU, based on an MSP430 instruction set, for top-level
software control; 2) direct-memory-access (DMA) module,
for automated data movement in applications without incur-
ring CPU overheads; 3) a four-core feature-extraction accel-
erator (FEA), for programmable acceleration of GP-model
computation; and 4) a support-vector-machine accelera-
tor (SVMA) [7], for configurable but comparatively fixed-
function acceleration of SVM classification. The accelerators
and other modules are memory mapped and interfaced to the
CPU via a peripherals bus, supported by the unified memory-
address space of an MSP430 architecture.

Fig. 7 (blue arrows) shows the flow of data in an application,
achieved automatically under DMA control without interven-
tion of the CPU. The DMA starts by taking digitized (ADC)
sensor data from the general-purpose input/output and moving
it to the sensor memory. From here, the raw data are pulled
by the FEA to compute features, which are then loaded into a
feature vector buffer in the SVMA for classification. Finally,
the SVMA asserts an interrupt to the CPU after classification
is completed. Sections III-A to III-C below describe the
block-level details.

A. Feature-Extraction Accelerator

Fig. 8 shows the details of the FEA, consisting of four gene
computation (GC) cores, which compute individual gene trees
and apply a scaling factor to their outputs. These outputs are
provided to a GP model manager (GPMM) to compute the
final feature values. The four cores enable parallel computation
of the gene trees, which constitute the dominant compute task.
Scheduling of the gene-tree computations, which can span
different numbers of cycles, is managed by the GPMM. While,
requests for fetching input operands made done through the
sensor–data–memory interface.

1) Gene Computation Core: Fig. 9 shows the microarchitec-
ture of a GC core. To exploit the tree-structured computation
of genes, the design is a stack machine. Here, overheads
associated with computational precedence control are avoided,
as in reverse-polish notation (RPN) [12], enabling improved
energy-efficiency and throughput [13]. In RPN, operands pre-
cede the operators applied to them, thereby enforcing a strict
computational flow defined by the construction of the expres-
sion. A gene tree can be interpreted to an RPN expression,
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Fig. 9. Details of the GC core and its supported instructions.

by a post-order depth-first search (DFS) algorithm, in which
only computation nodes generate instructions and edges do
not. Specifically, there is no need for JUMP, BRANCH, etc.
instructions, nor instructions for storing intermediate data back
to memory, as typically required for general-purpose control
and data flow. Simply, the result produced from a nodal
base function, corresponding to the output edge of a node
(gene trees are anti-arborescence, where all edges point toward
the root), is immediately consumed by the next nodal base
function or pushed to a shallow stack. As we analyze later
in Section V-B, this substantially reduces the data-movement
overheads typically incurred in programmable processors, and
is critical to the energy savings.

Accordingly, the design implements a single-instruction-
pipeline stack machine, where each instruction roughly
maps to a gene-tree node. The pipeline consists of four
stages: instruction fetch (IF); instruction decode and operand
fetch (ID); execution (EX); and write-back (WB). But, we note
that IF and WB stages execute simultaneously on consecutive
instructions, and the EX stage can be stalled, in the case
of delays during operand accessing from the sensor-data
memory (operands from the stack and/or constants within the
instruction never incur delay). Compared with conventional
stack machines, we adopt two major features in our pipeline:
1) inclusion of a specialized arithmetic unit in the EX stage,
for accelerating the (linear and non-linear) base functions
and 2) extensions to operand fetching and handling within
instructions (for instance, fetched operands are bit-shifted to
manage computational dynamic range and stored in registers
within the pipeline ID stage, thereby avoiding instructions and
associated overheads for accessing memory and/or loading
constants).

Operands from sensor-data memory and the instruction
constants are formatted as 16-bit signed values, to support the
precision required in typical sensing applications. Intermediate
data are stored as 32-bit signed values, determined based
on simulations to preserve computation precision, particularly
for the non-linear operations supported. The arithmetic unit
consists of the following: a 32-bit fixed-point full adder,
to execute addition and subtraction; a 32-bit fixed-point mul-
tiplier, to execute multiplication and squaring; and a 32-bit
coordinate rotation digital computer (CORDIC), to execute
non-linear functions, such as exponential, natural logarithm,

TABLE II

APPROXIMATE CYCLE COMPARISON OF BASE FUNCTION
EXECUTION ON FEA VERSUS CPU

square root, and reciprocal. The CORDIC employs pre-scaling
and post-scaling as proposed in [14] to effectively extend
the dynamic range. Table II shows a comparison between
the number of cycles required by the CPU versus a GC
core for the various base functions; thus, we see that the
component of energy reduction in the FEA due to computation
acceleration, particularly for non-linear functions, is expected
to be a significant portion of the overall savings (analyzed in
Section V-B).

Fig. 9 shows the 32-bit instruction set, containing three
types of instructions: 1) Type-I, corresponding to con-
trol and configuration; 2) Type-II, corresponding to one-
operand computation; and 3) Type-III, corresponding to
two-operand computation. The Type-I instructions imple-
ment no-operation for workload balancing and schedul-
ing (NOP), end-of-gene and end-of-file for synchronization
with the GPMM (EOG/EOF), stack pop and push for facil-
itating RPN data flow (POP/PUSH), setting bitwise shifting
of subsequent operands (SHIFT) for managing computa-
tional dynamic range, and writing to dedicated registers in
the GPMM (SMGL) to facilitate GPMM scheduling and
control. The Type-II instructions implement exponential, nat-
ural logarithm, square root, reciprocal, and square opera-
tions (EXP/LN/SQRT/1/X /SQUARE). All of these make use
of the CORDIC, except for SQUARE, which gets masked
as an MULT after the ID stage. When processing Type-II
instructions, the GC-core pipeline accesses the operand from
sensor-data memory, stack top, or the constant field within
the instruction. The Type-III instructions implement addition,
subtraction, and multiplication (ADD/SUB/MULT). As with
Type-II instructions, when processing Type-III instructions,
the GC-core pipeline accesses either operand from the sensor-
data memory, stack top, or the constant field. Operations with
two constants are pre-computed at program-synthesis time and
are replaced with a PUSH instruction. We note that operations
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Fig. 10. Details of the GPMM.

with one memory operand and one constant operand are
not supported, in order to keep the instruction length small.
Instead, such operations are separated into one PUSH (to load
constant into stack) and another memory-operand instruction
to complete the operation.

The maximum required stack depth to compute a gene tree,
Gm,i , is given as

sd(Gm,i ) ≤ td(Gm.i ) + deg−(Gm,i ) − 2 (2)

where sd is stack depth, td is tree depth, and deg− is the
maximum in-degree of nodes in a gene tree, which is 2 in
this design. Here, the tree-depth assumes memory accesses
and constants occur at leaf nodes, requiring no stack depth.
However, splitting of a memory-constant instruction into two
instructions, as mentioned earlier, increases the required depth
by one, making the associated constant term in this special
case −2, not −3. While Eq. 2 corresponds to the maximum
depth required for full trees, the depth taken by smaller
trees is correspondingly reduced by swapping left and right
subbranches, causing the execution of nodal base functions to
be reordered during DFS. Such reordering is supported by
the GC core microarchitecture by enabling operands to be
selectively swapped before being sent to the arithmetic unit,
depending on a control bit within instructions corresponding to
non-commutative base functions (such as subtraction). Thus,
a stack of depth 16 is adequate for a depth-16 gene tree, which
is found by us and others [9], [12] to be a practical limit
both easily handled by GP engines and required in profiled
applications.

2) Genetic-Programming Model Manager: Fig. 10 shows
details of the GPMM block. Primarily, the GPMM pops results
from the GC-core stacks, and accumulates them to compute
the approximated feature value yGPm. In order to manage
multiple GC-core completion requests and mitigate contention
among GC cores, the GPMM has a buffer at each GC-core
interface port to assist scheduling.

Recall that each GP model will typically contain multiple
genes, each requiring a different number of execution cycles.1

Fine-grained parallelism via the four GC cores is achieved
while avoiding computational dependencies, by doing allo-
cation to GC cores at the gene-tree level. Since the scaling

1We assume that all GP models will have the same number of gene trees.

factors involved in gene-tree output accumulation are applied
within the GC core, minimal synchronization is required in
the GPMM (i.e., execution of gene trees can proceed in any
order); simply, GP-model gene trees are loaded in the GC
cores contiguously (as shown in Fig. 8).

For GP-model computation, each GC core writes the
GP-model index of the gene tree into a dedicated register
before beginning its execution. The GPMM then reads that
GP-model index upon gene-tree completion, and if it corre-
sponds to the GP model currently being computed, and the
accumulator is not occupied, the GPMM will read the result
from the GC core to perform accumulation and release the
GC core for subsequent gene-tree execution. If the completed
gene tree does not belong to the current GP model or the
accumulator is occupied, the GPMM stores its result and
model index into a buffer at the port, and the GC core is again
released for subsequent gene-tree execution. Thus, GPMM
buffering is only required when the two conditions outlined
are not met, which occurs infrequently in practice when gene
trees are loaded in the GC cores contiguously. In fact, buffering
requirements are greatly eased by workload balancing across
the GC cores at program-synthesis time, since the highly
structured data flow of gene trees substantially enhances the
predictability of execution cycles required.

3) Sensor–Data–Memory Interface: With four GC cores,
the FEA can generate eight simultaneous sensor-data memory-
access requests (each core can take two operands at a time).
To enable a single unified memory space with one port,
the sensor–data–memory interface is designed to balance
contention-induced delays to facilitate workload balancing
among the GC cores at program-synthesis time. Since the
sensor–data–memory interface has relatively light load (only
gene-tree leaf nodes require sensor-data), a round-robin polling
mechanism is employed. In the case of only a single request,
access is granted to the corresponding GC core. In the case
of multiple requests in the same clock cycle, the sensor–data–
memory interface performs scheduling by granting access in
round-robin order following from the last GC core granted
access during the previous contention event. GC cores wait
until access is thus granted.

B. Support-Vector-Machine Accelerator

The SVMA used is similar, in structure, to that presented
in [7], essentially corresponding to a dot-product engine, sup-
porting various inputs for SVM computations. Although the
SVMA is a fixed-function accelerator, it retains configurability
for various SVM kernels (linear, polynomial, and radial basis
function), which are seen to strongly impact classification
performance and energy depending on the distribution of
feature vectors across different applications [7]. The radial-
basis-function kernel employs a dedicated CORDIC within
the SVMA.

C. Power-Management Unit

The CPU core used supports a software-controlled low-
power mode (LPM), providing clock-gating of the CPU
and memory bus, leaving only interrupt monitors active.
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Fig. 11. Details of the PMU and its clock-gating functionality.

Fig. 12. Overview of program-synthesis and classifier-training flows.

Fine-grained hardware-controlled clock-gating of the other
blocks in the architecture is managed by a custom power-
management unit (PMU), with details shown in Fig. 11.
As mentioned previously, data movement between the FEA
and SVMA proceeds under DMA control without CPU inter-
vention. Furthermore, as data progresses, the accelerator stages
are clock gated to save active energy. On the right, Fig. 11
shows this clock-gating schedule as data progresses. As seen,
thanks to fine-grain controllability of clock gating, blocks
remain on for only the minimum required time. If data con-
tinually arrives, the stages remain on, supporting accelerator-
level pipelined operation; in this case, to support the buffering
of real-time sensor data, the DMA can interrupt accesses to
the sensor-data memory by the FEA. All other blocks proceed
through request/acknowledge signaling.

IV. PROGRAM-SYNTHESIS AND

CLASSIFIER-TRAINING FLOWS

Fig. 12 overviews the program-synthesis and classifier-
training flows. The program-synthesis flow outputs gene code
(and configuration data), corresponding to the instructions
required for computing GP models on the FEA; additionally,
C code for executing GP models on the CPU is also generated,
for comparison and analysis. The classifier-training flow out-
puts an error-aware classification model for use in the SVMA,
corresponding to feature vectors derived from the particular
GP models.

A. Program Synthesis Flow

The program-synthesis flow takes as inputs: 1) sensor-
signal input samples and 2) a computational model of a

TABLE III

EXAMPLE FOR GENE-CODE SYNTHESIS

baseline feature extractor. For instance, this might be a signal-
processing system implemented in MATLAB. Using these
two, baseline outputs are generated, which are provided along
with the sensor-signal samples as the outputs and inputs that
must be related through GP models. Next, a GP toolbox [15]
is used to derive the GP models. This is where user constraints
on number, depth, and nodal base functions for the genes are
provided for energy-approximation scalability. Then, the GP
models are fed to a custom linker and translator to generate
the gene code and configuration data for FEA execution,
as well as C code (which can be compiled) for CPU execution.
For illustration, Table III shows how derived GP models are
systematically converted into gene code, through symbolic and
RPN expressions.

B. Classifier-Training Flow

The classifier-training flow takes as inputs: 1) the sensor-
signal input samples; 2) the GP models derived in the
program-synthesis flow; and 3) classification training labels.
Then, by using a custom FEA emulator, bit-true approxi-
mated feature-vector data are computed using the sensor-signal
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TABLE IV

PROTOTYPE-MEASUREMENT SUMMARY TABLE

samples and GP models. The resulting feature-vector data
are then provided along with the training labels to an SVM
training toolbox [16], giving the error-aware model, which can
be loaded into the SVMA.

V. PROTOTYPE MEASUREMENTS

A prototype of the heterogeneous microprocessor is devel-
oped in 130-nm CMOS technology, with 96 kB of on-chip
SRAM. Measurement summary and the IC die photograph
are provided in Table IV and Fig. 13, respectively. The IC
operates with supply voltages scaling from 0.75 to 1.2 V, with
the maximum clock frequency scaling from 5 to 29 MHz over
this range. At the lowest supply voltage (lowest energy point),
the CPU consumes 21.8 pJ per clock cycle, the FEA (which
has four GC cores) consumes 86.7 pJ per clock cycle, and the
SVMA consumes 68.3 pJ per clock cycle.

In addition to voltage scaling for energy efficiency, the pro-
totype supports clock-gated duty cycling via the PMU to
maintain the energy efficiency as the required classification
rate is reduced. Fig. 14 shows the system power while running
an example application end-to-end, at different duty cycles.
As seen, the PMU enables large and duty-cycle-proportional
power savings, beyond the cases without any clock gating and
with CPU-only clock gating (LPM).

Table V provides a comparison summary of the prototype
with previously reported fixed-function and programmable
accelerators [3], [5], [17]. The overall energy efficiency of the
FEA is estimated to be 221 GOPS/W (assuming no GC-core
stalling), which surpasses the programmable accelerators and
is near the fixed-function accelerators. Sections V-A and V-B
provide further details regarding the application demonstra-
tions and energy analysis.

A. Application Demonstrations

Two medical-sensor applications are demonstrated on the
prototype: 1) an EEG-based seizure-detection system, based on
the algorithm in [18] and 2) an ECG-based cardiac-arrhythmia
detection system, based on the algorithm in [19]. Fig. 15(a)
shows the baseline algorithm for the seizure-detection sys-
tem. The baseline features correspond to the spectral energy

Fig. 13. Prototype IC of heterogeneous microprocessor, showing
(a) die photograph and (b) energy breakdown and operating frequency versus
supply voltage.

Fig. 14. System power versus application’s duty cycle under different power-
management configurations with supply voltage at 1.2 V.

TABLE V

COMPARISON TABLE WITH STATE-OF-THE-ART ACCELERATORS

distribution of each EEG channel, computed using eight FIR
filters and absolute-value accumulators applied to each of six
EEG channels, giving a total of 48 features. Fig. 15(b) shows
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Fig. 15. Baseline algorithms for demonstrated applications. (a) EEG-base
seizure detection. (b) ECG-based arrhythmia detection.

Fig. 16. Energy savings for computing two GP models on FEA versus
CPU-only and CPU-with-coprocessor architectures for (a) EEG-base seizure-
detection system and (b) ECG-based arrhythmia-detection system.

the baseline algorithm for the arrhythmia-detection system.
The baseline features correspond to time-frequency analysis,
computed using a four-stage wavelet filter bank followed by
principal component analysis, giving a total of 20 features.

Fig. 16(a) and (b) shows the energy to compute each feature
vector in the seizure-detection and the arrhythmia-detection
systems, respectively. For each application, four cases are
shown: 1) the baseline algorithm running on a CPU-only
architecture; 2) two different GP models, representing different
approximation points, running on the CPU-only architecture;
3) the same two GP models running on an architecture with
a CPU and a coprocessor for accelerating GP-model base
functions (i.e., similar to [20], [21]); and 4) the same two
GP models running on the FEA. To enable the consistency
of energy measurements, the CPU corresponds to the simple
openMSP430 core employed in the prototype (having lim-
ited computational extensions due to the accelerator-centric
architecture, e.g., having 16-bit multiplier but no floating-
point unit), and the coprocessor corresponds to the arithmetic

Fig. 17. Fitness and classification performance versus energy of feature
extraction from variously constrained GP models (blue lines) compared with
baseline computation (black lines) for (a) EEG-base seizure-detection system
and (b) ECG-based arrhythmia-detection system.

unit (with CORDIC) employed in the FEA (modeled as being
accessible directly from the peripherals bus); the coprocessor
eliminates all floating-point and floating-point/integer conver-
sion operations in the CPU.

As seen, for the seizure-detection system, the FEA results
in 325× and 293× energy reduction for the two GP models
considered compared with the CPU-only architecture, and
7.6× and 7.0× energy reduction compared with the CPU-with-
coprocessor architecture. For the arrhythmia-detection applica-
tion, the FEA results in 156× and 105× energy reduction for
the two GP models considered compared with the CPU-only
architecture, and 6.5× and 6.6× energy reduction compared
with the CPU-with-coprocessor architecture. Detailed break-
down, analyzing the source of the energy savings, is presented
in Section V-B.

In addition to enabling a high level of specialization for
significant energy savings via the FEA, the different GP mod-
els, derived by setting constraints on the gene depth, number,
and nodal base functions, enable substantial energy scala-
bility. Fig. 17(a) considers the seizure-detection system, and
Fig. 17(b) considers the arrhythmia-detection system, showing
the feature-extraction and classification performance versus
the energy per feature-vector for different GP models, with
the feature-extraction performance of the two models from
above circled (black dotted lines correspond to classification
performance with baseline features, while blue solid/dashed
lines correspond to classification performance with GP-model
features using error-aware/non-error-aware models). As seen,
the error-aware model significantly enhances classification
performance, enabling a wide range for energy-approximation
scalability (spanning an energy range of 20× for the seizure-
detection system and 9.3× for the arrhythmia-detection sys-
tem), thus enabling optimization across applications.

In addition to the FEA energy, it is interesting to note
that the impact GP model scaling has on the classifier. When
an error-aware model is used, the approximated features can
potentially require more complex classification models, for
instance in the form of an increased number of support vectors.
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TABLE VI

APPROXIMATE COMPUTE CYCLE BREAKDOWN
OF AN EXAMPLE GP MODEL

As shown at the bottom of Table IV, this is indeed seen in
the case of the seizure-detection system, elevating the SVMA
energy and opposing the FEA energy savings. On the other
hand, in the arrhythmia-detection system, an SVM kernel
formulation is employed wherein energy does not scale with
the number of support vectors [7]. This suggests directions for
further exploration of classifier architectures and algorithms
suited to adaptive systems.

B. Energy Savings Analysis

First considering the FEA compared with the CPU-only
architecture, detailed analysis shows that the energy sav-
ings observed earlier primarily come from three sources: 1)
enhanced efficiency of computing nodal base functions, via
the arithmetic unit; 2) reduction of data-movement and control-
flow operations, thanks to the structure of gene trees; and 3)
reduced energy for accessing instructions and data from mem-
ory, thanks to fewer instructions and optimized data place-
ment enabled by computational specialization in GC cores.
We illustrate these by breaking down the energy consumption
for an example GP model, in terms of CPU/FEA core energies
and memory energies. The GP model used corresponds to
the first feature in the ECG-based arrhythmia-detection system
[Fig. 15(b)], constrained to 20 genes with maximum depth of 7
and using only addition and multiplication base functions, cho-
sen because these prove to yield high detection performance
(note, that these lead to conservative energy-saving estimates
compared with other non-linear functions, as seen in Table II).

Table VI provides a breakdown of the number of cycles
consumed for GP-model execution on the CPU and FEA
cores. We categorize according to base-function computa-
tions, overheads for data preparation before base-function
computations (e.g., float-int type conversions in CPU, config-
uration and bit-shifting in FEA), and intermediate data move-
ment to/from memory. For comparison, we assume the FEA
employs only one GC core. For base-function computation,
we observe ∼21700 versus ∼366 cycles on the CPU and
FEA, respectively. While this accounts for how frequently
ADD and MULT operations occur, in addition to the cycles
per instruction shown in Table II, it also accounts for the

Fig. 18. Computation energy breakdown of an example GP model.

slight savings in ADD operations due to specialized gene-
tree output accumulation in the GPMM. For data-preparation
overheads, we observe ∼10500 versus 73 cycles on the
CPU and FEA, respectively. For data movement, we observe
∼1800 versus no cycles on the CPU and FEA, since in the
FEA all intermediate results are retained within the GC-core
hardware (and the energy for this is included in FEA core
measurement).

Taking these cycle breakdowns, we now analyze the energy
consumed, using the energy per cycle measurement for the
CPU (57.1 pJ) and the energy per cycle measurement, nor-
malized for one GC core, for the FEA (57.6 pJ), both taken at
1.2 V. Fig. 18 shows the corresponding energy breakdown for
the CPU and FEA cores. As seen, 15.1× energy reduction
is achieved by reducing base-function computation cycles
through acceleration (including data-preparation overheads).
Another 5.1× energy reduction is achieved by eliminating
cycles for data movement. This yields a total of 77× energy
reduction for the simple GP-model considered, with no non-
linear base functions.

In addition to energy reduction within the FEA versus
CPU core, FEA execution also benefits from reduced memory
operations. The openMSP430 CPU, which has a three-stage
pipeline, is measured to access data and program memory
(D/P-MEM) 1.5× per clock cycle, during execution of the
GP model, and each memory (both are 16 kB with identical
structure) consumes 42 pJ per cycle. On the other hand,
instruction fetching from gene-code memory (GC-MEM) in
the FEA consumes 35 pJ (although FEA employs 32-bit
instructions, while CPU employs 16-bit instructions, the gene-
code memories are much smaller, only 4 kB each). Thanks to
specialization, GP models are mapped to much fewer FEA
instructions than CPU instructions, requiring 5.8× smaller
memory footprint for the GP model considered, and no
intermediate data are moved to memories external to the
core, only reads from the sensor-data memory (SD-MEM) are
required (42 pJ). Accordingly, Table VII shows the memory-
access breakdown for the CPU and FEA, and Fig. 19 shows
the memory-energy breakdown, amounting to 191× lower
energy in the FEA. Taking the total energy numbers for the
CPU and FEA cores as well as the memories, we observe
112× energy reduction for the simple GP-model example
considered.
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TABLE VII

MEMORY-ACCESS BREAKDOWN OF AN EXAMPLE GP MODEL

Fig. 19. Memory access energy breakdown of an example GP model.

In addition to large FEA energy savings compared with the
CPU-only architecture, we also see significant FEA energy
savings compared with the CPU-with-coprocessor architec-
ture. In this case, both the FEA and CPU-with-coprocessor
architecture benefit from computation acceleration, and so the
FEA energy savings primarily come from the specialization of
data flow. Specifically, the FEA, optimized for tree-structured
GP-models via a stack architecture, first removes interme-
diate data movement, corresponding to the approximately
5.1× energy reduction, and second provides tighter coupling
to the arithmetic unit, bringing the total energy savings to the
6–7× seen in Fig. 16(a) and (b).

VI. CONCLUSION

While hardware acceleration has been a highly promising
approach to achieving energy savings in embedded sensing
systems, it has mostly been applied to fixed computations.
Examples of sensor-inference systems show that this leaves
computations that require a high level of programmability,
namely feature extraction, as dominating energy. To address
this, a heterogeneous microprocessor based on a program-
mable FEA was presented. The approach to programmable
acceleration exploits approximation, by employing GP to yield
structured models of computation for approximating functions.
The structure enables a high level of accelerator specialization
while retaining programmability. Two medical-sensor appli-
cations implemented on a prototype IC in 130-nm CMOS
demonstrate 325× and 156× energy reduction for feature
extraction compared to a CPU-only architecture, and 7.6× and
6.5× energy reduction for feature extraction compared to a
CPU-with-coprocessor architecture. Furthermore, controllable
energy scalability of 20× and 9.3×, with respect to the
level of feature approximation, is demonstrated for the two
applications.
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