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ABSTRACT
“If you cannot measure it, you cannot improve it.”—Lord
Kelvin

Fitness in GP/GI is usually a short-sighted greedy fitness
function counting the number of satisfied test cases (or some
other score based on error). If GP/GI is to be extended
to successfully tackle “full software systems”, which is the
stated domain of Genetic Improvement, with loops, condi-
tional statements and function calls, then this kind of fitness
will fail to scale. One alternative approach is to measure the
fitness gain in terms of the accumulated information at each
executed step of the program. This paper discusses meth-
ods for measuring the way in which programs accumulate
information relevant to their task as they run, by building
measures of this information gain based on information the-
ory and model complexity.

1. INTRODUCTION
Genetic improvement is a growing area of search-based

software engineering [5]. In this brief paper we would like to
argue that we can use a number of methods—information
gain measures and model complexity—to evaluate the value
of improvements in GI.

2. EVALUATION AS ACCUMULATION OF
RELEVANT INFORMATION

Programs (or, in concurrent systems, threads within pro-
grams) execute one step at a time; as a program runs, each
computation step executes one statement in the program.
This is an unremarkable truism. However, this becomes in-
teresting when we consider the question of quantifying how
much closer the program is to solving its task after each of
these steps occur. Clearly, for a correct and non-redundant
program, each of these steps is doing something useful; we
could say that it is accumulating task-relevant information
(and, consequently, throwing away information that is irrel-
evant to the task).
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Consider the following simple program, which calculates
4-bit parity.

1. read v0
2. read v1
3. read v2
4. read v3
5.
6. f0 = XOR v0 v1
7. f1 = XOR v2 v3
8. f2 = XOR f0 f1
9.
10. output f2

The substantive lines of code—lines 6-8—each contribute
some information that is relevant to the solution. For exam-
ple, line 6 checks whether vo and v1 are the same or different.
As humans we gain this understanding by reasoning in our
minds about the code. Can we, however, come to this con-
clusion in a data-driven way? Looking at individual test
cases doesn’t help much—but if we look across a large set
of inputs, perhaps this “adding information” comes out as
a pattern? Consider Table 1. The first line in this table
shows the inputs (in the form v3v2v1v0), and each subse-
quent line shows a bitwise measure of the difference (XNOR)
between the program state generated on that line and the
target state. For example, for the input set 0000, v0 = 0,
v1 = 0, so line 6 (f0 = XOR v0 v1) gives f0 = 0, and the
target is 0, so the entry in the table is 1. Call this matrix of
differences the difference spectrum for that execution.

If we look at the difference spectrum, we can see patterns
in it. Line 6 is a list of 4 ones, follow by a list of 8 zeros,
followed by a list of 4 ones. Such patterns can be captured by
a pattern-finding measure such as the length of the bitstring
when exposed to a compression algorithm. We are, in other
terms, finding a compression distance [2] between the state
of the program and the target (see [3] for more details).

Another way to do this is by applying a machine learning
algorithm to learn a model of the difference between the
state produced by the line, and the target. We use a measure
of the complexity of that model as a way of quantifying
the complexity of the mapping between that state at the
target. This idea has been used—for a different reason—as
a contribution towards a fitness measure in GP [4].

Whichever method is used, what we have at the end is
a method of assigning a number to each executed step in
the program, which (approximately) quantifies how much
computation still needs to be done (i.e. the complexity of
the “ghost” program [1]). Alternatively, we can think of this
as how much task-relevant information is added by carrying
out that step—an information gain measure. Importantly,



Line 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
6. XOR v0 v1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
7. XOR v2 v3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
8. XOR f0 f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8. TARGET 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Table 1: The Difference Spectrum for the Parity Program

assigning this number doesn’t depend on having the remain-
der of the program—we can assign this to a partial program.

3. FITNESS VIA INFORMATION GAIN
How do we evaluate fitness in genetic improvement? Clearly

this depends on the kind of improvement we are seeking to
carry out—it could be a measure of a functional property, or
a measure of some non-functional property such as speed or
readability. Most GI applications have at least two fitness
criteria—to maximize the improvement criterion, whilst en-
suring that the code changes do not change the correctness
of the program on the test cases.

The traditional way to ensure the latter is by re-evaluating
each run of the code on the test cases, and aggregating the
total score across the test cases (e.g. by counting the number
of test cases passed, or by adding together the error on each
test case).

We propose that an information gain measure such as
those discussed above is a valuable alternative measure for
this. Assume that the code is to be modified at a particu-
lar point in the program in order to make the improvement.
This gives us two points—the starting cut (StartC) and the
ending cut (EndC)—between which the GI system improves
the code.

We can then construct a local target vector at the EndC,
by running the original program on its test set and measur-
ing the value that it takes at the EndC for each test case.
Then, we can apply an information gain measure such as
the ones described above to evaluate the quality, in turn, of
each line of an improvement, in terms of whether it gener-
ates information that is of use in getting towards that local
target. This is summarized in Figure 1.

This has a number of advantages. Firstly, it does not
rely on the correctness of the remainder of the program.
Secondly, it puts pressure on the improvement to make im-
provements that solve coherent sub-problems. Thirdly, each
line of the improvement can be learned one-by-one; we do
not need to have a whole improvement before we can evalu-
ate the quality of a line.

Clearly, this cannot be applied naively to programs with
loops and conditionals. However, by aligning the step-by-
step record of evaluation at appropriate breakpoints, these
ideas can be extended to code with these features.

In summary: traditional GI has focused on the overall ef-
fect of improvements to the solution of the whole task. In
this way, it is similar to most traditional software testing
approaches (even white-box testing usually works backwards
from end-of-program tests to estimate the location of faults).
By contrast, in this approach, we quantify the accumulation
of task-relevant information by looking across multiple runs
of a program and finding patterns in that information. Be-
cause this information accumulation occurs locally in the
program, we believe that this approach has a greater capac-
ity to scale than traditional approaches.

Figure 1: (a) traditional whole-program fitness mea-
sure; (b) structural matching to local target.
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