Skip to main content

Robust Inferential Sensors Based on Ensemble of Predictors Generated by Genetic Programming

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

Inferential sensors are mathematical models used to predict the quality variables of industrial processes. One factor limiting the widespread use of soft sensors in the process industry is their inability to cope with non-constant noise in the data and process variability. A novel approach for inferential sensors design with increased robustness is proposed in the paper. It is based on three techniques. The first technique increases robustness by using explicit nonlinear functions derived by Genetic Programming. The second technique applies multi-objective model selection on a Pareto-front to guarantee the right balance between accuracy and complexity. The third technique uses ensembles of predictors for more consistent estimates and possible self-assessment capabilities. The increased robustness of the proposed sensor is demonstrated on a number of industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kordon, A., Smits, G.: Soft Sensor Development Using Genetic Programming. In: Proceedings of GECCO 2001, San Francisco, pp. 1346-1351 (2001)

    Google Scholar 

  2. Kalos, A., Kordon, A., Smits, G., Werkmeister, S.: Hybrid Model Development Methodology for Industrial Soft Sensors. In: Proceedings of the ACC 2003, Denver CO, pp. 5417–5422 (2003)

    Google Scholar 

  3. Kordon, A.K, Smits, G.F., Jordaan, E., Rightor, E.: Robust Soft Sensors Based on Integration of Genetic Programming, Analytical Neural Networks, and Support Vector Machines. In: Proceedings of WCCI 2002, Honolulu, pp. 896–901 (2002)

    Google Scholar 

  4. Sharkey, A. (ed.): Combining Neural Nets. Ensemble and Modular Multi-Net Systems. Springer, London (1999)

    MATH  Google Scholar 

  5. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  7. Bleuer, S., Brack, M., Thiele, L., Zitzler, E.: Multi-Objective Genetic Programming. Reducing Bloat bt Using SPEA-2. In: Proceedings of CEC 2001, pp. 536–543 (2001)

    Google Scholar 

  8. Koza, J.: Genetic Programming. On the Programming of Computers by. MIT Press, Cambridge (1992)

    Google Scholar 

  9. Smits, G., Kotanchek, M.: Pareto-Front Exploitation in Symbolic Regression. In: Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice, Kluwer, Boston (2004) (in press)

    Google Scholar 

  10. Lennox, B., Montague, G., Frith, A., Gent, C., Bevan, V.: Industrial Applications of Neural Networks - An Investigation. Journal of Process Control 11, 497–507 (2001)

    Article  Google Scholar 

  11. Kordon, A., Jordaan, E., Chew, L., Smits, G., Bruck, T., Haney, K., Jenings, A.: Biomass Inferential Sensor Based on Ensemble of Models Generated by Genetic Programming. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1078–1089. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Liu, Y., Yao, X., Higuchi, T.: Evolutionary Ensembles with Negative Correlation Learning. IEEE Transactions on Evolutionary Computation 4(4), 380–387 (2000)

    Article  Google Scholar 

  13. Imamura, K., Soule, T., Hechendorn, R., Foster, J.: Behavior Diversity and a Probabilistically Optimal GP Ensemble. Genetic Programming and Evolvable Machines 4, 235–253 (2003)

    Article  Google Scholar 

  14. Hodge D., Simon, L., Karim,M.: Data Driven Approaches to Modeling and Analysis of Bioprocesses. Some Industrial Examples. In: Proceedings of the ACC 2003, Denver, pp. 2062- 2076 (2003)

    Google Scholar 

  15. Cheruy, A.: Software Sensors in Bioprocess Engineering. Journal of Biotechnology 52, 193–199 (1997)

    Article  Google Scholar 

  16. Soule, T.: Heterogenesity and Specialization in Evolving Teams. In: Goldberg, D., Cantu- Paz, E., Parmee, I., Beyer, H.-G. (eds): Proceedings of GECCO 2000, Las Vegas (2000)

    Google Scholar 

  17. Brameier, M., Banszaf, W.: Evolving Teams of Predictors with Linear Genetic Programming. Genetic Programming and Evolvable Machines 2, 381–407 (2001)

    Article  MATH  Google Scholar 

  18. Iba, H.: Bagging, Boosting, and Bloating in Genetic Programming. In: Proceedings of GECCO 1999 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jordaan, E., Kordon, A., Chiang, L., Smits, G. (2004). Robust Inferential Sensors Based on Ensemble of Predictors Generated by Genetic Programming. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics