

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

640

A Signature-Free Buffer Overflow Attack Blocker Using

Genetic Programming
Kotha Jothsna

1
, Dr. R.V. Krishniah

2
,

DRK Institute of Science and Technology, JNTUH, Hyderabad

Abstract— Now days internet threat takes a blended

attack form, targeting individual users to gain control

over networks and data. Buffer Overflow which is one of

the most occurring security vulnerabilities in Internet

services such as such as web service, cloud service etc.

Motivated by the observation that buffer overflow attacks

typically contain executables whereas legitimate client

requests never contain executables in most Internet services.

Unlike the previous detection algorithms, a new SigFree uses a

Genetic Programming technique that is generic, fast, and

hard for exploit code to evade. SigFree blocks attacks by

detecting the presence of code, it is a signature free, thus it can

block new and unknown buffer overflow attacks; SigFree is

also immunized from most attack-side code obfuscation. To do

so, we pay particular attention to the formulation of an

appropriate fitness function and partnering instruction set.

Moreover, by making use of the intron behaviour inherent in

the genetic programming paradigm, we are able to explicitly

Obfuscate the true intent of the code. All the resulting attacks

Defeat the widely used in Intrusion Detection System.

Keywords— Linear Genetic Programming, code injection,

Intrusion Detection Systems.

I. INTRODUCTION

The history of internet security, buffer over-flow is

one of the most serious vulnerabilities in computer

systems. Buffer overflow vulnerability is a root cause for

most of the cyber attacks such as server breaking-in,

worms, zombies, and bonnets. A buffer overflow occurs

during program execution when a fixed-size buffer has had

too much data copied into it. This causes the data to

overwrite into adjacent memory locations, and depending

on what is stored there, the behaviour of the program itself

might be affected. Although taking a broader viewpoint,

buffer overflow attacks do not always carry binary code in

the attacking requests (or packets); code-injection buffer

overflow attacks such as stack smashing probably count for

most of the buffers overflow attacks that have happen in

the real world.

Although lot of research[2-10] has been done to tackle

buffer overflow attacks, existing defences are still quite

limited in meeting four highly desired requirements: 1)

Simplicity in Maintenance; 2) Transparency to existing

(legacy) server OS, application software, and hardware; 3)

Resiliency to obfuscation; 4) Economical Internet-wide

deployment. As a result, although several secure solutions

have been proposed, they are not pervasively deployed, and

a considerable number of buffer overflow attacks continue

to be successful on a daily basis.

To overcome the above limitations, Recently, X. Wang

et al.[11] proposed a SigFree, an online buffer overflow

attack blocker, to protect Internet services. The idea of

SigFree is motivated by an important observation that ―the

nature of communication to and from network services is

predominantly or exclusively data and not executable

code‖. Their experimental study shows that the

dependency-degree-based SigFree could block all types

of code-injection attack packets tested in our

experiments with very few false positives. Moreover,

SigFree causes very small extra latency to normal

client requests when some requests contain exploit code.

However, Sig Free cannot fully handle self-modifying code

and cannot fully handle the branch-function-based

obfuscation. Further, Sig Free does not detect attacks such

as return-to-libc attacks that just corrupt control flow

or data without injecting code.

In this paper, we propose a novel SigFree, an online

buffer overflow attack blocker using Genetic Programming

(GP) [12] instead of code abstraction [11] to protect

internet services. The idea of SigFree is motivated by an

important observation that ―the nature of communication to

and from network services is predominantly or exclusively

data and not executable code‖. For blocking code-injection

buffer overflow attack messages targeting at various

internet services such as web service, Motivated by the

observation that buffer overflow attacks typically contain

executables whereas legitimate user requests never contain

executables in most internet services.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

641

The SigFree Fig. 1[11] works as follows: SigFree is an

application layer blocker that typically stays between a

service and the corresponding firewall. When a service

requesting message arrives at SigFree, SigFree uses a novel

technique called linear Genetic programming. The aim of

Genetic programming (GP) methodology is discovering

rules suitably generic for describing a wide range of

anomalous behaviours. However, there are at least two

pragmatic limitations constraining the applicability of GP

based detectors. Firstly, the datasets used to characterize

intrusion detection problems typically consist of millions of

exemplars, which implies an overhead in training time.

Secondly, once trained, the model is only as good as the

data available at training, a third party is again required to

provide appropriate labels for new attack instances. The

Solutions to the problem have been demonstrated by way

of active learning algorithms instructions in an instruction

sequence, and then compares the number of useful

instructions.

Fig. 1. SigFree is an application layer blocker between the protected

server and the corresponding firewall[11].

II. RELATED WORK

Recently, several researchers proposed different

detection and prevention methods to detect and prevent the

buffer overflow attacks. We have classified these into three

categories: 1) Prevention/Detection techniques of Buffer

Overflows;2) Worm detection and signature generation;3)

Machine code analysis for security purposes.

2.1. Prevention/ Detection of Buffer Overflows

The Existing prevention/detection techniques of buffer

over-flows can be roughly broken down into six classes:

Class 1A: Finding bugs in source code. Buffer overflows

are fundamentally due to programming bugs. Accordingly,

various bug-finding tools [13], [14], [15] have been

developed. The bug-finding techniques used in these tools,

which is general belong to static analysis, include but are

not limited to checking and bugs-as-deviant-behaviour.

Class 1A techniques are designed to handle source code

only, and they do not ensure completeness in bug finding.

In contrast, SigFree handles machine code embedded in a

request (message). The Class 1B: Compiler extensions.

―If the source code is available, a developer can add

buffer overflow detection automatically to a program by

using a modified compiler‖. Three such compilers are

StackGuard [16], ProPolice 17], and Return Address

Defender (RAD) [18]. DIRA [19] is another compiler that

can detect control hijacking attacks, identify the malicious

input, and repair the compromised program. Class 1B

techniques require the availability of source code. In

contrast, SigFree does not need to know any source code.

Class 1C: OS modifications. Modifying some aspects of the

operating system may prevent buffer overflows such as Pax

[20], LibSafe [21], and e-NeXsh [22].

Class 1C: Techniques need to modify the OS. In

contrast, SigFree does not need any modification of the OS.

Class 1D: Hardware modifications. A main idea of hard-

ware modification is to store all return addresses on the

processor [29]. In this way, no input can change any return

address.

Class 1E: Defence-side obfuscation. Address Space

Layout Randomization (ASLR) is a main component of

Pax [21].Address-space randomization, in its general form

[23], can detect exploitation of all memory errors.

Instruction set randomization [2], [3] can detect all code-

injection attacks, while SigFree cannot guarantee detecting

all injected code. Nevertheless, when these approaches

detect an attack, the victim process is typically terminated.

―Repeated attacks will require repeated and expensive

application restarts, effectively rendering the service

unavailable‖ [6].

Class 1F: Capturing code running symptoms of buffer

overflow attacks. Fundamentally, buffer overflows area

code running symptom. If such unique symptom s can be

precisely captured, all buffer overflows can be detected.

Class 1B, Class 1C, and Class 1E techniques can capture

some but not all—of the running symptoms of buffer

overflows. For example, accessing non executable stack

segments can be captured by OS modifications; the

compiler modifications can detect return address rewriting;

and process crash is a symptom capture d by defence-side

obfuscation. To achieve 100 percent coverage in capturing

buffer overflow symptoms, dynamic data flow/taint

analysis/program shepherding techniques were proposed in

Vigilante [5], Taint Check [4], and [24]. They can detect

buffer overflows during runtime.

Covers [6] and [7]. Post crash symptom diagnosis

extracts the ―signature‖ after a buffer overflow attack is

detected. A more recent system called ARBOR [25] can

automatically generate vulnerability-oriented signatures by

identifying characteristic features of attacks and using

program context. Moreover, A RBOR automatically

invokes the recovery actions.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

642

Class 1F techniques can block both the attack requests

that injection code and the attack requests that do not

contain any code, but they need the signatures to be firstly

generated. Moreover, they are either suffer from significant

runtime overhead or need special auditing or diagnosis

facilities, which are not commonly available in commercial

services. In contrast, although SigFree could not block the

attack requests that do not contain any code, SigFree is

signature free and does not need any changes to real-world

services.

2.2 Worm Detection and Signature Generation

Because buffer overflow is a key target of worms when

they propagate from one host to another, SigFree is related

to worm detection. Based on the nature of worm infection

symptoms, worm detection techniques can be broken down

into three classes: [26]. [Class 2B] techniques use such

local traffic symptoms as content invariance, content

prevalence, and address dispersion to generate worm

signatures and/or block worms. Some examples of Class

2B techniques are Earlybird [8], Autograph [9], Polygraph

[10], Hamsa [27], and Packet Vaccine [28]. [Class 2C]

techniques use worm code running symptoms to detect

worms. It is not surprising that Class 2C techniques are

exactly Class 1F techniques. Some examples of Class 2C

techniques are Shield [29], Vigilante [5], and COVERS [6].

[Class 2D] techniques use anomaly detection on packet

payload to detect worms and generate signature. Wang and

Stolfo [30], [31] first proposed Class 2D techniques called

PAYL. PAYL is first trained with normal network flow

traffic and then uses some byte-level statistical measures to

detect exploit code.

Class 2A techniques are not relevant to SigFree. Class

2C techniques have already been discussed. Class 2D

techniques could be evaded by statistically simulating

normal traffic [32]. Class 2B techniques rely on signatures,

while SigFree is signature free. Class 2B techniques focus

on identifying the unique bytes that a worm packet must

carry, while SigFree focuses on determining if a packet

contains code or not. Exploiting the content invariance

property, Class 2B techniques are typically not very

resilient to obfuscation. In contrast, SigFree is immunized

from most attack-side obfuscation methods.

2.3 Machine Code Analysis for Security Purposes

Although source code analysis has been extensively

studied (see Class 1A), in many real-world scenarios,

source code is not available and the ability to analyse

binaries is desired. Machine code analysis has three main

security purposes: (P1) malware detection, (P2) to analyse

obfuscated binaries, and (P3) to identify and analyse the

code contained in buffer overflow attack packets.

Along purpose of P1, Chritodorescu and Jha [33]

proposed static analysis techniques to detect malicious

patterns in executables, and Chritodorescu et al. [34]

exploited semantic heuristics to detect obfuscated malware.

Along purpose P2, Lakhotia and Eric [35] used static

analysis techniques to detect obfuscated calls in binaries,

and Kruegel et al. [36] investigated disassembly of

obfuscated binaries.

SigFree differs from P1 and P2 techniques in design

goals. The purpose of SigFree is to see if a message

contains code or not, not to determine if a piece of code has

malicious intent or not. Hence, SigFree is immunized from

most attack-side obfuscation methods. Nevertheless, both

the techniques in [37] and SigFree disassemble binary

code, although their disassembly procedures are different.

As will be seen, disassembly is not the kernel contribution

of SigFree. Fnord [38], the pre-processor of Snort IDS,

identifies exploit code by detecting NOP sled. Binary

disassembly is also used to find the sequence of execution

instructions as an evidence of an NOP sled [12]. However,

some attacks such as worm CodeRed do not include NOP

sled and, as mentioned in [12], mere binary disassembly is

not adequate.

Very recently, Wang etal. [11] proposed a SigFree, an

online buffer overflow attack blocker, to protect Internet

services. The idea of SigFree is motivated by an important

observation that ―the nature of communication to and from

network services is predominantly or exclusively data and

not executable code‖. However, their method has following

limitations: First, Sig Free cannot fully handle the

branch-function-based obfuscation, causes control to be

transferred to the corresponding location f(x). By

replacing unconditional branches in a program with calls

to the branch function, attackers can obscure the flow

of control in the program. We note that there are no

general solutions for handling branch function at the

present state of the art. Second, Sig Free cannot fully

handle self-modifying code. Self-modifying code is a piece

of code that dynamically modifies itself at runtime and

could make Sig Free mistakenly exclude all its instruction

sequences. Third, the executable shell codes could be

written in alphanumeric form. Such shell codes will be

treated as printable ASCII data and thus bypass our

analyser. Their Scheme can successfully detect

alphanumeric shell codes; however, it will increase

computational overhead. Therefore, it requires slight

tradeoffs between tight security and system performance.

Fourth, Sig Free does not detect attacks such as return-

to-libc attacks that just corrupt control flow or data

without injecting code. However, these attacks can be

handled by some simple methods.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

643

III. BUFFER OVERFLOW ATTACKS

The core behaviour of an overflow attack lies in the

simple observation that just because an address space of a

variable declared in a program might be allocated of a

specific size, this does not stop the same program from

attempting to access memory outside of the allocated space.

In order to make use of such a weakness, the attacker

requires three components: (1) program used by the target

system that possesses inherent overflow vulnerability; (2)

Knowledge of the size of memory reference necessary to

cause the overflow; and (3) The correct placement of a

suitable exploit to make use of the overflow when it occurs.

The skill in crafting such an attack lies in how an exploit is

hidden and ensuring that the memory referenced outside of

the allocated space corresponds to the code defining the

desired malicious behaviour.

There are two variants of buffer overflow attacks: Code-

Injection (CI) attack, where attackers insert a piece of

malicious code into the victim application’s address space

and then steer the application’s control to the injected code;

return to libc (RTL) attack, where attackers directly steer

the control of the victim application to a function pre-

existing in its address space, e.g., a library function. In both

cases, attackers hijack the control of the vic-163 Tim

application, by modifying a control-sensitive data structure

such as a return address and changing it to either a location

on the stack (CI attack) or a location in the text or code

region (RTL attack). From the above analysis, a buffer

overflow attack packet must include a 4-byte of hijack

destination word that corresponds to a memory address on

the stack or in the text region. Furthermore, to increase the

success probability and robustness of a buffer overflow

attack. The attackers almost always replicate the hijack

destination word in the packet so as to accommodate

differences in the address of the target control-sensitive

data structure due to different combinations of compiler,

loader, operating system, and command-line arguments.

IV. PROPOSED METHOD

The proposed work consists of prevention and detection

of buffer overflows. This work proposes SigFree, a real-

time, signature-free, out-of the-box, application layer

blocker for preventing and detecting buffer overflow

attacks, which is one of the most serious cyber security

threats. The SigFree can filter out code-injection buffer

overflow attack messages targeting at various Internet

services such as web service. Motivated by the observation

that buffer overflow attacks typically contain executables

whereas legitimate user requests never contain executables

in most Internet services, SigFree blocks attacks by

detecting the presence of code.

Our SigFree method using GP first blindly dissembles

and extracts instruction sequences from a request. Then, it

compares the number of useful instructions to a threshold

to determine if this instruction sequence contains code.

SigFree is signature free, thus it can block new and

unknown buffer overflow attacks; SigFree is also

immunized from most attack-side code obfuscation

methods. Since SigFree is transparent to the servers

being protected, it is good for economical Internet

wide deployment with very low deployment and

maintenance cost.

The Observations providing the basis for this approach

include (1) recognizing that the GP code bloat phenomena

provides the basis for the non operational command

sequences, thus masking the operational or real intent of an

attack command sequence. (2) The SigFree based GP

solutions have been widely observed to have functionality

distributed across the length of the individual. Thus, the

ideal objective of an attack agent will be to build command

sequences, which have the same function as the original

generic attack, however camouflaged in non-operational

but syntactically correct commands. Such a system is only

possible if a sufficiently informative fitness function can be

defined for the class of attacks as a whole. That is to say, a

binary fitness function in which all unsuccessful attacks

provide a fitness of zero and a successful attack a fitness of

unity, is on the face of it, not much use.

 4.1 Basic Fitness Function

Categorically, the attack we are evolving is an 'execve'

attack. Execve is a system call in OS that executes a

program, where the program takes the form of an argument

(UNIX shell /bin/sh in our case). UNIX defines 'execve' as,

int execve (const char *path, char *const argv [12], char

*const envp [12]). Where the parameter one is the

command name; parameter two contains pointers to strings

that will be given to the program as arguments; parameter

three contains pointers to environmental variables, which

are also stored as strings. A minimalist call to the 'execve'

function using the C language might have the following

form in algorithm 1[12]:

Algorithm 1: Minimal List

 int main()

{

 char *command = "/bin/sh";

 char *args[2];

 args[0] = command;

 args[1] = 0;

 execve(command, args, 0);

}

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

644

In order to spawn a UNIX shell prompt, 'execve' requires

that the command pointer should be in the EBX register,

the pointer to 'args' should be in register ECX and the

pointer to the third argument (which is in our case is the

NULL pointer) should be in

EDX register, Algorithm 2[11]. Moreover, the program

name '/bin/sh' should be pushed to stack. To achieve these

goals, 11 assembly instructions are needed. After 10

instructions are executed (11th is the interrupt that transfers

control to execve system call), registers EAX, EBX, ECX

and EDX should be correctly configured and the stack

should contain the program name to be executed (i.e. 1668

/bin/sh). Given the state of the stack and registers after the

10th instruction, if the values are not set correctly, greedy

replacement is used to determine how many instructions

are needed to correct it. For example if "/bin/sh" has not

been pushed to the stack, 3 instructions are sufficient to

achieve this goal. Another important point is that if the task

has been half-accomplished, viable instructions should be

determined. Using this principle, the fitness function

summarized in Algorithm 3[12] returns a maximum fitness

of 10 if all conditions are satisfied; otherwise it subtracts

the number of instructions needed to correct the program,

relative to the minimal set of sub-goals, Algorithm 2. The

basic fitness function therefore it takes the form of a

hierarchical fitness function in which sub-goals (a) to (e)

can only be completed in sequence. However, depending

on the composition of the language used to evolve the

attacks, there are multiple programs producing the required

(buffer overflow) attack behaviour. The algorithm 1

describes about this:

Algorithm 2: Minimal requirements for executing an

execve' system call for spawning a UNIX shell.

1. Register EAX contains 0x0B i.e., the system

call number of 'execve';

2. Register EBX points to '/bin/sh0' on the stack;

3. Register ECX points to the argument array in

stack;

4. Register EDX contains NULL;

5. Interrupt '0x80' is executed;

Algorithm 3: Basic fitness functions for establishing

correct behavior of ‘execve’ exploit. Fitness = 10

(a) IF stack does not contain '/bin/sh0', THEN subtract

 number of instructions necessary to do so from

Fitness (1 to 3).

(b) IF register EBX does not point to string from (a),

THEN Fitness =1;

(c) IF register ECX does not point to argument array in

stack, THEN subtract number of instructions

necessary to do so from Fitness (1 to 3)

(d) IF register EDX! = NULL, THEN Fitness=1.

(e) IF an INT is not executed, THEN Fitness.

4.2. Linear GP

Individual users are represented using linear GP in

which instructions are composed from a 2-byte opcode and

two operands (each 1-byte) i.e. all instructions have the

same number of bytes. The Individual users are defined

using a fixed length format, thus initialization is defined in

table 1 over the total range of permitted program lengths.

Selection takes the form of a steady state tournament over 4

individuals. The children from the best performing half of

the tournament overwrite the individuals corresponding to

the worst half of the tournament, taking their place in the

population. Search operators take three forms: two point

crossover, instruction mutation, and instruction swap.

Therefore, constrained to exchange an equal number of

instructions (a page) between two individuals. The number

of instructions per page is allowed to vary from 1

instruction to max instructions per page as the fitness

function reaches a new plateau, as in the page-based Linear

GP framework [12]. Mutation selects a single instruction

with uniform probability and replaces with a different

instruction from the instruction set, Table 1[12]. The swap

operator selects two instructions from the same individual

with equal probability and interchanges their respective

positions.

The details of the linear Genetic Programming

methodology itself is not particularly important, however,

previous work utilizing Code Abstraction[11] indicated that

the linear representation provides a more direct method for

successfully evolving buffer overflow attacks (the search

operators in GE were not particularly efficient at

manipulating register references) [12].

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

645

Table 1

GP Parameters[12]

V. SECURITY ANALYSIS

In this section, we analyse the security of our scheme as

follows: As indicated in the introduction, two basic

approaches are considered in the design of buffer overflow

attacks. Our Objective is to develop the attack itself whilst

maximizing the probability of executing the malicious

code, CA [11] proved very inefficient at manipulating

register references (using the standard CA search operators)

than Sig-free method using code abstraction. By using

linearly structured GP, we expect to avoid this problem. In

the following we describe a series of three experiments in

which the instruction set is incrementally expanded, thus

increasing the search space, but providing for greater

freedom in the resulting program content (thus a wider

range of behavioural properties). This case results in code

that has the capacity to intermix attack and obfuscation.

In all cases the fitness function takes the form of

Algorithm 2, augmented with an additional term to measure

the likelihood of an attack being executed. Specifically,

since all individuals have a fixed length of 30 instructions

and it takes 11 instructions to describe the attack, there are

up to 19 instructions denoting introns with respect to the

malicious code. If the approximated return address was not

accurate enough to jump to the first instruction, jumping to

an effective useless region would allow an attack to deploy

successfully. If execution of a successful attack fails (i.e. an

inaccurate return address) by jumping past a relevant

instruction, the location of the instruction is called the

failure point. The probability of execution is defined as

(failure point ÷ number of all possible points); or a

denominator of 19 in this case.

Compared to existing scheme [11], our scheme based

Genetic Programming blocks the all buffer overflow

attacks.

Therefore, SigFree Blocker using Genetic Programming

is securing than SigFree using code abstraction while

detecting the attacks.

VI. PERFORMANCE ANALYSIS

In this section, we implemented a Sig-Free prototype

using the C programming language in the Win64

environment. The stand-alone prototype was com-piled

with Borland C++ version 5.5.1 at optimization level O2.

The experiments were performed in a Windows 2007

server with Intel Pentium 4, 3.2-GHz CPU, and 1-Gbyte

memory. We measured the processing time of the stand-

alone prototype over all (2,910 totally) 0-10 Kbyte images

collected from the above real traces. We set the upper limit

to 10 Kbytes because the size of a normal web request is

rarely over that if it accepts binary inputs.

To evaluate the performance impact of SigFree to web

servers, we also implemented a proxy-based SigFree

prototype. Fig. 2 depicts the implementation architecture. It

is comprised of the following modules. URI decoder. The

specification for URLs limits the allowed characters in a

Request-URI to only a subset of the ASCII character set.

This means that the query parameters of a request-URI

beyond this subset should be encoded [39].

Because a malicious payload may be embedded in the

request-URI as a request parameter, the first step of

SigFree is to decode the request-URI. ASCII filters.

Malicious executable codes are normally binary strings. In

order to guarantee the throughput and response time of the

protected web system, if a request is printable ASCII

ranging from 20 to 7E in hex, SigFree allows the request to

pass.

The proxy-based prototype was also compiled with

Borland C++ version 5.5.1 at optimization level O2. The

proxy-based prototype implementation was hosted in the

Windows 2007 server with Intel Pentium 4, 3.2-GHz CPU,

and 1-Gbyte memory. The proxy-based SigFree prototype

accepts and analyses all incoming requests from clients.

The client testing traffics were generated by JefPoskanzer’s

http_load program [40] from a Linux desktop PC with Intel

Pentium 4 and 2.5-GHz CPU connected to the Windows

server via a 100-Mbps LAN switch. We modified the

original http_ load program so that clients can send code-

injected data requests.

For the requests that SigFree identifies as normal,

SigFree forwards them to the web server, Apache HTTP

Server 2.0.54 hosted in a Linux server with dual Intel Xeon

1.8-Gbyte CPUs. The individual Clients send requests from

a predefined URL list. The documents referred in the URL

list are stored in the web server.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

646

In addition, the prototype implementation uses a time-to-

live-based cache to reduce redundant HTTP connections

and data transfers. Rather than testing the absolute

performance overhead of SigFree, we consider it more

meaningful measuring the impact of SigFree on the normal

web services. Hence, we measured the average response

latency of the connections by running http load for 1,000

fetches. Whenever there are no buffer overflow attacks, the

average response time in the system with SigFree is only

slightly higher than the system without SigFree. This

indicates that, despite the connection and ASCII checking

overheads, the proxy-based implementations does not

affect the overall latency significantly.

The Fig.2 shows the average latency of connections as a

function of the percentage of attacking traffic. We used

CodeRed as the attacking data. Only successful

connections were used to calculate the average latency; that

is, the latencies of attacking connections were not counted.

This is because what we care is the impact of attack

requests on normal requests. We observe that the average

latency increases slightly worse than linear when the

percentage of malicious attacks increases. Generally,

proposes scheme using Genetic Programming [12] is about

40 percent faster than SigFree using code abstraction [11]

and existing scheme[11] is slightly slower than our scheme.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

Percentage of Code injected packets(%))

L
a
te

n
c
y
(m

s
)

Existing Scheme[11]

Proposed Scheme

Fig.2: Performance impact of SigFree in Proposed and Existing

schemes on HTTP server

VII. CONCLUSION

We have proposed A novel Signature-Free Buffer

Overflow Attack Blocker Using Genetic Programming that

can filter code-injection buffer overflow attack messages,

one of the most serious cyber security threats. Our method

does not require any signatures, thus it can block new

unknown attacks.

SigFree is immunized from most attack-side and good

for economical Internet-wide deployment with little

maintenance cost and low performance overhead. The

Results show that code bloat property of the GP provides

suitable means to hide the actual attack by mixing exploit

instructions with introns that have no effect toward the

success of the attack. Furthermore, evolved attacks

discover different ways of attaining sub-goals associated

with building buffer overflow attacks, hence mimicking the

core attack with different instructions. Finally, we have

proved that our method is secured than existing scheme

[11].

REFERENCES

[1] B.A. Kuperman, C.E. Brodley, H. Ozdoganoglu, T.N. Vijaykumar,

and A. Jalote, ―Detecting and Prevention of Stack Buffer Overflow
Attacks,‖ Comm. ACM, vol. 48, no. 11, 2005.

[2] G. Kc, A. Keromytis, and V. Prevelakis, ―Countering Code-Injection

Attacks with Instruction-Set Randomization,‖ Proc. 10th ACM Conf.
Computer and Comm. Security (CCS ’03), Oct. 2003.

[3] E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic, and D. Zovi,
―Randomized Instruction Set Emulation to Disrupt Binary Code

Injection Attacks,‖ Proc. 10th ACM Conf. Computer and Comm.

Security (CCS ’03), Oct. 2003.

[4] J. Newsome and D. Song, ―Dynamic Taint Analysis for Automatic

Detection, Analysis, and Signature Generation of Exploits on

Commodity Software,‖ Proc. 12th Ann. Network and Distributed
System Security Symp. (NDSS), 2005.

[5] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham, ―Vigilante: End-to-End Containment of Internet

Worms,‖ Proc. 20th ACM Symp. Operating Systems Principles

(SOSP), 2005.

[6] Z. Liang and R. Sekar, ―Fast and Automated Generation of Attack

Signatures: A Basis for Building Self-Protecting Servers,‖ Proc.12th

ACM Conf. Computer and Comm. Security (CCS), 2005.

[7] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt, ―Automatic

Diagnosis and Response to Memory Corruption Vulnerabilities,‖
Proc. 12th ACM Conf. Computer and Comm. Security (CCS), 2005.

[8] S. Singh, C. Estan, G. Varghese, and S. Savage, ―The Early bird

System for Real-Time Detection of Unknown Worms,‖ technical
report, Univ. of California, San Diego, 2003.

[9] H.-A.Kim and B. Karp, ―Autograph: Toward Automated, Distributed
Worm Signature Detection,‖ Proc. 1 3t h U SE NI X Security Symp.

(Security), 2004.

[10] J. Newsome, B. Karp, and D. Song, ―Polygraph: Automatic

Signature Generation for Polymorphic Worms,‖ Proc. IEEE

Symp.Security and Privacy (S&P), 2005.

[11] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Z hu, ―SigFree:

A Signature-Free Buffer Overflow Attack Blocker‖, IEEE

TRANSAC TIONS ON DEPEN DABLE AND SECURE
COMPUTING, VOL. 7, NO. 1, JANUAR Y-MARCH 2010.

[12] Hilmi Güneş Kayacık, Malcolm Heywood, Nur Zincir-Heywood,
―On Evolving Buffer Overflow Attacks Using Genetic

Programming‖, In Proc. Of GECCO’06, July 8–12, 2006, Seattle,

Washington, USA.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 2, February, 2013)

647

[13] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken, ―A First Step

towards Automated Detection of Buffer Overrun
Vulnerabilities,‖Proc. Seventh Ann. Network and Distributed

System Security Symp. (NDSS ’00), Feb. 2000.

[14] D. Evans and D. Larochelle, ―Improving Security Using Extensible

Lightweight Static Analysis,‖ IEEE Software, vol. 19, no. 1, 2002.

[15] H. Chen, D. Dean, and D. Wagner, ―Model Checking One Million
Lines of C Code,‖ Proc. 11th Ann. Network and Distributed System

Security Symp. (NDSS), 2004.

[16] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S.

Beattie, A. Grier, P. Wagle, and Q. Zhang, ―Stackguard:Automatic

Adaptive Detection an d Prevent ion of Buffer-Overflow Attacks, ‖
Proc. Se v en t h US EN I X Security Sym p .(Security ’98), Jan.

1998.

[17] GCC Extension for Protecting Applications from Stack - S mashing
Attacks, http:/ /www .research.Ibm.com/trl/projects/security/ssp,

2007.

[18] T. cker Chiueh and F.-H. Hsu, ―Rad: A Compile-Time Solution to

Buffer Overflow Attacks,‖ Proc. 21st Int’l Conf. Distributed

Computing Systems (ICDCS), 2001.

[19] A. Smirnov and T.cker Chiueh, ―Dira: Automatic Detection,

Identification, and Repair of Control-Hijacking Attacks,‖ Proc. 12th
Ann. Network and Distributed System Security Symp. (NDSS),

2005.

[20] Pax Documentation, http://pax.grsecurity.net/docs/pa x.txt, Nov.
2003.

[21] A. Baratloo, N. Sing h, and T. Tsai, ―Trans parent Run-Time
defense against Stack Smashing Attacks,‖ Proc. USENIX Ann.

Technical Conf. (USENIX ’00), June 2000.

[22] G.S.Kc and A.D.Keromytis, ―E-NEXSH: Achieving an Effectively

Non-Executable Stack and Heap via System-Call Policing,‖

Proc.21st Ann. Computer Security Applications Conf. (ACSAC),

2005.

[23] S. Bhatkar, R. Sekar, and D.C. DuVarney, ―Efficient Techniques for

Comprehensive Protection from Memory Error Exploits,‖ Proc.14th
USENIX Security Symp. (Security), 2005.

[24] V. Kiriansky, D. Bruening, and S. Amarasinghe, ―Secure Execution

via Program Shepherding,‖ Proc. 11th USENIX Security Symp.
(Security), 2002

[25] Z. Liang and R. Sekar, ―Automatic Generation of Buffer Overflow
Attack Signatures: An Approach Based on Program Behavior

Models,‖ Proc. 21st Ann. Computer Security Applications Conf.

(ACSAC), 2005.

[26] R.Pang, V.Yegneswaran, P.Barford, V.Paxson, and L. Peterson,

―Characteristics of Internet Background Radiation,‖ Proc. ACM
Internet Measurement Conf. (IMC), 2004.

[27] Z. Li, M. Sanghi, Y. Chen, M.Y. Kao, and B. Chavez, ―Hamsa: Fast

Signature Generation for Zero-Day Polymorphic Worms with
Provable Attack Resilience,‖ Proc. IEEE Symp. Security and

Privacy (S&P ’06), May 2006.

[28] X.F. Wang, Z. Li, J. Xu, M.K. Reiter, C. Kil, and J.Y. Choi, ―Packet

Vaccine: Black-Box Exploit Detection and Signature

Generation,‖Proc. 13th ACM Conf. Computer and Comm. Security
(CCS), 2006.

[29] H.J.Wang, C.Guo, D.R.Simon, and A.Zugenmaier, ―Shield:

Vulnerability - Driven Network Filters for Preventing Known

Vulnerability Exploits,‖ Proc. ACM SIGCOMM ’04, Aug. 2004.

[30] K. Wang and S.J. Stolfo, ―Anomalous Payload-Based Network
Intrusion Detection,‖ Proc. Seventh Int’l Symp. Recent Advances in

Intrusion Detection (RAID), 2004.

[31] K. Wang, G. Cretu, and S.J. Stolfo, ―Anomalous Payload-Based

Worm Detection and Signature Generation,‖ Proc. Eighth Int’l

Symp. Recent Advances in Intrusion Detection (RAID), 2005.

[32] O. Kolesnikov, D. Dagon, and W. Lee, ―Advanced Polymorphic

Worms: Evading IDS by Blending in with Normal Traffic,‖
Technical Report GIT-CC-04-13, College of Computing, Georgia

Tech, 2004.

[33] M. Christodorescu and S. Jha, ―Static Analysis of Executables to
Detect Malicious Patterns,‖ Proc. 12th USENIX Security Symp.

(Security ’03), Aug. 2003.

[34] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and R.E. Bryant,

―Semantics-Aware Malware Detection,‖ Proc. IEEE Symp. Security

and Privacy (S&P), 2005.

[35] A.Lakhotia and U. Eric, ―Abstract Stack Graph to Detect Obfuscated

Calls in Binaries,‖ Proc. Fourth IEEE Int’l Workshop Source Code

Analysis and Manipulation (SCAM ’04), Sept. 2004.

[36] C. Kruegel, W. Robertson, F.Valeur, and G.Vigna, ―Static

Disassembly of Obfuscated Binaries,‖ Proc. 13th USENIX Security
Symp. (Security), 2004.

[37] Fnord Snort Preprocessor, http://www.c ansecwest.com/spp_fnord.c,

2007.

[38] B. Schwarz, S.K. Debray, and G.R. Andrews, ―Disassembly of

Executable Code Revisited,‖ Proc. Ninth IEEE Working
Conf.Reverse Eng. (WCRE), 2002.

[39] T. Berners-Lee, L.Masinter, and M. McCahill, Uniform Resource

Locators (URL), RF C 17 38 (Proposed Standard), updated by RFCs
1808, 2368, 2396, 3986, http://www.ietf.org/rfc/rfc1738.txt,2007.

[40] Http Load: Multiprocessing Http Test Client,
http://www.acme.com/software/http_load, 2007.

