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Abstract— Now  days  internet  threat takes  a  blended  

attack  form,  targeting individual  users  to  gain  control  

over  networks  and  data.  Buffer Overflow  which  is  one  of  

the  most  occurring  security  vulnerabilities  in  Internet 

services such as  such as web service, cloud service etc. 

Motivated by the observation that buffer overflow attacks 

typically contain executables whereas legitimate client 

requests never contain executables in most Internet services. 

Unlike the previous detection algorithms, a new SigFree uses a 

Genetic Programming technique that is generic, fast, and 

hard for exploit code to evade. SigFree blocks attacks by 

detecting the presence of code, it is a signature free, thus it can 

block new and unknown buffer overflow attacks; SigFree is 

also immunized from most attack-side code obfuscation. To do 

so, we pay particular attention to the formulation of an 

appropriate fitness function and partnering instruction set. 

Moreover, by making use of the intron behaviour inherent in 

the genetic programming paradigm, we are able to explicitly 

Obfuscate the true intent of the code. All the resulting attacks 

Defeat the widely used in Intrusion Detection System. 

Keywords— Linear Genetic Programming, code injection,  

Intrusion Detection Systems.  

I. INTRODUCTION 

The  history  of  internet  security,  buffer  over-flow  is  

one  of  the  most  serious  vulnerabilities  in computer  

systems.  Buffer overflow vulnerability is a root cause for 

most of the cyber attacks such as server breaking-in, 

worms, zombies, and bonnets. A buffer overflow occurs 

during program execution when a fixed-size buffer has had 

too much data copied into it.  This causes   the data to 

overwrite into adjacent memory locations, and depending 

on what is stored there, the behaviour of the program itself 

might be affected.  Although taking a broader viewpoint, 

buffer overflow attacks do not always carry binary code in 

the attacking requests (or packets); code-injection buffer 

overflow attacks such as stack smashing probably count for 

most of the buffers overflow attacks that have happen in 

the real world.  

 

 

 

 

 

Although lot of research[2-10] has been done to tackle 

buffer overflow attacks, existing defences are still quite 

limited in meeting four highly desired requirements: 1)  

Simplicity in  Maintenance; 2)  Transparency  to existing 

(legacy) server OS, application software, and hardware; 3) 

Resiliency  to obfuscation; 4) Economical Internet-wide  

deployment. As a result, although several secure solutions 

have been proposed, they are not pervasively deployed, and 

a considerable number of buffer overflow attacks continue 

to be successful on a daily basis.  

To overcome the above limitations, Recently, X.  Wang 

et al.[11] proposed a SigFree, an online buffer overflow 

attack blocker, to protect Internet services. The idea of 

SigFree is motivated by an important observation that ―the 

nature of communication to and from network services is 

predominantly or exclusively data and not executable 

code‖. Their experimental  study shows  that  the  

dependency-degree-based  SigFree  could block  all  types  

of  code-injection  attack  packets  tested  in  our  

experiments  with  very  few  false positives.  Moreover,  

SigFree  causes  very  small  extra latency  to  normal  

client  requests  when  some  requests contain exploit code. 

However, Sig Free cannot fully handle self-modifying code 

and cannot fully handle the branch-function-based 

obfuscation. Further, Sig Free does not detect attacks such 

as  return-to-libc  attacks  that  just  corrupt control  flow  

or  data  without  injecting  code. 

In this paper, we propose a novel SigFree, an online 

buffer overflow attack blocker using Genetic Programming 

(GP) [12] instead of code abstraction [11] to protect 

internet services. The idea of SigFree is motivated by an 

important observation that ―the nature of communication to 

and from network services is predominantly or exclusively 

data and not executable code‖. For blocking code-injection 

buffer overflow attack messages targeting at various 

internet services such as web service, Motivated by the 

observation that buffer overflow attacks typically contain 

executables whereas legitimate user requests never contain 

executables in most internet services. 
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The SigFree Fig. 1[11] works as follows: SigFree is an 

application layer blocker that typically stays between a 

service and the corresponding firewall. When a service 

requesting message arrives at SigFree, SigFree uses a novel 

technique called linear Genetic programming. The aim of 

Genetic programming (GP) methodology is discovering 

rules suitably generic for describing a wide range of 

anomalous behaviours. However, there are at least two 

pragmatic limitations constraining the applicability of GP 

based detectors.  Firstly, the datasets used to characterize 

intrusion detection problems typically consist of millions of 

exemplars, which implies an overhead in training time. 

Secondly, once trained, the model is only as good as the 

data available at training, a third party is again required to 

provide appropriate labels for new attack instances. The 

Solutions to the problem have been demonstrated by way 

of active learning algorithms instructions in an instruction 

sequence, and then compares the number of useful 

instructions. 

 

Fig. 1. SigFree is an application layer blocker between the protected 

server and the corresponding firewall[11]. 

II. RELATED WORK 

Recently, several researchers proposed different 

detection and prevention methods to detect and prevent the 

buffer overflow attacks. We have classified these into three 

categories: 1) Prevention/Detection techniques of Buffer 

Overflows;2) Worm detection and signature generation;3) 

Machine code analysis for security purposes. 

2.1. Prevention/ Detection of Buffer Overflows 

The Existing prevention/detection techniques of buffer 

over-flows can be roughly broken down into six classes: 

Class 1A: Finding bugs in source code. Buffer overflows 

are fundamentally due to programming bugs. Accordingly, 

various bug-finding tools [13], [14], [15] have been 

developed. The bug-finding techniques used in these tools, 

which is general belong to static analysis, include but are 

not limited to checking and bugs-as-deviant-behaviour. 

Class 1A techniques are designed to handle source code 

only, and they do not ensure completeness in bug finding. 

In contrast, SigFree handles machine code embedded in a 

request (message). The Class 1B: Compiler extensions.  

 

―If the source code is available, a developer can add 

buffer overflow detection automatically to a program by 

using a modified compiler‖. Three such compilers are 

StackGuard [16], ProPolice 17], and Return Address 

Defender (RAD) [18]. DIRA [19] is another compiler that 

can detect control hijacking attacks, identify the malicious 

input, and repair the compromised program. Class 1B 

techniques require the availability of source code. In 

contrast, SigFree does not need to know any source code. 

Class 1C: OS modifications. Modifying some aspects of the 

operating system may prevent buffer overflows such as Pax 

[20], LibSafe [21], and e-NeXsh [22].  

Class 1C: Techniques need to modify the OS. In 

contrast, SigFree does not need any modification of the OS. 

Class 1D: Hardware modifications. A main idea of hard-

ware modification is to store all return addresses on the 

processor [29]. In this way, no input can change any return 

address. 

Class 1E: Defence-side obfuscation. Address Space 

Layout Randomization (ASLR) is a main component of 

Pax [21].Address-space randomization, in its general form 

[23], can detect exploitation of all memory errors. 

Instruction set randomization [2], [3] can detect all code-

injection attacks, while SigFree cannot guarantee detecting 

all injected code. Nevertheless, when these approaches 

detect an attack, the victim process is typically terminated. 

―Repeated attacks will require repeated and expensive 

application restarts, effectively rendering the service 

unavailable‖ [6]. 

Class 1F: Capturing code running symptoms of buffer 

overflow attacks. Fundamentally, buffer overflows area 

code running symptom. If such unique symptom s can be 

precisely captured, all buffer overflows can be detected. 

Class 1B, Class 1C, and Class 1E techniques can capture 

some but not all—of the running symptoms of buffer 

overflows. For example, accessing non executable stack 

segments can be captured by OS modifications; the 

compiler modifications can detect return address rewriting; 

and process crash is a symptom capture d by defence-side 

obfuscation. To achieve 100 percent coverage in capturing 

buffer overflow symptoms, dynamic data flow/taint 

analysis/program shepherding techniques were proposed in 

Vigilante [5], Taint Check [4], and [24]. They can detect 

buffer overflows during runtime.  

Covers [6] and [7]. Post crash symptom diagnosis 

extracts the ―signature‖ after a buffer overflow attack is 

detected. A more recent system called ARBOR [25] can 

automatically generate vulnerability-oriented signatures by 

identifying characteristic features of attacks and using 

program context. Moreover, A RBOR automatically 

invokes the recovery actions.  
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Class 1F techniques can block both the attack requests 

that injection code and the attack requests that do not 

contain any code, but they need the signatures to be firstly 

generated. Moreover, they are either suffer from significant 

runtime overhead or need special auditing or diagnosis 

facilities, which are not commonly available in commercial 

services. In contrast, although SigFree could not block the 

attack requests that do not contain any code, SigFree is 

signature free and does not need any changes to real-world 

services.  

2.2 Worm Detection and Signature Generation 

Because buffer overflow is a key target of worms when 

they propagate from one host to another, SigFree is related 

to worm detection. Based on the nature of worm infection 

symptoms, worm detection techniques can be broken down 

into three classes: [26]. [Class 2B] techniques use such 

local traffic symptoms as content invariance, content 

prevalence, and address dispersion to generate worm 

signatures and/or block worms. Some examples of Class 

2B techniques are Earlybird [8], Autograph [9], Polygraph 

[10], Hamsa [27], and Packet Vaccine [28]. [Class 2C] 

techniques use worm code running symptoms to detect 

worms. It is not surprising that Class 2C techniques are 

exactly Class 1F techniques. Some examples of Class 2C 

techniques are Shield [29], Vigilante [5], and COVERS [6]. 

[Class 2D] techniques use anomaly detection on packet 

payload to detect worms and generate signature. Wang and 

Stolfo [30], [31] first proposed Class 2D techniques called 

PAYL. PAYL is first trained with normal network flow 

traffic and then uses some byte-level statistical measures to 

detect exploit code. 

Class 2A techniques are not relevant to SigFree. Class 

2C techniques have already been discussed. Class 2D 

techniques could be evaded by statistically simulating 

normal traffic [32]. Class 2B techniques rely on signatures, 

while SigFree is signature free. Class 2B techniques focus 

on identifying the unique bytes that a worm packet must 

carry, while SigFree focuses on determining if a packet 

contains code or not. Exploiting the content invariance 

property, Class 2B techniques are typically not very 

resilient to obfuscation. In contrast, SigFree is immunized 

from most attack-side obfuscation methods. 

2.3 Machine Code Analysis for Security Purposes 

Although source code analysis has been extensively 

studied (see Class 1A), in many real-world scenarios, 

source code is not available and the ability to analyse 

binaries is desired. Machine code analysis has three main 

security purposes: (P1) malware detection, (P2) to analyse 

obfuscated binaries, and (P3) to identify and analyse the 

code contained in buffer overflow attack packets.  

Along purpose of P1, Chritodorescu and Jha [33] 

proposed static analysis techniques to detect malicious 

patterns in executables, and Chritodorescu et al. [34] 

exploited semantic heuristics to detect obfuscated malware. 

Along purpose P2, Lakhotia and Eric [35] used static 

analysis techniques to detect obfuscated calls in binaries, 

and Kruegel et al. [36] investigated disassembly of 

obfuscated binaries. 

SigFree differs from P1 and P2 techniques in design 

goals. The purpose of SigFree is to see if a message 

contains code or not, not to determine if a piece of code has 

malicious intent or not. Hence, SigFree is immunized from 

most attack-side obfuscation methods. Nevertheless, both 

the techniques in [37] and SigFree disassemble binary 

code, although their disassembly procedures are different. 

As will be seen, disassembly is not the kernel contribution 

of SigFree. Fnord [38], the pre-processor of Snort IDS, 

identifies exploit code by detecting NOP sled. Binary 

disassembly is also used to find the sequence of execution 

instructions as an evidence of an NOP sled [12]. However, 

some attacks such as worm CodeRed do not include NOP 

sled and, as mentioned in [12], mere binary disassembly is 

not adequate. 

Very recently, Wang etal. [11] proposed a SigFree, an 

online buffer overflow attack blocker, to protect Internet 

services. The idea of SigFree is motivated by an important 

observation that ―the nature of communication to and from 

network services is predominantly or exclusively data and 

not executable code‖. However, their method has following 

limitations: First, Sig  Free  cannot  fully  handle  the  

branch-function-based  obfuscation,  causes control to  be  

transferred  to  the  corresponding location  f(x).  By 

replacing unconditional branches in  a  program  with  calls  

to  the branch  function,  attackers  can  obscure  the flow 

of control in the program. We note that there  are  no  

general  solutions  for  handling branch  function  at  the  

present  state  of  the art.  Second, Sig Free cannot fully 

handle self-modifying code. Self-modifying code is a piece 

of code that dynamically modifies itself at runtime and 

could make Sig Free mistakenly exclude all its instruction 

sequences.  Third, the executable shell codes could be 

written in alphanumeric form. Such shell codes will be 

treated as printable ASCII data and thus bypass our 

analyser. Their Scheme   can successfully detect 

alphanumeric shell codes; however, it will increase 

computational overhead.  Therefore, it requires slight 

tradeoffs between tight security and system performance.  

Fourth, Sig Free does not detect attacks such as return-

to-libc  attacks  that  just  corrupt control  flow  or  data  

without  injecting  code. However, these attacks can be 

handled by some simple methods.   
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III. BUFFER OVERFLOW ATTACKS 

The core behaviour of an overflow attack lies in the 

simple observation that just because an address space of a 

variable declared in a program might be allocated of a 

specific size, this does not stop the same program from 

attempting to access memory outside of the allocated space. 

In order to make use of such a weakness, the attacker 

requires three components: (1) program used by the target 

system that possesses inherent overflow vulnerability; (2) 

Knowledge of the size of memory reference necessary to 

cause the overflow; and (3) The correct placement of a 

suitable exploit to make use of the overflow when it occurs. 

The skill in crafting such an attack lies in how an exploit is 

hidden and ensuring that the memory referenced outside of 

the allocated space corresponds to the code defining the 

desired malicious behaviour.  

There are two variants of buffer overflow attacks: Code- 

Injection (CI) attack, where attackers insert a piece of 

malicious code into the victim application’s address space 

and then steer the application’s control to the injected code; 

return to libc (RTL) attack, where attackers directly steer 

the control of the victim application to a function pre-

existing in its address space, e.g., a library function. In both 

cases, attackers hijack the control of the vic-163 Tim 

application, by modifying a control-sensitive data structure 

such as a return address and changing it to either a location 

on the stack (CI attack) or a location in the text or code 

region (RTL attack). From the above analysis, a buffer 

overflow attack packet must include a 4-byte of hijack 

destination word that corresponds to a memory address on 

the stack or in the text region. Furthermore, to increase the 

success probability and robustness of a buffer overflow 

attack. The attackers almost always replicate the hijack 

destination word in the packet so as to accommodate 

differences in the address of the target control-sensitive 

data structure due to different combinations of compiler, 

loader, operating system, and command-line arguments.  

IV. PROPOSED METHOD 

The proposed work consists of prevention and detection 

of buffer overflows. This work proposes SigFree, a real-

time,  signature-free,  out-of the-box,  application  layer 

blocker  for  preventing and detecting  buffer  overflow  

attacks,  which is one  of  the most  serious  cyber security  

threats.  The SigFree  can  filter out code-injection  buffer  

overflow  attack  messages  targeting  at various  Internet  

services  such as web service. Motivated by the observation 

that buffer overflow attacks typically contain executables 

whereas legitimate user requests never contain  executables  

in  most  Internet  services,  SigFree blocks  attacks  by  

detecting  the  presence  of  code.   

Our SigFree method using GP first blindly dissembles 

and extracts instruction sequences from a request. Then, it 

compares the number of useful instructions to a threshold 

to determine if this instruction sequence contains code.  

SigFree  is signature  free,  thus  it  can  block  new  and  

unknown  buffer overflow  attacks;  SigFree  is  also  

immunized  from  most attack-side  code  obfuscation  

methods.  Since  SigFree  is transparent  to  the  servers 

being  protected,  it  is  good  for economical  Internet  

wide  deployment  with  very  low deployment and 

maintenance cost.  

The Observations providing the basis for this approach 

include (1) recognizing that the GP code bloat phenomena 

provides the basis for the non operational command 

sequences, thus masking the operational or real intent of an 

attack command sequence. (2) The SigFree based GP 

solutions have been widely observed to have functionality 

distributed across the length of the individual. Thus, the 

ideal objective of an attack agent will be to build command 

sequences, which have the same function as the original 

generic attack, however camouflaged in non-operational 

but syntactically correct commands. Such a system is only 

possible if a sufficiently informative fitness function can be 

defined for the class of attacks as a whole. That is to say, a 

binary fitness function in which all unsuccessful attacks 

provide a fitness of zero and a successful attack a fitness of 

unity, is on the face of it, not much use. 

 4.1 Basic Fitness Function  

Categorically, the attack we are evolving is an 'execve' 

attack. Execve is a system call in OS that executes a 

program, where the program takes the form of an argument 

(UNIX shell /bin/sh in our case). UNIX defines 'execve' as, 

int execve (const char *path, char *const argv [12], char 

*const envp [12]). Where the parameter one is the 

command name; parameter two contains pointers to strings 

that will be given to the program as arguments; parameter 

three contains pointers to environmental variables, which 

are also stored as strings. A minimalist call to the 'execve' 

function using the C language might have the following 

form in algorithm 1[12]: 

 

Algorithm 1: Minimal List  

 int main()  

{  

   char *command = "/bin/sh";   

   char *args[2];  

   args[0] = command;  

   args[1] = 0;  

   execve(command, args, 0);  

}  
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In order to spawn a UNIX shell prompt, 'execve' requires 

that the command pointer should be in the EBX register, 

the pointer to 'args' should be in register ECX and the 

pointer to the third argument (which is in our case is the 

NULL pointer) should be in  

EDX register, Algorithm 2[11]. Moreover, the program 

name '/bin/sh' should be pushed to stack. To achieve these 

goals, 11 assembly instructions are needed. After 10 

instructions are executed (11th is the interrupt that transfers 

control to execve system call), registers EAX, EBX, ECX 

and EDX should be correctly configured and the stack 

should contain the program name to be executed (i.e. 1668 

/bin/sh). Given the state of the stack and registers after the 

10th instruction, if the values are not set correctly, greedy 

replacement is used to determine how many instructions 

are needed to correct it. For example if "/bin/sh" has not 

been pushed to the stack, 3 instructions are sufficient to 

achieve this goal. Another important point is that if the task 

has been half-accomplished, viable instructions should be 

determined. Using this principle, the fitness function 

summarized in Algorithm 3[12] returns a maximum fitness 

of 10 if all conditions are satisfied; otherwise it subtracts 

the number of instructions needed to correct the program, 

relative to the minimal set of sub-goals, Algorithm 2. The 

basic fitness function therefore it takes the form of a 

hierarchical fitness function in which sub-goals (a) to (e) 

can only be completed in sequence. However, depending 

on the composition of the language used to evolve the 

attacks, there are multiple programs producing the required 

(buffer overflow) attack behaviour. The algorithm 1 

describes about this: 

 

Algorithm 2: Minimal requirements for executing an 

execve' system call for spawning a UNIX shell.  

1.  Register EAX contains 0x0B i.e., the system   

call   number of 'execve';  

2.  Register EBX points to '/bin/sh0' on the stack;  

3.  Register ECX points to the argument array in 

stack;  

4.  Register EDX contains NULL;  

5.  Interrupt '0x80' is executed;  

  

 

 

 

 

 

 

 

 

 

Algorithm 3: Basic fitness functions for establishing 

correct behavior of ‘execve’ exploit. Fitness = 10 

(a)  IF stack does not contain '/bin/sh0', THEN subtract  

   number of instructions necessary to do so from             

Fitness (1 to 3). 

(b) IF register EBX does not point to string from (a),         

THEN Fitness =1;  

(c) IF register ECX does not point to argument array in 

stack, THEN subtract number of instructions 

necessary to do so from Fitness (1 to 3)  

(d)  IF register EDX! = NULL, THEN Fitness=1.  

(e)  IF an INT is not executed, THEN Fitness. 

 

4.2. Linear GP  

Individual users are represented using linear GP in 

which instructions are composed from a 2-byte opcode and 

two operands (each 1-byte) i.e. all instructions have the 

same number of bytes. The Individual users are defined 

using a fixed length format, thus initialization is defined in 

table 1 over the total range of permitted program lengths. 

Selection takes the form of a steady state tournament over 4 

individuals. The children from the best performing half of 

the tournament overwrite the individuals corresponding to 

the worst half of the tournament, taking their place in the 

population. Search operators take three forms: two point 

crossover, instruction mutation, and instruction swap. 

Therefore, constrained to exchange an equal number of 

instructions (a page) between two individuals. The number 

of instructions per page is allowed to vary from 1 

instruction to max instructions per page as the fitness 

function reaches a new plateau, as in the page-based Linear 

GP framework [12]. Mutation selects a single instruction 

with uniform probability and replaces with a different 

instruction from the instruction set, Table 1[12]. The swap 

operator selects two instructions from the same individual 

with equal probability and interchanges their respective 

positions. 

The details of the linear Genetic Programming 

methodology itself is not particularly important, however, 

previous work utilizing Code Abstraction[11] indicated that 

the linear representation provides a more direct method for 

successfully evolving buffer overflow attacks (the search 

operators in GE were not particularly efficient at 

manipulating register references) [12].  
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Table 1 

GP Parameters[12] 

 

V. SECURITY ANALYSIS 

In this section, we analyse the security of our scheme as 

follows: As indicated in the introduction, two basic 

approaches are considered in the design of buffer overflow 

attacks. Our Objective is to develop the attack itself whilst 

maximizing the probability of executing the malicious 

code, CA [11] proved very inefficient at manipulating 

register references (using the standard CA search operators) 

than Sig-free method using code abstraction. By using 

linearly structured GP, we expect to avoid this problem. In 

the following we describe a series of three experiments in 

which the instruction set is incrementally expanded, thus 

increasing the search space, but providing for greater 

freedom in the resulting program content (thus a wider 

range of behavioural properties). This case results in code 

that has the capacity to intermix attack and obfuscation.  

In all cases the fitness function takes the form of 

Algorithm 2, augmented with an additional term to measure 

the likelihood of an attack being executed. Specifically, 

since all individuals have a fixed length of 30 instructions 

and it takes 11 instructions to describe the attack, there are 

up to 19 instructions denoting introns with respect to the 

malicious code. If the approximated return address was not 

accurate enough to jump to the first instruction, jumping to 

an effective useless region would allow an attack to deploy 

successfully. If execution of a successful attack fails (i.e. an 

inaccurate return address) by jumping past a relevant 

instruction, the location of the instruction is called the 

failure point. The probability of execution is defined as 

(failure point ÷ number of all possible points); or a 

denominator of 19 in this case.  

Compared to existing scheme [11], our scheme based 

Genetic Programming blocks the all buffer overflow 

attacks.  

Therefore, SigFree Blocker using Genetic Programming 

is securing than SigFree using code abstraction while 

detecting the attacks. 

VI. PERFORMANCE ANALYSIS 

In this section, we implemented a Sig-Free prototype 

using the C programming language in the Win64 

environment. The stand-alone prototype was com-piled 

with Borland C++ version 5.5.1 at optimization level O2. 

The experiments were performed in a Windows 2007 

server with Intel Pentium 4, 3.2-GHz CPU, and 1-Gbyte 

memory. We measured the processing time of the stand-

alone prototype over all (2,910 totally) 0-10 Kbyte images 

collected from the above real traces. We set the upper limit 

to 10 Kbytes because the size of a normal web request is 

rarely over that if it accepts binary inputs.  

To evaluate the performance impact of SigFree to web 

servers, we also implemented a proxy-based SigFree 

prototype. Fig. 2 depicts the implementation architecture. It 

is comprised of the following modules. URI decoder. The 

specification for URLs limits the allowed characters in a 

Request-URI to only a subset of the ASCII character set. 

This means that the query parameters of a request-URI 

beyond this subset should be encoded [39]. 

Because a malicious payload may be embedded in the 

request-URI as a request parameter, the first step of 

SigFree is to decode the request-URI. ASCII filters. 

Malicious executable codes are normally binary strings. In 

order to guarantee the throughput and response time of the 

protected web system, if a request is printable ASCII 

ranging from 20 to 7E in hex, SigFree allows the request to 

pass.  

The proxy-based prototype was also compiled with 

Borland C++ version 5.5.1 at optimization level O2. The 

proxy-based prototype implementation was hosted in the 

Windows 2007 server with Intel Pentium 4, 3.2-GHz CPU, 

and 1-Gbyte memory. The proxy-based SigFree prototype 

accepts and analyses all incoming requests from clients. 

The client testing traffics were generated by JefPoskanzer’s 

http_load program [40] from a Linux desktop PC with Intel 

Pentium 4 and 2.5-GHz CPU connected to the Windows 

server via a 100-Mbps LAN switch. We modified the 

original http_ load program so that clients can send code-

injected data requests. 

For the requests that SigFree identifies as normal, 

SigFree forwards them to the web server, Apache HTTP 

Server 2.0.54 hosted in a Linux server with dual Intel Xeon 

1.8-Gbyte CPUs. The individual Clients send requests from 

a predefined URL list. The documents referred in the URL 

list are stored in the web server.  
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In addition, the prototype implementation uses a time-to-

live-based cache to reduce redundant HTTP connections 

and data transfers. Rather than testing the absolute 

performance overhead of SigFree, we consider it more 

meaningful measuring the impact of SigFree on the normal 

web services. Hence, we measured the average response 

latency of the connections by running http load for 1,000 

fetches.  Whenever there are no buffer overflow attacks, the 

average response time in the system with SigFree is only 

slightly higher than the system without SigFree. This 

indicates that, despite the connection and ASCII checking 

overheads, the proxy-based implementations does not 

affect the overall latency significantly. 

The Fig.2 shows the average latency of connections as a 

function of the percentage of attacking traffic. We used 

CodeRed as the attacking data. Only successful 

connections were used to calculate the average latency; that 

is, the latencies of attacking connections were not counted. 

This is because what we care is the impact of attack 

requests on normal requests. We observe that the average 

latency increases slightly worse than linear when the 

percentage of malicious attacks increases. Generally, 

proposes scheme using Genetic Programming [12] is about 

40 percent faster than SigFree using code abstraction [11] 

and existing scheme[11] is slightly slower than our scheme. 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

Percentage of Code injected packets(%))

L
a
te

n
c
y
(m

s
)

 

 

Existing Scheme[11]

Proposed Scheme

 

Fig.2: Performance impact of SigFree in Proposed and Existing 

schemes on HTTP server 

VII. CONCLUSION 

We have proposed A novel Signature-Free Buffer 

Overflow Attack Blocker Using Genetic Programming that 

can filter code-injection buffer overflow attack messages, 

one of the most serious cyber security threats. Our method 

does not require any signatures, thus it can block new 

unknown attacks.  

SigFree is immunized from most attack-side and good 

for economical Internet-wide deployment with little 

maintenance cost and low performance overhead. The 

Results show that code bloat property of the GP provides 

suitable means to hide the actual attack by mixing exploit 

instructions with introns that have no effect toward the 

success of the attack. Furthermore, evolved attacks 

discover different ways of attaining sub-goals associated 

with building buffer overflow attacks, hence mimicking the 

core attack with different instructions. Finally, we have 

proved that our method is secured than existing scheme 

[11]. 
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