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Abstract

One of the actual problems in the
evolvable hardware is the evolvabil-
ity of logic circuits. In order to un-
derstand better the nature of exist-
ing problem, the probabilistic anal-
ysis can be used. This paper aims
to investigate how the circuit layout
evolution is carried out. This is in-
teresting thing to do for two main
reasons. Firstly, to investigate what
type of genes mostly influence on the
algorithm performance in evolvable
hardware. Secondly, to see how ef-
fective an allocation of active logic
gates might be in a digital circuit
design task. In order to achieve this
goal we investigate the genotypes of
the best chromosomes which bring
some improvements in evolutionary
process. The logic circuits have been
evolved using circuit layout evolu-
tion. 1

Keywords: Evolutionary computa-
tion, Evolvable hardware.

1 Introduction

Evolvable Hardware approach is a recently
developed technique to synthesise the elec-
tronic circuits using evolutionary algorithms
[1], [2], [3], [4]. A central idea of this ap-
proach is to represent each possible electronic

1This work is partially submitted by Nuffield foun-
dation and BRIEF award (Brunel University).

circuit as chromosome in an evolutionary pro-
cess in which the standard genetic operators
such as initialisation, recombination, selec-
tion are carried out. Currently, one of the
main problem in this area is the evolvability
of logic circuits. In order to overcome this
problem a number of approaches has been
proposed: (1) Divide-and-Conquer approach
[5]; (2) Bi-directional incremental evolution
[6]. Although, the circuit evolvability prob-
lem has been solved using additional tech-
niques, the nature of this problem remains un-
investigated. Therefore, there is a demand to
investigate the evolutionary process of logic
circuits in depth. This paper attempts to
have a look at the evolutionary design of logic
circuits from the probabilistic point of view.
This approach is applied to design of combina-
tional logic circuits using extrinsic Evolvable
Hardware (EHW).

The EHW generates logic circuits using cir-
cuit layout evolution that has been discussed
in details in [7]. It has been shown that
the Genetic Algorithm (GA) performance
strongly depends on the set of logic gates
used to produce the 100% functionally cir-
cuits. In [8] experiments were reported which
revealed the dependence the GA performance
with gate array dimensions and the degree of
internal connectivity. Analysis of the evolv-
able hardware approach for both binary and
multiple-valued functions shows us that the
GA performance strongly depends on the
number of rows and columns and the inter-
nal connectivity [9], [8]. In subsequent discus-
sion we define the circuit geometry or circuit
layout to mean the layout of the rectangu-
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Figure 1: An example of the phenotype and
corresponding genotype of a chromosome with
3x3 circuit layout

lar array of logic cells. It is characterised by
just two numbers: the number of rows and
columns in the cellular array. The degree of
connectivity in the circuit called levels-back
defines how many columns of cells to the left
of current column can have their outputs con-
nected to the inputs of the current cell, this
also applies to the final circuit outputs.

The paper presents the probabilistic analysis
of the method discussed above. A proposed
probabilistic analysis approach allows us to
define how different type of genes in chromo-
some representation and their location influ-
ence on GA performance. For this purpose
a differential chromosome will be introduced.
The differential chromosome shows the differ-
ence between genotypes of two ordinary chro-
mosomes presented the circuit structure.

2 Circuit layout evolution

2.1 Chromosome encoding

Let us consider the chromosome representa-
tion with the actual circuit structure using
an example that is given in Fig. 1. Let
us examine a possible circuit representing a
full adder. This function has 3-inputs and 2-
outputs and is implemented here on a com-
binational network with 3x3 circuit geometry
(Ncols × Nrows). The circuit inputs are la-
belled as follows: 0 and 1, which represent the
logical constants 0 and 1 respectively, labels 2,
3 and 4 correspond to the input variables x0,
x1 and x2 respectively. The inverted inputs
x0, x1, x2 are represented as 5, 6 and 7. In this

example the cell type gene (shown in bold)
represents one of the 13 possible gates (AND,
OR, EXOR with primary and inverted inputs
or multiplexer). The cell type gene may be
positive or negative integer. If positive then
the function is a multiplexer and the integer
represents the control connection. If cell type
gene is negative, we use an encoding table to
define the type of gate.

The chromosome is represented by a 3-level
structure: (1) Layout; (2) Circuit and (3)
Gate (cell) structures. At the first level, the
global characteristics of the circuit are de-
fined. These are the connectivity parameter
and the number of rows and columns. The cir-
cuit geometry can be changed at this level. At
the second level, the array of cells are created
and the circuit outputs are determined. Fi-
nally, the third level represents the structure
of each cell in the circuit. This data consists
of the number of inputs, the input connections
and the cell type gene.

The output of each cell is assigned an individ-
ual address. Thus the output of logic cell in
the 2nd column and 2nd row is labelled as 16.
The number of circuit outputs is defined by
the number of outputs in the logic function
implemented. The logic cell label determines
each of these outputs.

2.2 Dynamic Fitness Function

The evaluation process consists of the two
main steps. First we are trying to find circuits
with 100% functionality (F1 criteria) and sec-
ond we are trying to minimise the number of
active gates in 100% functional circuits (F2

criteria) as well as minimise the redundancy
of logic gates in the circuit (F3 criteria). Fit-
ness function F3 minimises the layout in the
circuit. The active gate is the gate, which is
proved to be not redundant. We use two evo-
lutionary strategies: (1) F1 strategy and (2)
F1 + F2 + F3 strategy.

In the first strategy, the chromosome is eval-
uated using F1 criteria only and once the
100% functional circuit evolved, the evolu-
tionary process is terminated. In the case of
F1 + F2 + F3 strategy, F2 and F3 criteria are



activated as soon as F1 = 100.0 and the num-
ber of inactive gates in circuit is estimated.
When heterogeneous circuit geometry is em-
ployed, F2 is calculated based on the maxi-
mum available circuit layout. For example, let
the maximum circuit layout is 10× 10. If the
fully functional circuit has 3×8 circuit layout
and contains 18 primitive active logic gates
(F ′

2 = 18), then F2 = F ′
2 = 10× 10− 18 = 82.

Redundancy can be defined as number of re-
dundant logic gates divided by total number
of logic gates.

F ′
3 =

3× 8− 18
3× 8

= 0.25;

F3 = F ′
3 = 1− F ′

3 = 0.75.

3 Differential chromosome

The difference between genes in chromosomes
C1 and C2 can be defined using the differ-
ential chromosome, DC1C2 . This chromosome
contains 3-level structure as well as the ordi-
nary one. The genes in the differential chro-
mosome are calculated based on the difference
in genes of C1 and C2 at the circuit and gate
levels. The circuit level contains the rectan-
gular array of logic gates and outputs. The
circuit output gene represents the number of
circuit genes which are different in C1 and
C2. The gate level contains functionality and
connectivity genes, which define the differen-
tial between the corresponding genes in C1

and C2. It is necessary to note that in chro-
mosome interpretation the functional set rep-
resents any primitive logic gates AND, OR,
EXOR, NOT with inverted and primary in-
puts. In order to receive more accurate anal-
ysis of circuit evolution, the ”two-gene” inter-
pretation of gate functionality has been used:
< dgt dit >, where dgt is the primitive gate
type, dgt ∈ {AND, OR, NOT, EXOR} and
the dit defines the number of different inputs
(primitive or inverted) used in logic cell. Thus
each gate in DC1C2 can be described by three
genes: < dgt dit id >, where dgt defines if
the primitive type of gate is the same or not
for chromosomes C1 and C2; dit determines
the number of different gate inputs and id
is the number of different uncommitted con-

nections. We will refer to uncommitted con-
nection if the logic function described the be-
haviour of logic cell does not depends on this
connection. Note that if all genes of differen-
tial chromosome are 0, the genotypes of C1

and C2 are the same. The fitness function
of differential chromosome is defined as fol-
lows: Fd = FDC1C2 = FC1 − FC2 . Note that if
functionality F1 = 100 for both chromosomes,
then F1d is to be also 100.0.

4 Probabilistic analysis

The probabilistic analysis is based on the
analysis of differential chromosome geno-
types. The differential chromosomes anal-
ysed have been calculated based on ordinary
chromosomes involved in successful evolution.
The issue of this work is to define how genes
influence on evolutionary process. In order to
do so the differential chromosomes with F 6= 0
have been considered.

The following notations have been adopted in
order to explain the analysis process. Let de-
fine the outcomes of experiment ξ be the geno-
type and phenotype of differential chromo-
somes. The sample space Ω associated with
an experiment ξ is the collection of all possi-
ble phenotypes and genotypes of differential
chromosome of ξ. The intersection of events
E1 and E2, written as E1 · E2, is defined as
the set of outcomes which belong to both E1

and E2. Given two subsets of Ω, say E1, E2,
the union of E1, E2, written as E1 ∪ E2, is
defined as the set of outcomes which belong
to either E1 or E2 or both. Let Ndc be the
number of differential chromosomes generated
using procedure described above. The circuit
evolutionary process γ contains two evolution
sub-processes: (1) Evolution of functional cir-
cuit, γF1 ; (2) Improving the functional cir-
cuit evolved, γF2+F3 . Note that these two
processes can not be performed at the same
time. The first process is carried out when
the functionality of the best chromosomes is
less then 100% and the second process is per-
formed when the GA tends to improve the
fully functional solution. There are 5 differ-
ent types of genes which could influence on



GA performance: (1) cell type gene; (2) in-
put cell type gene; (3) connection gene; (4)
circuit output gene; (5) circuit layout gene.
So, we can define the following events which
could be associated with an experiment ξ:

E0 the fitness function of differential chromo-
some is greater that 0, Fd > 0;

E1 the functionality fitness function F1d is less
than 100%, F1d < 100.0 (i.e. the functional-
ity evolution γF1 is in question);

Ej
2 the cell type gene dgt located in j-th cell is

greater than 0;

Ej
3 the connection gene id located in j-th cell is

greater than 0;

Ek
4 the circuit output gene od located in k-th cir-

cuit output is greater than 0;

E1,2
5 the circuit layout gene defined the number

of columns or rows is greater than 0.

The event E0 defines that the differential
chromosome is calculated using two chromo-
somes with different fitness functions. Event
E1 shows that the compared chromosomes
are not fully functional. It means that the
compared chromosomes have been involved
in evolutionary process γF1 . Note that E1

defines that the functionality fitness function
F1d is greater or equal to 100.0. So, the event
E1 agrees with the case when the differen-
tial chromosome compare the functional cir-
cuits. In other words the compared chromo-
some have been participated in evolutionary
process γF2+F3 . The rest events Ej

2, E
j
3, E

k
4

define how the compared chromosomes are
different.

The probabilities of the events E1 · E0 and
E1 · E0 can be defined as

p(E1 · E0) =
NE0E1

Ngen ∗Nruns
; (1)

p(E1 · E0) =
NE0E1

Ngen ∗Nruns
;

where NE0E1 is the number of differential
chromosomes with Fd 6= 0 and F1d 6= 100.0
(i.e. defines the execution of process γF1);
NE0E1

is the number of differential chromo-
somes with Fd 6= 0 and F1d = 100.0 (i.e. de-
fines the execution of process γF2+F3). The

conditional probability of Ej
2, given that E1

has occurred, is defined as

p(Ej
2|(E0 · E1)) =

p(E0 · E1 · Ej
2)

p(E0 · E1)
=

jN
gt
E0E1

NE0E1

(2)
where jN

gt
E0E1

is the number of times E0, E1

and E2 occurred (i.e. the number of non-zero
cell type genes dj

gt in differential chromosomes
with F1d < 100 and Fd 6= 0). The conditional
probabilities of Ej

3 and Ek
4 , given that E0 ·

E1 has occurred, are calculated analogously
to Eq. 2:

p(Ej
3|(E0 · E1)) =

jN
c
E0E1

NE0E1

; (3)

p(Ek
4 |(E0 · E1)) =

kN
o
E0E1

NE0E1

;

p(E1,2
5 |(E0 · E1)) =

N cl
E0E1

NE0E1

;

where jN
it
E0E1

and jN
c
E0E1

are the number
of non-zero input cell and connection genes
located in cell j in differential chromosomes
with functionality fitness function F1d < 100
and fitness function Fd 6= 0 respectively;
kN

o
E0E1

is the number of non-zero circuit out-
put genes located in k position in differential
chromosomes with F1d < 100 and Fd 6= 0;
N cl

E0E1
is the number of non-zero circuit lay-

out genes in differential chromosomes with
F1d < 100 and fitness function Fd 6= 0. The
conditional probabilities calculated in Eq. 2
and Eq. 3 correspond to the evolutionary pro-
cess γF1 such that the functionality of circuit
is evolved.

The conditional probabilities shown below
correspond to the evolutionary process γF2+F3

which forces to improve the functional circuit
in terms of the number of active gates used
and the circuit layout.

p(Ej
2|(E0 · E1)) =

jN
gt
F1

NE0E1

; (4)

p(Ej
3|(E0 · E1)) =

jN
c
F1

NE0E1
∗Nmax

in

;

p(Ek
4 |(E0 · E1)) =

kN
o
F1

NE0E1
∗Nout

;

p(E1,2
5 |(E0 · E1)) =

N cl
F1

2NE0E1

.



The conditional probabilities calculated above
define the probability with the genes influence
positively on evolutionary process. In other
words, these genes belong to chromosome that
have just changed fitness value and the whole
evolutionary process has been successful.

5 Experimental results

In this section we will consider some exper-
imental results obtained for two-bit multi-
plier (mult2.pla) and two-bit adder with carry
(add2c.pla). The main idea of these experi-
ments is to define how diverse types of genes
located differently influence on successful GA
performance.

The initial data for the experiment are given
in Table 1. Any type of genes in chromosome
genotype allowed to be changed with constant
gene mutation probability. The functional set
of logic gates contains {AND, OR, EXOR,
NOT}. The initial population is initialised
randomly.

Table 1: Initial data, where ] is ”the number
of ...”

Circuit mult2 add2c
max ] columns, Ncols 10 15
max ] rows, Nrows 10 15
Levels back, Nconnect 10 15
Population size 5 5
] generations, Ngen 20000 25000
] GA runs, Nruns 1000 1000
Cell mutation rate, pm 5% 5%
Circuit layout
mutation rate, pcl 10% 10%

In order to define how the different types of
genes and their location influence on GA per-
formance, the differential chromosomes have
been generated and the conditional probabili-
ties have been calculated according Eq. 3 and
Eq. 4 as follows:

1. Consider the history of the best chromo-
somes if the final functional solution has been
evolved during GA performance;

2. Select Ct1 created at generation t1 such
that the fitness of the best chromosome in

question has been changed in comparison with
previous one;

3. Chose Ct2 produced at generation t2 such
that the fitness of the best chromosome in
question has been increased in comparison
with chromosome Ct1 , t2 > t1, Ft1 < Ft2 and
there is no improvement in terms of fitness
function between generations t1 and t2;

4. Generate the differential chromosome
DCt1Ct2

.

The selection procedure mentioned above pro-
vides that the differential chromosomes have
been only generated from the chromosomes
with improved fitness.

The conditional probabilities have been calcu-
lated for the following type of genes: (1) cell
type gene; (2) connection genes; (3) circuit
layout genes.

There are two main experiments that have
been carried out. First, the conditional proba-
bilities have been calculated for all logic gates
in the chromosome. Second, the conditional
probabilities have been calculated for the ac-
tive logic gates in the circuit. At the same
time, the conditional probabilities have been
calculated separately for the following pro-
cesses: (1) evolution of fully functional logic
circuit, γF1 ; (2) evolution of optimal logic cir-
cuit, γF2+F3 .

Analysis of experimental results show that the
obtained results are similar for both two-bit
multiplier and two-bit adder. Therefore, in
this paper we will consider in details the re-
sults obtained for two-bit multiplier only.

5.1 Behaviour of cell type genes

Graphs A and B (Fig.2) show the functional
dependance of evolved circuit layout and the
conditional probability calculated for evolu-
tionary processes γF1 and γF2+F3 respectively.
The results have been obtained for both ac-
tive and redundant logic gates. It can be seen
clearly that the cell type genes influence more
on the second evolutionary process. The ex-
perimental results reveal the following depen-
dence: the lower number of rows, the higher
conditional probability. This means that the
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Graph A: Circuit functionality evolution,  γ(F1)

B1
column

row

Pr
ob

ab
ilit

y  
p

(E
 2 j  |  (

E 0 
E 1)),

  %


Graph B:  Cost-optimised circuit evolution,  γ(F2+F3)

Figure 2: Conditional probabilities for cell
type genes. Axes named column and row define
the position of logic gate in the circuit layout.
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Graph A: Circuit functionality evolution,  γ(F1)
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Figure 3: Conditional probabilities for cell
type genes calculated for active logic gates.
Axes named column and row define the position
of logic gate in the circuit layout.
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Figure 4: Conditional probabilities for con-
nection genes. Axes named column and row de-
fine the position of logic gate in the circuit layout.
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Figure 5: Conditional probabilities for con-
nection genes calculated for active logic gates.
Axes named column and row define the position
of logic gate in the circuit layout.
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Graph B:  Cost-optimised circuit evolution,  γ(F2+F3)

Graph A: Circuit functionality evolution,  γ(F1)

Figure 6: Conditional probabilities for circuit
layout genes. The probabilities are decomposed
by the direction of circuit layout modification.

cell type genes located in the rectangular ar-
ray in low rows influence stronger on the evo-
lutionary process rather then other one. Fig.3
shows the similar results that have been de-
scribed above, but the conditional probabili-
ties have been calculated only for active logic
gates. The cell type genes participate in the
first evolutionary process more actively, then
in the second one. There is clearly defined the
area of the most influenced cell type genes
that is located in smaller index of rows and
columns. Such effect is not appeared for the
second evolutionary process. The cell type
gene almost does not influence on the second
evolutionary process. Comparison of sharp-
ness of Graphs A at Fig.2 and Fig.3 shows
that the second shape is sharper because the
redundant genes are not taken into account.
This proves the importance of the redun-
dancy.

5.2 Behaviour of connection genes

The experimental results similar to cell type
genes have been obtained for connection genes
(Fig.4 - Fig.5). The shape of graphs are
sharper for the case when only active logic
gates are taken into account. This means
that the connection genes influence relatively
strongly on the second evolutionary process.
(Fig.5 Graph B). Comparing the results ob-
tained for cell type and connection genes (Fig.
3 and Fig. 5) one can notice that the connec-
tion genes play more important role in the
second evolutionary process.

5.3 Behaviour of circuit layout genes

Some interesting results have been obtained,
when the analysis of circuit layout gene be-
haviour has been carried out. It is noticeable,
that the number of rows has not been changed
during the second evolutionary process. The
number of columns has been decreased signif-
icantly. One can conclude that in the given
particular case the optimisation is carried out
for the number of columns rather then the
number of rows. The algorithm defines that
the optimal circuit layout has low number of
rows and moderate number of columns.

5.4 Summary analysis

Analysing Fig. 2 - Fig. 6, we can conclude:

1. The conditional probabilities for cell type
and connection genes are higher for processes
γF2+F3 , i.e. changing these genes during
γF2+F3 brings more positive solutions.

2. There is an area of logic gates in the cir-
cuit layout that participate more actively in
evolutionary processes. For two-bit multiplier
this area is located within approximately rows
1-4 and columns 2-6. Therefore, these genes
are more important during both evolutionary
processes. It should be mentioned that the
behaviour of the evolutionary process depends
on the type of logic function aimed to be im-
plemented.

3. Different types of genes and its location in-
fluence with various effectiveness during the



evolutionary process. The both stages of GA
(γF1 and γF2+F3) can be improved by redistri-
bution of mutation rate for different types of
genes and their position according Fig.2 and
Fig.4. The certain mutation rate could be
chosen for active logic gates according Fig.3
and Fig.5 in order to achieve even better per-
formance of the GA.

6 Conclusion

In this paper the probabilistic analysis has
been performed in order to define how differ-
ent types of genes and its location influence
on GA performance. It was also expected
that the behaviour of the evolutionary pro-
cess depends on the fitness function chosen.
It has been shown that the different types of
genes influence differently on GA performance
and are involved in evolutionary process dif-
ferently. GA performance can be significantly
improved by choosing the mutation rate ac-
cording to the stage of evolutionary process,
the type of gene and its position.
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