Skip to main content

A New Subgraph Crossover for Cartesian Genetic Programming

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10196))

Included in the following conference series:

Abstract

While tree-based Genetic Programming is often used with crossover, Cartesian Genetic Programming is mostly used only with mutation as genetic operator. In this paper, a new crossover technique is introduced which recombines subgraphs of two selected graphs. Experiments on symbolic regression, boolean functions and image operator design problems indicate that the use of the subgraph crossover improves the search performance of Cartesian Genetic Programming. A preliminary comparison to a former proposed crossover technique indicates that the subgraph crossover performs better on our tested problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, X., Smith, S.L., Tyrrell, A.M.: Positional independence and recombination in cartesian genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 351–360. Springer, Heidelberg (2006). doi:10.1007/11729976_32

    Chapter  Google Scholar 

  2. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, vol. 2, pp. 1580–1587. ACM Press, London, 7–11 July 2007

    Google Scholar 

  3. Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation of modules in cartesian genetic programming. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 1219–1226. ACM, Atlanta, GA, USA, 12–16 July 2008

    Google Scholar 

  4. Koza, J.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report STAN-CS-90-1314, Department of Computer Science, Stanford University, June 1990

    Google Scholar 

  5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  7. Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: Proceedings of the Second Annual Conference on Genetic Programming 1997, pp. 240–248. Morgan Kaufmann, Stanford University, CA, USA, 13–16 July 1997

    Google Scholar 

  8. Luke, S., Spector, L.: A revised comparison of crossover and mutation in genetic programming. In: Proceedings of the Third Annual Conference on Genetic Programming 1998, pp. 208–213. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, 22–25 July 1998

    Google Scholar 

  9. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 791–798. ACM, Philadelphia, Pennsylvania, USA, 7–11 July 2012

    Google Scholar 

  10. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). doi:10.1007/978-3-540-46239-2_9

    Chapter  Google Scholar 

  11. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142. Morgan Kaufmann, Orlando, Florida, USA, 13–17 July 1999

    Google Scholar 

  12. Sekanina, L.: Image filter design with evolvable hardware. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002. LNCS, vol. 2279, pp. 255–266. Springer, Heidelberg (2002). doi:10.1007/3-540-46004-7_26

    Chapter  Google Scholar 

  13. Slaný, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-level CGP. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 311–320. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71605-1_29

    Chapter  Google Scholar 

  14. Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in cartesian genetic programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24650-3_17

    Chapter  Google Scholar 

  15. Walker, J.A., Miller, J.F., Cavill, R.: A multi-chromosome approach to standard and embedded cartesian genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, vol. 1, pp. 903–910. ACM Press, Seattle, 8–12 July 2006

    Google Scholar 

  16. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  17. White, D.R., Poulding, S.: A rigorous evaluation of crossover and mutation in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01181-8_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kalkreuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kalkreuth, R., Rudolph, G., Droschinsky, A. (2017). A New Subgraph Crossover for Cartesian Genetic Programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55696-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55695-6

  • Online ISBN: 978-3-319-55696-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics