Skip to main content

Data Aggregation for Reducing Training Data in Symbolic Regression

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Abstract

The growing volume of data makes the use of computationally intense machine learning techniques such as symbolic regression with genetic programming more and more impractical. This work discusses methods to reduce the training data and thereby also the runtime of genetic programming. The data is aggregated in a preprocessing step before running the actual machine learning algorithm. K-means clustering and data binning is used for data aggregation and compared with random sampling as the simplest data reduction method. We analyze the achieved speed-up in training and the effects on the trained models’ test accuracy for every method on four real-world data sets. The performance of genetic programming is compared with random forests and linear regression. It is shown, that k-means and random sampling lead to very small loss in test accuracy when the data is reduced down to only 30% of the original data, while the speed-up is proportional to the size of the data set. Binning on the contrary, leads to models with very high test error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dev.heuristiclab.com.

  2. 2.

    https://www.dcc.fc.up.pt/ltorgo/Regression/puma.html.

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications, Numerical Insights, vol. 6. CRC Press, Chapman & Hall, Boca Raton (2009)

    Book  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Guo, G., Zhang, J.S.: Reducing examples to accelerate support vector regression. Pattern Recogn. Lett. 28(16), 2173–2183 (2007)

    Article  Google Scholar 

  4. Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3), 259–269 (2004). https://doi.org/10.1023/B:GENP.0000030195.77571.f9

    Article  Google Scholar 

  5. Kommenda, M., Kronberger, G., Affenzeller, M., Winkler, S., Feilmayr, C., Wagner, S.: Symbolic regression with sampling. In: 22nd European Modeling and Simulation Symposium EMSS, pp. 13–18 (2010)

    Google Scholar 

  6. Kugler, C., Hochrein, T., Dietl, K., Heidemeyer, P., Bastian, M.: Softsensoren in der Kunststoffverarbeitung: Qualitätssicherung für die Compoundierung und Extrusion. Shaker Verlag GmbH, SKZ - Forschung und Entwicklung (2015)

    Google Scholar 

  7. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  8. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolutionary Comput. 5(4), 401–418 (1997)

    Article  Google Scholar 

  9. Rychetsky, M., Ortmann, S., Ullmann, M., Glesner, M.: Accelerated training of support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 1999, (Cat. No. 99CH36339). vol. 2, pp. 998–1003. IEEE (1999)

    Google Scholar 

  10. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178. ACM (2010)

    Google Scholar 

  11. Wagner, S., Affenzeller, M.: HeuristicLab: a generic and extensible optimization environment. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 538–541. Springer, Vienna (2005). https://doi.org/10.1007/3-211-27389-1_130

    Chapter  Google Scholar 

  12. White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program Evolvable Mach. 14(1), 3–29 (2013). https://doi.org/10.1007/s10710-012-9177-2

    Article  Google Scholar 

  13. Winkler, S.: Evolutionary system identification: modern concepts and practical applications. Schriften der Johannes Kepler Universität Linz, Universitätsverlag Rudolf Trauner (2009)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the Austrian Research Promotion Agency (FFG) within project #867202, as well as the Christian Doppler Research Association and the Federal Ministry of Digital and Economic Affairs within the Josef Ressel Centre for Symbolic Regression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Kammerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kammerer, L., Kronberger, G., Kommenda, M. (2020). Data Aggregation for Reducing Training Data in Symbolic Regression. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12013. Springer, Cham. https://doi.org/10.1007/978-3-030-45093-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45093-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45092-2

  • Online ISBN: 978-3-030-45093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics