
Towards
Objective-Tailored
Genetic Improvement
Through Large
Language Models
Sungmin Kang, Shin Yoo
Presented by Sungmin @ GI 2023

Genetic
Improvement

🧬

From the GI website

Genetic Improvement

3

Results have been “proven” over multiple cycles

4
It’s difficult to survive the GI cycle without actually meeting the goal!

Image from Shin’s GA Slides

GI has been successfully deployed in:

5

🔨 🌿 ⏰

APR

Finding Bugs in
Your Sleep

Haraldsson et al., 2017

Energy

Reducing Energy
Consumption

Bruce et al., 2015

Time

Applying GI to
MiniSAT

Petke et al., 2013

Key paper introduced edit representations

6
Langdon & Harman (2012) successfully improved the performance of a large project.

Langdon & Harman (2012) successfully improved the performance of a large project.

BNF edit representations

7

Replacement

Deletion

Insertion

Issue 1. Specialized operators can be more effective,
but difficult to implement

8

def fib(n):
 if n <= 1:
 return 1
 else:
 return fib(n-1)+fib(n-2)

def fib(n):
 r_arg=max(0,n-2)
 memos=[1, 1]+[0 for _ in range(r_arg)]
 def _fib(k):
 if memos[k] == 0:
 fib_k = _fib(k-1)+_fib(k-2)
 memos[k] = fib_n
 return memos[k]
 return _fib(n)

As an example, we could consider a “memoization” operator to improve computation speed,
but it would be difficult to implement in a general manner.

Issue 2. Bloat

9
Bloat is a common result of genetic programming, and genetic improvement.

Strengths and Weaknesses of GI

10

🧬

Strengths Weaknesses

Results have
already been verified,

as part of the genetic process

Specialized operators are
difficult to implement;

results can be unnatural

Language
Models

💬

Language Models can generate natural code

12

Simple example of test generation from GitHub Copilot page

Code brushes allow editing of code based on NL descriptions.

“Code Brushes” are relevant

13

Code brushes allow editing of code based on NL descriptions.

Example code brush

14

Code brushes allow editing of code based on NL descriptions.

Example code brush

15

Example inefficient code from paper:

16

By “asking” for optimized code..

17

We get optimized code

18

No guarantee attached to LLM results

19

Shuster et al. (2021) highlight the issue of
hallucination in LLMs like GPT-x.

Sarkar et al. (2022) note the potential of LLMs to introduce
subtle bugs, hurting developer performance.

Strengths and Weaknesses of LLMs

20

Strengths Weaknesses

💬
Changes can be made simply

by asking for them;
results are natural as a result

of the training process

There is no guarantee on the
veracity of the results

Synergy

&

One’s weakness is the other’s strength

22

🧬

Strengths Weaknesses

Results have
already been verified,

as part of the genetic process

Specialized operators are
difficult to implement;

results can be unnatural

💬
Changes can be made simply

by asking for them;
results are natural as a result

of the training process

There is no guarantee on the
veracity of the results

Expected effect of LLM+GI

23

🏹 🧷

Directed
Changes

LLMs can make
“jumps” towards the

right direction

Safer LLM
Usage

The large changes
from LLMs are
contained by
the GI loop

BNF Expansion for LLM Integration

24
Instead of only allowing existing fragments for replacement/insertion,

arbitrary expressions can be used as replacement/insertion ingredients.

Replacement+

Deletion

Insertion+

Specific Integration Strategies

25
Generate LLM-based starting points,

extract their BNF expression to run the GI loop.

Initialize using LLM-generated results

Image from Shin’s GA Slides

Specific Integration Strategies

26
Prompt the language model to improve a potential solution further.

(Explored in CodaMosa from this ICSE in the context of test generation.)

Generate Mutations from LLM Image from Shin’s GA Slides

Specific Integration Strategies

27
Prompt language model to clean potentially bloated results.

Clean potentially
bloated results using
LLM

Image from Shin’s GA Slides

Conclusion

28

Traditional GI achieved good results with general operators,
but was not objective-specific and suffered from bloat.

1

Large language models can generate plausible code,
but provide no guarantee of good results.

2

As a result, the two techniques have significant synergy,
and LLMs can easily be placed in the GI loop.

3

Read our preprint!

Contact us at sungmin.kang@kaist.ac.kr
Read the preprint via the QR code, or search“Towards Objective-Tailored Genetic Improvement Through Large Language Models”

mailto:sungmin.kang@kaist.ac.kr

